UNIVERSITAT

Technical University of Munich L1 B EAISERSLAUTERN
[[B

Institute for Computer Science 1ESE |
g % é § Fraunhofer Einrichtung é}

Experimentelles
Software Engineering

CHBERETITCH
HFORMATIK

i
- o |

US

Hauptseminar

Modelling of the Tamagotchi with
AuTtoFocus

Adaptation Alexander Seitz,
Thomas Seliger,
Florian Kunkel
Maintenance Dr. Bernhard Schatz
Set of Issue Prof. Dr. Manfred Broy
Date of Speech 02.02.1999

Abstract

We have modelled the Tamagotchi with AuToFoOCUs.

Contents

1

Intorduction

1.1 Circumstances

1.2 Purpose of the Notation/Method

1.3 History of Development, Authors

1.4 A Survey of the Notation/Method
1.4.1 Conceptual Model of the Notation/Method
1.4.2 Methodology, HOWTO use AutoFocus
1.4.3 Modelling

1.5 A Survey of AuToFocuso
1.5.1 Basic features of AutroFocus

Apporach and Result
2.1 Which Concrete Strategy has been Followed with Regard to Modelling? . .
2.2 How have the Requirements been Devided and how have the Interfaces been
Defined? e
2.3 Scope/Precision of the Specification L.
2.4 Did we Already Simulate while Modelling?
2.5 Verification/Validation of the Specification
2.5.1 Is the Specification Consistend and Complete?
2.5.2 Has the Specification been Reviewed Completely According to the
Requirements?
2.5.3 Has the Specification been Tested Completely, Supported by the Tool
and According to the Requirements?
2.5.4 Statement about Problems with Consistency Check, Review or Sim-
ulation L
2.5.5 Has the Specification been debugged?

Specification of the Funktionality ”Playing”
3.1 Realisation of the informal demands

Experiences

4.1 Training Period
4.2 Tamagotchi implementation duration
4.3 Modelling the Tamagotchi

Conclusions

5.1 Teamwork with autofocus
5.2 Subsumption of Autofocus strengths and weaknesses
5.3 Proposal of how to improve Notation, Tool and AuToFocus
5.4 Usefulness of the Modelling and AutoFocus
5.5 Use AUTOFOCUS again?

Appendix

6.1 Tamagotchi L
6.2 Lifecycle
6.3 Memory

0 Co -1 & Ot Ot ot ot ot O

o ©

10

11
14

14
14
15
15

18
18
18
19
19
20

6.4 Keyboard

6.5 Clock
6.6 Care

Equal goes it loose.

(Liibke)

1 Intorduction

1.1 Circumstances

We are one of eight groups modelling the Tamagotchi each with another CASE! tool.

Except some basic knowledge about concepts of Software Engineering we did not know
anything about our issue. We knew that there must be something and people call it CASE
and mean Computer Supported Software Engineering but we had never seen a CASE tool
and — of course — we did not know how many windows you have to deal with when you
work with a CASE tool.

1.2 Purpose of the Notation/Method

”The purpose of AUTOFOCUS is to aid software developters in specifying and

desingning distributed systems, especially so-called 'embedded systems’.
(out of Autofocus Users Manual)

1.3 History of Development, Authors

” AutoFocus was developed and implemented during the one-semester practical
course ‘Software Engineering’ by students and members of the chairs Prof.
Broy and Prof. Endres at the faculty of computer science at the Technische
Universitat Miinchen in summer 1996. It will be used and enhanced in several
cooperation projects with Bavarian industrial companies, including Siemens
Public Networks.”

(out of http://autofocus.informatik.tu-muenchen.de/Infos/afinfo-en.html)

1.4 A Survey of the Notation/Method
1.4.1 Conceptual Model of the Notation/Method

With AuToFocus you can model four different views on your system, accessible from a
modelling center (figure 1): SSDs, STDs, EETs and DTDs (see table 1 and figures 3, 4, 5).

Project Document Options Tools Windows Helpl

Projects & =
¥ Safety Injection [ree=m
Tarragotchi -
#H s=D
H STD
= EET
= DTD
o Teot husa

£l =

e e e e o0

Figure 1: Modelling Center

'CASE: Computer Supported Software Engineering

SSD | (System Structure Diagrams) to specify the static communication structure of
a distributed system as a network of interconnected components. An SSD can
either have a sub-SSD or an STD (see below). With the sub-structure you can
build up your system in a hierarchical way to not lose your grip on it. All the
system’s components described by the SSDs work in parallel. An component
can have a set of properties (figure 2) that can only be accessed by its own
STD, not even by the component STDs of its sub-SSDs.

STD | (State Transition Diagrams, or automata for short) to model the behaviour
of a system’s components (i.e., the state transitions dependent on the data a
component reads). Again, you can use hierarchical technique on it: every state
can be splitted up in a sub-STD. Technically this sub-STD is on the same level
as its parent and has access to the same properties.

EET | (Extended Event Traces, see Message Sequence Charts) to describe the be-
haviour of a (part of a) system from a view based on the communications his-
tory between several components. EETSs can be automatically created while
simulation of a component.

DTD | (Data Type Definitions) to describe data types, and some functions working
on them. DTDs are a textual description technique.

Table 1: Views in AuToFocCuUs

— Defined Variables

int SatTimer = 0

int SleepTimer = O

int HappyTimer = 0

int TamakuchiTimer = O
int CameState = 0

®

Figure 2: Properties of a component

1.4.2 Methodology, HOWTO use AuToFocus

You are not forced to follow any given sequence, but in the current version of AuToFocus
it is impossible to connect a sub-structure to its parent without designing the parent first.
But you can very well assign an STD to its SSD in any situation.

Anyway, a recommendable order of constructing views is to design the top level SSDs
first, think about their responsibilities and connect them with channels according to the
information to be exchanged.

If you allready have use cases, you can describe their information flow with EETs and
avoid forgetting important functionality. As soon as your components get their behaviour,
AuTtoFocus can check if the described system can perform your use cases.

Then you should try to devide the responsibilities of each component into sub-SSDs as
long as you find possibilities to make them work in parallel. Be aware that in the current
version of AUTOFOCUS you can only simulate components with sub-SSDs but not with an
STD assigned to the component itself. However, you can set a pseudo component between
the component to be simulated and its STD. It means stupid work, but then you can
simulate and debug your SSD.

The behaviour of every component which has no sub-SSD is to be designed now with

dspControlint

o

dspHourint

dspTimer:int

o 0O o0 o

(¢}

dspGetKind:int

mcGetSatiationint

. - _memSetWe\gm int

@ —CRadloclockYlinuteint meMinutesint

O
memSetKind:int

clkResetboolean

mcTimerint
clkRadioclockHour:int

KbdLeftbutton:boolean memAddPlayCounferint

kbdMiddlebutton:boolean

kbdRightbutton:boolean

mcCareftateint

@ KbdResetstipe:boolean

careTimerint
careGetHappyness:int

memAddMaxCareAgerint

kbdlsDead:boolean careGetMaxAge:int

Figure 3: System Structure Diagram

an STD. Make sure that this STD is easy to understand. Collect similar states in a single
state and describe them in its sub-STD. It helps to oversee your STDs.

When you are ready with modelling a component with all its sub-components and their
functionality, you can simulate it. Try to simulate as soon as possible to make sure that
you cover as many use cases as possible. This is another reason to make the components
become easy.

1.4.3 Modelling

There are no guidelines in the manuals respectively texts of AUTOFOCUS describing, how
things of the real world should be represented in the notation’s concepts (e.g. how to
represent states). But in consequence of the simplicity that is given by only four different
kinds of views it should be possible to understand the idea behind the notification without
a tutorial. However, a complete list of the tool’s special operating needs could help a lot.

