
Page 1

Tamagotchi specification with
OCTOPUS

Elena Torres, Gerhard Landeck

Seminar Software Engineering
Fachbereich Informatik.

Universität Kaiserslautern
WS 98/99

Page 2

Table of contents

1 Introduction
1.1 Notation
1.2 The method: OCTOPUS

1.2.1 System requirements specification
1.2.2 System architecture phase
1.2.3 Subsystem analysis phase
1.2.4 Design and implementation phase

1.3 The tool

2 Our approach

3 Specification of the functionality "play"
3.1 Use case diagram "Tamagotchi"
3.2 Use case sheets
3.3 Object model of subsystem tamagotchi
3.4 Statechart activity
3.5 Extract of event sheets
3.6 Statechart play
3.7 Extract of actions table

4 Experiences
4.1 Preparation for modelling
4.2 Modelling
4.3 Review

5 Conclusions

6 References

Page 3

1 Intr oduction

This chapter contains an introduction to the components used in this system modelling, the notation,
the specification modelling method and the used tool.

1.1 Notation

The OCTOPUS methodology uses many different diagrams, tables and sheets. We will describe the
notation of each element at the same time as we explain its function.

1.2 The method: OCTOPUS

A basic principle used in analysis, as in any complex task, is divide and conquer. This means to un-
derstand the total problem, partition it into subproblems and then try to understand each subproblem
and its relationships. The difficulty here is under which aspects we have to partition. OCTOPUS
combines some partitioning aspects, it is a method that makes it possible to develop object-oriented
software for embedded real-time systems[AWA ’95], like telecommunications and mobile phones. It
was developed in the Software Technology Laboratory at Nokia Research Center by Maher Awad,
Juha Kuusela, Jurgen Ziegler.[AWA ’95].

OCTOPUS is based on James Rumbaugh’s ’Object Modeling Technique’ (OMT)[RUM ’91] and
Derek Coleman’s ’Fusion’ [COL ’93]. The object model notation of the OMT allows compact ex-
pression of all the necessary details, furthermore the separation of structural, functional and dynamic
aspects makes the models easier to build and to understand. Basic separation between the analysis
phase, concentrating on describing the external behaviour (behaviour to the customer), and the design
phase, concentrating on the internal behaviour of the application, is taken from the Fusion meth-
od[AWA ’95].

The development of a large system with OCTOPUS is divided into five phases, most of them are built
up by three different models. The first model is the structural model, which describes the static struc-
ture of the system. The second is called functional model, which shows the behaviour of the system
without considering time aspects. The last one is the dynamic model, which considers the time course
of the system.

1.2.1 System requirements specification

On this level the system shall be described with its relations to its environment and from the users
point of view. First, one must find the use cases which build the functional as well as the dynamic
model. Each use case is recorded with the help of a use case sheet, the relations among the use cases
are shown in a use case diagram using the notation of OMT class diagrams.

Use cases describe the system from a users view. The system interacts with external agents, that can
be humans or computers. These agents can play different roles, each agent associated with a role is
called an actor. One can get the use cases by determining the different external actors.

Thesystem context diagram is based on the use cases. It shows the structure of the problem and the
relations between system and environment . It uses the notation of OMT class diagrams.

Page 4

A scenario is a sequence of events. Use cases may be complemented by scenarios between the system
and its environment to show the dynamic behaviour. Scenarios are a possible start point for test cases.

For the authors of OCTOPUS,verification at this level means to examinate the use cases exhaustive
with the customer .

1.2.2 System architecture phase

During this phase only the structural model is of importance. The system is divided into subsystems,
and the interfaces between them are shown in OMT class diagrams as associations. The hardware
wrapper is considered as a special subsystem.

1.2.3 Subsystem analysis phase

In this phase all subsystems will be analysed incrementally and parallel, so that the interfaces between
them are clear specified and the system architecture can be verified.

 The structural model in this phase is strongly oriented on Rumbaugh’s OMT method. It is based on
class diagrams (Fig.1), aclass description table andobject diagrams when needed. The class di-
agram contains classes and its relations. A class represents objects with the same properties (at-
tributes) and the same functional behaviour (methods and states). Classes can have associations
among each other, like aggregation, certain cardinality or specialization, each of them possessing
own symbols noted at the lines between the class symbols.

