
Seminar - Tool aided modeling of a “Tamagotchi”

Tamagotchi in ObjectGEODE

23rd March 1999

Jürgen Jeitner
jeitner@informatik.tu-muenchen.de

Bernd Müller
muellerb@informatik.tu-muenchen.de

Alexander Wisspeintner
wisspein@informatik.tu-muenchen.de

Department of Computer Science
Technische Universität München

U N I V E R S I T Ä
 T
K A I S E R S L A U T E RN

F A C H B E R E I C H
I N F O R M A T I K

•

Fraunhofer
Einrichtung
Experimentelles

IESE

Software Engineering

Contents

1 ObjectGEODE and SDL 2

1.1 Introduction . 2

1.2 Approach and Result . 5

1.3 Specification . 6

1.3.1 Structure . 6

1.3.2 Behavior . 9

1.4 Experiences . 23

1.5 Conclusions . 25

A MSC 26

1

1 ObjectGEODE and SDL

1.1 Introduction

ObjectGEODE is a commercial CASE (Computer Aided Software Engineering) tool for devel-
oping reactive real time systems. It combines several different methods for describing static
and dynamic aspects of a system. The developer can use the description techniques OMT (Ob-
ject Modeling Technique), SDL (Specification and Description Language) and MSC(Message
Sequence Chart) in combination for specification [Ver98].

SDL

The main features of ObjectGEODE, like code generation and simulation, canonly be used
on SDL specifications. SDL has been defined in the early seventies by the ITU (International
Telecommunication Union) former CCITT (Consultative Committee for International Telegraph
and Telephony) as a language for describing telecommunication systems [BH93, page 94]. A first
standard of SDL was set in 1976, allowing to specify behavior of systems using state machines.
Up to now many extensions to the original standard has been made. Today SDL supports object
oriented design and allows the description of hierarchical structures. The latest SDL standard
has been recommended 1996 [Soc98]. ObjectGEODE uses the older standard SDL92.

Notation

SDL offers a structural and a behavioral view of a system. An SDL system and its environment
are conceived of as a structure of blocks connected by channels. Blocks and channels may be
decomposed into blocks and channels recursively over several levels until thebasic components
and processes are reached. Figure 1 shows a SDL structure diagram for a simplelight switch. A
“User” can interact with the switch via the “Interaction” channel by sendinga “Switch On” or
“Switch Off” signal. Depending on the current state of the “Switch” component, the “Light” is
turned on or off via the “Wire” channel.

SDL uses extended finite state machines to describe the behavior of single components.A single
component with an assigned FSM is called process. Figure 2 describes the behaviorof the above
explained system “Light Switch”. At startup of the system, the FSM turns into the state “Off”.
When a signal of type “SwitchOn” occurs, the subsequent state is “On”. While this transition
is fired a signal “LightOn” is sent to “Light”. The input signal “SwitchOff” fires the transition
between state “On” and subsequent state “Off” by sending out the signal “LightOff” to the
component “Light”.

There are no shared data to be found outside the processes, so signals are the only means for
processes to communicate. There is no way for one process to directly manipulate data of another
process. Signals have no priority during processing. Signals arriving at a process are merged into

2

system Light_Switch

Interaction

Switch_On,

Switch_Off

Wire
Light_On,

Light_Off

Switch

Light

User

Figure 1: SDL Structure diagram of the system “Light Switch”

process Switch

 Start

 State

 Input

 Output

 Subsequent
 State

Off

Off

Switch_On

Light_On
TO Light

On

On

Switch_Off

Light_Off
TO Light

Off

Figure 2: SDL finite state machine of the component “Switch”

3

one single queue in the order in which they come in. Each process owns a single signal input
queue.

Time representation

SDL was developed for use in cases where explicit specification of time-related matters is of
great importance. With the help of the SDL primitive “Time” a timer can easily be described.
Timers are declared similarly to variables and SDL provides several methods to work with them.
Until a timer is not set it is inactive. A Timer is activated when setting a time value. After a
specified duration the timer becomes inactive and sends a message to the related process. The
process can reset a timer to inactivate it so that no signal will be issued. The operator “Active”
returns the state of a timer. The reserved word “Now” contains the current real time. A data type
for representing time intervals is the type “Duration”. The already mentioneddata types and its
methods fulfill the time specific needs of the users.

SDL offers primitive data types known from common programming languages like “boolean”,
“integer”,”real” and different array types. Further more the user can specify custom data types
like structures based on primitive data types. The definition of enumeration data types is also
possible. Operators and methods, working on user defined data types, can be declared bythe
programmer.

Tool ObjectGEODE

The CASE tool ObjectGEODE combines several different graphical editors for system specifi-
cation. A specified system can be checked on consistency criteria. Such traces can be used in
combination with the simulation tool to verify correct behavior. There is also the possibility of
random tests. A random test is generating random events from the environment and checks the
reaction of the system.

C code can be built directly out of a SDL specification. This C code can be compiled for different
platforms using a cross compiler. The execution of the resulting program on the target platform
can be traced from a host computer. This tracing is done with the “Design Tracer” tool.

Both, “Design Tracer” and the simulation, allows the recording of a session for later replay.
MSCs can also be generated automatically after a run.

Textural requirements can be added to a system specification in form of an ASCII file. Further-
more externally generated encapsulated Postscript files can be organized inthe ObjectGEODE
Project.

4

Methodology

SDL has hierarchical views of the static structure of a system. We describea system structure at
a high level of abstraction. In the following process we refines the system components.

First we describe the interface between the environment and the embedded system. This interface
is part of the requirements of our Tamagotchi. It contains the definition of used signalsand the
channel structure. We use a Top-Down methodology to refine our structure using different layers
of blocks (SDL components). A block can consist of sub-blocks. This refinement is done until
the desired level of abstraction is reached.