Precondition st >=SatTimer + 12
well done CI
Input mcTimer?st

Reset / Qutput memaddsatiation!—1

good night L . .
Postcondition SatTimer = st

e good morning Label ioptionall | every 2 hours satiation — 1}

MametchiDay every 4 hours happyness - 1
every 2 hours satiation - 1

Figure 4: State Transition Diagram

O Reset

Timer ClockDevice

mcTimer: O

careTimer: 0

dspTimer: O

kbdTimer: O

A A A

Figure 5: Extended Event Trace

1.5 A Survey of AutroFocus
1.5.1 Basic features of AuToFocCus ...

Simulation. As long as you only use standard java data types and java based state
transitions you can simulate your system in a mighty simulation environment. Interactivity
is provided by the user beeing able to send data into the input channels of the simulated
component. Both the state transitions and the activities and values of the channels can
be watched in their according diagrams during simulation and in real time. An EET
that represents the communication history of the simulation can be created automatically.
It shows all the direct sub-components of the simulated component and, of course, the
communication between them.

Consistency-Check. We have not used it and therefor we do not have any experience
with it. (...)

Interface to the Tool’s Environment. Just as Consistency-Check we did not use it,
but there had been a project before in which AuTOFoCUs had been commanding a real
existing 'Fischertechnik’ model of an elevator system.

Platform Independence. AuTOFOCUS is completely written in Java, i.e., you can use
it on any platform you can find Java for. However, the AUTOFOCUS server needs a UNIX
environment.

Multi User Capability. AuToOFocus is designed to be a client server architecture. An
arbitrary (is it really arbitrary?) number of developers can work on a project at the same
time. Each view of the project that one works on is locked for the others. The server
should allways be started within the same UNIX account due to access rights of the data
storage files. Unfortunately it is not recommendable to develop parts of the project without
connection to the server, because diagrams cannot be transfered between different projects
well enough. Maybe this restrictions will disappear when the data storage of AuTOFOCUS
will be reengineered using a database management system, which is planned.

2 Apporach and Result

2.1 Which Concrete Strategy has been Followed with Regard to
Modelling?

First of all we discussed the top level components and their basic communication channels
drawing everything on a sheet of paper and made a hardcopy of it for all of us.

Then the LifeCycle and the Clock were designed in parallel. That was possible due to
the little amount of communication between them.

After development of the LifeCycle had been proceded far enough to exactly know
which functionality the Memory should provide we started to design this and also the Care
component which is very closely connected to the Memory. Due to that Memory and Care
were created by the same developer.

The Keyboard component was designed time-independently but with very active coor-
dination to the development of Memory.

2.2 How have the Requirements been Devided and how have the
Interfaces been Defined?

All of us were responsible for one or two components each (see table 2).

Alexander Seitz | LifeCycle and AuToFOCUS learning
Thomas Seliger | Clock and Keyboard
Florian Kunkel | Memory and Care

Table 2: Divide and Conquere

AuToFocus supported us by providing multi user capability. We had to work in the
same room at the same time but were able to work on our components in parallel.

2.3 Scope/Precision of the Specification

Did we model all of the requirements exactly? No, we did not. There is no display. The
Memory does not check its values (e.g., satiation can be greater than 4). Our Tamagotchi
cannot starve. If the Tamagotchi’s properties are not in their green ranges, there is a signal
every minute. Not every state transition is deterministic. The timer (Clock) is not more
detailed than one minute.

2.4 Did we Already Simulate while Modelling?

Yes, we did. Every component has been simulated separately. AuToOFocus did a very
good job according to this.

2.5 Verification/Validation of the Specification

2.5.1 Is the Specification Consistend and Complete?

Not completely (see above).

2.5.2 Has the Specification been Reviewed Completely According to the Re-
quirements?

Due to the inconsistencies of the requirements itself, it was not really easy to make sure

that every requirement is satisfied. But we tried to fulfil them all.

2.5.3 Has the Specification been Tested Completely, Supported by the Tool
and According to the Requirements?

Testing all the requirements manually was nearly impossible, because we could not save
the state of our Tamagotchi’s life. If we wanted to do so, we would have had to play the
game again and again. The only thing we did was playing several times to make sure that
it works at all.

2.5.4 Statement about Problems with Consistency Check, Review or Simula-
tion

We had not the time to work with the consistency check, but AUTOFOCUS supports review

and simulation quite well.

2.5.5 Has the Specification been debugged?

In consequence of simulating every single component with sub-components we debugged
during development and of course we did fix it whenever we found a bug. Exceptions are
found above.

2.6 Size of the Specification
We designed 6 SSDs and 33 STDs.

3 Specification of the Funktionality ” Playing”

tamagotchibtrn left but]
paperstrige drawn left bufton

Figure 6: simplyfied menu-logic

The State-Transition-Diagram figure STD 6 shows the simplyfied menu logic. The full
STD can be found in the appendix. The automaton starts at the initial-state “Initialize”
and waits until the paperstripe will be drawn. If this is done, the automaton has to stay
five minutes in the “Egg” - state before the state “Normal” is achieved.

To get to the state named “Play”, the user must press the left button twice. This
activates the two transitions labeled “left button”. The state “Play” contains a sub-
automation, which handles the complete game.

This sub-automaton shows figure STD 7. It continues at the state “PlayMain” which
is the target of the second transition labeled “left button” transition coming from the
superior “Play” state. The actual game starts, if the user presses the middle button.

The responsible transition attributes looks like this:

PlayMain — NewRound
start game

Input reset?, kbhdMiddlebutton?true, kbdTimer?x
Output dspControl!41
Postcondition Round=0; RoundsWon=0; Savetimer=x

Start game will be activated, if no reset signal is present and the middle button is pressed
(signal from “kbdMiddlebutton”). The actual time value x is stored in the “Savetimer”
variable and will be used as timeout-timer (“kbdTimer” is always valid). x is called a
transitions-local-variable and is only present in this transition. It’s used as a temporary
memory to read the signal from the port “kbdTimer” and store it in the SSD-local-variable
“Savetimer”. To show a playing tamagotchi on the the display, the constant 41 is sent over
“dspControl”. At last the variables “Round” and “RoundsWon” are set to zero.

To leave the game, the user has to press the R-key (“about game”). It will also be left
if the timeout occours (“time passed”), the tamagotchi starts sleeping (“starts sleeping”)
or the user pushes the paperstripe (“reset”).

game won

round lost
start game

—_— =

thinks left

ound won

round lost

game lost

Figure 7: simplyfied game

NewRound — tamagotchi thinks left
thinks left
Precondition Round<b
Input reset?, kbdGetSleeping?false
Output dspControl!41
NewRound — tamagotchi thinks right
thinks right
Precondition Round<b
Input reset?, kbdGetSleeping?false
Output dspControl!41

Now we are at “NewRound” and the tamagotchi is looking left and right (the display
component is also responsible for beeping). At first the tamagotchi selects a direction.
This is done by the two transitions “thinks left” and “thinks right”.
have the same pre- and input-condition. Because of this situation is not deterministical
AuTtoFocus randomizely selects on of the two transitions. The the display receives again
41 because the use may not yet see, what the tamagotch is thinking and the automaton
changes into the “tamagotchi thinks right” or “tamagotchi thinks left” state. Now its the

users turn to guess the direction the tamagotchi is thinking of.

tamagotchi thinks left — NewRound
round won

Input
Output
Postcondition

reset?, kbhdMiddlebutton?true
dspControl!44

Round++; RoundsWon++

Both transitions

Supposing the tamagotchi thinks left, then we are in the state “tamagotchi thinks left”.
If the user selects the middle button (signal from “kbdMiddlebutton”), then the transition
“round won” will be activated because the users choice is wrong and the tamagotchi has
won this round. The display receives the constant 44, which stands for a playing tamagotchi
looking left happily. The variables “Rounds” and “RoundsWon” in the post-condition are
both increased by one.

tamagotchi thinks left — NewRound
round lost
Input reset?, kbdLeftbutton?true
Output dspControl!45
Postcondition Round++

When the left button is pressed by the user, he has guest tamagotchis choice and the
round is lost from tamagotchis point of view. Therefore the transition “round lost” is
activated. The display receives now the value 44, which stands for a playing tamagotchi
looking left sadly. “Rounds” is increased by one and “RoundWon” stays equal. Again we
are at the “NewRound” state and round two starts.

