

Tamagotchi-Spezifikation mit Statemate

Wolfgang Wagenbichler Bertram Schilling Michael Frey

Übersicht

- Statecharts
- Notation / Methode / Tool
- Modellierung im Team
- Ausschnitt der Spezifikation
- Erfahrungen
- Fazit

Statecharts (1)

• für Spezifikation und Design großer reaktiver Systeme entwickelt (D. Harel, 1983)

Statecharts (2)

- basierend auf Zustandsautomaten
 - → Super- und Substates
 - → Nebenläufige Zustandsautomaten
 - → Zustände mit Gedächtnis
 - → Events mit Bedingungen
 - → hybride Zustandsautomaten

Überblick Notation / Methode

Drei verschiedene Sichten

→ 1. structural view (Module-Chart) Wie ?

→ 2. functional view (Activity-Chart) Was ?

→ 3. behavioral view (State-Chart) Wann?

Vorgehensweise: Top-Down

Richtlinien zur Modellierung in Handbüchern nicht dokumentiert

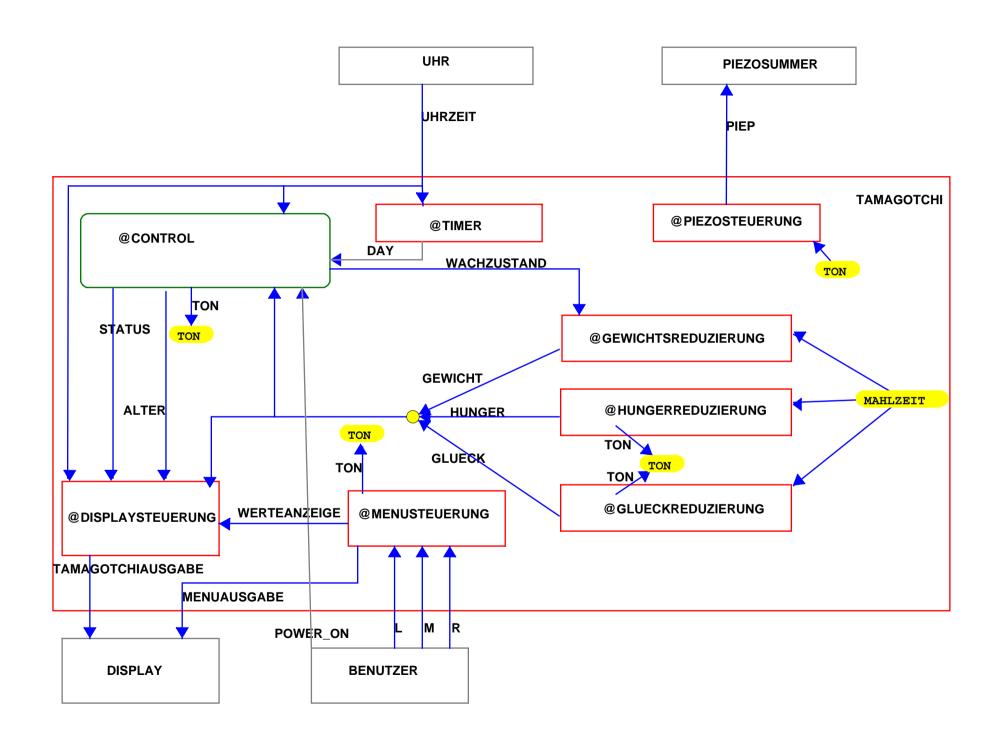
Überblick Tool: Statemate Magnum

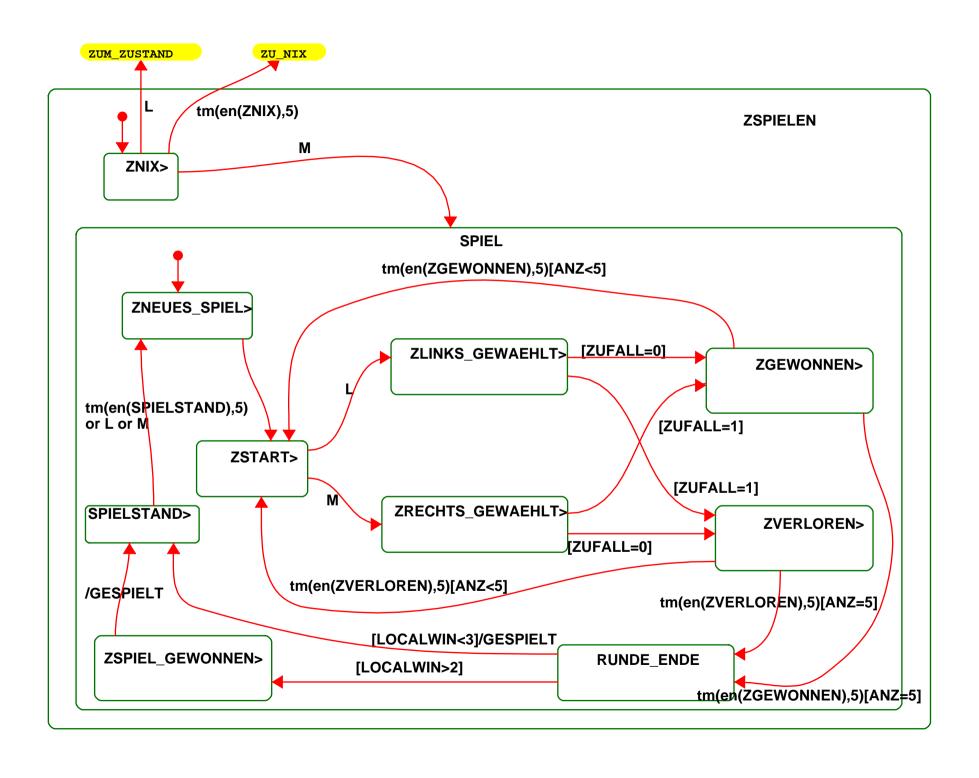
- Grafische Editoren f
 ür verschiedene Charts
- textbasiertes Data-Dictionary
- besondere Features:
 - → Simulation
 - → Konsistenz-Check
 - → Panel Graphic Editor
 - → Requirements-Table
 - → Kodegenerierung
 - → Dokumentator

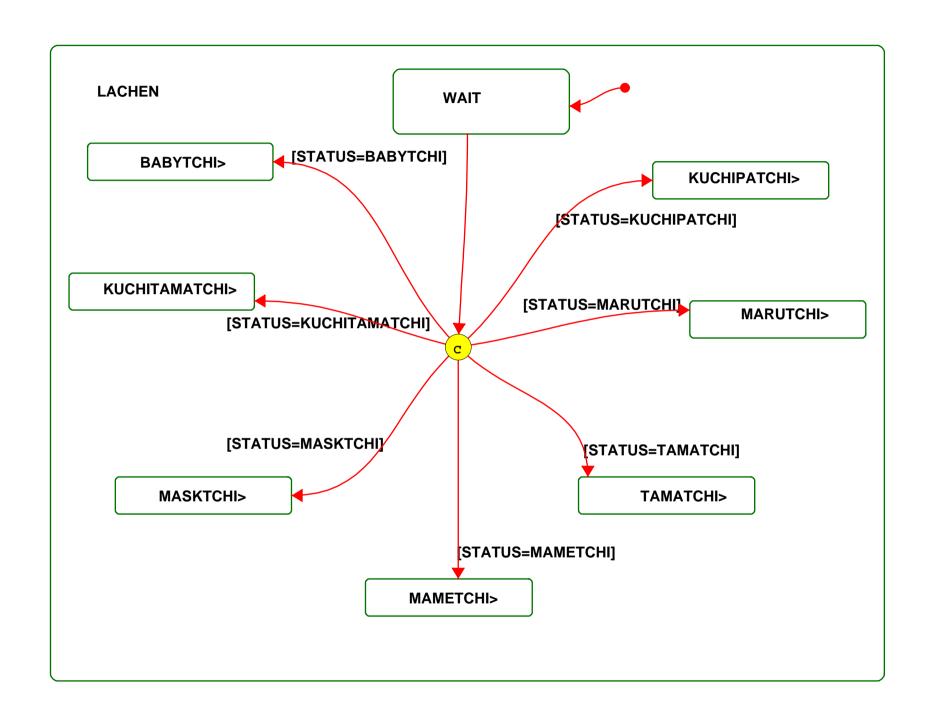
Modellierung im Team (1)