We describe the behavior of all single components at the lowest hierarchical level. The behavior
is specified in SDL using finite state machines.

After the behavior of all components is specified, the specification in a special simulation envi-
ronment can be tested. These test runs can be used to validate the requirementsof the specified
system. The simulator can generate MSCs automatically during a test run. Wecan use these
message traces for troubleshooting.

1.2 Approach and Result

We specify the software of a “Tamagotchi” to analyze the development process of embedded
systems using ObjectGEODE. This embedded system is relatively complex and has many time
critical requirements. Therefore it is a good example system for a case studyanalyzing the
suitability of ObjectGEODE on this field.

The first modeling step of the “Tamagotchi” system is the definition of the system-environment
interface. We use the methodology introduced in Section 1.1 during the whole development
process. The structure of the system specification is illustrated in Section 1.3.1. The specification
of the full behavior of our components is very extensive. Here we present only a small part of it,
namely the functions for playing with the Tamagotchi (Section 1.3.2).

ObjectGEODE has a revision control mechanism. In this way several users can work simulta-
neously at the same project. During our work with ObjectGEODE only one user license was
available. Consequently we were not able to use the multi user facilities of the tool.

Our specification of the “Tamagotchi” system implements all defined textual requirements. The
complete menu control and all aspects of the “Tamagotchi” life cycle are specified. This includes
all time critical requirements.

The simulation of the specified system during the development process was not possible. Ob-
jectGEODE only allows the simulation of complete consistent models. Therefore a simulation
can only be done when all components of a system are completely specified.

To verify and validate a system specification, ObjectGEODE offers consistency checks and a
SDL simulator. The consistency checks can only find very primitive errors. But you can use
the simulator to validate the system behavior. We have tested all textual requirements until the

5

teenage stage of the “Tamagotchi”. The special requirements for the adult stage are implemented
in the specification, but we did not make extensive tests in this evolution state.

The simulator is a good tool for finding specification faults. We have found a lot of those incon-
sistencies using the simulator. Finally we have solved all known problems inthe specification.

The final SDL specification contains a total number of 29 diagrams. 5 SDL structurediagrams
describe the static aspects of the system and 24 FSMs are used to specify thebehavior. The
printout of the whole specification requires 136 pages. This huge space requirement may be
reduced a little bit by doing some layout efforts, but it is a fact that SDL specifications require a
lot of space.

1.3 Specification

1.3.1 Structure

The first step in specifying a system is requirements specification. In thisphase the interface
between the environment of a system and the embedded system itself is defined.

Structure “Tamagotchi Microcontroller”

Figure 3 shows the top level of the hierarchical structure of the “Tamagotchi” system. The “Tam-
agotchi” has three buttons, a reset stripe, a display and a buzzer. The three buttons are represented
by the channels “Select Button” (left button), “Acknowledge Button” (middle button) and “Can-
cel Button” (right button). You can send signals about the button states via these channels. The
special channel “SelectCancel” is used to inform the controller when both, the select and cancel
button are pressed simultaneously. The reset stripe generates a reset event to initialize the whole
system.

The display shows the evolution state and menu information of the “Tamagotchi” system. For
example the signal “ESDisplay” includes the information about the current stage of our crea-
ture. Furthermore the signal list “Menus” is used to send menu information to the display. The
“Tamagotchi” has a buzzer to signalize critical situations of the creature. The micro-controller
uses the channel “Buzzer” to communicate with this buzzer.

The “Tamagotchi” can display the current time. In our specification, the clock ofthe Tamagotchi
is not part of the micro-controller. An external clock device is used to deliverthe required
information. This external clock sends the current time (hour, minute and second) via the “Time”
channel to the controller. Time signals are sent every second.

This external clock is not only used to display the current time at the display. Itis also used to
watch all time critical requirements of the system.

After the environment-system interface is defined, we can refine the specification. The top level
is split into two parts. The “Controller” watches all input signals from the environment and

6

block TamagotchiMicrocontroller

Time

SelectButton

AcknowledgeButton

CancelButton

ResetStripe

Display

Buzzer

SelectCancel

Time
Time

SelectButton
SelectButtonPressed

AcknowledgeButton
AcknowledgeButtonPressed

CancelButton
CancelButtonPressed

ResetStripe
ResetStripeIn,ResetStripeOut

Display

(BehaveState),(DisplayInfo),ES_Display,(LookDir),
(Menus),P_GameRes,(P_RoundRes)

Buzzer
BuzzerBeep

Time1

Time

Init

Init

EvolState
EvolState

GetEvolState Intercom

(SleepState), Age, Hungry, Happy,Beep,
Weight,GameResult,(RoundResult),
GameOver

GetSleepState, GetAge, GetHungry,
GetHappy, Meal,Snack,
GetWeight,StartGame, NextRound,
GetRoundResult, GetGameResult,
CancelGame

SelectCancel
SelectCancelPressed

Life

Controller

Figure 3: Structure of the component “Tamagotchi”

implements the user interface. All output signals are also generated in thiscomponent. The
second part of our “Tamagotchi Microcontroller” is the “Life” component. This part handles all
aspects of the creature’s life.

These two main parts communicate via channels as shown in Figure 3. Most of the inter-
component communication is done via “Intercom”. Only the information about time, reset and
evolution state is treated separately.

Structure “Controller”

The component “Controller” (Figure 4) consists of several elementary processes. The “Router”
only distributes incoming signals to different processes. This is necessarybecause only point-to-
point communication is allowed in SDL. “Time Serial” generates an unique time serial number.
The accuracy of this serial number is one second and it is used to watch time intervals within the
“Menu Timer” process.

The main component of “Controller” is the “Menu” process. It implements the whole user inter-
face including menu functions and the display control. The “Menu” uses “Menu Timer” to set
5 second timeout intervals when displaying a menu item. After exceeding this time interval the
“Menu Timer” sends a “Timer Event” signal to “Menu” and “Menu” closes the menuitem and
displays the normal “Tamagotchi”. The “Buzzer Controller” process only takes care of enabling
and disabling the buzzer.