NewRound =—> NewRound
game won

Precondition Round==5 && RoundsWon>2

Input reset?, kbdTimer?x, kbdGetSleeping?false

Output dspControl!4l, memKbdAddHappyness!l, memKbdAdd-
Weight!-1, memAddPlayCounter!1

Postcondition Savetimer=x; Round=0; RoundsWon=(0

NewRound =—> NewRound

game lost
Precondition Round==5 && RoundsWon<3
Input reset?, kbdTimer?x, kbdGetSleeping?false
Output dspControl!41, memKbdAddWeight!-1, memAddPlayCounter!1
Postcondition Savetimer=x; Round=0; RoundsWon=0;

The procedure described above is repeated for rounds two to five. If five rounds are
over (the variable “Round” has reached the value 5), the game is over and the transition
“game won” or “game lost” is activated. The game is won if at least three rounds of five
are won (the games the tamagotchi has won are stored in “RoundsWon”). In this case
the happyness is increased by one and the weight is decreased by one. This is done by
sending 1 to “memKbdAddHappyness” and -1 to “memKbdAddWeight” which adds and
subtracts the givel value. Instead of a Get- and Set-function-pair for each memory-port,
this method has the advantage that more than one module can alter the values at the same
time whithout interfering with each other.

The signal “memAddPlayCounter” is used for the lifecycle component and has no effect
on the game. “kbdGetSleeping” cares, that a new game can only be started, if the tam-
agotchi is awake. This signal is, like “kbdTimer” and the memory-signals always present.
At least the variables “Rounds”, “RoundsWon” and “Savetimer” are again initialized for
the next game and the display is directed to show a tamagotchi looking left and right (value
41 to port “dspControl”).

3.1 Realisation of the informal demands

Overview and SSDs To get a structure overview the tamagotchis components are
modelled through System-Structure-Diagrams (SSD) and Sub-System-Structure-Diagrams
(Sub-SSD). Each component has its own funktionality, which implementation is hidden in
this view. Behind some Sub-SSDs like the “Memory” are separate Sub-SSDs which give
again an overview of this spezial component (the “Memory” is devided in memory-cell
Sub-SSDs).

The components are connected to each other, so it can be seen which component sends
signals to another component. For example, the “LifeCycle” has to alter many variables
in the memory. Because the signals are one-way, two ports are necessary, one for reading
and one for altering a variable.

Functionality and STDs If no refinement is necessary, the proper funktionality of the
(Sub)components is spezified in State-Transition-Diagrams (STD) and their Sub-STDs.
The memory-cells in “Memory” are all single automata, which handle the Get- and Add-
operations.

The individual states of the tamagotchi are represented in the states of the State-
Transition-Diagrams. A good example is the “LifeCycle” diagram. For each life-period ex-
ists an own state. Some of this states consists of an own easy to read Sub-State-Transition-
Diagram. If the tamagotchi is a “Mametchi” and is sleeping, the state “MametchiNight”
is active.

Timer Another important functionality is the timer. In other CASE-tools, there is an
explicite timer provided by the CASE-tool. In AuTOFOCUS there is no such timer, which
can easily be used. The timer in our tamagotchi is implemented in the “Clock”-component.
In this component there is a clock, to count minutes and hours, and a timer, which counts
only minutes. The timer is implemented with a SSD-local variable, which is increased in
every step by one minute. The timer-signal is sent in every step, so a component can read
a valid timer-value at any time needed.

The same technique is used by the “Memory”. Its easier to send the actual memory-
cell-content at every step instead of doing complex synchronisation, because the other
components can use the memory at every time they want.

4 Experiences

4.1 Training Period

The first project we have done with AUTOFOCUS was the Safety-Injection-System. This
simple project took approximately 16 hours work in, design and completion. There are
some difficulties in learning AuToFocus. With AuToFocus comes only a short and
simple documentation which describes only the concepts and the menu-structure of the
program. For example, is it descibed that there are some transition-attributes and how
they are named. But what you have to fill in and which possibilities there are is missing.
You have no change to guess yourself how it works if there is nobody who can help you. But
god thanks we had someone (thanks to Barnie) who could explain us the hidden features
of AutoFocus.

If we had overcome this hurdle the work in was fast and easy. But the user interface
handling is to complicated and not intuitiv. For example, the attributes-dialog, which is
used very often, is only reachable in the menu and has no key-shortcut. And the window

positions are not saved. This is especially annoying in the simulator, where many windows
must be opened every time.

When we worked with AUTOFOCUS there were 3 new versions coming out. On the one
side, it’s very good, because more functions were implemented or worked more correct, but
there is no history list, where the changes are noticed. Therfore we had to test every new
update. The greatest advantage was, that we could simulate each component alone. One
big problem we had, that if we worked at home with the linux port from AuTOFoCUS
and wanted to merge our work together to one project, was not possible, because the
cut/copy/paste and the import/export functions did not work correctly.

At the beginning we didn’t realize the cycle-concept correctly. If you want to catch all
possibilities you have to take every port at every cycle in a STD into consideration. Even
the possibility that no signal is present at one port. The more ports there are, the more
complex are the transition-conditions. We minimized the problem thereby we defined some
signals, that are present at every cycle (like the timer and memory signals).

4.2 Tamagotchi implementation duration

The complete develpment took about 140 hours. This time can be devided into four parts.
First we made a rough structure of the tamagotchis components and how they have
to interact with each other. Then we defined the components interface, which channels
have to be used and the name and type of the ports. Half of this work was not done with
AuTtoFocus, but on paper. Approximately 15% of the time were required for this task.

The components modelling and implementation has been done in approximately 25%
of the time. This means drawing the System-Structure-Diagrams, the State-Transition-
Diagrams and the transition attributes.

Testing and debugging with the help from the simulator has been taken approximately
10%. Correction of our own errors included.

The remaining 50% has been spent to the problems with AuToFocus. This time is
divided up to the points mentioned above. It’s not easily possible to assign the problems to
one phase of our work. Out problems with AuTOFOCUS were conditioned by some bugs,
the complicated user interface, incomplete documentation and only partial implementations
of functions, which we noticed unfortunately later at work that they are not complete.
Sometimes the clients and sometimes the server stopped working and we had to restart
AuTtoFocus. Not only once it has happend, that the last work we have done was lost
and we had to do it once again. Another time, AUTOFOCUS disconnects the memory-Sub-
SSD, which is very complex, from its hihger SSD and there is no way in AuTOFOCUS to
reconnect an existing Sub-SSD. Because this component took a long time to create, we
searched for another way to repair it. We analyzed the files in the repository and altered
manually the internal database structure.

4.3 Modelling the Tamagotchi

Notation The representation of the System-Structure-Diagrams ans State-Transition-
Diagrams is very clear and easy to understand. The diagrams are not overloaded and
there are no mystical signs. Everyone who is familiar with automata can understand the
graphics and how it works. The clearness is among other things achieved with the help of
sub-diagrams. Every component in a SSD can have an own SSD inside. So you can only
see what is neccesary and the details are hidden. The same technique is used for states in
STDs.

A disadvantage is, that the more sub-diagrams you have, the more windows you have to
open, if you want to edit something or simulate your modell. If you don’t assign transition

labels, all attributes are displayed in one row. It would be better to have a well-formated,
multiline string, so you can easily see the conditions of the transition, and which variables
are affected.

Another disadvantage in SSDs is the amount of channels between the components. For
every signal in every direction an own channel is necessary. If there were bidirectional chan-
nels or a bus-system, many things could be done easier and the clearness of the reprentation
would raise.