 Fig.1: Structural model, class diagram for Safety Injection Device.

Sensor

SystemOperator

SIDevice

System

Timer

Block Reset

Switch

on/off

runtime

low_threshold
permit_threshold
Water_pressure

signal

add_coolant
reset
reset_10
block

pressure_low

manual_block
manual_reset

operates

send_signal activate

sets

activate

Page 5

The functional model describes the functional interface of the subsystem with the help of operation
sheets.(Fig. 2) These sheets are part of the Fusion method, and define operations declaratively in an
informal way.

 Fig.2: Functional model, operation sheet for Safety Injection Device

Operation 3 block Safety Injection Device
Description system operator blocks SID
Association Class system operator, Class Computer
Preconditions no safety injection signal present,

 water pressure < permit
Inputs water pressure, permit, safety injection signal
Modifies block switch, timer
Outputs ---
Postconditions SID blocks, Operation 4 starts

Thedynamic model shows the operations of the subsystem, but under real time and reactive aspects.
It treats conditions for performing the operations, their duration and order, and also which operations
are possible in the different states and how operations affect each other.

The dynamic modelling phase is achieved into the following steps:

The first step is theanalysis of events, it consists of building anevent list, grouping of events in a
event diagram(Fig. 3)andevent sheets. An event is a request for an operation, it is short and comes
from another subsystem or from the system environment. Event diagrams use the class diagram
notation. An individual event is described by an event sheet.

 Fig.3: Dynamic model, event diagram for Safety Injection Device

Event

time_over ctrl_low manual
operation

block reset

Page 6

The next step is theanalysis of states with concurrentstatecharts (Fig. 4) and an actions table.
State analysis allows modelling state dependent behaviour. It uses the notation of Harel[HAR ’87]
. In opposite to OMT, which requires state analysing for each class, OCTOPUS is more flexible, be-
cause it allows to analyse states for whole subsystems as well as for parts of subsystems. The infor-
mation a single statechart provides is limited in order to maintain overview. Actions which occur in
a certain state are described in a separate table, the actions table.

 Fig.4: Dynamic model, statechart for Safety Injection Device

To further analysis of states and events belongs asignificance table(Fig. 5), it explains the impor-
tance of events according to different states.

 Fig.5: Dynamic model, significance table for Safety Injection Device

-------EVENTS--------

 STATE control_low block reset timeover
______ ___

system running c c 0 0
add coolant 0 0 0 0
reset signal 0 0 0 0
blocking/runtime 0 0 c c

Finally, for a better understanding of the dynamic model ,scenarios will be used. They show the or-
der of events with the help of message sequence charts.

At this point it is possible to work parallel on the design and implementation of each subsystem. OC-
TOPUS enabels the hardware wrapper to be considered as a subsystem, that permits broader perspec-
tive to take important decisions about hardware - software interaction.

system
running

blocking/
runtime

add_
coolant

reset_signal
present

control_low

SI-Signal

block

reset/Time_over

wait

Page 7

1.2.4 Design and implementation phase

Based on the analysis model object interaction threads will be developed and combined or extended
to event threads. Details will be recorded in 'class outlines'. Then communication mechanisms be-
tween the objects will be established in every event thread. Concurrency will be designed by grouping
objects and the outlines of the processes will be developed. These steps will be verified by removing
inconsistencies, balancing the design decisions and determining how to synchronize the access to
shared objects. In the implementation phase these results will be changed into code. The last two
phases, design and implementation, do not belong to client specification modelling.

1.3 The tool

We used the tool StP/OMT (Software through Pictures / Object Modeling Technique), release 2.4.2,
which was created by Aonix in from 1984 to 1997. In this chapter we describe some features of this
tool.

The name StP/OMT already points out, that the tool has been developed to support the OMT method.
Similar to OCTOPUS, OMT uses three views to a system, in fact an object model, a functional model
and a dynamic model. The differences between OMT and OCTOPUS models we already pointed out.

So it is not surprising, that it is not possible to build up all parts of the OCTOPUS model with StP/
OMT. For instance there is a feature of StP/OMT which allows to make use cases, but the syntax of
OCTOPUS use cases is completely different. Therefore we couldn’t use this feature.

