
ROOM-Method and ObjecTime Tool 1

ROOM-Method and ObjecTime Tool

Authors: Markus Fröhler, Michael Gnatz, Marcus Lanzl

Table of Content

1. Introduction ...2

1.1. Purpose ..2

1.2. History and Authors ..2

2. Main features ..3

2.1. Notation..3

2.2. Method..5

2.3. Tool ...5

3. Approach and Result...6

4. Specification of the Functionality „Playing“ ..7

4.1. Structure and Behavior ...7

4.2. Functional User-Requirements...12

5. Experiences ..12

5.1. The Training Phase..12

5.2. The Modeling Phase ..13

5.3. The Simulation and Review Phase ...13

6. Conclusions ..15

6.1. Teamwork...15

6.2. Notation, Method and Tool..15

6.3. Usefulness of Method and Tool..16

7. Literature............................. ..17

ROOM-Method and ObjecTime Tool 2

1. Introduction

1.1. Purpose

The ROOM-Method is supposed to cover all steps in the development of „Real-Time
Distributed Systems“. Those systems ROOM may be applied to can be characterized by the
following properties:

• Timeliness: minimized service time and system latency

• Dynamic internal structure: need of system reconfiguration due to changes in the external
environment

• Reactiveness: continuous interaction with environment; system responses depend on
input, system state and time

• Concurrency: several simultaneous threads of control interacting through process-
communication and synchronization

• Distribution

1.2. History and Authors

ObjecTime was developed by the Telos Group at Bell-Northern Research. The Group
was founded 1985 and aimed to investigate advanced system architectures for integrated
voice and data telecommunications applications. The telecommunications sector is where
ROOM comes from and is oriented to. From the beginning there was the goal of a persisting
architectural model, which should evolve throughout the whole development life cycle.
Another goal was to make the models executable as early as possible to enable developers
to detect errors and omissions in early design stages, and also to test alternatives easily.
Finally the automated transformation of the models to implementations on real-time operating
systems was focused from the very beginning. The ObjecTime tool was ready for usage
within Bell-Northern Research since January 1990. Two years later, an independent spin-off
(ObjectTime Limited) was founded, which brought the tool to the open market.

The ROOM Method has its origin in the work of three authors: Bran Selic, Garth
Gullekson and Paul T. Ward. It is based on practical experience of the authors in developing
real-time systems in different industries. It was especially influenced by the design of a large
distributed telecommunication system. Bran Selic is now vice president of Research and
Development at ObjecTime Limited. He has experience in many application sectors from
over 20 years of design and project management, including the fields of telecommunications,
aerospace and robotics. Garth Gullekson is vice president of Marketing at ObjecTime
Limited. He spent 14 years with the design and management of real-time telecommuni-
cations software at Bell-Northern Research. Paul T. Ward is principal of Paul Ward &
Associates, a company providing training and consulting for real-time system developers.

ROOM-Method and ObjecTime Tool 3

2. Main features

• ROOM is inherently object oriented.

• The modeling concepts are specific to the real-time domain, which enables the
construction of accurate and concise system models.

• ROOM provides for the explicit capture and documentation of system architectures.

• ROOM produces executable models at all levels of abstraction. This allows early
detection of errors and omissions.

• ROOM supports an incremental and iterative development process. There are no
paradigm shifts and discontinuities as in many traditional development models.

2.1. Notation

There are two major views of actors . They form the key items for modelling:

• Structure view

• Behavior view

Figure 1: Structure-View of the reactor model

ROOM-Method and ObjecTime Tool 4

The structure view resembles a black box view. It describes communication with other
components (actors) via ports, bindings and protocols. It also supports the encapsulation of
actors within other actors.

Figure 1 shows the structure of the reactor case-study. The boxes represent actors,
communication takes place via well defined channels (black lines). Each channel links two
actors and has two different ends (ports). This allows to specify in- and outgoing messages
within the attached protocol.

The behavior view can be compared to a glass box view. Behavior is represented by
extended state machines (ROOM-charts). At any given time the actor is in one of a set of
pre-defined states. Transitions between those states are triggered by incoming messages
and may depend on specified logical conditions.