Starting Problems We had some problems to understand the mechanism behind transition-
local-variables, SSD-variables, ports and their combination. Here is an example:

KuchitamatchiKuchitamatchiNight —> KuchipatchiKuchipatchiNight

not good
Precondition T > NextStateTimer+7200 && C <= 2
Input mcTimer? T, mcCareState?C
Output dspMCState!14, memWeight!20, memMinWeight!20, memAdd-

MaxAge!12
Postcondition SatTimer = T; HappyTimer = T

In this transition there are two transition-local-variables (“T” and “C”). First the Input-
line is executed. If the Input-line is true, a signal from the port “mcTimer” and a Signal
from “mcCareState” must be present. The values are stored in the transition-local-variables
“T” and “C” and the Precondition-line is evaluated. There the values of “T” must be
greater than “NextStateTimer+7200" and “C” must be less or equal than 2. If all these
conditions are met the transition is activated and the signals in the Output-line are sent. At
last, the value of the transition-local-variable “T” is stored in the SSD-variable “SatTimer”
and “HappyTimer”.

Secondly, the visibleness of the SSD-variables is not obvious. These variables are only
visible in one SSD and not in its Sub-SSD.

These problems we had would be no problems, if they were declared in the manual.

Tool A very positiv feature of the actual version from AUTOFOCUS is the possibility
of simulating individual components. This is helpfull for complex systems, where many
components are put together to one big system. A restriction in AUTOFOCUS is, that a
component (SSD) can only be simulated separately, if this component has sub-components.
Again one thing, that is not mentioned in the manual and that we found out by chance.

Another feature are Consistency-Checks. There are checks for garanteeing that all
channels are connected, there are no empty ports, etc. Own checks can also be defined.
We didn’t use Consistency-Checks, because they didn’t work correctly in all the version of
AuTtoFocus we used.

Later changes in the strucure of the modell are complicated. One example: If you have
two states (A1S1, A1S2) in an automaton A1l and these state have both a sub-automaton
(A2, A3). A state (A2S1) in sub-automaton A2 is connected with a state (A3S2) in
sub-automaton A3, then you have three transitions with the same transition-attributes,
although it is logically the same transition:

1. from state A1S1 to A1S2
2. from state A2S1 to A1S1

3. from state A1S2 to A3S1

If you want to change e.g. the Input-condition, you have to alter all three Input-
conditions. All three attributes must exactly be the same, because AUTOFOCUS recognices
these three transitions as one transition through the textual attributes entered in the
corresponding dialog-box. But, it is planned, to give AUTOFOCUS an object-oriented
structure, so this problem won’t be existant in the future any more.

Some more problems caused the non-existent error-check. In the dialog-boxes you can
type in what you want and AuUTOFOCUS accepts it. To check, if your input is correct, you
have to simulate the component. And if you don’t work on a fast machine, the preparations
for the simulation (create java-classes, compile code and execute it) is too long. Especially
if you are a beginner in AUTOFOCUS and e.g. are unsteady in the syntax of the transition-
attributes, which is not described in the manual, it would be a great help, if the input
would be check for correctness.

Errors are hard to find, because to find them, the component has to be simulated.
The simulator first generates java-classes from the SSDs and STDs and then compiles the
generated code. If something is wrong (e.g. channel-names, transition-attributs), you get
many error-messages from the java-compiler. From this messages, you have to conclude
where the real errors are. Sometimes, it’s necessary to look into the generated java-code,
to locate the error and find the cause.

5 Conclusions

5.1 Teamwork with autofocus

AuToFocus comes with a good teamwork support. After we got used to some peculiarities
of AuToFocus the teamwork features were saving a good amount of time. AuToFocus
Server architecture is client/server based, so we could start one server and different people
could work on different parts of the specification at the same time using mutiple AUTO-
Focus clients.

To get the most out of distributed teamwork we had divided the specification into a
few subcomponents. These subcomponents were connected to each other by channels, so
we could start to work distributed after specifying the gerneral interface (the names and
types of the interconnecting channels).

If a clients accesses a part of the specification (e.g. an certain sytem structure diagram),
this part is locked and no other client may alter this part. Locking of a document is shown
in the project browser. Also a locked document can be viewed in read only mode by other
client users, while it is edited. After the user of the client closes the edit window, the
document gets editable by other clients again.

The latest version of AUTOF0CUS we used also supported simulation of subcomponents
correctly. This is a very usefull feature, as we could test small subcomponents for bugs.
This reduced the possible errors and made it possible to simulate parts of the tamagotchi,
although essential parts of the tamagotchi were not realized in AuUTOFOCUS at this time.

Although the teamwork support of AuTOFOCUS is already very good, there are some
peculiarities that costed time: The server should be always started by the same person, as
the server runs with the user identity of the user that started it. If the server is started by
another user later there is a chance that one ore more AUTOFOCUS document file cant be
read by this user. Also the client had to be restarted after deleting two documents out of
a project.

5.2 Subsumption of Autofocus strengths and weaknesses

AuTtoFocus has its strengths and weaknesses. We appreciated the visualisation of the
specification. The graphs of the system structure diagrams and the state transition dia-
grams look good, with only a few ”styling” mouse clicks. You get a image of what the
system does in a short time. Also AUTOFOCUS uses only a few graphical elements (states
and state transitions, structures and channels) and thus the graphs are not ”visually over-
loaded”.

A further big advantage of AuTOFOCUS is that you can do a quite raw design of your
specification at first. You can assign general behaviours to components to get a superficial
realisation. Then you can "deepen” the specification by assigning subcomponents to com-
ponents. This works also with state transition diagrams, where you can assign sub-states
to existing states.

Also AuTtoFocus had some nasty weaknesses: Signals that are required by a lot of
components (e.g. the timer of the tamagotcho component clock), have to be passed to each
component by a seperate channel. This can lead to a confusing visualisation. Another
feature is the lacking of some timer objects. It is hard to realize realtime systems, because
all you can do is a clock that is step based. The speed such a clock is based on the
performance of the simulation computer you use. The menus of AuUTOFocCUS didnt support
hotkeys for operations that were needed often and editing the diagrams was partly very
unintuitive and the cut and paste functions didnt work properly. Also it was sometimes very

annoying to alter a part in a diagram, which has a substructure assigned to it. Alterations
arent passed to referencing parts automatically, it has to be done manually.

5.3 Proposal of how to improve Notation, Tool and AuToFocus

After specifying a rather complex system, like the tamagotchi, in autofocus, we have a few
proposals how to improve and expand the method and the tool.

The Method should be expanded with two new features: a reset signal for the automa-
tons and a bus object. A reset signal is very usefull for big state transition diagrams: if
there is a reset, the reset signal is set only for one clock step. So you have to check for a
reset signal in every state of the automaton and you have an reset transition out of every
state of it. While is is correct from the automtaton therory point of view, it makes a large
state transition diagram confusing. It would icrease the readability of such a diagram, if
you could define one reset-signal for this automaton, which when it is triggered put the
automaton into a certain state after executing a certain transition. The other valuable
expansion would be a bus object. If a signal is needed by a lot of components, it has to
be passed to every component by a seperate channel. This can render a system structure
diagram rather confusing. With the help of a bus object you could pass the signal to all
components which are connected to this object.

As the tool is still under developement, we have a lot of proposals what should be
included or expanded: First of all the most important thing that AuToFoOCUs lacks is a
real documentation. It should contain general instructions for the tool and a known bug
list. Also it should include multiple small and easy to understand examples, sorted by
theme. It would save much time if you could look for a how do i put a variable value into
a channel-example, instead of endless trial and error or hidden feature searching. Maybe
this can be done in the style of a tutorial with several lections.

Another important issue is the way AUTOFOCUS manages and saves the data. By now
it saves data document based. Many problems could be solved if data storange is done
object orientated e.g. changes of variable or channel names could be passed to referencing
objects automatically or already existing substructures can be assigned to a new structure.
Also it would eliminate an other problem we had. Transitions are referenced by its whole
data, including the test description: so if a transition in a substructure has only one space
character more in its text description, than its equivalent it the structure above, this would
lead to a error in the sumulation.

