
on and

es:

.

of

ifferent

the

m

his

ure 3
ich the
at can
ving it,
y level.
1 Statecharts language and Statemate Magnum

1. 1 Introduction
The language of Statecharts has been developed to deal with the problems of specificati
design of large reactive systems. The basic foundation for theStatechartlanguage is thefinite
state machine. David Harel extended this theory in [Harel87] by adding the following featur

- Clustering and refinement of states.
- A history mechanism for groups of states, which allow substates to have a memory
- The possibility to deal with concurrency.
- Hybrid State Machines.
- The possibility to deal with conditioned events.

This extended theory is calledHarel machine. Harels new concept allows the combination
Moore- andMealy Machines thus leading to the expression ofHybrid State Machines.

Statecharts are used to depict the behavioral view of a system. Overall, there are three d
views:

1. TheModule-chartsdescribe the interaction of the System with the environment. This is
structural view, which captures the „how“ (Figure 1).

2. The Activity-chartsare used to describe the functional view („what“). Different syste
activities and the information flow between them are shown (Figure 2).

3. TheStatechartsdescribe the functionality of these activities with states and transitions. T
behavioral view captures the „when“ (Figure 3).

The usage of these languages will be explained with the Safety-Injection example. Fig
shows the Statechart for this system. Several states represent the different modes in wh
system can be. Moving from one state to another is accomplished by different events th
cause various types of action. An action can take place when entering a certain state, lea
or during the whole time in that state. Rounded rectangles are used to denote states at an
Arrows labeled with an event are used to denote transfers between states.

COMPUTER

SAFETY
INJECTION
DEVICE

WATER_PRESSURE_SENSOR

RESET
BUTTON

BLOCK
BUTTON

ADD_COOLANT

PRESSURE

RESET

BLOCK

Figure 1: Module-Chart of the Safety-Injection example

SAFETY_INJECTION_CONTROL

@SREACTOR

SAFETY
INJECTION
DEVICE

WATER_PRESSURE_SENSOR

BLOCK
BUTTON

RESET
BUTTON

ADD_COOLANT

PRESSURE

RESET

BLOCK

Figure 2: Activity-Chart of the Safety-Injection example

SREACTOR

PERMIT_OR_NOT

NO_PERMIT PERMIT

BLOCK

SAFETY_INJECTION>

[PRESSURE>=PERMIT]

[(PRESSURE<PERMIT) and
(PRESSURE>=LOW)]

tm(en(BLOCK),10)

RESET

BLOCK and (not RESET)

[PRESSURE>=LOW]

[PRESSURE<LOW]

Figure 3: Statechart of the Safety-Injection example

Datadictionary:

Information-flow ADD_COOLANT
 Defined in chart: MREACTOR
 Contains: START_COOLANT
 STOP_COOLANT

Module BLOCKBUTTON
 Defined in chart: MREACTOR
 Type: External

Module COMPUTER
 Defined in chart: MREACTOR
 Type: Execution
 Purpose: Regular
 Described by activity-chart: AREACTOR

Data-item LOW
 Defined in chart: SREACTOR
 Usage: Variable
 Data type: Integer length=8

State NO_PERMIT
 Defined in chart: SREACTOR
 Type: Basic

State PERMIT_OR_NOT
 Defined in chart: SREACTOR
 Type: Or

State SAFETY_INJECTION
 Defined in chart: SREACTOR
 Type: Basic
 Static reactions:
 entering/START_COOLANT;;
 exiting/STOP_COOLANT

Activity SAFETY_INJECTION_CONTROL
 Defined in chart: AREACTOR
 Type: Non-Basic
 Termination type: Reactive Controlled

Event RESET
 Defined in chart: MREACTOR
 Usage: Variable
 Structure: Event

omati-
mber
bstates
transi-
d (see
been

to be

types
tended

the
ystem.

cs,

charts
f the

ed in-

arts is
fault
ed ele-

original

tem´s

system.
the

pen-
m. We
, each
ead
tween
To specify time-related items, predefined time-out events are offered. These events aut
cally occur within a certain time after an other event took place. There is an unlimited nu
of self definable variables available to design data properties. By using superstates and su
the specification requirements can be divided into manageable subsystems. States and
tions are drawn in a graphical editor; events, actions, and variables are textually describe
Datadictionary). All activities may be decomposed into subactivities, until the system has
specified in terms of basic activities.
To verify a model each state (with its entry- and exit criteria and each transition) has
checked or simulated.