All diagrams which use the syntax of OMT class diagrams can be drawn with the StP/OMT class di-
agram editor, like use case diagrams, class diagrams and event diagrams. But semantic checks make
no sense, because they have other semantics.

The state charts of the dynamic model in the analysis phase can also be made with the tool, because
in this case there is no difference between OCTOPUS and OMT. Furthermore one can draw up sce-
narios as message sequence charts with the help of an event trace editor.

 The tool has features for cross-checking OMT models, generating C++ code and building an OMT
functional model, which is completely different to the OCTOPUS functional model. There is no pos-
sibility to simulate the system.

2 Our approach

We did not have a tool which worked on the methodology of OCTOPUS directly. Instead, we used
the StP tool that originally supports OMT. For this reason we could get advantage from some dia-
gram editors, but some verification features could not be used. OCTOPUS works strongly with infor-
mal description techniques, as sheets in natural language, StP/OMT does not contain any support to
manage sheets.

All steps which led to a diagram in OMT class diagram notation could be made with StP, also the
statecharts and the MSC diagrams (message sequence charts). We used the appropriate editor of the
tool to build state diagrams. All kind of sheets and tables we made with a normal text editor.. The cor-
relation between the different models and phases we had to ensure by means of name consisten-
cies(manual consistency check).

Page 8

The specification contains:

1 System requirements specification
1.1 Use case diagram 1 diagram
1.2 Use case sheets 1 sheet
1.3 System context diagram 1 diagram

2 System architecture phase
2.1 Subsystem diagram 1 diagram

3 Subsystem analysis phase
3.1 Class diagram: object model 1 diagram
3.2 Class description table 1 table
3.3 Operation sheets: functional model 1 sheet
3.4 Events lists: dynamic model 1 list
3.5 Event diagram 1 diagram
3.6 Event sheets 1 sheet
3.7 Actions table 1 table
3.8 Statecharts 4 charts

Total: 9 graphical representations and 4 tables or lists, 20 pages.

Page 9

3 Specification of the functionality "play"

In this chapter we show that part of our specification, which contains the functionality "play". We start
at the use case diagram and the corresponding use case sheet. Then we present the class diagram of
the analysis phase, followed by the statechart diagrams, which belong to "play", and the event sheets
according to the charts. At last we show the actions table.

3.1 Use case diagram "Tamagotchi"

T
am

ag
ot

ch
i

st
op U
2

be
ep

 o
n_

of
f

U
5

di
sp

la
y

st
at

e
U

7

fe
ed U
9

pl
ay U
6

di
sp

la
y

ag
e+

w
ei

gh
t

U
8a

di
sp

la
y

re
pl

iti
on

U
8b

di
sp

la
y

ha
pp

in
es

s
U

8c

sl
ee

p
U

13
sh

ow
tim

e
U

3

m
ea

l
U

10
a

sn
ac

k
U

10
b

fly
_a

w
ay

U
14

st
ar

t
U

1

U
se

 C
as

e

S
ub

U
se

C
as

e

S
ub

U
se

C
as

es

W
ak

e-
up

U
12

ch
an

ge
de

ve
lo

pm
en

t
st

at
e

U
11

Page 10

3.2 Use case sheets

Use Case (U6) play

Actor Benutzer
Preconditions Das Tamagotchi ist wach und befindet sich nicht im

 Zustand Ei oder fliegendes T.
Description Das Display zeigt ein spielendes Küken des aktuellen

 Entwicklungsstadiums, der Piezosummer piept periodisch.
 5 mal wählt der Benutzer mit der linken oder mittleren Taste
 eine Richtung aus, das Küken ebenso per Zufallsgenerator.
 Stimmt die Richtung überein, zeigt das Display ein lachendes,
 sonst ein weinendes Küken. Nach 5 Runden wird der Spielstand
 angezeigt.

Sub Use Cases ---
Exceptions end (rechte Taste), stop (Streifen rein),

 sleep_in (Einschlafzeitpunkt erreicht);
Activities ---
Postconditions Das Display zeigt ein Küken des aktuellen Entwicklungsstadiums.