Furthermore AuTOFOCUS should do some error checking directly after entering data.
This should be done for variable, channel and port names. So that one can eliminate typos
immediately without trying to compile the whole specification every time.

5.4 Usefulness of the Modelling and AuToFocus

We think that using a case tool to develope the tamagotchi consumed more time than just
to do a general specification and then code it in a programming language. One of the
advantage of doing the tamagotchi with a case tool and as a team was, that you look into
the specification more often, to ensure that you are doing right and that your parts still
fits to the pieces that are done by your teammates. In general we would say, modelling
the tamagotchi with autofocus led to a better understanding of the specification. Another
advantage is, that a specification that is modelled with a case tool, is much more easy
to understand that just code. Once you get used to a modelling type and a tool, the
benefits will usually surpass the disadvantages. The last big advantage was the simulation
environment, which enabled us to test sub parts of the specification for bugs, before testing
the whole specification. As a resume we could say that using a flowcharter to develope

the modell of the system and then programming it may have been faster. But for testing
the system for correctness, and make it understandable for others AuTOFOCUS did a good
job.

5.5 Use AuToFocus again?

Once we got used to AuToFocus, wih its peculiarities, the work progress was good. We
would use AUTOFOCUS again, if some bugs would be eliminated. We think that this tool
should be developed further, and with a good documentation and a tutorial the time costs
for trial and error developement with AuTOFOCUS would decrease noticeable.

6 Appendix

6.1 Tamagotchi

dspControt:int

dspHourint

Hour:int

clkRadioclockl
@ “kRadiociock

@ CikRadioclockifinuteiint

kbdLeftbutton:boolean

dspTimer:int

dspGetHappyness:int

dspGetWeigl

int

dspGetKind:int

mcGetSatiation:int

clkReset:boolean

mcTimer:int

meMinutesint

mcHour:int

memAddPlayCounler:int

er:int

kbdMiddlebutton:boolean

kbdRightbutton:boolean

memKbdAHdWeight:int

kbdResetstripe:boolean

meCaretatesint

memReset:boolean

o OO0 0o 0 0Oo0 o0 o

careTimer:int

careGetHappyness:int

memAddMaxCareAgetint

int

KbdisD

6.2 Lifecycle

Reset clock

MCDisplayClock

Tamogotcw started

5 min. afe over

Every 15 min. satiation - 1

3 hours dre over

L] ot good .
€
_memso ©
KuchipatchiNight @)
M
[

good night

Reset o
now if ming Reset
good morning

every 2 hours -1 o day 1 games check @ every hour satiation - 1
every 2 hours satiation - 1 every 3 hours happyness - 1

goqd hight

good njotning

®) O
welNone
not dood //
O\Resa&

TamatchiNight
T TTT——Resst ©

O
ing le) goo
Resét
[}
good hight less than s per day Reget good

TamatchiDay

2 gaméscheck ok

every 4 hours happyness - 1

every 2 hours satiation - 1

well done

o

Reset
good morning

O<— ot
MametchiDay every 4 hours happyness - 1

rs satiati

(@)

good night

,um—gmu/ °
KuchitamatchiNight

orning

ight

— D2 =
O

KuchitamatchiDay every 4 hours happyness - 1

every 2 hours satiation - 1

.\“‘"\ /aese?(;

° i @
goqd |night
good mofning

every 2 hours satiation - 1 w
every 2 hours happyness - 1

MCDisplayClock — MCEgg
Tamogotchi is being started

Precondition
Input mcTimer? T, mcReset?false
Output dspMCState!2
Postcondition SleepTimer = T

MCEgg — MCBabytchi

5 min. are over
Precondition st >=SleepTimer + 5
Input mcTimer?st
Output memWeight!5, memMinWeight!5, dspMCState!3, clkReset!true
Postcondition SatTimer = st; SleepTimer = st
MCBabytchi =— MCBabytchi

Every 15 min. satiation - 1
Precondition st >= SatTimer + 15
Input mcTimer?st
Output memAddSatiation!-1
Postcondition SatTimer = st

Init — MCDisplayClock

Reset clock

Precondition
Input
Output clkReset!true, dspMCState!l

Postcondition

MCBabytchi =— Tomorrow
3 hours are over

Precondition st >= SleepTimer + 180
Input mcTimer?st
Output memSleeping!true, dspMCState!4
Postcondition
Tomorrow —> MarutchiMarutchiDay
now it’s morning
Precondition H>=9
Input mcHour?H, mcTimer?T
Output mem©Sleeping!false, dspMCState!5, memWeight!10, memPlay-
Counter!0, memMinWeight!10
Postcondition SatTimer = T; HappyTimer = T; TamaKuchiTimer = T,

GameState = 0

MarutchiMarutchiDay — TamatchiTamatchiDay

2 games check ok

Precondition

Input
Output
Postcondition

TT >= TamaKuchiTimer + 2880 && GameState == 1 &&
PC >=14

mcTimer?TT, mcPlayCounter?PC

dspMCState!7, memWeight!20, memMinWeight!20

SatTimer = TT; HappyTimer = TT; NextStateTimer = TT

MarutchiMarutchiDay — KuchitamatchiKuchitamatchiDay

less than 2 games per day

Precondition

Input
Output
Postcondition

TT >= TamaKuchiTimer + 2880 && (GameState != 1 || PC
< 4)

mcTimer?TT, mcPlayCounter?PC

dspMCState!9, memWeight!20, memMinWeight!20

SatTimer = TT; HappyTimer = TT; NextStateTimer = TT

TamatchiTamatchiNight —- KuchipatchiKuchipatchiNight

not good

Precondition
Input
Output

Postcondition

T > NextStateTimer + 7200

mcTimer?T, mcCareState?2

dspMCState!14, memWeight!20, memMinWeight!20, memAd-
dMaxAge!12

SatTimer = T; HappyTimer = T

TamatchiTamatchiNight — MasktchiMasktchiNight

bad

Precondition
Input
Output

Postcondition

T > NextStateTimer + 7200

mcTimer?T, mcCareState?3

dspMCState!16, memWeight!30, memMinWeight!30, memAd-
dMaxAge!18

SatTimer = T; HappyTimer = T

KuchitamatchiKuchitamatchiNight —> KuchipatchiKuchipatchiNight

not good

Precondition
Input
Output

Postcondition

T > NextStateTimer+7200 && C <= 2

mcTimer? T, mcCareState?C

dspMCState!14, memWeight!20, memMinWeight!20, memAd-
dMaxAge!12

SatTimer = T; HappyTimer = T

KuchitamatchiKuchitamatchiNight —- MasktchiMasktchiNight

bad

Precondition
Input
Output

Postcondition

T > NextStateTimer + 7200

mcTimer? T, mcCareState?3

dspMCState!16, memWeight!30, memMinWeight!30, memAd-
dMaxAge!18

SatTimer = T; HappyTimer = T

TamatchiTamatchiNight — MametchiMametchiNight

well done
Precondition T > NextStateTimer + 7200
Input mcTimer? T, mcCareState?1
Output dspMCState!12, memWeight!30, memMinWeight!30, memAd-
dMaxAge!22
Postcondition SatTimer = T; HappyTimer = T
MCDisplayClock —> Init

Reset
Precondition
Input mcReset?true
Output
Postcondition

MCEgg — Init

Reset
Precondition
Input mcReset?true
Output
Postcondition

MCBabytchi = Init

Reset
Precondition
Input mcReset?true
Output
Postcondition

Tomorrow =— Init

Reset
Precondition
Input mcReset?true
Output

Postcondition

MarutchiMarutchiNight — Init

Reset
Precondition
Input mcReset?true
Output
Postcondition
TamatchiTamatchiNight —> Init
Reset
Precondition
Input mcReset?true
Output
Postcondition
MametchiMametchiDay — Init
Reset
Precondition
Input mcReset?true
Output
Postcondition
KuchitamatchiKuchitamatchiNight — Init
Reset
Precondition
Input mcReset?true
Output
Postcondition
KuchipatchiKuchipatchiNight — Init
Reset
Precondition
Input mcReset?true
Output
Postcondition
MasktchiMasktchiNight — Init
Reset
Precondition
Input mcReset?true
Output
Postcondition