Vorgehensweise:

- In Teamarbeit:
 - Identifizierung von Einzelfunktionalitäten (spielen, füttern, etc.)
 - Festlegung des Informationsfluß auf oberster Ebene
 - Aufteilung in einzelne Aktivitäten
- In Einzelarbeit:
 - Modellierung der einzelnen Aktivitäten
 - Simulation


Modellierung im Team (2)


Toolunterstützung:


- Integrierte Versionsverwaltung
- Projektmanagementsystem

Größe der Spezifikation:

- sehr detaillierte Modellierung (Subcharts)
- vollständige Modellierung aller Tamagotchifunktionalitäten
- ca. 30 Charts + Data Dictionary Einträge

Data-Dictionary

ZNEUES_SPIEL

Defined in chart: ZSPIELEN

Static reactions:

entering/ANZ:=0;LOCALWIN:=0;

WERTEANZEIGE:=SPIELEN;

fs!(GEWONNEN);

ZSTART

Defined in chart: ZSPIELEN

Static reactions:

entering/WERTEANZEIGE:=SPIELEN;TICK;;

tm(TICK,1)/TON;TICK

ZLINKS_GEWAEHLT

Defined in chart: ZSPIELEN

Static reactions:

entering/ZUFALL:=RAND_IUNIFORM(0,1);

ZGEWONNEN

Defined in chart: ZSPIELEN

Static reactions:

entering/ANZ:=ANZ+1;

LOCALWIN:=LOCALWIN+1;

WERTEANZEIGE:=LACHEN:

ZSPIEL_GEWONNEN

Defined in chart: ZSPIELEN

Static reactions:

entering/tr!(GEWONNEN);

Erfahrungen (1)

Einarbeitung

- SafetyInjection-Beispiel sehr einfach
 - → Grundvorgehensweise von Statemate nicht erfaßt
- Aufwand ca. 30 Stunden

Erlernbarkeit

- Statecharts sind intuitiv
- Umfangreiche Online-Dokumentation

Erfahrungen (2)

Modellierung des Tamagotchi

- Statecharts gut zur Modellierung geeignet
- Keine Einschränkungen der Tamagotchifunktionalität durch das Tool
- Aufwand ca. 100 Stunden für Modellierung + Simulation

Anfängerprobleme

- Hierarchiebildung von Zuständen
- Bedienung des Tools

Erfahrungen (3)

Vergleich zu reviewten Spezifikation

	Statemate	Octopus
Verständlichkeit	 + formal definiert + leicht verständlich - sehr detailliert + Systemverhalten nachvollziehbar 	 zu informell viele verschiedene Diagrammtypen Detaillierungsgrad frei wählbar Systemverhalten teilweise nicht spezifiziert
Verfolgbarkeit von Anforderungen	+ Toolunterstützung bei Verfolgbarkeitsinformationen	- manuell
Überprüfbarkeit der Spezifikation	+ Toolunterstützung (Konsistenzcheck)	verschiedene Sichtenbesonders Toolunterstützung fehlt

Fazit

zur Teamarbeit:

- auf der obersten Ebene schlecht realisierbar
 - Informationsfluß festlegen
 - Verwendete Events informell beschreiben
- danach gut parallelisierbar

Stärken und Schwächen des Tools:

- + Simulation
- + unterstützt Teamarbeit
- lange Einarbeitung nötig