7

block Controller

Time

Time1 Init

ResetStripe

SelectButton

AcknowledgeButton

CancelButton

Buzzer

IntercomIntercom

SelectCancel

DisplayEvolState

Time

Time

Time1

Time

Init

Init

Time2
Time

TimeSerial

ResetStripe

ResetStripeIn,
ResetStripeOut

SelectButton
SelectButtonPressed

AcknowledgeButton
AcknowledgeButtonPressed

CancelButton
CancelButtonPressed

Info1
ResetStripeIn,
ResetStripeOut,
Time

Buzzer

ToggleBuzzer,
BuzzerOff,
BuzzerOn

Beep
Beep

BuzzerBeep

BuzzerBeep

Intercom1

Beep

SelectCancel
SelectCancelPressed

Intercom2

GetSleepState,
GetHungry,
GetHappy,
GetWeight,
GetAge,
CancelGame,
StartGame,
GetRoundResult,
GetGameResult,
NextRound,
Snack, Meal

(SleepState),
Hungry,Happy,
Age,Weight,
GameOver,
(RoundResult),
GameResult

Display

(BehaveState),
(DisplayInfo),
ES_Display,
(LookDir),(Menus),
P_GameRes,
(P_RoundRes)

Info2

TimeSerial

Menutime

InitTimer,
ResetTimer

TimerEvent

EvolState

GetEvolState

EvolState

TimeSerial(1,1)

Router(1,1)

Menu(1,1)

BuzzerController(1,1)

MenuTimer(1,1)

Figure 4: Structure of the component “Controller”

Structure “Life”

Figure 5 shows the structure of the component “Life”. The main process of “Life” is “Life
Cycle”. It describes the evolution process of the creature and initializes all other “Life” processes
depending on the evolution state.

“Life Time” generates a time serial number from the external time. This number indicates the
total life time in minutes of our creature. The component “Sleep” watches the time and generates
signals when the creature falls asleep and awakes.

“Hungry” automatically decrements the satiety after a specified time interval and watches several
hungry criteria. If the satiety is 0 a whole day long, the component “Hungry” instructs “Life
Cycle” to kill the creature. Furthermore the controller component can ask for thecurrent satiety
value.

The “Age” process increments the age value, every time the creature awakes. The life expectancy
is also watched in this component. “Weight” stores the current weight of our creature and watches
the weight limits. Similarly the “Happy” process has a variable to store the happiness.

The “Play” component implements the part of the play feature that is in related to the creature’s
life. The display control and user interface of the play facility is integrated in the “Menu” process
of the “Controller” block.

Finally we have the “Signal Watch” process. It watches critical situations of the creature. A
critical situation occurs, if the satiety or the happiness falls below a value of 3. In this case

8

block Life

Time1

Init

IntercomIntercom Intercom Intercom

Intercom

Intercom

Intercom

EvolState

Time

Time

Info1
Time,Init

Lifetime
LifeTime

Init

Init

Info2
Time,Init

Info3
LifeTime,Init

Info4

Init

Info5

Init

IncAge
IncAge

Info6 LifeTime,Init

Info7

Time, Init

Info8
LifeTime, Init

Sleep1

(SleepState)

Sleep2

(SleepState)Intercom1

GetSleepState

(SleepState)

Intercom3

GetAge

Age

EvolState EvolState

GetEvolState

Age
Age, IsDead

SetLifeExpectancy,
DecLifeExpectancy

Hungry

IsDead,
HungryWatch

SetHungryInterval,
ResetHungryWatch,
GetHungryWatch,
EgoistOn,EgoistOff,
ActivateDeadWatch

HappyHappyWatch

SetHappyInterval,
ResetHappyWatch,
GetHappyWatch,
EgoistOn,EgoistOff

Intercom2

Hungry

GetHungry,
Meal, Snack

Intercom4

Happy

GetHappy

Sig1 SigCritical_Hungry,
SigOK_Hungry,

BeepEgoist

Sig2

SigCritical_Weight,
SigOK_Weight

Sig3

SigCritical_Happy,
SigOK_Happy,
BeepEgoist

SigWatch

GetSignalWatch,
ActivateSignalWatch,

DeactivateSignalWatch

SignalWatch

Intercom5

Beep

decsleepweight

DecSleepWeight

decplayweightDecPlayWeight

IncW

IncWeight

IncHappy

IncHappy

weight

GetWeightWatch,
SetWeight,
SetMinWeight,
ResetWeightWatch,
SetDecSleepWeight

WeightWatch

EndDay EndDay

DecLifeDecLifeExpectancy

Intercom7
GameResult,

(RoundResult),
GameOver

StartGame,
CancelGame,
NextRound,

GetGameResult,
GetRoundResult

Play

IncHappy

PlayWatch
PlayWatch

GetPlayWatch, ResetPlayWatch

EndDay2

EndDay

Sleep3

(SleepState)

Intercom6

Weight

GetWeight

sleeptime
SetAwakeTime,
SetSleepTime,
ForceSleep

Info10

LifeTime,
Init

LifeTime(1,1)

LifeCycle(1,1)

Router(1,1)

Sleep(1,1)

Hungry(1,1) Age(1,1)
Weight(1,1) Play(1,1)Happy(1,1)

SignalWatch(1,1)

Figure 5: Structure of the component “Life”

“Signal Watch” validates if the user solves the problem within two hours.

1.3.2 Behavior

After we have designed the whole structure of the system it is now possible to create the individ-
ual finite state machines to describe the behavior. The specification of the behaviorconsists of
24 FSMs. Therefore we illustrate only an extract of the whole specification.