There is no formal approach as how to transform given requirements into the three diagra
and how to model the behavior in the statecharts with states and transitions and the ex
features of theHarel machines.
Also missing is a formal criteria telling you when you are finished with you description of
system; you have to check whether you modeled every feature action and reaction of the s

The toolStatemate Magnumwas developed by the company i-logics. As a founder of i-logi
David Harel himself was involved in the development of this tool.

The tool requires a top down approach to generate the Module-charts, then the Activity-
and finally the Statecharts. How to implement the Statecharts is left fully to the designer o
system. There is no approach given, but with a little experience modelling can be perform
tuitively.

The main features ofStatemate are:
It consists of a very vivid simulation feature.
Charts are tested for violation in syntax, semantics and also the relation between ch
checked.Statematedetects inconsistencies in the model, such as an Or-state without a de
entrance and it detects redundancy and incompleteness in the model, such as unresolv
ments.
The Code Generator generates a source code that reflects the same behaviour as the
model. This code can then be used to:

- Develop prototypes
- Simulate and/or validate large-scale systems

There is also a Panel Graphic Editor (PGE) which allows you to draw a mock-up of the sys
interface, and to bind the components of the mock-up panel to theStatematemodel. These pan-
els may also be included as part of the generated code.
The Documentor can be used to design and produce the documentation for the designed
Statematecan include textual and graphical information from a variety of sources, including
project database and external files.

1. 2 Approach and Result
We tried to divide the whole specification into several parts which could be developed inde
dently. First of all it was necessary as a team to determine the architecture of the syste
had to delimit the functionalities of the tamagotchi such as playing, eating and so on. Later
functionality was mapped to an Activity-Chart. The refinement of these Activity-Charts l
into several State-Charts. It was necessary to determine the top-level information-flow be

each

elop
llel on
ycle
the

ivities
These

nts of

guar-
ments.
he re-

takes

ithin
hart
art
ntrol-
es what

vior the

ribes
the Activity-Charts before splitting up the system into parts which could be developed by
team member.
Due to the functional decomposition of the system, the possibility was confirmed to dev
each part independently. The tool provided version-management so we could work para
each activity of the tamagotchi. We defined one control activity which managed the life-c
of the tamagotchi. This control unit worked together with all the other activities, reducing
information-flow between the other parts of the system and thus we could develop the act
like playing, eating, menu-control, buzzer, weight- and luck-management independently.
activities have also been simulated separately during the modeling phase.
We covered all details of the specification. It was not necessary to simplify the requireme
the tamagotchi because the Harel machine provided all the features we needed.
Statemate Magnumsupports a consistency-check so the consistency of our specification is
anteed. Furthermore we tested our system with the simulator against the textual require
No errors remained except the reset of the tamagotchi with the paper-strip. This part of t
quirements has not been worked out but it could be easily completed.
The specification comprises 30 charts. A printed version with all data-dictionary entries
up about 40 pages.

1. 3 Tamagotchi Specification of the functionality “Playing”
In our specification the functionality “Playing” is distributed across several statecharts. W
the chart ‘Menucontrol’ there is the most important chart for the playing functionality: the c
named ‘Zspielen’. In this chart the game itself is performed while the ch
‘Displaysteuerung_control’ decides the appearance of the playing tamagotchi. This co
state for the display determines the development phase of the tamagotchi and also decid
to display.
Within these states there are several substates that care about the different kinds of beha
tamagotchi can perform (e.g. playing, laughing, crying).
Below each state-diagram you find the corresponding datadictionary which mainly desc
entry and exit activities of several states.

MENUCONTROL
ZUHR>

ZNIX> @ZFUETTERN

@ZSPIELEN
@ZZUSTAND

PIEZO>
L and R

L or R

R

R

tm(en(ZUHR),5)

L and not R

M

ZURUECK_ZU_NIX

ZU_SPIELEN

ZU_NIX

ZUM_ZUSTAND

ZURUECK_NIX

Chart: MENUCONTROL Version:6 Date: 15-JAN-1999 14:43:17

Part of BA-F23

ZSPIELEN
ZNIX>

SPIEL

ZNEUES_SPIEL>

ZSTART>

ZLINKS_GEWAEHLT>

ZRECHTS_GEWAEHLT>

ZGEWONNEN>

ZVERLOREN>

RUNDE_ENDE
ZSPIEL_GEWONNEN>

SPIELSTAND>

tm(en(ZGEWONNEN),5)[ANZ=5]

