Seminar - Tool aided modeling of a “Tamagotchi”

Tamagotchi in ObjectGEODE
23rd March 1999

Jurgen Jeitner
jeitner@informatik.tu-muenchen.de

Bernd Miiller
muellerb@informatik.tu-muenchen.de

Alexander Wisspeintner

wisspein@informatik.tu-muenchen.de

Department of Computer Science
Technische Universitat Miinchen

Fraunhofer Einrichtung

Experimentelles

Software Engineering

Tm

TECHNISCHE
UNIVERSITAT
MUNCHEN

Contents

1 ObjectGEODE and SDL

1.1 Introduction

1.2 ApproachandResult

1.3 Specification e
1.3.1 Structure e
1.3.2 Behavior

1.4 EXPErENCES o ot e

1.5 Conclusions

A MSC

1 ObjectGEODE and SDL

1.1 Introduction

ObjectGEODE is a commercial CASE (Computer Aided Software Engineeoogjdr devel-
oping reactive real time systems. It combines several different metlwodtegcribing static
and dynamic aspects of a system. The developer can use the description techniquéstoM
ject Modeling Technique), SDL (Specification and Description Language) and (M&€sage
Sequence Chart) in combination for specification [Ver98].

SDL

The main features of ObjectGEODE, like code generation and simulationprdgrbe used

on SDL specifications. SDL has been defined in the early seventies by thdrfdohétional
Telecommunication Union) former CCITT (Consultative Committee for Int@onal Telegraph
and Telephony) as a language for describing telecommunication systems [BH93, payéra4|
standard of SDL was set in 1976, allowing to specify behavior of systems ustegisghines.

Up to now many extensions to the original standard has been made. Today SDL supmatts obj
oriented design and allows the description of hierarchical structures. atés ISDL standard
has been recommended 1996 [Soc98]. ObjectGEODE uses the older standard SDL92.

Notation

SDL offers a structural and a behavioral view of a system. An SDL systemsedutronment
are conceived of as a structure of blocks connected by channels. Blocks and channkés ma
decomposed into blocks and channels recursively over several levels utigdgttecomponents
and processes are reached. Figure 1 shows a SDL structure diagram for digimgleitch. A
“User” can interact with the switch via the “Interaction” channel by sendiri§witch.On” or
“Switch_Off” signal. Depending on the current state of the “Switch” component, the “Light” is
turned on or off via the “Wire” channel.

SDL uses extended finite state machines to describe the behavior of single comparsamgte
component with an assigned FSM is called process. Figure 2 describes the beh#neabove
explained system “Light Switch”. At startup of the system, the FSM turns mcstate “Off”.
When a signal of type “Switcl©on” occurs, the subsequent state is “On”. While this transition
is fired a signal “LightOn” is sent to “Light”. The input signal “SwitclOff” fires the transition
between state “On” and subsequent state “Off” by sending out the signal “Ofjhtto the
component “Light”.

There are no shared data to be found outside the processes, so signals are theanaljome
processes to communicate. There is no way for one process to directly mamgatkaof another
process. Signals have no priority during processing. Signals arriving at a proe@ssrged into

system Light_Switch

[Switch_On.-
Switch_Off .
User — i, Switch

Interaction

Wire
Light_On||
Light_Off
y

Light

Figure 1. SDL Structure diagram of the system “Light Switch”

process SWitch
() Start T
Off
State B
|
. Input B
Switch_On Switch_Off
| |
Light_on \ | Output A Light_off
TO Light TO Light
I T
Subsequent H
On State Off

Figure 2: SDL finite state machine of the component “Switch”

one single queue in the order in which they come in. Each process owns a single signal input
queue.

Time representation

SDL was developed for use in cases where explicit specification of titaeedematters is of
great importance. With the help of the SDL primitive “Time” a timer casily be described.
Timers are declared similarly to variables and SDL provides sknertihods to work with them.
Until a timer is not set it is inactive. A Timer is activated whentisgt a time value. After a
specified duration the timer becomes inactive and sends a message tottw pedaess. The
process can reset a timer to inactivate it so that no signal will bedsstiee operator “Active”
returns the state of a timer. The reserved word “Now” contains the cugahtime. A data type
for representing time intervals is the type “Duration”. The already mentidagal types and its
methods fulfill the time specific needs of the users.

SDL offers primitive data types known from common programming languages like ‘table
“integer”,’real” and different array types. Further more the user canifypeastom data types
like structures based on primitive data types. The definition of enumeratianygss is also
possible. Operators and methods, working on user defined data types, can be dectheed by
programmer.

Tool ObjectGEODE

The CASE tool ObjectGEODE combines several different graphical editory$ters specifi-
cation. A specified system can be checked on consistency criteria. &wels tan be used in
combination with the simulation tool to verify correct behavior. There ie tie possibility of
random tests. A random test is generating random events from the environment aksltblbec
reaction of the system.

C code can be built directly out of a SDL specification. This C code can be comgilddferent
platforms using a cross compiler. The execution of the resulting program on gie¢ pdatform
can be traced from a host computer. This tracing is done with the “DesignrTtaok

Both, “Design Tracer” and the simulation, allows the recording of a sessiofafer replay.
MSCs can also be generated automatically after a run.

Textural requirements can be added to a system specification in form of am M&C~urther-
more externally generated encapsulated Postscript files can be organikeddbjectGEODE
Project.

Methodology

SDL has hierarchical views of the static structure of a system. We descsiypgtem structure at
a high level of abstraction. In the following process we refines the system contgone

First we describe the interface between the environment and the embedded Jysteinterface

is part of the requirements of our Tamagotchi. It contains the definition of used sajthtbe
channel structure. We use a Top-Down methodology to refine our structure usingdilfeges

of blocks (SDL components). A block can consist of sub-blocks. This refinement is done until
the desired level of abstraction is reached.