Life Cycle

As mentioned in Section 1.3.1, the “Life Cycle” process covers the evolution process of the crea-
ture. The single states “Egg”, “Babytchi”, “Marutchi”, “Tamatchi”, “Kuchitamatchi”, “Mametchi”,
“Kuchipatchi”, “Masktchi” and “Flying Tamagotchi” of the “Life Cycle” FSM stand for the dif-
ferent main evolution stages of the same name.

Figure 6 shows all transitions starting at the state “Babytchi”, the baby state of the creature. The
most interesting transition is placed on the left side of the figure. An incoming“Age” signal
triggers this transition. If the age of our creature is greater or equal 1, the baby creature becomes
a child.

9

Babytchi Baby

Age(Years)

Years>=1 New State Marutchi
after 3 hours

true

EvolState(Marutchi)

ActivateSignalWatch
TO SignalWatch

Activate Watch for critical
situations while resting in the
Marutchi state

SetHungryInterval(60),
SetHappyInterval(3*60),

SetAwakeTime(10),
SetSleepTime(18),
SetMinWeight(10),

SetDecSleepWeight(2),
ActivateDeadWatch

Set new Parameters

ResetPlayWatch

Marutchi

false

Babytchi

GetEvolState

EvolState(Babytchi)

Babytchi

Init

InitCatched

*

Babytchi

LifeTime(LifeTime)

(LifeTime>=(3*60)+5)
AND forcesleep=false

true

ForceSleep
TO Sleep

Tamagotchi goes
 to bed

SetSleepTime(18),
SetAwakeTime(10)

forcesleep:=true

false

Babytchi

Figure 6: FSM of the component “Life Cycle” - State “Babytchi”

First the component “Controller” is informed about the new evolution state by the signal “Evol-
State(Marutchi)”. The different parameters of the new evolution state are set by sending out sig-
nals to the distributed “Life” components. In this way i.e. the signal “Set Happy Interval(3*60)”
is sent to the “Happy” process. Consequently the decrement interval of happiness ischanged to
the value of 180 minutes.

After the new parameters are set, the new active state is “Marutchi”.This indicates the child
phase of the creature. In this stage (Figure 7) an incoming “Age” signal with value greater 2
triggers a transition to the next evolution state. There are two possibile subsequent states. A
“Marutchi” can become an angry or happy teenager.

To make a decision about the subsequent evolution state, the sub-procedure “Get Teenage Main-
tenance” is called. This sub-procedure requests several informations about the maintenance of
the creature from the different “Life” components. The parameters for the following evolution
stage are set.

Menu

The process “Menu” in the block “Controller” implements the user interface and display control
of the system. Figure 8 shows the main state “Active Awake”. This stateindicates that no menu
item is selected and the creature is displayed. It handles all possible user inputs from the three
buttons.

10

Marutchi Child

Age(Years)

Years>=2+1
After two days,
change to teenage
state

true

(CALL
GetTeenage

Maintenance)
Getting Maintenance
from Playing

Tamatchi

EvolState(Tamatchi)

SetHungryInterval(2*60),
SetHappyInterval(4*60),

SetAwakeTime(9),
SetSleepTime(21),
SetMinWeight(20),

SetDecSleepWeight(4)

Tamatchi happy
teenager

Kuchitamatchi

EvolState(Kuchitamatchi)

SetHungryInterval(2*60),
SetHappyInterval(2*60),

SetAwakeTime(9),
SetSleepTime(21),
SetMinWeight(20),

SetDecSleepWeight(4)

Kuchitamatchi angry
teenager

false

Marutchi

GetEvolState

EvolState(Marutchi)

Marutchi

Init

InitCatched

IsDead

Dying

*

Marutchi

Figure 7: FSM of the component “Life Cycle” - State “Marutchi”

ActiveAwake

Acknowledge
ButtonPressed

DisplayTime

Inittimer(5)
TO MenuTimer

D_Time(hour,minute,second)

DisplayTime

Time(hour,minute,second)

D_Time(hour,minute,second)

DisplayTime

TimerEvent

estate=Egg

true

NormalEgg

false

NormalDisplay

SelectCancel
Pressed

ToggleBeep

ToggleBuzzer
TO BuzzerController

-

EvolState(estate)

Activate

ES_Display(estate)

BS_Normal

estate=
FlyingTamagotchi

false

ActiveAwake

true

BuzzerOff TO
BuzzerController

InactiveDead

Sleep

NormalSleep

ES_Display(estate)

BS_Sleep

ActiveSleep

SelectButton
Pressed

InitTimer(5)
TO MenuTimer

M_Food

MenuFood

Figure 8: FSM of the component “Menu” - State “Active Awake”

11

If the user presses the “Acknowledge Button” the current time is displayed for 5 seconds. The
display gets the signal “DTime” containing the time in hours, minutes and seconds. To imple-
ment the 5 seconds time out, we use the external process “Menu Timer”.

The signal “Select Cancel” is generated when the user presses both buttons, select and cancel at
the same time, and enables or disables the buzzer by sending the signal “Toggle Buzzer” to the
“Buzzer Controller” process.

When the “Life” component changes the evolution state of the creature, the “Life Cycle” FSM
sends a signal “Evol State” to the “Menu” process of the “Controller” block. This signal is
caught by a transition starting at the “Active Awake” state to update the display. The display
gets the signal “ESDisplay(estate)” from the “Menu” to visualize the new stage. The signal
“BS Normal” indicates that the “Tamagotchi” is just awake. That means it is neither playing,
eating nor sleeping.

If the new evolution stage is “Flying Tamagotchi”, our creature is dead. In this case we disable the
menu by changing in the “Inactive Dead” state and the buzzer (signal “Buzzer Off” to “Buzzer
Controller”).

“Life” can also send a “Sleep” signal to the “Controller” block, meaning thatour creature falls
asleep. Thereby the “Menu” process must update the display by sending the signals “Evol
State(estate)” and “BSSleep”. If the creature is sleeping, the user menu is disabled by changing
in the “Active Sleep” state.