Figure 2 shows the behavior of the reactor case-study. The bubbles represent states,
the arrows between them transitions. A transition is triggered, when one of the specified
signals arrives and the (optional) guard condition equals to TRUE. Then the extended state
machine changes into the state pointed to by the transition. Upon entry and exit of states
there may be pieces of code executed (indicated by little arrows at the bottom of a state).

Figure 2: Behavior-View of the reactor model

States as well as actors can be nested, this allows different levels of detail. Valid
messages are defined in protocol classes, they can carry along standard or self-defined
data-types. Due to the object paradigm actors as well as protocols can be inherited and may
be generated or deleted dynamically. Actors resemble independent distributed components
and may therefore be executed independently.

ROOM-Method and ObjecTime Tool 5

The ROOM virtual machine – a runtime environment which hosts the simulation of
models – provides additional services. Those, like the Timing Service for example, can be
accessed via Service Access Points (SAPs) using the respective protocols. Message
Sequence Charts can also be included into the model. They specify in detail the sequence of
messages for concrete scenarios and are used by ROOM for model-validation.

2.2. Method

Generally, a modeling-advance from an abstract level towards more concrete levels is
recommended. The ObjecTime Tutorial provides a list of steps that can be done repetitively.
The first step resides on a very abstract level describing the system only roughly. Whereas
following steps take place on ever more concrete levels resulting in a model as detailed as
desired.

Those development steps are:

• Definition of actors

• Definition of protocol classes

• Declaration of ports and bindings between the actors

• Connection between bindings (communication channels) and protocols

• Description of behavior by ROOM-charts

The model is complete, as soon as it meets all user-requirements. This can be checked
for example by a simulation of the whole model for specific scenarios.

2.3. Tool

The ObjecTime tool itself comprises the following basic components:

• The Model Management constitutes a library system that provides for formal storage of
classes - including check-in, check-out and version control. Versioning and storage are
provided by the configuration management of the main development environment.

• The Model Editor allows creation, modification and browsing of all elements of ROOM
models. There may be Documentation objects associated with each element of the
model. Graphical and textual representations can be exported for documentation
purposes.

• The Model Validator is a powerful component which checks the model during
construction, compilation and execution. For example, invalid bindings of actor ports and
invalid actor containment relationships are prohibited while editing. Invalid message
reception is revealed during simulation.

ROOM-Method and ObjecTime Tool 6

• The Model Compiler translates model into a high-level source code (C++ or RPL). This
code can be compiled to run on the ROOM virtual machine.

• The ObjecTime Run-time system implements the ROOM virtual machine and provides
capabilities for model execution and debugging. The testing of models is supported in
various ways. So individual actors can be stopped and single stepped, messages can be
injected or traced at any actor port. Trace or break points can be placed at structure and
behavior charts. Furthermore there can be delays associated with event processing and
message transmission, in order to simulate real conditions. The execution of a model can
be observed in the same charts that have been edited using the model editor.

• Cross Reference and Navigation provide a good help, when browsing the model or
looking for errors. There is an online cross-reference which enables keyword search
within the whole model. Several navigators allow quick switching from one part to
another, e.g. from a compilation error message to the place it occurred.

To add up to a complete development environment, ObjecTime can be used together with
other software engineering tools providing:

• Requirements Specification Management

• Graphical Interface Development

• Project Management

• Document Creation

• Programming Language Environment

3. Approach and Result

We followed the method described in section 1.1.5. First we discussed the general
design of the Tamagotchi model. We agreed on splitting the specifications into three
independent actors. One should represent the Tamagotchi´s lifecycle, another should be
responsible for keeping important variables (e.g. age, happiness or number of games played
today) and the third actor would handle user interaction via the menu. We all worked together
on one version of the model, since there were only two licences. Besides, it took almost the
whole time for the project to understand some features of ObjecTime, including export for
documentation purposes and the check-in/check-out mechanism.

We didn´t cover all of the specifications, but most of them. Display and Buzzer have not
been modeled completely. ObjecTime does not support to check, whether two signals arrive
at the same time. So BA-F-12 (turning the buzzer on and off) could not be modeled, because
this would have required testing both keys (L and R) simultaneously. However we made
great use of the ObjecTime Run-Time system. Simulation in early design stages discovered
some errors and sometimes led to slightly new designs. Thanks to validation and simulation
it didn´t take us long to understand what could be modeled and how it should be done.