Page 11

3.3 Object model of subsystem tamagotchi

liv
in

g_
ch

ic
ke

n

ag
e;

w
ei

gh
t;

re
pl

iti
on

;
ha

pp
in

es
s;

ba
by

tc
hi

ne
xt

_d
ev

el
op

=
m

ar
ut

ch
i;

tim
e_

re
pl

_s
te

p=
15

m
in

ut
es

;

ac
tiv

ity
_s

ta
te

;
pl

ay
_c

ou
nt

er
;

m
en

u;

pr
ev

io
us

;
cu

rr
en

t;
ne

xt
;

al
ar

m
tim

er

sl
ee

p_
tim

e;
w

ak
e_

up
_t

im
e;

tim
e_

st
ep

;

cl
oc

keg
g

fly
in

g

ch
ic

ke
n

m
ar

ut
ch

i
ku

ch
ita

m
at

ch
i

ta
m

at
ch

i
m

am
et

ch
i

ku
ch

ip
at

ch
i

ne
xt

_d
ev

el
op

;
w

ak
e_

up
_t

im
e8

.0
0;

sl
ee

p_
in

_t
im

e2
1.

00
;

tim
e_

ha
pp

_s
te

p=
3h

ou
rs

;
tim

e_
re

pl
_s

te
p=

1h
ou

r;

ne
xt

_d
ev

el
op

;
w

ak
e_

up
_t

im
e

=
9.

00
;

sl
ee

p_
in

_t
im

e
=

21
.0

0;
tim

e_
ha

pp
_s

te
p

=
2h

ou
rs

;
tim

e_
re

pl
_s

te
p

=
2h

ou
rs

;

ne
xt

_d
ev

el
op

;
w

ak
e_

up
_t

im
e

=
8.

00
;

sl
ee

p_
in

_t
im

e
=

21
.0

0;
tim

e_
ha

pp
_s

te
p

=
4h

ou
rs

;
tim

e_
re

pl
_s

te
p

=
2h

ou
rs

;

ne
xt

_d
ev

el
op

=
fly

in
g;

w
ak

e_
up

_t
im

e
=

10
.0

0;
sl

ee
p_

in
_t

im
e

=
21

.0
0;

tim
e_

ha
pp

_s
te

p
=

4h
ou

rs
;

tim
e_

re
pl

_s
te

p
=

2h
ou

rs
;

ne
xt

_d
ev

el
op

=
fly

in
g;

w
ak

e_
up

_t
im

e=
10

.0
0;

sl
ee

p_
in

_t
im

e=
21

.0
0;

tim
e_

ha
pp

_s
te

p
=

2h
ou

rs
;

tim
e_

re
pl

_s
te

p
=

2h
ou

rs
;

m
as

kt
ch

i

ne
xt

_d
ev

el
op

=
fly

in
g;

w
ak

e_
up

_t
im

e=
11

.0
0;

sl
ee

p_
in

_t
im

e=
23

.0
0;

tim
e_

ha
pp

_s
te

p=
2h

ou
rs

;
tim

e_
re

pl
_s

te
p=

2h
ou

rs
;

eg
g_

tim
e=

5m
in

ut
es

;

lif
e_

ex
pe

ct
an

cy
;

m
in

im
um

_w
ei

gh
t=

5o
z

m
in

im
um

_w
ei

gh
t=

10
oz

;

m
in

im
um

_w
ei

gh
t

=
20

oz
;

m
in

im
um

_w
ei

gh
t

=
20

oz
;

m
in

im
um

_w
ei

gh
t

=
30

oz
;

m
in

im
um

_w
ei

gh
t=

20
oz

;

m
in

im
um

_w
ei

gh
t=

30
oz

;

m
in

_l
ife

_e
xp

ec
ta

nc
y

=
15

da
ys

;

m
in

_l
ife

_e
xp

ec
ta

nc
y

=
7d

ay
s;

m
in

_l
ife

_e
xp

ec
ta

nc
y

=
12

da
ys

;

st
at

e_
tim

e=
3h

ou
rs

st
at

e_
tim

e=
2d

ay
s;

tim
e

ev
en

ts
w

on
;

lo
st

;

st
at

e_
tim

e=
5d

ay
s;

st
at

e_
tim

e
=

5d
ay

s;

st
ar

t_
ev

en
ts

Page 12

3.4 Statechart activity

3.5 Extract of event sheets

Event E3 next

Response Display zeigt nächsten Menüpunkt
Associations siehe menu
Source siehe menu
Contents ---
Response Time siehe user event
Rate siehe user event