MarutchiMarutchiDay — MarutchiMarutchiDay

Marutchievery 3 hours happyness - 1

Precondition
Input

Output
Postcondition

ht >= HappyTimer + 180
mcTimer?ht
memAddHappyness!-1
HappyTimer = ht

MarutchiMarutchiDay — MarutchiMarutchiDay

Marutchievery hour satiation - 1

Precondition
Input

Output
Postcondition

st >= SatTimer + 60
mcTimer?st
memAddSatiation!-1
SatTimer = st

MarutchiMarutchiDay — MarutchiMarutchiNight

Marutchigood night

Precondition
Input

Output
Postcondition

h <9 h>=20
mcHour?h
memSleeping!true, dspMCState!6

MarutchiMarutchiNight — MarutchiMarutchiDay

Marutchigood morning

Precondition
Input

Output
Postcondition

h>=9&& h <20
mcHour?h
memSleeping!false, dspMCState!5, memAddWeight!-2

MarutchiMarutchiDay — MarutchiMarutchiDay

Marutchiday 1 games check

Precondition

Input
Output
Postcondition

TT >= TamaKuchiTimer + 1440 && GameState == 0 &&
PC >=2
mcTimer?TT, mcPlayCounter?PC

GameState = 1

TamatchiTamatchiDay — TamatchiTamatchiDay

Tamatchievery 2 hours satiation - 1

Precondition
Input

Output
Postcondition

st >= SatTimer + 120
mcTimer?st
memAddSatiation!-1
SatTimer = st

TamatchiTamatchiDay — TamatchiTamatchiDay

Tamatchievery 4 hours happyness - 1

Precondition
Input

Output
Postcondition

ht >= HappyTimer + 240
mcTimer?ht
memAddHappyness!-1
HappyTimer = ht

TamatchiTamatchiDay —> TamatchiTamatchiNight

Tamatchigood night

Precondition
Input

Output
Postcondition

h<9|h>=21
mcHour?h
memSleeping!true, dspMCState!8

TamatchiTamatchiNight —> TamatchiTamatchiDay

Tamatchigood morning

Precondition
Input

Output
Postcondition

h>=9 && h <21
mcHour?h
memSleeping!false, dspMCState!7, memAddWeight!-4

KuchitamatchiKuchitamatchiDay — KuchitamatchiKuchitamatchiDay

Kuchitamatchievery 2 hours satiation - 1

Precondition
Input

Output
Postcondition

st >= SatTimer + 120
mcTimer?st
memAddSatiation!-1
SatTimer = st

KuchitamatchiKuchitamatchiDay — KuchitamatchiKuchitamatchiDay

Kuchitamatchievery 4 hours happyness - 1

Precondition
Input

Output
Postcondition

ht >= HappyTimer + 240
mcTimer?ht
memAddHappyness!-1
HappyTimer = ht

KuchitamatchiKuchitamatchiDay — KuchitamatchiKuchitamatchiNight

Kuchitamatchigood night

Precondition
Input

Output
Postcondition

h<9| h>=21
mcHour”h
memSleeping!true, dspMCState!10

KuchitamatchiKuchitamatchiNight —> KuchitamatchiKuchitamatchiDay

Kuchitamatchigood morning

Precondition
Input

Output
Postcondition

h>=9&& h <21
mcHour”h
memSleeping!false, dspMCState!9, memAddWeight!-4

MametchiMametchiDay — MametchiMametchiDay

Mametchievery 2 hours satiation - 1

Precondition
Input

Output
Postcondition

st >= SatTimer + 120
mcTimer?st
memAddSatiation!-1
SatTimer = st

MametchiMametchiDay — MametchiMametchiDay

Mametchievery 4 hours happyness - 1

Precondition
Input

Output
Postcondition

ht >= HappyTimer + 240
mcTimer?ht
memAddHappyness!-1
HappyTimer = ht

MametchiMametchiDay — MametchiMametchiNight

Mametchigood night

Precondition
Input

Output
Postcondition

h <10 | h>=21
mcHour?h
memSleeping!true, dspMCState!12

MametchiMametchiNight =— MametchiMametchiDay

Mametchigood morning

Precondition
Input

Output
Postcondition

h >= 10 && h < 21
mcHour?h
memSleeping!false, dspMCState!11, memAddWeight!-6

KuchipatchiKuchipatchiDay =— KuchipatchiKuchipatchiDay

Kuchipatchievery 2 hours satiation - 1

Precondition
Input

Output
Postcondition

st >= SatTimer + 120
mcTimer?st
memAddSatiation!-1
SatTimer = st

KuchipatchiKuchipatchiDay =— KuchipatchiKuchipatchiDay

Kuchipatchievery 2 hours happyness - 1

Precondition
Input

Output
Postcondition

ht >= HappyTimer + 120
mcTimer?ht
memAddHappyness!-1
HappyTimer = ht

KuchipatchiKuchipatchiDay =— KuchipatchiKuchipatchiNight

Kuchipatchigood night

Precondition
Input

Output
Postcondition

h <10 | h>=21
mcHour?h
memSleeping!true, dspMCState!14

KuchipatchiKuchipatchiNight =— KuchipatchiKuchipatchiDay

Kuchipatchigood morning

Precondition
Input

Output
Postcondition

h >= 10 && h < 21
mcHour?h
memSleeping!false, dspMCState!13, memAddWeight!-6

MasktchiMasktchiDay — MasktchiMasktchiDay

Masktchievery 2 hours happyness - 1

Precondition
Input

Output
Postcondition

ht >= HappyTimer + 120
mcTimer?ht
memAddHappyness!-1
HappyTimer = ht

MasktchiMasktchiDay — MasktchiMasktchiDay

Masktchievery 2 hours satiation - 1

Precondition
Input

Output
Postcondition

st >= SatTimer + 120
mcTimer?st
memAddSatiation!-1
SatTimer = st

MasktchiMasktchiDay — MasktchiMasktchiNight

Masktchigood night

Precondition
Input

Output
Postcondition

h <11 h>=23
mcHour?h
memSleeping!true, dspMCState!16

MasktchiMasktchiNight — MasktchiMasktchiDay

Masktchigood morning

Precondition
Input

Output
Postcondition

h >=11 && h < 23
mcHour?h
memSleeping!false, dspMCState!15, memAddWeight!-6

6.3 Memory

memAddSatiation:int

memKbdAddSatiation:int

memAddWeight:int

memSetWeight:int

memKbdAddWeight:int

memAddMaxAge:int

memAddMaxCareAge:int

memAddHappyness:int

memKbdAddHappyness:int

memSetPlayCounter:int

memAddPlayCounter:int

memSetSleeping:boolean

memSetMinWeight:int

memSwitchWarn:boolean

memSetKind:int

mcGetSatiation:int

careGetSatiation:int

dspGetSatiation:int

careGetWeight:int

dspGetWeight:int

careGetMaxAge:int

dspGetHappyness:int

careGetHappyness:int

mcGetPlayCounter:int

kbdGetSleeping:boolean

careGetMinWeight:int

careWarningActive:boolean

dspGetKind:int

careGetKind:int

sR:bgolean

wR:b
aR:b
hR:b

pcR:b|

polean

olean
olean

bolean

sIR:bdolean

mwR:

boolean

waR:Hoolean

kR:bqolean

©)

000

(ON@)

O

o
(@)

set

active
go
add_LC @
active — active
go

Precondition
Input memAddWeight?, memKbdAddWeight?, wR?, mem-

SetWeight?
Output dspGetWeight!Value, careGet Weight!Value
Postcondition

init =— active
init
Precondition
Input
Output dspGetWeight!0, careGet Weight!0
Postcondition Value = 0
active — active
add_LC