ROOM-Method and ObjecTime Tool 7

Our model comprises 32 diagrams (structure and behavior views), but many of them are
just empty actor frames. We declared 58 signals for the communication between the three
main actors. For simulation the whole model was translated to 5.500 lines of C++ Code.

4. Specification of the Functionality „Playing“

4.1. Structure and Behavior

This chapter is about the feature of playing games with Tamagotchi. The specification of
this functionality in ObjecTime is given here.

Figure 3: Structure of the whole system

Figure 3 gives an overview of the structure of the whole system. The six actors shown
are paperStrip, simulationClock, display, buzzer, buttons and controlUnit, which is the main
part of the specification.

The actor simulationClock is repeatedly sending signals to the controlUnit after
variable time intervals. The controlUnit counts the number of received signals and thus

ROOM-Method and ObjecTime Tool 8

knows the exact time. This actor is the only one, which is not directly related to the user
requirements. By setting the time intervals in the simulationClock one can speed up or slow
down the Tamagotchi’s life during the simulation.

Figure 4: Structure of the actor controlUnit

Figure 4 shows the structure of the actor controlUnit - it contains three actors. The
lifeCycle calculates Tamagotchi’s development from egg, to Babytchi, Tamatchi or
Kuchitamatchi, ... to state flying.

The lifeManager controls the states „awake“ and „asleep“. Furthermore it collects all
variables from the different actors and also provides the actors with variables on demand,
e.g. it provides lifeCycle with those variables needed to calculate Tamagotchi’s further
development.

The actor menuHandler receives the signals originating from the buttons actor in the
previous figure. It controls the different menu states. It also contains the implementation of
playing games. The relevant variables are sent to lifeManager , e.g. in case Tamagotchi’s
happiness has to increase after playing a game, the variable is transmitted to lifeManager
over the controlMenu protocol.

ROOM-Method and ObjecTime Tool 9

The protocol connections to the higher-level structure as shown in the previous figure
are displayed, too. The simulationClock , for example, is connected to both lifeCycle and
lifeManager over the clock protocol.

Figure 5: MenuHandler’s behavior

Figure 5 shows the automaton which is associated with the actor menuHandler . The
initial state is ShowTime. The transition PaperStripFlyAway is triggered by both the signal
PaperStrip and the signal FlyAway and leads to state noMenu. PaperStrip signal originates
at the actor paperStrip when the child is removing the paper strip. The FlyAway signal is
sent by the lifeCycle in case Tamagotchi is dying.

After reaching the state noMenu for the first time lifeManager ’s state is egg. In this state
the menu functionality is disabled. Next lifeCycle sends the signal egg2baby indicating the
development from state egg to Babytchi which leads menuHandler to state ShowMenu.

By pressing the middle button the Mbutton transitions originating at buttons leads back
to state ShowTime. After 5 seconds either the timeOut1 transition in case the previous state
was noMenu (which means the Tamagotchi is dead or still inside its egg) or the timeOut2
transition (while the Tamagotchi is living) is triggered, which leads back to state ShowMenu.

When the paper strip is inserted again the signal PaperStrip triggers the corresponding
transition and menuHandler enters the state ShowTime which has also been its initial state.

ROOM-Method and ObjecTime Tool 10

Figure 6: Behavior of state ShowMenu in actor MenuH andler

Figure 6 shows the behavior of state ShowMenu which is not shown in the previous
figure. In this state the menu is either activated or inactive while the Tamagotchi is sleeping.
The transitions lock and unlock are triggered by signals from lifeManager . The lifeManager
sends these signals in correspondence to its own states awake and asleep.

Figure 7: Behavior of state activated in actor Menu Handler

ROOM-Method and ObjecTime Tool 11

Figure 7 shows the behavior of actor MenuHandler in state activated which is hidden in
Figure 6. The states noSelection, nutrition, game, tamagotchiState are the user’s selection of
a submenu, which either contains the functionality of feeding the Tamagotchi, playing a
game with Tamagotchi or inspecting the Tamagotchi’s state (or no selection). The transitions
between the states are triggered by signals from actor buttons . Timeout signals are leading
back in the initial state noSelection.