We describe the behavior of all single components at the lowest hierarchidallaeebehavior
is specified in SDL using finite state machines.

After the behavior of all components is specified, the specification in a speuialbsion envi-
ronment can be tested. These test runs can be used to validate the requitdrtienspecified
system. The simulator can generate MSCs automatically during a test rucaMiese these
message traces for troubleshooting.

1.2 Approach and Result

We specify the software of a “Tamagotchi” to analyze the development processbefdeed
systems using ObjectGEODE. This embedded system is relatively commexaa many time
critical requirements. Therefore it is a good example system for a case atadlyzing the
suitability of ObjectGEODE on this field.

The first modeling step of the “Tamagotchi” system is the definition of the systemmenment
interface. We use the methodology introduced in Section 1.1 during the whole development
process. The structure of the system specification is illustrated iro8dc8.1. The specification

of the full behavior of our components is very extensive. Here we present only a smaif pa
namely the functions for playing with the Tamagotchi (Section 1.3.2).

ObjectGEODE has a revision control mechanism. In this way several umensark simulta-
neously at the same project. During our work with ObjectGEODE only one user diceas
available. Consequently we were not able to use the multi user facilitiée ¢dol.

Our specification of the “Tamagotchi” system implements all defined textgalmements. The
complete menu control and all aspects of the “Tamagotchi” life cycle arefigukcrhis includes
all time critical requirements.

The simulation of the specified system during the development process was not paSsible
jectGEODE only allows the simulation of complete consistent models. Tdreraf simulation
can only be done when all components of a system are completely specified.

To verify and validate a system specification, ObjectGEODE offers stamsly checks and a
SDL simulator. The consistency checks can only find very primitive errotd. yBu can use
the simulator to validate the system behavior. We have tested all textuatements until the

5

teenage stage of the “Tamagotchi”. The special requirements for the adult staggiemented
in the specification, but we did not make extensive tests in this evolutite sta

The simulator is a good tool for finding specification faults. We have found a lot of thoea-
sistencies using the simulator. Finally we have solved all known problethe ispecification.

The final SDL specification contains a total number of 29 diagrams. 5 SDL strudtiageams
describe the static aspects of the system and 24 FSMs are used to spebtighdiveor. The
printout of the whole specification requires 136 pages. This huge space requirement may be
reduced a little bit by doing some layout efforts, but it is a fact that SDL §ipations require a

lot of space.

1.3 Specification
1.3.1 Structure

The first step in specifying a system is requirements specification. Irpliase the interface
between the environment of a system and the embedded system itself is defined.

Structure “Tamagotchi Microcontroller”

Figure 3 shows the top level of the hierarchical structure of the “Tamagotgstés. The “Tam-
agotchi” has three buttons, a reset stripe, a display and a buzzer. The thoes but represented
by the channels “Select Button” (left button), “Acknowledge Button” (middle buttowl) ‘&an-
cel Button” (right button). You can send signals about the button states via theseetharhe
special channel “SelectCancel” is used to inform the controller when bothekbet end cancel
button are pressed simultaneously. The reset stripe generates a eegéd évitialize the whole
system.

The display shows the evolution state and menu information of the “Tamagotchéhsy$-or
example the signal “E®isplay” includes the information about the current stage of our crea-
ture. Furthermore the signal list “Menus” is used to send menu informatidretdisplay. The
“Tamagotchi” has a buzzer to signalize critical situations of the creafline micro-controller
uses the channel “Buzzer” to communicate with this buzzer.

The “Tamagotchi” can display the current time. In our specification, the clottkeotfamagotchi
is not part of the micro-controller. An external clock device is used to detiverrequired
information. This external clock sends the current time (hour, minute and seconki¢ Vime”
channel to the controller. Time signals are sent every second.

This external clock is not only used to display the current time at the displég/also used to
watch all time critical requirements of the system.

After the environment-system interface is defined, we can refine the sp&oificThe top level
is split into two parts. The “Controller” watches all input signals from theiremment and

block TamagotchiMicrocontroller
GetSleepState, GetAge, GetHungry,
GetHappy, Meal,Snack,
GetWeight,StartGame, NextRound,
Lif GetRoundResult, GetGameResult,
Ire CancelGame
[Time] A “[Init] “[GelEVDIStale] Intercom
Timel Init EvolState
Y[Evoistate]
(Sle‘epstate)‘ Age, Hungry, Happy,Beep,
) ResetStrine Weight,GameResult,(RoundResult),
ResetStripe - p > - GameOver
[ResetsmpelnResetStrlpeOut] i
) Time Display .
Time [_ ~— : Display
(BehaveState),(DisplayInfo),ES_Display,(LookDir),
SelectButton [(Menus),PﬁGameRes,(PiRoundRes)]
SelectButton »
[SeleclButtonPressedT Controller Buzzer _ Buzzer
AcknowledgeButton AcknowledgeButton [Buzze,geep]
[AcknowledgeButtonPressed]
SelectCancel
SelectCancel »>
SelectCancelPressed
CancelButton CancelButton ,
[CanceIButtonPressed]

Figure 3: Structure of the component “Tamagotchi”

implements the user interface. All output signals are also generated inaimgonent. The
second part of our “Tamagotchi Microcontroller” is the “Life” component. This pandhes all
aspects of the creature’s life.

These two main parts communicate via channels as shown in Figure 3. Most of éhe int
component communication is done via “Intercom”. Only the information about time, aaese
evolution state is treated separately.