The select button is used to select an item from the user menu. If this buttonis pressed in the
“Active Awake” state, the first menu item “Food” is displayed. The signal “MFood” is sent to
the display and the “Menu Timer” is initialized with 5 seconds to allow a time controlled menu
exit.

The new state is “Menu Food” (Figure 9). In this state the signal “Evol State” and the signal list
“Sleep State” are not processed. To avoid the loss of these essential informations, these signals
are saved in the signal queue of the “Menu” process to be treated in the “ActiveAwake” state.

The user can exit the menu by pressing the cancel button. In this case the “Menu Timer” is
deactivated and the “Tamagotchi” is displayed in the current evolution stage.If the user does
nothing for 5 seconds, the same procedure occurs initiated by a “Timer Event” signal.

Pressing the acknowledge button the sub-menu “Meal” is reached. On the other hand the user
can press the select button to get from the “Food” menu item to the play selection.

Playing

The “Tamagotchi” has a game facility. The requirements for playing with the “Tamagotchi” are
listed below:

BA-F-23 (a) You can play with a Tamagotchi. This is done by selecting the menu item “Play” in
the main menu. (b) The display shows a playing creature in the current evolution stage. (c)

12

MenuFood

Acknowledge
ButtonPressed

InitTimer(5)
TO MenuTimer

SM_Meal

SubmenuMeal

SelectButton
Pressed

InitTimer(5)
TO MenuTimer

M_Play

MenuPlay

CancelButton
Pressed

NormalDisplay

ResetTimer
TO MenuTimer

ES_Display
(estate)

BS_Normal

ActiveAwake

TimerEvent

NormalDisplay

EvolState (SleepState)

Figure 9: FSM of the component “Menu” - State “Menu Food”

The buzzer beeps frequently during the game. (d) The game only quits if the user presses
the cancel button. (e) Without canceling the game, after each finished game a newone
starts. The singe games can be won or lost. (f) A single game consists of 5 rounds.

BA-F-24 (a) The creature looks alternately to the left and to the right. (b) The user must choose
one direction using the acknowledge or select button. (c) The “Tamagotchi” randomly
chooses one direction. (d) If the user guessed the right one, the creature is laughing.
Otherwise the “Tamagotchi” cries.

BA-F-25 (a) At the end of one game the score is displayed (number of right vs. number of
false tips). (b) A game is won if at least three rounds are won. (c) The weight of the
“Tamagotchi” decreases by 1 oz. per game. (d) If the game is won the happiness of the
creature increases by 1 unit.

In our ObjectGEODE specification the game functionality is split into two main parts. The game
parts associated with the life of the creature are implemented in the “Play” process of the “Life”
component. Things dealing with the user interface and the display are part of the “Menu” process
in the “Controller” block.

Playing and the Menu Process Figure 10 shows the menu state when the menu item “Play”
is selected. In this state the user can start a new game by pressing the acknowledge button (BA-
F-23a).

The transition calls the sub-procedure “Playing” of the “Menu” FSM. The return value of this
procedure indicates whether a reset event caused by the reset stripe occurredduring the game.

The Sub-Procedure Playing Figure 11 shows the start transition of the sub-procedure. First
the signal “Start Game” is sent to the “Play” process of the “Life” block to indicate the start of a

13

MenuPlay

AcknowledgeButtonPressed

(CALL Playing)=0

true

NormalDisplay

false

ResetEvent

SelectButtonPressed

InitTimer(5)
TO MenuTimer

M_State

MenuState

CancelButtonPressed

NormalDisplay

TimerEvent

NormalDisplay

EvolState (SleepState)

Figure 10: FSM of the component “Menu” - State “Menu Play”

new game. A one second time interval (“Init Timer” signal) is used to implement the alternating
looking direction (BA-F-24a) and the frequent beeps (BA-F-23c). A playing “Tamagotchi” is
shown at the display by sending the three signals “ESDisplay”, “BS Play” and “L left” (BA-F-
23b).

The local variable “lookdir” holds the current looking direction. This variable is of aboolean
data type. The value false represents a left looking creature. Vice versa right corresponds to the
value true.

After the initialization of the game, the system waits for user inputs in the “Play One Round” state
(Figure 12). Every second a timer event triggers the change of the looking direction (BA-F-24a)
and buzzer beeps (BA-F-23c).

Pressing the cancel button fires the transition to send out the “Cancel Game”signal from “Menu”
to the “Play” process of the “Life” block. This signal indicates that the game is over. By returning
an exit code 0 the sub-procedure jumps back to the “Active Awake” state of the “Menu” FSM
(BA-F-23d).

The user can guess a direction by pressing either the acknowledge or select button(BA-F-24b).
The decision whether the round is won or lost is made in the “Play” process of the “Life” com-
ponent. The score of one round is randomly generated at the start of the round, meaning that the
result is already fixed before the user chooses the direction. There is no difference whether the
acknowledge or the select button is pressed.

After the user interaction, the “Menu” process is waiting for response from the “Play” process in
the “Wait Round Result” state (Figure 13).

If you get the “Won” signal, the “PLaugh Won” signal is sent to the display to show a laughing
“Tamagotchi” (BA-F-24d) for 5 seconds. Waiting 5 seconds is done by the sub-procedure “Wait”.
Then the start of a new round is initiated by a “Next Round” signal.

An incoming signal “Lost” is treated similarly to the “Won” signal. The difference is, that in this
case a crying creature is displayed (BA-F-24d).