S 2.2.4.1
menu_
feed

S 2.2.4.6
menu_

play

S 2.2.4.7
menu_
status

S 2.2.4.8
show_age_
and_weight

S 2.2.4.9
show_

replition

S 2.2.4.10
show_

happiness

S 2.2.4.2
menu_
meal

S 2.2.4.3
menu_
snack

S 2.2.4.2
feed_
meal

S 2.2.4.5
feed_
snack

S 2.2.4.11 play

S 2.2.4

S 2.2.1
wait

S 2.2.4.11.1 S 2.2.4.11.2

S 2.2.4.11.4 S 2.2.4.11.3S 2.2.3
show_time

S 2.2.2
sleeping

next

next

back

back

start
(age+weight)

start
(rep)

start
(happ)

start
(feed) next

start
(meal) start

(snack)

backback

start
(play)

next

end

start
(time)end

5_sec_over
(not in

state play)

5_sec-
over

wake_up
sleep_in

sleep_in
(not in state

feed_meal or
feed_snack)

Page 13

Event E4 start

Response Beginn einer Aktion
Associations siehe menu
Source siehe menu
Contents Name der Aktion
Response Time siehe user event
Rate siehe user event

Event E6 end
Response Display zeigt Küken
Associations siehe menu
Source siehe menu
Contents ---
Response Time siehe user event
Rate siehe user event

Event E7 dir ection

Response chicken moving eyes, laughinf or crying chicken
Associations current instance of living_chicken
Source siehe user event
Contents right or left
Response Time siehe user event
Rate siehe user event

Event E14 5_sec_over

Response Display zeigt vorhergehenden Menüpunkt oder Küken;
Associations Timer
Source Display hat Anzeige geändert;
Contents ---
Response Time siehe time event
Rate unregelmäßig.

Event E15 over

Response T. wechselt in Zustand round_over;
Associations Aktuelle Unterklasse von living_chicken, display
Source Küken hat die Augen bewegt
Contents ---
Response Time siehe time event
Rate immer nach dem Ereignis direction.

Page 14

3.6 Statechart play

3.7 Extract of actions table

Elementary state Event Actions/activities

S 2.2.1 wait <enter> Display zeigt waches Küken entsprechender Entwickl.
<wake_up> age := age+1; play_counter := 0;

 Gewicht wird um entwicklungsabhängigen Wert verringert;

S 2.2.4.1 menu_feed <enter> Display zeigt "Nahrung und Süßigkeiten"

S 2.2.4.6 menu_play <enter> Display zeigt "Spielen"

S 2.2.4.11.1 playing_ <enter> Display zeigt spielendes Küken des aktuellen
 chicken Entwicklungsstadiums;

 S 2.2.4.11.2 move_ <enter> T. wählt Richtung, bewegt Augen auf Display,
 eyes vergleicht, ändert won oder lost;

S 2.2.4.11.3 round_ <enter> Display zeigt lachendes oder weinendes Küken,
 over T. zählt won und lost zusammen;

S 2.2.4.11.4 show_ <enter> Display zeigt Spielstand an;
 score <exit> play_counter := play_counter + 1;

S 2.2.4.11.1
playing_
chicken

S 2.2.4.11.2
move_eyes

S 2.2.4.11.3
round_

over

S 2.2.4.11.4
show_
score

direction

over5_sec_over
(won+lost<5)

5_sec_over
(won+lost=5)

5_sec_over

Page 15

4 Experiences

In this chapter we talk about our own experiences with OCTOPUS and the StP tool. This contains
how much time we needed for the work and which difficulties we had to surmount. Another point is
the comparison with the group that used the statechart method.

4.1 Preparation for modelling

We had to work eight hours per person and week during the training period, which lasted for four
weeks. There was to read the only existing book about OCTOPUS, to understand the complex method
and to get used to work with the tool.