[LOCALWIN<3]/GESPIELT

/GESPIELT

[LOCALWIN>2]

tm(en(ZVERLOREN),5)[ANZ=5]

tm(en(ZVERLOREN),5)[ANZ<5]

tm(en(ZGEWONNEN),5)[ANZ<5]

[ZUFALL=0]

[ZUFALL=1]

[ZUFALL=1]

[ZUFALL=0]

M

L

tm(en(ZNIX),5)L

M

tm(en(SPIELSTAND),5) or L or M

ZU_NIXZUM_ZUSTAND

Chart: ZSPIELEN Version:5 Date: 15-JAN-1999 14:43:19

Part of BA-F23, BA-F24, BA-F25

State ZNIX
 Static reactions:
 entering/MENUAUSGABE:=’spielen’;
 Elements used:
 TAMAGOTCHI:MENUAUSGABE (Variable Data-item) String length=30
Part of BA-F23

State ZNEUES_SPIEL
 Static reactions:
 entering/ANZ:=0;LOCALWIN:=0;WERTEANZEIGE:=SPIELEN;fs!(GEWONNEN);
 Elements used:
 ZSPIELEN:ANZ (Variable Data-item) Integer length=8
 ZSPIELEN:LOCALWIN (Variable Data-item) Integer length=8
 MAIN_ACTIVITY:WERTEANZEIGE (Variable Data-item) DISPLAYTYP
 Elements used:
 TYPES:DISPLAYTYP (User-defined Type) Enum-type
 Defined as:
 {NIX,ALTERGEWICHT,SATT,GLUECKANZ,UHR,LACHEN,WEINEN,SPIELEN,TSUSHI,TS
 NACK,ESSEN}
 TYPES:SPIELEN (Enumerated value): of Enumerated Type DISPLAYTYP
 MAIN_ACTIVITY:GEWONNEN (Condition)
Part of BA-F24

State ZLINKS_GEWAEHLT
 Static reactions:
 entering/ZUFALL:=RAND_IUNIFORM(0,1);
 Elements used:
 ZSPIELEN:ZUFALL (Variable Data-item) Integer min=0 max=1
 RAND_IUNIFORM(Predefined Function)
Part of BA-F24

State ZGEWONNEN
 Static reactions:
 entering/ANZ:=ANZ+1;LOCALWIN:=LOCALWIN+1;
 WERTEANZEIGE:=LACHEN;
 Elements used:
 ZSPIELEN:ANZ (Variable Data-item) Integer length=8
 ZSPIELEN:LOCALWIN (Variable Data-item) Integer length=8
 MAIN_ACTIVITY:WERTEANZEIGE (Variable Data-item) DISPLAYTYP
 Elements used:
 TYPES:DISPLAYTYP (User-defined Type) Enum-type
 Defined as:
 {NIX,ALTERGEWICHT,SATT,GLUECKANZ,UHR,LACHEN,WEINEN,SPIELEN,TSUSHI,TS
 NACK,ESSEN}
 TYPES:LACHEN (Enumerated value): of Enumerated Type DISPLAYTYP
Part of BA-F24

State ZSTART
 Static reactions:
 entering/WERTEANZEIGE:=SPIELEN;
 Elements used:
 MAIN_ACTIVITY:WERTEANZEIGE (Variable Data-item) DISPLAYTYP
 Elements used:
 TYPES:DISPLAYTYP (User-defined Type) Enum-type
 Defined as:
 {NIX,ALTERGEWICHT,SATT,GLUECKANZ,UHR,LACHEN,WEINEN,SPIELEN,TSUSHI,TS
 NACK,ESSEN}
 TYPES:SPIELEN (Enumerated value): of Enumerated Type DISPLAYTYP
Part of BA-F23

State ZRECHTS_GEWAEHLT
 Static reactions:
 entering/ZUFALL:=RAND_IUNIFORM(0,1);
 Elements used:
 ZSPIELEN:ZUFALL (Variable Data-item) Integer min=0 max=1
 RAND_IUNIFORM(Predefined Function)
Part of BA-F24