Precondition
Input memAddWeight?temp, memKbdAddWeight?, wR?, mem-

SetWeight?
Output dspGetWeight!Value, careGet Weight!Value
Postcondition Value = Value + temp

active = init
reset

Precondition
Input wR7true
Output dspGetWeight!0, careGet Weight!0
Postcondition Value = 0

active = active

set
Precondition
Input memSetWeight?temp, wR?
Output careGetWeight!temp, dspGetWeight!temp
Postcondition Value = temp
active — active
add_KBD
Precondition
Input memKbdAddWeight?temp, memAddWeight?, wR?, mem-
SetWeight?
Output dspGetWeight!Value, careGet Weight!Value
Postcondition Value = Value + temp
active =— active
add_LC_KBD
Precondition
Input memAddWeight?templ, memKbdAddWeight?temp2, wR?,
memSet Weight?
Output dspGetWeight!Value, careGet Weight!Value
Postcondition Value = Value + templ + temp2

stayAwakel

) stayAwake¢?2

wakeUp goToSleep

rejset

awake — sleeping
goToSleep

Precondition
Input

Output
Postcondition

mem§SetSleeping?true, sIR?
kbdGetSleeping!true

sleeping — awake

wakeUp
Precondition
Input mem§SetSleeping?false
Output kbdGetSleeping!false
Postcondition
awake —> awake
stay Awakel
Precondition
Input mem§SetSleeping?
Output kbdGetSleeping!false
Postcondition
awake —> awake
stay Awake2
Precondition
Input mem§SetSleeping?false
Output kbdGetSleeping!false
Postcondition
sleeping —> sleeping
sleepLongerl
Precondition
Input memSetSleeping?, sIR?
Output kbdGetSleeping!true
Postcondition
sleeping —> sleeping
sleepLonger2
Precondition
Input sIR?, memSetSleeping?true
Output kbdGetSleeping!true
Postcondition
sleeping — awake
reset
Precondition
Input sIR?true
Output kbdGetSleeping!false

Postcondition

add_LC_KBD

active = active

go
Precondition
Input memAddSatiation?, memKbdAddSatiation?, sR?
Output mcGetSatiation!Value, dspGetSatiation!Value, careGetSatia-

tion!Value
Postcondition

init =— active
init
Precondition
Input
Output mcGetSatiation!4, dspGetSatiation!4, careGetSatiation!4
Postcondition Value = 4
active =— active
add_LC

Precondition
Input memAddSatiation?temp, memKbdAddSatiation?, sR?
Output mcGetSatiation!Value, dspGetSatiation!Value, careGetSatia-

tion!Value
Postcondition Value = Value + temp

active = init
reset

Precondition
Input sR7true
Output dspGetSatiation!4, mcGetSatiation!4, careGetSatiation!4

Postcondition

Value = 4

active = active

add_KBD
Precondition
Input memKbdAddSatiation?temp, memAddSatiation?, sR?
Output mcGetSatiation!Value, careGetSatiation!Value, dspGetSatia-
tion!Value
Postcondition Value = Value + temp
active =— active
add_LC_KBD
Precondition
Input memAddSatiation?templ, memKbdAddSatiation?temp2, sR?
Output mcGetSatiation!Value, careGetSatiation!Value, dspGetSatia-
tion!Value
Postcondition Value = Value + templ + temp2
active =— active
go
Precondition
Input memAddMaxAge?, memAddMaxCareAge?, aR?
Output careGetMaxAge!Value
Postcondition
init =— active
init
Precondition
Input
Output careGetMaxAge!0
Postcondition Value = 0
active =— active
add
Precondition
Input memAddMaxAge?temp, memAddMaxCareAge?, aR?
Output careGetMaxAge!Value
Postcondition Value = Value + temp

active = init

reset
Precondition
Input aR7true
Output careGetMaxAge!0
Postcondition Value = 0

active — active

add1
Precondition
Input memAddMaxCareAge?temp, aR?, memAddMaxAge?
Output careGetMaxAge!Value
Postcondition Value = Value + temp

active — active

add2
Precondition
Input memAddMaxAge?templ, memAddMaxCareAge?temp2, aR?
Output careGetMaxAge!Value
Postcondition Value = Value + templ + temp2

nif
reget
init = active

init
Precondition
Input
Output mcGetPlayCounter!()

Postcondition

Value = 0

active = init

reset
Precondition
Input pcR7true
Output mcGetPlayCounter!()
Postcondition Value = 0
active =— active
set
Precondition
Input memSetPlayCounter?temp, pcR?
Output mcGetPlayCounter!temp
Postcondition Value = temp
active — active
go
Precondition
Input memSetPlayCounter?, pcR?, memAddPlayCounter?
Output mcGetPlayCounter!Value
Postcondition
active — active
add
Precondition
Input memAddPlayCounter?temp, pcR?, memSetPlayCounter?
Output mcGetPlayCounter!Value
Postcondition Value = Value + temp
init O reset
go
add LC U add_LC_KBD
add_KBD
active =— active
go
Precondition
Input hR?, memAddHappyness?, memKbdAddHappyness?
Output dspGetHappyness!Value, careGetHappyness!Value

Postcondition

init = active

init

Precondition
Input
Output dspGetHappyness!4, careGetHappyness!4
Postcondition Value = 4

active — active

add_LC
Precondition
Input memAddHappyness?temp, memKbdAddHappyness?, hR?
Output careGetHappyness!Value, dspGetHappyness!Value
Postcondition Value = Value + temp
active = init
reset

Precondition
Input hR7true
Output dspGetHappyness!4, careGetHappyness!4
Postcondition Value = 4

active — active

add_KBD

Precondition
Input memKbdAddHappyness?temp, memAddHappyness?, hR?
Output careGetHappyness!Value, dspGetHappyness!Value
Postcondition Value = Value + temp

active — active

add_LC_KBD
Precondition
Input memKbdAddHappyness?templ, memAddHappyness?temp2,
hR?

Output careGetHappyness!Value, dspGetHappyness!Value
Postcondition Value = Value + templ + temp?2

init reset

active = active

go
Precondition
Input mwR?, memSetMinWeight?
Output careGetMinWeight!Value
Postcondition
init = active

init
Precondition
Input
Output careGetMinWeight!0
Postcondition Value = 0

active — active
set
Precondition
Input memSetMinWeight?temp, mwR?
Output careGetMinWeight!temp
Postcondition Value = temp
active = init

reset
Precondition
Input mwR7?true
Output careGetMinWeight!0
Postcondition Value = 0

@ \amingActive]

switchOFF reg switchON

WarnlngInActlve

WarningInActive =— WarningActive

reset
Precondition
Input waR7true
Output careWarningActiveltrue
Postcondition

WarningActive —> WarningInActive
switchOFF
Precondition
Input memSwitchWarn?true, waR?
Output careWarningActive!false
Postcondition
WarningInActive =— WarningActive
switchON
Precondition
Input memSwitchWarn?true, waR?
Output careWarningActiveltrue
Postcondition
WarningActive —> WarningActive
go
Precondition
Input memSwitchWarn?
Output careWarningActiveltrue
Postcondition
WarningInActive — WarningInActive
go

Precondition
Input waR?, memSwitchWarn?
Output careWarningActive!false

Postcondition

nif

init = active

init
Precondition
Input
Output dspGetKind!1, careGetKind!1
Postcondition Value = 1

active — init
reset
Precondition
Input kR?true
Output dspGetKind!1, careGetKind!1
Postcondition Value = 1
active — active

set
Precondition
Input memSetKind?temp, kR?
Output dspGetKind!temp, careGetKind!temp
Postcondition Value = temp

active — active

go
Precondition
Input memSetKind?, kR?
Output dspGetKind!Value, careGetKind!Value