Structure “Controller”

The component “Controller” (Figure 4) consists of several elementary procédsesRouter”
only distributes incoming signals to different processes. This is necesseayse only point-to-
point communication is allowed in SDL. “Time Serial” generates an unique serial number.
The accuracy of this serial number is one second and it is used to watch tenalstwithin the
“Menu Timer” process.

The main component of “Controller” is the “Menu” process. It implements the wholeinise-
face including menu functions and the display control. The “Menu” uses “Menu Tiroesétt
5 second timeout intervals when displaying a menu item. After exceedingrti@sriterval the
“Menu Timer” sends a “Timer Event” signal to “Menu” and “Menu” closes the mieom and
displays the normal “Tamagotchi’. The “Buzzer Controller” process only takesafaenabling
and disabling the buzzer.

Timel Init

[Tlme] [Inlt]
Time1 i i TimeSerial(1,1) MenuTimer(1,1)

block Controller

s) InitTi
Tine d___Time [1inesers] [rimesers] [et
[7mgd | Router(1,1) Info2
ResetStripe ResetStripe
. ResetStripeln Menutime
[Rzizteéﬁfzzeoﬂ Infol [Resetstripeom] []
Time TimerEvent|
BuzzerBeep
SelectButton ¢ SelectButton | Beep Buzzer
[SelectButtunPresseq Beea
AcknowledgeButton uzz
AcknowledgeButton [AcknowledgeButtonPresse Menu(1,1) |
) ToggleBuzzer, [
CancelButton p—CanceButton BuzzerOff,
[CancelBunonPresseq BuzzerOn
SelectCancel SelectCancel
[SelectCancelPressed]
GetSleepState, (SleepState), .
Getrtungry. Hungry Happy, [Frosta] Display
GetHappy, Age Weight, Intercom1
GetWeight, (GRameCl)j\'/?er‘ " (BehavesState),
GetAge, oundResult), DisplaylInfo),
C:ncgleGame, GameResult EvolState (Esjlljisyplay,)
StartGame, (LookDir),(Menus),
GetRoundResult, Intercom2 P_GameRes,
GetGameResult, [GetEvo\State] (P_RoundRes)
NextRound,
Snack, Meal .
[Srack-Meal | tercom EvolState Display Intercom

Figure 4: Structure of the component “Controller”

Structure “Life”

Figure 5 shows the structure of the component “Life”. The main process of “LiéLife
Cycle”. It describes the evolution process of the creature and initializethar “Life” processes
depending on the evolution state.

“Life Time” generates a time serial number from the external time. Thisbmirmndicates the
total life time in minutes of our creature. The component “Sleep” watchesrtieeatnd generates
signals when the creature falls asleep and awakes.

“Hungry” automatically decrements the satiety after a specified tineevatand watches several
hungry criteria. If the satiety is O a whole day long, the component “Hungry” instrugts “
Cycle” to kill the creature. Furthermore the controller component can ask fautinent satiety
value.

The “Age” process increments the age value, every time the creaturesiidieslife expectancy
is also watched in this component. “Weight” stores the current weight of ouucesstd watches
the weight limits. Similarly the “Happy” process has a variable to stoediappiness.

The “Play” component implements the part of the play feature that is in relatie icreature’s
life. The display control and user interface of the play facility is intezptan the “Menu” process
of the “Controller” block.

Finally we have the “Signal Watch” process. It watches critical situnatiof the creature. A
critical situation occurs, if the satiety or the happiness falls belowlaevaf 3. In this case

8

Plock e GetWeightWatch,
f— SetWeight,
LifeTime(1,1) [weightwatcf] weight SetMinWeight,
[i
ﬁm)«(' i PlayWat EvolState EvolSt EvaStte
oA erfrg e LifeCycle(1,1) [Praywatc] Playhatch [Evoisiag
. H‘T% [vierime, Ini [sionatwarcf
imel o— Info8
[Fappywatc] Happy
IsDead, W Age, IsDead]
Init %—‘ [Age.
e Router(L,1) spundryimirtal || Age
(i ‘ ee:f:ungryWamn Info7 SetHappylnterval
[Hungry Infof [etien] | |cettappywaten, |
Info5 SetLifeExpectancy. EgoistOn EgoistOft
Infod [D }
ecLfeExpectancy| Dncwg,g‘] (i | decplayweight
Lw!enlrn:\;w [m@ oW [2 I; [.ncHappy] TIME-IHI] [oewwaywmmResewlwywmcﬂ
nfo!
feeptife semmacclSsppsae)] - Hungy(Ly elL,) Weight(L,1) Happy(L,1) Pl Play(L,) 1 Intefcom? Intercom
[ﬁe‘s\e;pnme . S‘a"ﬁame [-ameResu\}
EEEEEE P Getweighi] NextRound] | SigWatch
d GetHungry, ot [EndDay] igWatcl GameOver
eon Qe b e [opepesn - S
ntercor Sleep(L, 1) I i
(s\eeps‘anejﬂ”tnmeml]'L p(L. [cetaa ez
It
’ IncAge fchod]
IncHappy
Intercom2 (oreBgTE
Sigl
GetSignalWatch]
EndDay [EndDay] ’J"“]
[(S\eepsmleﬂ
Seens EndDay2
leep!
nfo10
Intercom3 Intercomé Intercoms
Hungvy] [Age] Welgh(] Happy] [Beeg]
Intercom Intercom Intercom Intercom Intercom

Figure 5: Structure of the component “Life”

“Signal Watch” validates if the user solves the problem within two hours.

1.3.2 Behavior

After we have designed the whole structure of the system it is now possiblete the individ-
ual finite state machines to describe the behavior. The specification of the bet@vssts of
24 FSMs. Therefore we illustrate only an extract of the whole specification.