State ZVERLOREN
 Static reactions:
 entering/ANZ:=ANZ+1;WERTEANZEIGE:=WEINEN;
 Elements used:
 ZSPIELEN:ANZ (Variable Data-item) Integer length=8
 MAIN_ACTIVITY:WERTEANZEIGE (Variable Data-item) DISPLAYTYP
 Elements used:
 TYPES:DISPLAYTYP (User-defined Type) Enum-type
 Defined as:
 {NIX,ALTERGEWICHT,SATT,GLUECKANZ,UHR,LACHEN,WEINEN,SPIELEN,TSUSHI,TS
 NACK,ESSEN}
 TYPES:WEINEN (Enumerated value): of Enumerated Type DISPLAYTYP
Part of BA-F24

State SPIELSTAND
 Static reactions:
 entering/TAMAGOTCHIAUSGABE:=STRING_CONCAT(‘#gewonnen: ‘,INT_TO_STRING
 (LOCALWIN));
 Elements used:
 TAMAGOTCHI:TAMAGOTCHIAUSGABE (Variable Data-item) String length=30
 STRING_CONCAT(Predefined Function)
 INT_TO_STRING(Predefined Function)
 ZSPIELEN:LOCALWIN (Variable Data-item) Integer length=8
Part of BA-F25

State ZSPIEL_GEWONNEN
 Static reactions:
 entering/tr!(GEWONNEN);
 Elements used:
 MAIN_ACTIVITY:GEWONNEN (Condition)
Part of BA-F25

DISPLAYSTEUERUNG_CONTROL

IDLE

ALTGEW>
@NIX

SATT>

GLUECK>

UHR>

@LACHEN

@WEINEN

@SPIELEN

SUSHI>

SNACK>

ESSEN>

AUSGESCHALTET>

[WERTEANZEIGE/=GLUECKANZ]

[WERTEANZEIGE=GLUECKANZ]

[STATUS=EI]

[WERTEANZEIGE=ESSEN]
[WERTEANZEIGE/=ESSEN]

[WERTEANZEIGE=TSNACK]

[WERTEANZEIGE/=TSNACK]

[WERTEANZEIGE=TSUSHI]

[WERTEANZEIGE/=TSUSHI]

[WERTEANZEIGE=SPIELEN]

[WERTEANZEIGE/=SPIELEN]

[WERTEANZEIGE=WEINEN]
[WERTEANZEIGE/=WEINEN]

[WERTEANZEIGE=LACHEN]

[WERTEANZEIGE/=LACHEN]

[WERTEANZEIGE=UHR]

[WERTEANZEIGE/=UHR]

[WERTEANZEIGE/=SATT]
[WERTEANZEIGE/=NIX]

[WERTEANZEIGE=SATT]

[WERTEANZEIGE=NIX]

[WERTEANZEIGE/=ALTERGEWICHT]

[WERTEANZEIGE=ALTERGEWICHT]

Chart: DISPLAYSTEUERUNG_CONTROL Version:9
Date: 9-FEB-1999 10:35:20

Part of BA-F24

SPIELEN

BLICKRICHTUNGSAENDERUNG

ZLINKS> ZRECHTS>

tm(en(ZRECHTS),1)

tm(en(ZLINKS),1)

AUSGABE_TAMAGOTCHI

WAIT

BABYTCHI>

KUCHITAMATCHI>

MASKTCHI>

MAMETCHI>

TAMATCHI>

MARUCHTI>

KUCHIPATCHI>

[STATUS=KUCHIPATCHI]

[STATUS=MARUCHTI]

[STATUS=TAMATCHI]

[STATUS=MAMETCHI]

[STATUS=MASKTCHI]

[STATUS=KUCHITAMATCHI]

[STATUS=BABYTCHI]

C

BLICKRICHTUNGSAENDERUNG

ZLINKS> ZRECHTS>

AUSGABE_TAMAGOTCHI

WAIT

BABYTCHI>

KUCHITAMATCHI>

MASKTCHI>

MAMETCHI>

TAMATCHI>

MARUCHTI>

KUCHIPATCHI>

tm(en(ZRECHTS),1)

tm(en(ZLINKS),1)

[STATUS=KUCHIPATCHI]

[STATUS=MARUCHTI]

[STATUS=TAMATCHI]

[STATUS=MAMETCHI]

[STATUS=MASKTCHI]

[STATUS=KUCHITAMATCHI]

[STATUS=BABYTCHI]

C

Chart: SPIELEN Version:2 Date: 9-FEB-1999 10:57:07

Part of BA-F23, BA-F24

State ZLINKS
 Static reactions:
 entering/LINKS
 Elements used:
 SPIELEN:LINKS (Event)
Part of BA-F24