Figure 8: Behavior of state game in actor menuHandl er

Figure 8 shows the behavior of state game which is hidden in Figure 7. The middle
button is leading from state init to state game, where the game starts. The variables rounds
and wins are initialised with zero and by entering state game the variable directionLooking is
set randomly. Then the „player“ chooses either the middle or left button and depending on
the value of directionLooking this is leading to state loose or win. In both cases the variable
rounds is increased, variable wins is just increased in state win. After waiting 1.5 seconds in
state loose or win - Tamagotchi is happy or disappointed meanwhile - the transition next
leads back to state game if rounds are less than five. Otherwise the state GameOver is
reached. If wins is more than 3 the signal wGameSig containing the information that a
successful game has been played is sent to actor lifeManager . After five seconds and
initialisation of the variables transition nextGame is starting a new game.

ROOM-Method and ObjecTime Tool 12

4.2. Functional User-Requirements

In our implementation of the Tamagotchi the actors display and buzzer (see Figure 3)
have not been realised. This is not because of problems with the ROOM modelling technique
or ObjecTime but because of too little time for the project. Many signals from actor menu to
actor display are necessary to enable the display functionality.

The user requirements BA-F-23, BA-F-24 and BA-F-25 - not including display and
buzzer functionality - can easily be found in the behavior views (see Figure 5 to Figure 8)
explained in the previous chapter.

The described behavior has been implemented straight forward in the ROOM modelling
technique. Generally the behavior is implemented with extended finite automatons which are
enriched with C++ statements. A balance between modelling with automatons and using C-
statements must always be found and our implementation is just one possibility.

To „structure“ the required behavior ROOM provides so-called structure views and
actors. Different automatons in different actors can be integrated in one system by
communication via signals. The user requirements BA-F-23, BA-F-24 and BA-F-25 are
implemented in actor menuHandler and are integrated in the whole system via the protocols
(communication paths) shown in Figure 4.

5. Experiences

This chapter deals with the experiences that we made during the seminar. It is divided
into three sections. The first one shortly describes the training phase with the tool, the
second one shows our experiences during the actual modeling of the Tamagotchi and the
third one contains both information about the simulation (e.g. in how far it is comprehensible
for an outstanding person what happens) and the review with the „Autofocus"-group.

5.1. The Training Phase

The first time we sat down together with our tool, it was our goal to go through the
tutorial. Unfortunately, this turned out to be a pure operating instruction. It did not impart any
comprehension for the operations which had to be executed. Additionally, both the enclosed
manuals and the online-help already proved to be incomplete in this early phase. More
details about this fact can be found in chapter 6.3. To a certain extent, this deficiency could
be avoided by using [Sel94], which has already been mentioned earlier in this draft.

So, after spending one afternoon (which means about 10 hours, distributed on three
shoulders) with getting used to the fundamental capabilities of ObjecTime, we spent three
further sessions (approximately 35 hours, thereby altogether 45 hours) with the reactor case

ROOM-Method and ObjecTime Tool 13

study. That way, we got familiar enough with the possibilities of the tool that we could enter
the next phase: the modeling of the Tamagotchi.

5.2. The Modeling Phase

This was divided into three parts. First of all, the specification had to be turned into a
rough design of the whole system on paper. Once again, it was the work of one afternoon
(10 hours) and was followed by the implementation in ObjecTime. After some weeks (50
hours) in which we encountered a couple of problems, we had implemented the Tamagotchi
so far that we could turn to the third part: testing and improving. This took us another 40
hours including the search for and removal of errors as well as the clarification of further
ambiguities in the requests, which had not been discovered during the implementation
phase. One extra session (again 10 hours) was invested in the review (more to it in 5.3),
which does not directly count towards the modeling. Thus, the time spent on those phases
adds up to approximately 110 hours.

As already described in the first chapter, the notation (ROOM) permits almost everything
that was needed for the Tamagotchi and a lot more, which was not necessary in this case.
The only major deficiency for our implementation was the absence of the simultaneousness
of signals, which can – with a certain expenditure – be simulated by using the available
means. Therefore, we did not transfer request BA-F-12, where the buttons „L" and „R" should
be pressed at the same time to trigger an event. Possibilities to realize this functionality
nevertheless would have been to either define an extra signal „buttons L and R pressed“ or
to divide the signal for each button into two separate ones „button pressed“ and „button
released“. This was the only exception, where we wished for an extra feature of the notation.

A weakness of the tool are some lacks in the implementation, which have no influence
on the stability. But they contributed to the fact that some things did not work the way, we
expected it. More detailed information about this - including some examples - is given in
chapter 6.3.