14

StartGame

StartRound

InitTimer(1)
TO MenuTimer

ES_Display(estate) to env

BS_Play to env

L_Left to env

lookdir:=false

PlayOneRound

Figure 11: FSM of the component “Menu” - Sub-procedure “Playing” - Init

15

PlayOneRound

TimerEvent

ES_Display(estate)

BS_Play

Beep TO
BuzzerController

lookdir

true

L_Left to env

lookdir:=false

false

L_Right to env

lookdir:=true

InitTimer(1)
TO MenuTimer

PlayOneRound

AcknowledgeButtonPressed

RoundResult

GetRoundResult

WaitRoundResult

SelectButtonPressed

RoundResult

CancelButtonPressed

CancelGame

exitcode:=0

exitcode

Figure 12: FSM of the component “Menu” - Sub-procedure “Playing” - State “Play one Round”

16

WaitRoundResult

Won

P_Laugh_Won to Env

DisplayRoundResult

(CALL Wait(5))=0

true

NextRound

StartRound

false

exitcode:=1

exitcode

Lost

P_Cry_Lost to Env

DisplayRoundResult

GameOver

GetRoundResult

WaitLastRoundRes

Figure 13: FSM of the component “Menu” - Sub-procedure “Playing” - State “Wait Round
Result”

If the “Play” process sends the “Game Over” signal, a whole game consisting out of 5rounds
is over. In this case our “Playing” sub-procedure branches to the “Wait Last Round Res” state
(Figure 14) and retrieves the last round result and the total game result.

After the “Won” or “Lost” signal from the “Play” process of the “Life” component arrives, a
crying or laughing creature is displayed. Because the last round of the game is reached, the total
game score is requested by the signal “Get Game Result”. The FSM waits for an answer in
the subsequent state “Wait Game Result”. The following signal “Game Result” from the “Play”
process contains the number of won game rounds. The number of lost rounds is computed and
both numbers are sent to the display using the “PGameRes” signal (BA-F-25a). The next game
starts automatically by sending the “Start Game” signal to the “Play” process of the “Life” block
(BA-F-23e).

The Play Process of the Life Component The “Play” process implements the core game
functionality. At the initialization of this process (Figure 15), the two localvariables “gamewon”
and “roundwon” are set to the value false. The variable “gamewon” indicates whether a whole
game has been won or lost. Similarly “roundwon” is responsible for the result of a single game
round.

The variable “alwaysplayed” is used to watch the condition, that the user plays twice a day with
the creature during the “Marutchi” stage. Depending on this variable the “Life Cycle” FSM

17

WaitLastRoundRes

Won

P_Laugh_Won to Env

DisplayLastRoundResult

(CALL Wait(5))=0

true

GetGameResult

WaitGameResult

GameResult(input1) won rounds

input2:=5-input1 lost rounds

P_GameRes(input1,input2) to env

(CALL Wait(5))=0

true

StartGame

StartRound

false

exitcode:=1

exitcode

false

exitcode:=1

exitcode

Lost

P_Cry_Lost to Env

DisplayLastRoundResult

Figure 14: FSM of the component “Menu” - Sub-procedure “Playing” - State “Wait Last Round
Res”

18

decides whether the creature becomes a good or bad teenager. Additionally “playedaday”counts
the number of played games and is used in combination with the watch variable “alwaysplayed”.

ReInit

gamewon:=false,
roundwon:=false,

alwaysplayed:=true,
playedaday:=0

NotPlaying

StartGame

round:=0,
roundwonamount:=0

play

GetRoundResult

GameOver

WaitMoreRequest1

GetRoundResult

roundwon

true

Won

false

Lost

WaitMoreRequest2

Figure 15: FSM of the component “Play” - Init and State “Not Playing”

After the initialization the FSM reaches the “Not Playing” state. In thisstate nothing is done
until the “Start Game” signal is sent from the “Menu” process of the “Controller”. In this case
the local variables “round” and “roundwonamount” are set to the value 0. The variable “round”
counts the total number of rounds played so far in the current game. This variable is used to
recognize the end of a game after 5 rounds (BA-F-23f). The local variable “roundwonamount”
counts the total number of won rounds of a single game (BA-F-25b). The execution of the FSM
is continued at the label “play”, within a transition starting at the “Playing”state. Figure 16
shows this state.

Every time a new game round starts, the “Menu” process sends the signal “Next Round” to
the “Play” process. The round count variable “round” is incremented by the value 1 and the

19

Playing

NextRound

play

round:=round+1,
roundwon:=

(CALL Random(second))

roundwon

true

roundwonamount:=
roundwonamount+1

false

round<5

true

Playing

false

NotPlaying

GetRoundResult

roundwon

true

Won

false

Lost

Playing

Figure 16: FSM of the component “Play” - State “Playing”

20

“Random” sub-procedure is called to generate a random round result (BA-F-24c). The round
result is stored in the “roundwon” variable. If the round is won, the variable “roundwonamount”
is increased by the value 1 to count the total number of won rounds (BA-F-24d). Finally the round
counter variable is compared with the value 5 to decide whether the game is over (subsequent
state “NotPlaying”) or the game is continued (subsequent state “Playing) (BA-F-23f).

After every game round the “Menu” process of the “Controller” component requests the last
round result by sending the signal “Get Round Result”. The “Play” process returns “Won”or
“Lost” depending on the last result stored in the “roundwon” variable.

Above we mentioned the sub-procedure “Random”, which delivers the round result of a single
game round. This sub-procedure is illustrated in detail in Figure 17.

i:=sec/2,
sec:=sec-(2*i)

sec=1 Second even or
odd

false

result:=false

true

result:=true

result

Figure 17: FSM of the component “Play” - Sub-procedure “Random”

The procedure takes the seconds of the current time as a parameter. The result isgenerated by the
“Modulo 2” function. If the seconds value is odd, this round is won and the procedure returns the
value true. An even seconds value results in a lost round with the return valuefalse (BA-F-24c /
BA-F-24d).

After the user has played a whole game, the “Play” FSM is already in the “Not Playing” state
(Figure 15), now indicating that the current game is over. If the “Menu” process of the “Con-
troller” block requests the round result by the signal “Get Round Result”, our “Play”FSM returns
a “Game Over” signal to inform the “Controller” about the end of the current game (BA-F-23f).