State ZRECHTS
 Static reactions:
 entering/RECHTS
 Elements used:
 SPIELEN:RECHTS (Event)
Part of BA-F24

State BABYTCHI
 Static reactions:
 LINKS/TAMAGOTCHIAUSGABE:=’Babytchi schaut links’;;
 RECHTS/TAMAGOTCHIAUSGABE:=’Babytchi schaut rechts’
 Elements used:
 SPIELEN:LINKS (Event)
 TAMAGOTCHI:TAMAGOTCHIAUSGABE (Variable Data-item) String length=30
 SPIELEN:RECHTS (Event)
Part of BA-F24

States KUCHITAMATCHI, MASKTCHI, MAMETCHI, ... are similar to the state BABYTCHI

LACHEN WAIT

BABYTCHI>

KUCHITAMATCHI>

MASKTCHI>

MAMETCHI>

TAMATCHI>

MARUTCHI>

KUCHIPATCHI>

[STATUS=KUCHIPATCHI]

[STATUS=MARUTCHI]

[STATUS=TAMATCHI]

[STATUS=MAMETCHI]

[STATUS=MASKTCHI]

[STATUS=KUCHITAMATCHI]

[STATUS=BABYTCHI]

C

Chart: LACHEN Version:2 Date: 9-FEB-1999 10:56:07

Part of BA-F24

State BABYTCHI
 Static reactions:
 entering/TAMAGOTCHIAUSGABE:=’babytchi lacht’
 Elements used:
 TAMAGOTCHI:TAMAGOTCHIAUSGABE (Variable Data-item) String length=30
Part of BA-F24

States KUCHITAMATCHI, MASKTCHI, MAMETCHI, ... are similar to the state BABYTCHI

State BABYTCHI
 Static reactions:
 entering/TAMAGOTCHIAUSGABE:=’babytchi weint’
 Elements used:
 TAMAGOTCHI:TAMAGOTCHIAUSGABE (Variable Data-item) String length=30
Part of BA-F24

States KUCHITAMATCHI, MASKTCHI, MAMETCHI, ... are similar to the state BABYTCHI

WEINEN
WAIT

BABYTCHI>

KUCHITAMATCHI>

MASKTCHI>

TAMATCHI>

MARUCHTI>

KUCHIPATCHI>

MAMETCHI>

[STATUS=KUCHIPATCHI]

[STATUS=MARUTCHI]

[STATUS=TAMATCHI]

[STATUS=MAMETCHI]

[STATUS=MASKTCHI]

[STATUS=KUCHITAMATCHI]

[STATUS=BABYTCHI]

C

Chart: WEINEN Version:1 Date: 9-FEB-1999 10:58:01

Part of BA-F24

read
hours.
tama-
een

tation
anual.
e se-
thou-
pages

and
spec-

xtual
ter the
quire-
otchi,
oncepts
d
his is

oped

elling
er mod-
on we
m with
. For a
. The
t-

ly.

many
m. The
ys-

it.