Despite that, we could finish our implementation in time without having to solve any
severe problems. The implementation went so far that a simulation of the whole Tamagotchi
could take place. Additionally, we made a review with the „Autofocus"-group, mutually
examining the results of the other group´s efforts.

5.3. The Simulation and Review Phase

On the one hand this part covers the simulation with the associated questions of
comprehensibility for an external person, the possibility of understanding the transfer of the
requests and the chances for testing and searching for errors (or at least inconsistencies).
On the other hand it includes the results of the - previously mentioned - review.

ROOM-Method and ObjecTime Tool 14

The nice layout and presentation of both actors and machines (animation of switching
transitions, marking of the active state, etc.) contribute to a considerable degree to the
comprehensibility. Without being familiar with the implementation, one has the possibility to
understand a lot of what is happening by viewing the simulation. A negative aspect on the
other hand are the many code fragments, which remain hidden during simulation. Therefore
it is hardly comprehensible in many cases, why certain transitions switch, where and why
signals are sent and what causes a decision at a choice point.

The offered glossary word search makes a substantial contribution to the possibility of
finding a transferred request. As result of a call of this function, ObjecTime presents a list of
all occurences of the entered word within the implementation (code, signals, etc.). This can
for example be used to find out, where and when a signal is sent or received. One further aid
is the possibility of influencing the running simulation, using predefined signals.

Besides, the window concept of ObjecTime is not difficult to understand, windows are
easy opened and closed with self-describing meanings. Unfortunately, the arrangement and
number is not so nice. One large deficiency is however the very high nesting depth of actors
and machines that can be reached (within the Tamagotchi there are already six levels),
because the number of open windows increases with each level and thus also the confusion
of the arrangement.

Finally, the question arises, whether it is possible to check the correctness of the
implementation. In this context, the consistency checks of ObjecTime, which already go on
during editing, turned out to be very helpful. They prevent the user from creating „wrong"
connections (e.g. forbidden arrows in the machines, signal lines between two entries or exits
of actors, etc.) and – in most cases – produce an error message, telling you quite precisely,
why the connection is not allowed. Unfortunately, these checks only recognize errors that are
not part of the code. If the code itself is wrong and the errors are found during compilation -
which is done by an external compiler - there are two possible results. Either you receive a
useful error message window from ObjecTime, including a list of all errors with links to the
relevant places within the implementation. Or one receives an error message directly from
the compiler, which usually doesn´t help much for debugging. Further problems emerge with
growing size of the implementation. Although the Tamagotchi is not really extensive, there is
no practicable way of testing its completeness. This is connected to the fact that a simulation
of one complete lifecycle of the Tamagotchi is not possible within reasonable time.

Next topic is the review we made together with the „Autofocus"-group that used a tool,
developed and realized at the chair of Professor Broy at the TUM. There haven't been found
any modeling errors in our implementation, but as mentioned, we did not transfer all the
requests. Besides the request, where we would have needed simultaneous signals, we did
not implement the external devices display and buzzer. A further result of the review was that
both tools are quite similar in many ways and that it is relatively easy to understand the
implementation in one tool, when you are familiar with the other. Additionally we found out
that our experiences with ObjecTime were a lot better than those of the others with
Autofocus. Why and in which way is one of the subjects of the last chapter.

ROOM-Method and ObjecTime Tool 15

6. Conclusions

Like already chapter four, the last one is divided into three parts. The first and shortest
one describes the possibilities for teamwork, the second one deals closer with weaknesses
and strengths of notation, method and tool while the concluding one treats their usefulness
for the modeling.

6.1. Teamwork

According to the manual, ObjecTime offers the possibility of integrating independently
developed components into the main model. As it is quite difficult to make use of this
functionality and with the chair having only two licenses for the tool, we decided to implement
the Tamagotchi in one piece and to do it without any parallelism in the working routine. So
most of our implementation was realized by all three of us working together.

6.2. Notation, Method and Tool

The first one can be treated in one sentence. It was self-describing to a great extent and
after a short habituation time, easy to understand.

Substantially more complex is however the method (ROOM). As mentioned earlier it
originates from the telecommunication sector and is thus particularly suitable for distributed
systems, a field in which it reveals it’s strengths. One of these is the possibility of dividing one
monolithic system into a number of subsystems (actors). Those communicate by exchanging
signals - taken from developer-defined protocols - over predefined interfaces. Going along
with that is another advantage: the consideration of temporal aspects. Therefore you can rely
on the fact that the order of the signals sent over the same line is preserved.