Consequently after “Menu” receives the “Game Over” signal, it requests theround result a sec-
ond time (FSM “Play” waits in the “Wait More Request 1” state). Depending on the last round
result, a “Won” or “Lost” signal is sent to the “Menu” process.

In the next step the “Menu” requests the total game result from the “Play” processby sending the
signal “Get Game Result”. Meanwhile the “Play” process waits in the “Wait More Request 2”
state (Figure 18). After the game result request is received by “Play”, thesignal “Game Result”

21

is sent back, containing the number of won rounds of the last game (BA-F-25a). If the number
of won rounds is greater or equal to the value 3, the game is won (BA-F-25b) and the happiness
of the creature is incremented by sending the signal “Inc Happy” to the “Happy” process of the
“Life” block (BA-F-25d).

WaitMoreRequest2

GetGameResult

GameResult(roundwonamount)

roundwonamount>=3 GameResults

true

gamewon:=true

IncHappy
TO Happy

false

gamewon:=false

DecPlayWeight
TO Weight

playedaday:=playedaday +1

NotPlaying

Figure 18: FSM of the component “Play” - State “Wait more Request 2”

The “Play” process decreases the weight by sending the “Dec Play Weight” signal to the Weight
component (BA-F-25c). This decrease is independent of the game result. Finally the variable
“playedaday” is incremented to watch the number of played games. The subsequent state is “Not
Playing”. Here a new game can be started.

Figure 19 shows the asterisk state of the “Play” FSM. Transitions assigned to a asterisk state are
valid in all states of the current FSM.

The “Menu” process can send the signal “Cancel Game” indicating that the user haspressed the
cancel button to end the game. In this case the “Play” process jumps into the “NotPlaying” state
to end the game (BA-F-23d). If this event occurs, neither the weight of the creature is decreased
nor the happiness is increased.

The transitions resulting from the input signals “End Day”, “Reset Play Watch”and “Get Play
Watch” implements the play watch. This allows to validate the condition, thatthe user played
twice a day during the “Marutchi” stage.

22

*

*

-

Time(hour,minute,second)

-

Init

ReInit

GetPlayWatch

PlayWatch(alwaysplayed)

-

CancelGame

NotPlaying

EndDay

playedaday>=2 check
 playwatch

true false

alwaysplayed:=false

playedaday:=0

-

ResetPlayWatch

alwaysplayed:=true

-

Figure 19: FSM of the component “Play” - Asterisk State

Sequence of signals Above the whole implementation of the play functionality has been illus-
trated. This has been done from the point of view of the single components. We can use MSCs
to illustrate the sequence of the whole system. In this way we can show the temporal appearance
of signals between the single components and the environment.

In Appendix A an MSC of a game is shown. This MSC indicates the signal sequence between
the processes “Menu” of the “Controller” block and “Play” of the “Life” block. Furthermore all
communication between this two processes and other processes of the system and its environment
is shown. At the beginning of the MSC, the user menu item “Play” is already displayed. The user
selects this menu item and starts playing. The MSC shows a whole game sequence,consisting
of 5 play rounds. The user wins two and looses three rounds. After the game is over the score is
displayed and a new game starts. Finally the user cancels the game.

1.4 Experiences

Training

The training in ObjectGEODE took 25 hours. In this phase we have read parts of the Object-
GEODE manuals [Ver98]. The main activity during the training phase was the specification of a
simple “Safety-Injection” system. Real traps for beginners were the bad quality of the manuals
and the strange user interface of the different graphical editors. On the other handSDL is a simple

23

description technique. We did not experience any problems during learning this technique.

Modeling

The whole modeling process of the “Tamagotchi” system involved 70 hours of time. Thiscon-
tains the specification of the system in SDL, adapting the simulator to our needs and the simula-
tion of the entire model. The architectural design of the structure took about 15 hours. 30hours
where required for describing the behavior of the single components in FSMs. We have needed
the remaining 25 hours for simulating the specification and solving the found inconsistencies.

All time specific statements in this paragraph are related to one person. Normally these numbers
should be multiplied by three. But teamwork was not possible because of the one-user license.
We have built the specification all together at one single workstation. This way time amounts
multiplied by three would not be representative.

Review

The review took part with the group who specified their system with the PEP tool. PEP is a
tool prototype where the user can describe systems using high level Petri-nets. This notation is
totally different from the finite state machines used in SDL. Therefore wehad some problems in
understanding the notation. A real problem is, that a system can not be split in single small inde-
pendent parts. A system is always described as one large Petri-net. The only mechanism to cope
with the complexity allows to hide single parts of the large Petri-net. But theimplementation of
this mechanism has still a lot of bugs.

In contrast to PEP, SDL allows the description of hierarchical structures. Therefore we think that
it is more suitable for the specification of distributed and embedded systems.

Due to the vagueness, the traceability of PEP specifications is also difficult. There are a lot of 1:n
relations at different places of the Petri-net. We also use many 1:n relations to implement the dif-
ferent requirements. But the strict separation between the single components and the possibility
to generate MSCs makes it easier to find the different requirements in theSDL specification.

Like ObjectGEODE, the PEP tool offers a simulator to test the behavior of the specified system.
PEP interprets the Petri-net and animates the execution directly in the editor. This is more con-
venient than the simulator of ObjectGEODE. ObjectGEODE uses compiled C code. Therefore
it is not possible to edit the specification during a simulator session.

The PEP group did not find any real specification errors during the review. However, some
differences in the requirement interpretation has been found.