Life Cycle

As mentioned in Section 1.3.1, the “Life Cycle” process covers the evolutiongsaé¢he crea-
ture. The single states “Egg”, “Babytchi”, “Marutchi”, “Tamatchi”, “Ku¢hmatchi”, “Mametchi”,
“Kuchipatchi”, “Masktchi” and “Flying Tamagotchi” of the “Life Cycle” FSM ahd for the dif-
ferent main evolution stages of the same name.

Figure 6 shows all transitions starting at the state “Babytchi”, the baby stéhe creature. The
most interesting transition is placed on the left side of the figure. An incorigg” signal
triggers this transition. If the age of our creature is greater or equal 1, the bediyier becomes
a child.

e
Babytchi :Baby
I e — -I- —

Age(Years) GetEvolState < Init < *
EvolState(Babytchi)

Inied Babytchi
(true) (false) (Babytchi
EvolState(Marutchi Babytchi (true) (faise)

o\

LifeTime(LifeTime) <

(LifeTime>=(3*60)+5)
AND forcesleep=false

e
ActivateSignalWatch '\ rActivate Watch for critical ForceSleep "Tamagotchi goes
TO SignalWaich >‘jﬂ":ri‘{2}?fs¥$le restng n e TOSkeep /1o
T
SetHungrylnterval(60),\ ,---_-_--_ SetSleepTime(18)
Skt st P SetAvakeTime(10)
) 1
SetSleepTime(18), p--------
SetMinWeight(10), f leep:=t
SetDecSleepWeight(2), orcesieep=true
ActivateDeadWatch

ResetPlayWatch

Babytchi

Marutchi

Figure 6: FSM of the component “Life Cycle” - State “Babytchi”

First the component “Controller” is informed about the new evolution state by thel SEyval-
State(Marutchi)”. The different parameters of the new evolution stateeirby sending out sig-
nals to the distributed “Life” components. In this way i.e. the signal “Seigydnterval(3*60)”
is sent to the “Happy” process. Consequently the decrement interval of happicbasged to
the value of 180 minutes.

After the new parameters are set, the new active state is “Marutdlnis indicates the child
phase of the creature. In this stage (Figure 7) an incoming “Age” signal witre\gieater 2
triggers a transition to the next evolution state. There are two possibilecgudist states. A
“Marutchi” can become an angry or happy teenager.

To make a decision about the subsequent evolution state, the sub-procedure “Ggé Téaima
tenance” is called. This sub-procedure requests several informations aboutitivenayace of
the creature from the different “Life” components. The parameters for thewimly evolution
stage are set.

Menu

The process “Menu” in the block “Controller” implements the user interface asplali control
of the system. Figure 8 shows the main state “Active Awake”. This gtdieates that no menu
item is selected and the creature is displayed. It handles all possiblenpsés from the three
buttons.

10

fmmmmm o
A
Marutchi pChild
1

GetEvolStat¢ Init< IsDead< * <

Age(Years)

.Aﬂer two days,
jchange to teenage
Istate

(true) (faise) Marutchi

(m------ Marutchi
'Getting Maintenance

(CALL
GetTeenage
Maintenance)

(Tamlatchi) (Kuchitamatchi)
i l
| EvoIStatel(TamatChl) > [EvolState(Kuchitamatchi) >
I
SetHungryInterval(2*60), SetHungrylnterval(2*60),
SetHappylinterval(4*60), SetHappyInterval(2*60),
SetAwakeTime(9), SetAwakeTime(9),
SetSleepTime(21), SetSleepTime(21),
SetMinWeight(20), SetMinWeight(20),
SetDecSleepWeight(4) SetDecSIeepWelght(4)

o)| sobedeobing |
TamatChI :teenager KUChItamatChl teenager

Figure 7: FSM of the component “Life Cycle” - State “Marutchi”

Acknowledge SelectCanceI< | EvoIState(estate)<

SelectButton
Pressed

ButtonPressed Pressed

InitTimer(5)

Disme TO gep I
ES_Display(estate) »

BS_Normal

Inittimer(5 ToggleBuzzer
TO Menu'lgin)wr TO BuzzerController

BS_Sleep

ActiveSleep

D_Time(hour,minute,second>

DisplayTime

[] (false) (trlue)

| Time(hour,minute,second) < TimerEvent
: ActiveAwake BuzzerOff TO

BuzzerController
| D_Time(hour,minute,second)>

(o) (e)
No‘gg Norr‘splay

Figure 8: FSM of the component “Menu” - State “Active Awake”

estate=
FlyingTamagotchi

InactiveDead

11

If the user presses the “Acknowledge Button” the current time is displayed fadnds. The
display gets the signal “O0ime” containing the time in hours, minutes and seconds. To imple-
ment the 5 seconds time out, we use the external process “Menu Timer”.

The signal “Select Cancel” is generated when the user presses both butiectsaise cancel at
the same time, and enables or disables the buzzer by sending the signal “Toggle Buttre
“Buzzer Controller” process.

When the “Life” component changes the evolution state of the creature, the “kdfle’T-SM
sends a signal “Evol State” to the “Menu” process of the “Controller” block. Trgsaiis
caught by a transition starting at the “Active Awake” state to update th@agis The display
gets the signal “EPisplay(estate)” from the “Menu” to visualize the new stage. The signal
“BS_Normal” indicates that the “Tamagotchi” is just awake. That means it iheeplaying,
eating nor sleeping.

If the new evolution stage is “Flying Tamagotchi”, our creature is dead. In#sis we disable the
menu by changing in the “Inactive Dead” state and the buzzer (signal “BuzfetoOBuzzer
Controller”).