Despite - or perhaps even because of – that the method was not ideal for the
Tamagotchi. One reason for this is that a division into several actors would not have been
necessary and was created rather artificially, as it contributed to keeping an overall view of
the implementation. Another reason is the absence of global variables - in this case,
variables which are declared once on top level and remain valid in all actors - that would
have relieved us of a lot of work. To sum it up, the method offers far to much functionality for
the Tamagotchi in most areas, while other features that would have been necessary are not
part of it.

It is obvious that this also affects the evaluation of the tool. Principally, it offers
everything that the method offers and displays its strengths in several areas. First of all, it
preserves you from typing a lot of code by generating it, an aspect that should not be
underestimated. In our case, ObjecTime made about 5.500 lines of code out of some
hundred (and of course the actors, machines and protocols) which we wrote (and created). A

ROOM-Method and ObjecTime Tool 16

further strength is the error recognition in the input phase. This was already mentioned in
connection with transitions and signal lines in 5.3, but there are comparable checks
regarding the code itself. It is for example not necessary to start the compilation in order to
find out, whether all used variables have been declared somewhere. The tool already checks
their existence when the relevant code is saved.

One of ObjecTime’s greatest strengths remains however the visualization. Besides the
already mentioned aspects (e.g. 5.2) it is displayed, whether a machine state has entry or
exit code, the final points of signal lines are marked for incoming or outgoing signals and
several more things. Other strengths and some weaknesses can be found in the concluding
chapter.

6.3. Usefulness of Method and Tool

A lot of things that could have been part of this paragraph have already been mentioned
and explained before. This fact shows that it is not easy to find a unique allocation and that
this last chapter can be seen as a kind of summary, still including some new things.

Certainly, the stability of ObjecTime makes a substantial contribution to the usefulness of
the tool. Although this should be a matter of course it is explicitly mentioned here, because
most other tools had obvious backlog demand in this area. For good reasons, the intuitive
structure of actors and machines as well as the communication by signals have been praised
before. Without having much knowledge about method and tool, it is possible to understand
what’s going on and even use the basic functionality of ObjecTime. Just as important is in
this context the timer concept which simplifies the creation and application of time signals a
lot. Besides all that, the manual intervention into the simulation can be very helpful both for
testing and demonstrating purposes.

But in most cases advantages are accompanied by disadvantages and thus ObjecTime
has some weak points, too. The first one is the insufficient documentation, once mentioned
at the beginning of chapter 5. A concrete example for this is our search for an explanation of
the „Guard"-function, which was neither explained in one of the enclosed books nor could be
found in the so-called „master index“. Both in that case and in some other situations, [Sel94]
helped us to solve our problems. Some implementation lacks represented a further problem.
One of them was the absence of the operators „<" and „>" in the class Real (real numbers).
Additionally there occur naming conflicts between variables and signals, which are defined in
different and from each other independent machines and protocols.

Another weakness is the copy&paste functionality of ObjecTime which only cuts out and
reinserts everything that can be marked. So by using it, you lose all the code which belongs
to the part you want to duplicate. Finally one must mention the number of windows which is
constantly growing with the implementation getting more and more complex. Thus more than
a dozen windows can belong to a simple machine, consisting of three states and just as
much transitions (for exit and entry codes, code at the transitions, a variables window, etc.).
In fact this brings the advantage that everything is clearly separated, but nevertheless one

ROOM-Method and ObjecTime Tool 17

code window - with an appropriate subdivision - would have been completely sufficient for
each machine.

Despite the discussed lacks, ObjecTime is a very useful tool and has obviously proved
it’s worth in practice. Even though the suitability for the Tamagotchi may be doubted for
several of the reasons given above, we would use it again, for example if we had to model a
distributed system considering temporal aspects. In this context, the strengths of ObjecTime
would fully show to advantage and simplify the development. The second reason for working
again with the ObjecTime is the fact that it turned out to be one of the best tools among those
used at the seminar.

7. Literature

[Sel94] Bran Selic, Garth Gullekson, Paul T. Ward: Real time object oriented modeling,
New York 1994