24

1.5 Conclusions

As mentioned in Section 1.2, we could not work at the project together because of the one-user
license. This means that a parallel modeling process could not be carried out. Thestrength of
ObjectGEODE is the simulator, which is very useful to verify the specified system. It is possible
to configure the simulator for special user needs. This means that you can hide irrelevant signals
in a simulation scenario. The simulator offers an interface to other programs. Therefore it is
possbible to adjust the simulation environment in respect of the users needs. Disadvantages of
the tool are the bad documentation, the fussy editor framework and insufficient export functions
for diagrams.

Positive features of SDL are the support of internal timers and signal buffers. Negative aspects of
SDL are, that only point to point communication is allowed, that signals can not be queued once
more in the priority queue after usage and the lack of hierarchical finite statemachines. Another
weakness of SDL is the huge space requirement of the notation.

SDL is well-suited for specifying the “Tamagotchi”. The developer gets a better understanding of
the whole system. Even detailed aspects are precisely defined. In addition the ability of simulat-
ing the specification is a valuable help in finding out inconsistencies and faults in the requirement
specification. The SDL specification describes almost all aspects of the later implementation. In
this way an automatic code generator can take over a lot of implementation work.

Finally if you are searching a tool to create SDL diagrams, we would prefer agraphical editor like
“Visio”. But the powerful simulator justifies the use of ObjectGEODE. Because of the possibility
of generating code and simulating the specified embedded system a rapid prototyping process is
possible. Because of these aspects and the practical oriented approach of SDL we would use the
tool again for specifying embedded systems.

25

Appendix

A MSC

tamagotchi

time (14,5,18)

startgame

time (14,5,21)

time (14,5,22)

time (14,5,23)

time (14,5,24)

time (14,5,25)

getroundresult
lost

time (14,5,18)

m_play
acknowledgebuttonpressed

es_display (babytchi)
bs_play
l_left

time (14,5,21)
timerevent

es_display (babytchi)
bs_play

beep
l_right

time (14,5,22)

timerevent
es_display (babytchi)

bs_play
beep
l_left

time (14,5,23)

timerevent

es_display (babytchi)

bs_play
beep

l_right
time (14,5,24)

timerevent
es_display (babytchi)

bs_play
beep
l_left

time (14,5,25)

timerevent
es_display (babytchi)

bs_play
beep

l_right

acknowledgebuttonpressed

Play Menu

Figure 20: MSC “Playing” scenario - Part 1

26

time (14,5,26)

time (14,5,30)

nextround
time (14,5,31)

time (14,5,32)

time (14,5,35)

time (14,5,36)

getroundresult
lost

time (14,5,37)

time (14,5,41)

nextround

time (14,5,42)

p_cry_lost
inittimer (5)

time (14,5,26)

time (14,5,30)
timerevent

es_display (babytchi)
bs_play
l_left

time (14,5,31)
timerevent

es_display (babytchi)
bs_play

beep
l_right time (14,5,32)

timerevent
es_display (babytchi)

bs_play
beep
l_left

time (14,5,35)

timerevent
es_display (babytchi)

bs_play
beep

l_right
time (14,5,36)

timerevent
es_display (babytchi)

bs_play
beep
l_left

selectbuttonpressed

p_cry_lost
inittimer (5)

time (14,5,37)

time (14,5,41)

timerevent
es_display (babytchi)

bs_play
l_left

time (14,5,42)

timerevent

Figure 21: MSC “Playing” scenario - Part 2

27

time (14,5,43)

getroundresult
won

time (14,5,44)

time (14,5,48)

nextround

time (14,5,49)

time (14,5,50)

time (14,5,53)

getroundresult
lost

time (14,5,54)

nextround
time (14,5,58)

es_display (babytchi)
bs_play

beep
l_right

time (14,5,43)
timerevent

es_display (babytchi)
bs_play

beep
l_left

acknowledgebuttonpressed

p_laugh_won
inittimer (5)

time (14,5,44)

time (14,5,48)

timerevent
es_display (babytchi)

bs_play
l_left

time (14,5,49)
timerevent

es_display (babytchi)
bs_play

beep
l_right

time (14,5,50)

timerevent
es_display (babytchi)

bs_play
beep
l_left

time (14,5,53)
timerevent

es_display (babytchi)
bs_play

beep
l_right

acknowledgebuttonpressed

p_cry_lost
inittimer (5)

time (14,5,54)
time (14,5,58)

timerevent

es_display (babytchi)
bs_play
l_left

Figure 22: MSC “Playing” scenario - Part 3

28

time (14,5,59)

time (14,6,2)

getroundresult
gameover

getroundresult
won

time (14,6,3)

time (14,6,7)

getgameresult

gameresult (2)
decplayweight

time (14,6,8)

time (14,6,12)

startgame

time (14,6,13)

time (14,6,14)

time (14,5,59)

timerevent
es_display (babytchi)

bs_play
beep

l_right
time (14,6,2)

timerevent es_display (babytchi)
bs_play

beep
l_left

acknowledgebuttonpressed

p_laugh_won
inittimer (5)

time (14,6,3)

time (14,6,7)

timerevent

p_gameres (2,3)
inittimer (5)

time (14,6,8)

time (14,6,12)
timerevent

es_display (babytchi)
bs_play
l_left

time (14,6,13)

timerevent
es_display (babytchi)

bs_play
beep

l_right

time (14,6,14)
timerevent

es_display (babytchi)
bs_play

beep

Figure 23: MSC “Playing” scenario - Part 4

29

cancelgame

l_left
cancelbuttonpressed

resettimer
es_display (babytchi)

bs_normal

Figure 24: MSC “Playing” scenario - Part 5

References

[BH93] Rolv Braek and Oystein Haugen.Engineering Real Time Systems. Prentice Hall Inter-
national, 1993. ISBN 0-13-034448-6.

[Soc98] SDL Forum Society.SDL Forum Homepage, december 1998. URL: HTTP://www.sdl-
forum.org.

[Ver98] Verilog, France.ObjectGEODE 1.2 Documentation, 1998.

30