“Life” can also send a “Sleep” signal to the “Controller” block, meaning that creature falls
asleep. Thereby the “Menu” process must update the display by sending the signals “Evol
State(estate)” and “BSleep”. If the creature is sleeping, the user menu is disabled by changing
in the “Active Sleep” state.

The select button is used to select an item from the user menu. If this bsippassed in the
“Active Awake” state, the first menu item “Food” is displayed. The signalPelbd” is sent to
the display and the “Menu Timer” is initialized with 5 seconds to allowngetcontrolled menu
exit.

The new state is “Menu Food” (Figure 9). In this state the signal “Evol Staté'tlae signal list
“Sleep State” are not processed. To avoid the loss of these essentialatifors) these signals
are saved in the signal queue of the “Menu” process to be treated in the “Aetale” state.

The user can exit the menu by pressing the cancel button. In this case the “Muad 1§
deactivated and the “Tamagotchi” is displayed in the current evolution statjee user does
nothing for 5 seconds, the same procedure occurs initiated by a “Timer Event” signal

Pressing the acknowledge button the sub-menu “Meal” is reached. On the othehbarskt
can press the select button to get from the “Food” menu item to the playisalect

Playing

The “Tamagotchi” has a game facility. The requirements for playing with tlaefdgotchi” are
listed below:

BA-F-23 (a) You can play with a Tamagotchi. This is done by selecting the menu iteay™ Pl
the main menu. (b) The display shows a playing creature in the current evol#gm $t)

12

Acknowledge SelectButton CancelButton '
ButtonPressed < Pressed < Pressed < TlmerEvent< / EvolState/ / (SIeepState)/
I I
InitTimer(5) InitTimer(5 ;
TO MenuTime> TO MenuTEm)er Nor @ olay Nor splay
[ResetTimer
SM_Meal M_Play TO MenuTime

ES_Display
(estate)

SubmenuMeal

MenuPlay

BS_Normal

ActiveAwake

Figure 9: FSM of the component “Menu” - State “Menu Food”

The buzzer beeps frequently during the game. (d) The game only quits if the user presses
the cancel button. (e) Without canceling the game, after each finished gameaneew
starts. The singe games can be won or lost. (f) A single game consists of 5 rounds.

BA-F-24 (a) The creature looks alternately to the left and to the right. (b) The use¢rcmosse
one direction using the acknowledge or select button. (c) The “Tamagotchi” randomly
chooses one direction. (d) If the user guessed the right one, the creature is laughing.
Otherwise the “Tamagotchi” cries.

BA-F-25 (a) At the end of one game the score is displayed (number of right vs. number of
false tips). (b) A game is won if at least three rounds are won. (c) The weiglhieof t

“Tamagotchi” decreases by 1 oz. per game. (d) If the game is won the happiness of the
creature increases by 1 unit.

In our ObjectGEODE specification the game functionality is split into twanrparts. The game
parts associated with the life of the creature are implemented in thg™process of the “Life”

component. Things dealing with the user interface and the display are part of the™plecess
in the “Controller” block.

Playing and the Menu Process Figure 10 shows the menu state when the menu item “Play”

is selected. In this state the user can start a new game by pressing the/ladgeobutton (BA-
F-23a).

The transition calls the sub-procedure “Playing” of the “Menu” FSM. The returnevaf this
procedure indicates whether a reset event caused by the reset stripe odaunmgdhe game.

The Sub-Procedure Playing Figure 11 shows the start transition of the sub-procedure. First
the signal “Start Game” is sent to the “Play” process of the “Life” blockidi¢ate the start of a

13

MenuPlay
AcknowledgeButtonPressed< SelectButtonPressed< CanceIButtonPressed< TimerEvent < / EvolState / / (SIeepState)/

InitTimer(5)

(CALL Playing)=0 TO MenuTimer

true false M_State

) (s)

Figure 10: FSM of the component “Menu” - State “Menu Play”

MenuState

new game. A one second time interval (“Init Timer” signal) is used to implaithe alternating
looking direction (BA-F-24a) and the frequent beeps (BA-F-23c). A playing “Tamagag
shown at the display by sending the three signals ESplay”, “BS_Play” and “L left” (BA-F-
23b).

The local variable “lookdir” holds the current looking direction. This variable is bbalean
data type. The value false represents a left looking creature. Vice vghs@orresponds to the
value true.

After the initialization of the game, the system waits for user inputs inft&/'One Round” state
(Figure 12). Every second a timer event triggers the change of the looking direBAelR-24a)
and buzzer beeps (BA-F-23c).

Pressing the cancel button fires the transition to send out the “Cancel Gagnal' from “Menu”
to the “Play” process of the “Life” block. This signal indicates that the gameas. @y returning
an exit code 0 the sub-procedure jumps back to the “Active Awake” state of thadMeSM

(BA-F-23d).

The user can guess a direction by pressing either the acknowledge or selec{BAt6124Db).

The decision whether the round is won or lost is made in the “Play” process of the ‘dafmn-

ponent. The score of one round is randomly generated at the start of the round, meaning that the
result is already fixed before the user chooses the direction. There is nenitfewhether the
acknowledge or the select button is pressed.

After the user interaction, the “Menu” process is waiting for response fromRlag/” process in
the “Wait Round Result” state (Figure 13).

If you get the “Won” signal, the “R.augh Won” signal is sent to the display to show a laughing
“Tamagotchi” (BA-F-24d) for 5 seconds. Waiting 5 seconds is done by the sub-proceduteé “Wa
Then the start of a new round is initiated by a “Next Round” signal.

An incoming signal “Lost” is treated similarly to the “Won” signal. The difénce is, that in this
case a crying creature is displayed (BA-F-24d).