In oc-
ency,

atch-
In oc-
iagrams,
s, event
istency
eview
all. If
check
1. 4 Experience
To become acquainted with the tool we had to work on the safety injection example. We
Harels paper and started drawing the Statechart of the reactor. This took us about two
Later we noticed that the approach of drawing only statecharts was not appropriate for the
gotchi; we had to deal with several State- and Activity-Charts and the information flow betw
them. So we had to rework the safety injection example and read the online documen
which took us about 30 hours as a team. The only helpful documentation was an online m
It was described easy to read and very detailed on how to work with the tool and what th
mantics of the different diagramm-types is. The online-documentation comprises several
sand pages. The most important part is: “the statemate approach”, which has about 250
and contains everything that is important to deal with Module-Charts, Activity-Charts
State-Charts. Working with Statecharts is quite easy as they provide an intuitive model for
ifications.
The modelling of the tamagotchi took us about 100 hours as a team. We specified all te
requirements of the tamagotchi. At the beginning we simulated parts of the system and la
system as a whole. Neither the method nor the tool forced us to restrict of the textual re
ments of the tamagotchi.The Harel machines are a good modelling concept for the tamag
because the cyber-chicken consists of states, events, variables and timeouts. These c
could all be modelled withStatemate Magnum. There is no difference between the metho
which is described in Harels paper and the implementation of the method in Statemate. T
not surprising as David Harel is one of the founders of i-logics, the company which devel
Statemate.
At the beginning we had some problems defining hierarchies of states. If one starts mod
the statecharts one is used to model the system with flat state-machies, as used from oth
elling concepts. This leads to many states and transitions. After this brainstorming sessi
get a deeper understanding of the system as a whole and one might redesign the syste
hierarchies of states. If one gets used to doing so, one can model the hierarchies directly
beginner it will take some time to get used to thinking in hierarchical and concurrent states
usage of the mouse buttons inStatemateis also a little bit tricky for beginners, because the bu
tons are mapped differently according to other systems.
In the following part we will do a short evaluation ofStatemateandOctopus, the method we
had to review. The comprehensibility ofStatemateis better as Statecharts are defined formal
Statecharts are easy to understand and give a very detailed view of the problem.Octopuson the
other hand is too informal. Many things are described only in plain text. There are also too
diagram types. You have to read about twelve diagrams to cover every aspect of the syste
possible advantage ofOctopusis that you can decide how detailed you want to describe the s
tem. With statemate you have to describe everything very detailed so you can simulate
The traceability of the requirements is provided byStatematewith a traceability matrix with
which you can describe which requirements are resolved by which states or transitions.
topus you have to do that manually. If one wants to check the specification for consist
Statemate provides tool support. There is a consistency-checker which looks for type mism
es, transitions leading into nirvana and checks the usage of variables in different charts.
topus there are many different views: e.g. use cases, use case sheets, system context d
system diagramms class diagrams operation sheets, sequence diagrams, event list
sheets, action tables, and state charts. All of these have to be manually checked for cons
which is almost impossible for large scale systems. We found 18 inconsistencies in the r
of the octopus specification. This was only possible because the specification was so sm
it were to have been larger, it would have been impossible to remember all names and
them for consistency.

r and
xtual

ctopus

each
ve read
e per-
team
w be-
ument
rts get

tecture
ssary.

atem-
or.
re is a
might

other
, how

of the

here is
fonts
s are
e your

d with
We found several errors in our own specification with the help of the consistency checke
the simulation of the statecharts. We did not only find the errors/inconsistencies in the te
requirements but also recognized some errors in our design of the tamagotchi. The o
group which did the review after our simulation did not find any further errors.

1. 5 Conclusions

The tool supports teamwork and Projectmanagement. There is a databank from which
Project member may check out the charts he wants to edit. The other project members ha
only access to the checked-out parts of the specification. The teamwork should only b
formed for the lower parts of the system. For the toplevel charts it is necessary that all
members are present while designing the subactivities and determining the information flo
tween the charts. For larger systems it would also be necessary to use the function to doc
all events and variables used by the system, so that people who work with certain sub-cha
an idea what kind of events there are, and what they do. In a smaller team where the archi
of the system is carried out by all team members this explicit documentation is not nece
After you have done this; you can parallelize the work very well.
As the tool supports all the features of the method we will restrict our conclusions on the st
ate tool. The strengths of the tool are the consistency checking features and the simulat
The extensions of the finite state machines were very useful for practical purposes. The
little disadvantage in the hierarchy of states: If one often uses this feature to recurse, one
lose the overview of what will happen, e.g. with nested hierarchies with depth of 5. On the
hand if you make only flat statecharts, there is an explosion of states. You have to decide
to simplify the system. But in general the hierarchic states help to reduce the complexity
systems specification and the possibility of concurrent states can help to reduce it, too.
As a weakness one could denote that it takes long to become aquainted with the tool. T
also a possible enhancement, which should be included in the tool: The ability to scale the
when zooming in and out with the graphic editor for the charts. The states and transition
resized, only the size of the fonts remain. This causes some trouble when you have to resiz
chart.
However, after having successfully understood the range of functions that can be achieve
Statemate, we would definitely use it again.

Bibliography
[Harel 87] Statecharts: A Visual Formalism For Complex Systems

David Harel 1987

	1 Statecharts language and Statemate Magnum
	1. 1 Introduction
	1. The Module-charts describe the interaction of the System with the environment. This is the str...
	2. The Activity-charts are used to describe the functional view („what“). Different system activi...
	3. The Statecharts describe the functionality of these activities with states and transitions. Th...

	1. 2 Approach and Result
	1. 3 Tamagotchi Specification of the functionality “Playing”
	1. 4 Experience
	1. 5 Conclusions