 One bad point of the book is the order of building the different models during the subsystem analysis
phase. There is first described the static model, then the functional and last the dynamic one. It is bet-
ter to build the dynamic model before the functional model or, if possible, build them parallel. If one
begins with the dynamic model, it is easier to identify operations, events and also the attributes which
will be needed in the static model.

Another problem for beginners is to distinguish events from operations. Because we developed the
functional model before the dynamic one we identified some operations which had more the character
of events. Dividing the system into subsystems and classes is a difficulty which appears to people who
have no experience in object modelling. This means in our own case, that we built too large classes.
So later we had to split it into several classes. A special problem of OCTOPUS is how deep to go with
the use cases. There is no limit given in the book telling you when to stop with building sub use cases
or activities.

Page 16

 4.2 Modelling

Modelling the tamagotchi took also eight hours per week and person during six weeks. It contents all
software requirements, but we didn't analyse the hardware wrapper. The notation of OCTOPUS al-
lows to describe all requirements because you model on a very high level and you have static, func-
tional and dynamic structures. This makes it possible to describe the time and reactive aspects.

With the tool it is possible to draw all diagrams which use the notation of class diagrams.Statecharts
and scenarios (as message seqence charts) can also be drawn. It is not very useful to check syntax or
semantic of use case and event diagrams although the tool is able to do so. The reason is that these
diagrams use the notation of class diagrams, but have a completely different semantic. In the analysis
phase informal text is used. The informal sheets and tables could not be done with the tool, because
there is no editor to write informal text. This was very bad because we could not develop the whole
model with one tool.

In our opinion it is not easy to get an overview about the model for beginners of the method. The nu-
merous tables, diagrams and sheets make it difficult. It is also not easy to follow a line of user actions
like "what happens if you press the middle button". It seems best to begin with the state charts and
follow the line through the actions table, event sheets and operation sheets. The depiction between
requirements and diagrams is not 1:1, but 1:n.

In the analysis phase frequently informal text is used. Therefore it is not difficult to understand the
specification if you know the way through the diagrams.

4.3 Review

The method we reviewed was the statecharts method. The members of that group showed us their sim-
ulation on the machine. They gave us their written specification. We examined it in a rough way. That
means we looked only at the highest levels and some certain requirements. Because there is only one
kind of diagrams it was easy to understand. We had no problems to follow a line of user actions. We
couldn't find any mistake in the specification.

The other group reviewed our work by reading our written specification. They didn't find any mis-
takes.

Page 17

5 Conclusions

Working parallel was not possible for us because we had only one subsystem. With a larger system
which would be divided into more subsystems we think it would be easy to work in parallel.

In OCTOPUS there is no problem with modelling any part you want. Real time and reactive aspects
can be shown very good. Negative is that you don't know how deep you shall go in detail. The number
of diagrams, tables and sheets make an overview difficult. For building the sheets and tables you must
use an external editor. It would be better to make them with the same tool as the diagrams and state
charts. It would also be good if there were possibilities to check the consistencies between the differ-
ent models and if it could be simulated.

Probably it would have been enough to make a rough design and programme it then. This would have
been much faster to get finished. However, if one has experience with OCTOPUS he would have been
much faster than we were.

To learn the method it was useful to make a model of the tamagotchi. The safety injection device was
much too small for learning the method. The tool didn't help us very much because we used it in the
way of a graphics editor. Some things we wanted to do probably would have been easier done with a
good graphics editor.

We think the most disadvantages we mentioned here will be eliminated with growing experience. The
exception is the support of the tool.

Page 18

6 Reference

[AWA ’95] Maher Awad, Juha Kuusela, Jurgen Ziegler, Object-Oriented Technology
for Real-Time Systems, Prentice Hall, 1995.

[COL ’93] Derek Coleman, Patric Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona
Hayes and Paul Jeremaes, Object-Oriented Development - The Fusion Method, Englewood Cliffs,
NJ: Prentice Hall, 1993.

[RUM ’91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lo-
rensen,Object-Oriented Modeling and Design, Englewood Cliffs, NJ: Prentice Hall, 1991.