14

InitTimer(

lookdir:=false

PlayOneRoun(

Figure 11: FSM of the component “Menu” - Sub-procedure “Playing” - Init

15

PlayOneRoung

TimerEvent< AcknowledgeButtonPressé SelectButtonPressed< CancelButtonPressed<

Rult CancelGame

exitcode:=0

ES_Display(estate)

GetRoundResult

Beep TO

BuzzerController WaitRoundResult

(true) (false)

L Left Mtoenv L_Right to env
1 1

lookdir:=false lookdir:=true

Figure 12: FSM of the component “Menu” - Sub-procedure “Playing” - State “Play one Round”

16

WaitRoundResult

P_Cry_Lost)to Env

(CALL Wail(5))=0

(e) (fase)

NextRound) | exitcode:=1

Figure 13: FSM of the component “Menu” - Sub-procedure “Playing” - State “Wait Round
Result”

If the “Play” process sends the “Game Over” signal, a whole game consisting oubahfs
is over. In this case our “Playing” sub-procedure branches to the “Wait Last RoesidsRate
(Figure 14) and retrieves the last round result and the total game result.

After the “Won” or “Lost” signal from the “Play” process of the “Life” componentiges, a

crying or laughing creature is displayed. Because the last round of the game islighehtetal

game score is requested by the signal “Get Game Result”. The FSM waita famsaver in

the subsequent state “Wait Game Result”. The following signal “Game Résutt the “Play”

process contains the number of won game rounds. The number of lost rounds is computed and
both numbers are sent to the display using th&s&meRes” signal (BA-F-25a). The next game
starts automatically by sending the “Start Game” signal to the “Play” pooéthe “Life” block
(BA-F-23e).

The Play Process of the Life Component The “Play” process implements the core game
functionality. At the initialization of this process (Figure 15), the two lo@iables “gamewon”
and “roundwon” are set to the value false. The variable “gamewon” indicateharhetvhole
game has been won or lost. Similarly “roundwon” is responsible for the result of @gagie
round.

The variable “alwaysplayed” is used to watch the condition, that the user plagesavday with
the creature during the “Marutchi” stage. Depending on this variable the “LyfdeC FSM

17

WaitLastRoundRes

(CALL Wail(5))=0

(e) (fase)

GetGameResUit | exitcode:=1

69

input2:=5-inputl |lost rounds
1
—— -

I
P_GameRes(inputl,input2)>—:to env
1

(CALL Wait(5))=0

(e) (fase)

StartGame exitcode:=1

Figure 14: FSM of the component “Menu” - Sub-procedure “Playing” - State “Wait Last Round
Res”

18

decides whether the creature becomes a good or bad teenager. Additionally “playextactdy”
the number of played games and is used in combination with the watch varialée/Slayed”.

-

gamewon:=false,
roundwon:=false,
alwaysplayed:=true,
playedaday:=0

NotPlaying

StartGame < GetRoundResult<

round:=0,
roundwonamount:=0

{aitMoreRequest2

Figure 15: FSM of the component “Play” - Init and State “Not Playing”

After the initialization the FSM reaches the “Not Playing” state. In 8tete nothing is done
until the “Start Game” signal is sent from the “Menu” process of the “Contrallérthis case

the local variables “round” and “roundwonamount” are set to the value 0. The varialied”
counts the total number of rounds played so far in the current game. This variablealifouse
recognize the end of a game after 5 rounds (BA-F-23f). The local variable “roundwondmount
counts the total number of won rounds of a single game (BA-F-25b). The execution of the FSM
is continued at the label “play”, within a transition starting at the “Playistiite. Figure 16
shows this state.

Every time a new game round starts, the “Menu” process sends the signal “Next Round” t
the “Play” process. The round count variable “round” is incremented by the value Thand t

19

NextRound ;

TOUNG.=rOUNG+1,
roundwon;=
(CALL Random(second))

)
(e)(e)

roundwonamount;=
roundwonamount+1

(e) (fase)

N N

< Playing > <NotPIaying>

Figure 16: FSM of the component “Play” - State “Playing”

20

“Random” sub-procedure is called to generate a random round result (BA-F-24c).odine r
result is stored in the “roundwon” variable. If the round is won, the variable “roundwonat”

is increased by the value 1 to count the total number of won rounds (BA-F-24d). Fimahgund
counter variable is compared with the value 5 to decide whether the gameriGsolisequent
state “NotPlaying”) or the game is continued (subsequent state “Playing) (BA)F-23f

After every game round the “Menu” process of the “Controller” component requestsighe |
round result by sending the signal “Get Round Result”. The “Play” process returns “g¥on”
“Lost” depending on the last result stored in the “roundwon” variable.

Above we mentioned the sub-procedure “Random”, which delivers the round resultrafla si
game round. This sub-procedure is illustrated in detail in Figure 17.

D

I
i:=sec/2,
sec:=sec-(2%)

:S_egoﬁd_e_/e_n Br
Jodd

(fase) (twe)

result:=false || result:=true

®

Figure 17: FSM of the component “Play” - Sub-procedure “Random”

The procedure takes the seconds of the current time as a parameter. The gesidtased by the
“Modulo 2” function. If the seconds value is odd, this round is won and the procedure returns the
value true. An even seconds value results in a lost round with the returnfaidad BA-F-24c /
BA-F-244d).

After the user has played a whole game, the “Play” FSM is already in the “Nwirig)’ state
(Figure 15), now indicating that the current game is over. If the “Menu” procedseofGon-
troller” block requests the round result by the signal “Get Round Result”, our “PS&i returns
a “Game Over” signal to inform the “Controller” about the end of the current garAeHR3f).

Consequently after “Menu” receives the “Game Over” signal, it requestothal result a sec-
ond time (FSM “Play” waits in the “Wait More Request 1” state). Dependingherast round
result, a “Won” or “Lost” signal is sent to the “Menu” process.

In the next step the “Menu” requests the total game result from the “Play” prbgesnding the
signal “Get Game Result”. Meanwhile the “Play” process waits in the t\Maire Request 2”
state (Figure 18). After the game result request is received by “PlaySiginal “Game Result”

21

is sent back, containing the number of won rounds of the last game (BA-F-25a). If the number
of won rounds is greater or equal to the value 3, the game is won (BA-F-25b) and the happiness
of the creature is incremented by sending the signal “Inc Happy” to the “Happy” ss@fehe

“Life” block (BA-F-25d).

aitMoreReque§t2

GameResuIt(roundwonamount>

(e) (fase)

(gamewon:=trug pamewon:=falsp

TO Weight

playedaday:=playedaday +1

NotPlaying

Figure 18: FSM of the component “Play” - State “Wait more Request 2”

The “Play” process decreases the weight by sending the “Dec Play Weight” sighal ¥Weight
component (BA-F-25c). This decrease is independent of the game result. Finallyrihiele/
“playedaday” is incremented to watch the number of played games. The subseqeastdtat
Playing”. Here a new game can be started.

Figure 19 shows the asterisk state of the “Play” FSM. Transitions assigreedsterisk state are
valid in all states of the current FSM.

The “Menu” process can send the signal “Cancel Game” indicating that the ugerdsasd the
cancel button to end the game. In this case the “Play” process jumps into theldyatg” state

to end the game (BA-F-23d). If this event occurs, neither the weight of the cedatdecreased
nor the happiness is increased.

The transitions resulting from the input signals “End Day”, “Reset Play Waada'“Get Play
Watch” implements the play watch. This allows to validate the condition,tifeatiser played
twice a day during the “Marutchi” stage.

22

I

¥ < Time(hour,minute,second)< Init < GetPlayWatch <

CancelGame <

L

I
C) C) PIayWatch(aIwaysplayed)> < NotPIaying>

ResetPIayWatch%

alwaysplayed:=true

alwaysplayed:=fals

playedaday:=(

)

Figure 19: FSM of the component “Play” - Asterisk State

Sequence of signals Above the whole implementation of the play functionality has been illus-

trated. This has been done from the point of view of the single components. We can use MSCs

to illustrate the sequence of the whole system. In this way we can show ther@rappearance
of signals between the single components and the environment.

In Appendix A an MSC of a game is shown. This MSC indicates the signal sequenceshetwe
the processes “Menu” of the “Controller” block and “Play” of the “Life” block. Furtiere all
communication between this two processes and other processes of the systisme@rcbnment

is shown. At the beginning of the MSC, the user menu item “Play” is already displdy® user
selects this menu item and starts playing. The MSC shows a whole game sequerscstjng

of 5 play rounds. The user wins two and looses three rounds. After the game is oveorihess
displayed and a new game starts. Finally the user cancels the game.

1.4 Experiences

Training

The training in ObjectGEODE took 25 hours. In this phase we have read parts objeet-O
GEODE manuals [Ver98]. The main activity during the training phase was thdispgan of a

simple “Safety-Injection” system. Real traps for beginners were the badyjohthe manuals
and the strange user interface of the different graphical editors. On the othesbansla simple

23

description technique. We did not experience any problems during learning this technique

Modeling

The whole modeling process of the “Tamagotchi” system involved 70 hours of time cOihs
tains the specification of the system in SDL, adapting the simulator to our neddiseasimula-
tion of the entire model. The architectural design of the structure took about 15 hoursu@0
where required for describing the behavior of the single components in FSMs. We hdeel nee
the remaining 25 hours for simulating the specification and solving the found incomseste

All time specific statements in this paragraph are related to one persomaly these numbers
should be multiplied by three. But teamwork was not possible because of the onezesseli
We have built the specification all together at one single workstation. This iwmeyamounts

multiplied by three would not be representative.

Review

The review took part with the group who specified their system with the PEP tdiP i®a
tool prototype where the user can describe systems using high level Petri-histsioTation is
totally different from the finite state machines used in SDL. Thereforeagesome problems in
understanding the notation. A real problem is, that a system can not be split in snajlésle-
pendent parts. A system is always described as one large Petri-net. The ohjnisetto cope
with the complexity allows to hide single parts of the large Petri-net. Buintipéementation of
this mechanism has still a lot of bugs.

In contrast to PEP, SDL allows the description of hierarchical strustureerefore we think that
it is more suitable for the specification of distributed and embedded systems.

Due to the vagueness, the traceability of PEP specifications is also diffibelre are a lot of 1:n
relations at different places of the Petri-net. We also use many 1tioreddo implement the dif-
ferent requirements. But the strict separation between the single componeéitegossibility
to generate MSCs makes it easier to find the different requirements 8Dthapecification.

Like ObjectGEODE, the PEP tool offers a simulator to test the behavior opéefeed system.
PEP interprets the Petri-net and animates the execution directly imlitioe. €his is more con-
venient than the simulator of ObjectGEODE. ObjectGEODE uses compiled C tbeeefore
it is not possible to edit the specification during a simulator session.

The PEP group did not find any real specification errors during the review. Howsvae
differences in the requirement interpretation has been found.

24

1.5 Conclusions

As mentioned in Section 1.2, we could not work at the project together because of theeone-us
license. This means that a parallel modeling process could not be carried owustrdigth of
ObjectGEODE is the simulator, which is very useful to verify the spadifiystem. It is possible

to configure the simulator for special user needs. This means that you can helaintedignals

in a simulation scenario. The simulator offers an interface to other pragrdinerefore it is
possbible to adjust the simulation environment in respect of the users needdvaddisaes of

the tool are the bad documentation, the fussy editor framework and insufficient expcirohs

for diagrams.

Positive features of SDL are the support of internal timers and signal huNegative aspects of
SDL are, that only point to point communication is allowed, that signals can not bedjarce
more in the priority queue after usage and the lack of hierarchical finiteratthines. Another
weakness of SDL is the huge space requirement of the notation.

SDL is well-suited for specifying the “Tamagotchi”. The developer gets @bettderstanding of
the whole system. Even detailed aspects are precisely defined. In additiability of simulat-

ing the specification is a valuable help in finding out inconsistencies and fatits requirement
specification. The SDL specification describes almost all aspects ofténentglementation. In
this way an automatic code generator can take over a lot of implementati&n wor

Finally if you are searching a tool to create SDL diagrams, we would prefexnical editor like
“Visio”. But the powerful simulator justifies the use of ObjectGEODE. Ressaof the possibility
of generating code and simulating the specified embedded system a rapid prototypess [soc
possible. Because of these aspects and the practical oriented approach oé SDuld use the
tool again for specifying embedded systems.

25

Appendix

A MSC

tamagotchi

Play

Menu

time (14,5,18)

time (14,5,18)

time (14,5,21)

time ("14,5,21)

game

m_play

acknowledgebuttonpressed

es_display (babytchi)

bs_play

[left

timerpvent

time (144,5,22)

es_display (babytchi)

bs_play

beep

|_right

time (14,5,22)

timerpvent

time (14,5,23)

es_display (babytchi)

bs_play

beep

L left

time (14,5,23)

timerpvent

time (14,5,24)

es_display (babytchi)

bs_play

beep

|_right

time (14,5,24)

timerpvent

time (14,5,25)

es_display (babytchi)

bs_play

beep

Tleft

time (14,5,25)

timerpvent

getroundresult

es_display (babytchi)

bs_play

beep

|_right

acknowledgebuttonpressed

lost

Figure 20: MSC “Playing” scenario - Part 1

26

time (14,5,26)

p_cry lost

inittimer (5)

time (114,5,26)
time (14,5,30)
time (114,5,30)
timerpvent
es_display (babytchi)
bs_play
nextround |_left
time (14,5,31)
time (114,5,31)
timergvent
es_display (babytchi)
bs_play
beep
time (14,5,32) |_right
time (14,5,32)
timergvent
es_display (babytchi)
bs_play
beep
. |_left
time (14,5,35) =
time (14,5,35)
imerpvent es_display (babytchi)
bs_play
beep
fime (14,5,36) L right
time (14,5,36)
timergvent
es_display (babytchi)
bs_play
beep
|_left
selectbuttonpressed
getroundresult
lost
p_cry lost
fime (14,5,37) inittimer (5)
time (14,5,37)
time (14,5,41)
time (14,5,41)
timergvent
es_display (babytchi)
bs_play
nextround |_left
time (14,5,42)
time (14,5,42)
timergvent

Figure 21: MSC “Playing” scenario - Part 2

27

es_display (babytchi)

bs_play
beep
time (114,5.43) L right
imervent es_display (babytchi)
bs_play
beep
|_left
time (14,5,43) =
acknowledgebuttonpressed
getroundresult
won p_laugh_won
fime (14,544 inittimer (5)
time (14,5,44)
time ('14,5,48)
time (14,5,48)
timergvent
es_display (babytchi)
bs_play
nextround | left
time (14,5,49)
imergvent es_display (babytchi)
bs_play
beep
|_right
time (14,5,49)
time (114,5,50)
time (14,5,50)
timerpvent es_display (babytchi)
bs_play
beep
. |_left
time (14,5,53) =
imerpvent es_display (babytchi)
bs_play
beep
fime (14,5,53) L right
acknowledgebuttonpressed
getroundresult
lost
p_cry lost
fime (14,5,54) inittimer (5)
time (114,5,54)
time (14,5,58)
timerpvent

time (14,5,58)

nextround

es_display (babytchi)

bs_play

T left

Figure 22: MSC “Playing” scenario - Part 3

28

time (14,5,59)
time (14,5,59)
timergvent es_display (babytchi)
bs_play
beep
time (14,6,2) SR
time (14,6,2)
timerpvent es_display (babytchi)
bs_play
beep
| left
getroundresult acknowledgebuttonpressed
gameover
getroundresult
won p_laugh won
fime (14.63) inittimer (5)
time (14,6,3)
time (14,6,7)
time (14,6,7)
timerpvent
getgameresult
gameresult (2) decplayweight
) p_gameres (2,3)
. inittimer (5)
time (14,6,8)
time (14,6,8)
time (14,6,12)
time (114,6,12)
timergvent
es_display (babytchi)
bs_play
startgame |_left
time (14,6,13)
time (14,6,13)
timergvent
es_display (babytchi)
bs_play
beep
I_right
time (14,6,14)
time (14,6,14)
timergvent

es_display (babytchi)

bs_play

beep

Figure 23: MSC “Playing” scenario - Part 4

29

|_left
cancelbuttonpressed

resettimer
es_display (babytchi)
game bs_normal

Figure 24: MSC “Playing” scenario - Part 5

References

[BH93] Rolv Braek and Oystein Hauge&ngineering Real Time Systems. Prentice Hall Inter-
national, 1993. ISBN 0-13-034448-6.

[Soc98] SDL Forum Society@DL Forum Homepage, december 1998. URL: HTTP://www.sdl-
forum.org.

[Ver98] Verilog, France Object GEODE 1.2 Documentation, 1998.

30