Postcondition

Distribution
forward mcReset!false

init = init

Distribution
Precondition
Input memReset?true
Output sR!true, wRl!true, aR!true, hR!true, pcR!true, sIR!true,

mwR!true, mcReset!true, waR!true, kR!true

Postcondition

init — init

forward mcReset!false

Precondition
Input memUReset?false
Output mcReset!false

Postcondition

6.4 Keyboard

kbdLeftbutton:boolean memKbdAddSatiation:int

kbdMiddlebutton:boolean memKbdAddWeight:int
KbdAddH lint
kbdRightbutton:boolean mem appyness-in
memReset:boolean
kbdTimer:int
L dspControl:int
memSwitchWarn:boolean
kbdGetSleeping:boolean
[] ping memAddPlayCounter:int

reset:bpolean

kbdlsDeafd:boolean
kbdResetstr|pe:boolean

paperstripe not drawn
paperstripe not drawn @

paperstripe drawn

resgt
reget i
Steeptng
displayCloc})

sleeping
wakes up

reset

bagk to play

left button

back to food

O O O O 00 O

time passed

O left Button bacl/to food
back to heymal

time passed
FoodMain ’\
O
ect sushi
b reset
lect main
O,
jme passed
reset
sushi
back FoodSnack
O

snack

(@)

timi
O
O
[
left bigton
left byrfon
back tg play
tine passed

-

time passed

T

Happyness
é\u\ ’ time/passed

[]
back

O
7A passed:
o play

passed

o
M

w
¢)

starts ping

Initialize =— Initialize
paperstripe not drawn

Precondition
Input reset?true
Output dspControl!10
Postcondition
Initialize =— Initialize
paperstripe not drawn
Precondition
Input reset?
Output dspControl!10
Postcondition
Initialize — Egg
paperstripe drawn
Precondition
Input reset?false
Output memReset!false, dspControl!20
Postcondition
Egg — Initialize
reset
Precondition
Input reset?true
Output memReset!true, dspControl!10
Postcondition
Egg — Normal
tamagotchi born
Precondition
Input kbdTimer?0
Output
Postcondition
Normal = Initialize
reset
Precondition
Input reset?true
Output memReset!true, dspControl!10
Postcondition
Normal — displayClock
middle button
Precondition
Input reset?, kbdTimer?x, kbdMiddlebutton?true
Output dspControl!10

Postcondition

Savetimer=x

displayClock — Normal
time passed

Precondition x>Savetimer+5
Input kbdTimer?x
Output dspControl!20
Postcondition Savetimer=0
displayClock — Initialize
reset
Precondition
Input reset?true
Output memReset!true, dspControl!10
Postcondition
Normal — Normal
left + right button switch warning
Precondition
Input reset?, kbdLeftbutton?true, kbdRightbutton?true, kbdGet-
Sleeping?false
Output memSwitchWarn!true
Postcondition
Normal — FoodFoodMain
left button
Precondition
Input reset?, kbdLeftbutton?true, kbd Timer?x, kbdGetSleeping?false
Output dspControl!30
Postcondition Savetimer=x
FoodFoodSushi = Normal
time passed
Precondition x>Savetimer+20
Input kbdTimer?x
Output dspControl!20
Postcondition
FoodFoodSnack = Initialize
reset
Precondition
Input reset?true
Output memReset!true, dspControl!10
Postcondition
FoodFoodMain =— Normal
back to normal
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!20

Postcondition

FoodFoodMain — PlayPlayMain
left button

Precondition
Input reset?, kbdLeftbutton?true
Output dspControl!40
Postcondition
PlayPlayMain — FoodFoodMain
back to food
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!30
Postcondition
PlayNewRound = Normal
time passed
Precondition x>Savetimer+20
Input reset?, kbdTimer?x
Output dspControl!20
Postcondition
Playtamagotchi thinks left — Initialize
reset
Precondition
Input reset?true
Output memReset!true, dspControl!10
Postcondition
PlayPlayMain — StateStateMain
left button
Precondition
Input reset?, kbdLeftbutton?true
Output dspControl!50
Postcondition
StateStateMain — PlayPlayMain
back to play
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!40
Postcondition
StateWeight — Normal
time passed
Precondition x>Savetimer+20
Input reset?, kbdTimer?x
Output dspControl!20

Postcondition

StateStateMain =—> Normal
left button

Precondition
Input reset?, kbdLeftbutton?true
Output dspControl!20
Postcondition
StateHappyness =— Initialize
reset
Precondition
Input reset?true
Output memReset!true, dspControl!10
Postcondition
Normal — Sleeping
sleeping
Precondition
Input reset?, kbdGetSleeping?true
Output dspControl!21
Postcondition
Sleeping —> Normal
wakes up
Precondition
Input kbdGetSleeping?false
Output dspControl!20
Postcondition
Sleeping — Initialize
reset
Precondition
Input reset?true
Output memReset!true, dspControl!10
Postcondition
FoodFoodSushi = Normal
sushi
Precondition
Input reset?, kbhdMiddlebutton?true
Output dspControl!20, memKbdAddSatiation!1, memKbdAd-
dWeight!1
Postcondition
FoodFoodSnack — Normal
snack
Precondition
Input reset?, kbhdMiddlebutton?true
Output dspControl!22, memKbdAddHappyness!1, memKbdAd-

Postcondition

dWeight!2

Playtamagotchi thinks right =— Normal
abort game

Precondition
Input reset?, kbdRightbutton?true
Output dspControl!20
Postcondition
PlayNewRound = Normal
time passed
Precondition x>Savetimer+50
Input reset?, kbdTimer?x
Output dspControl!20
Postcondition
PlayNewRound = Normal
starts sleeping
Precondition
Input reset?, kbdGetSleeping?true
Output dspControl!20
Postcondition
FoodFoodMain — FoodFoodSushi
Foodselect sushi
Precondition
Input reset?, kbdMiddlebutton?true
Output dspControl!31
Postcondition
FoodFoodSushi — FoodFoodSnack
Foodselect snack
Precondition
Input reset?, kbdLeftbutton?true
Output dspControl!32
Postcondition
FoodFoodSushi — FoodFoodMain
Foodback
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!30
Postcondition
FoodFoodSnack —> FoodFoodSushi
Foodback
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!31

Postcondition

FoodFoodSnack = FoodFoodMain
Foodselect main

Precondition
Input reset?, kbdLeftbutton?true
Output dspControl!30
Postcondition
PlayPlayMain — PlayNewRound
Playstart game
Precondition
Input reset?, kbdMiddlebutton?true, kbd Timer?x
Output dspControl!41
Postcondition Round=0; RoundsWon=0; Savetimer=x

PlayNewRound — Playtamagotchi thinks left

Playthinks left

Precondition
Input

Output
Postcondition

Round<5
reset?, kbdGetSleeping?false
dspControl!41

Playtamagotchi thinks left — PlayNewRound

Playround won

Precondition
Input

Output
Postcondition

reset?, kbdMiddlebutton?true
dspControl!44
Round++; RoundsWon-++

Playtamagotchi thinks left — PlayNewRound

Playround lost

Precondition
Input

Output
Postcondition

reset?, kbdLeftbutton?true
dspControl!45
Round++

Playtamagotchi thinks right — PlayNewRound

Playround lost

Precondition
Input

Output
Postcondition

reset?, kbdMiddlebutton?true
dspControl!43
Round++

Playtamagotchi thinks right — PlayNewRound

Playround won

Precondition
Input

Output
Postcondition

reset?, kbdLeftbutton?true
dspControl!42
Round++; RoundsWon-++

PlayNewRound — Playtamagotchi thinks right

Playthinks right

Precondition Round<b
Input reset?, kbdGetSleeping?false
Output dspControl!41
Postcondition
PlayNewRound — PlayNewRound
Playgame won
Precondition Round==5 && RoundsWon>2
Input reset?, kbdTimer?x, kbdGetSleeping?false
Output dspControl!41, memKbdAddHappyness!1,
memKbdAddWeight!-1, memAddPlayCounter!1
Postcondition Savetimer=x; Round=0; RoundsWon=0
PlayNewRound =— PlayNewRound
Playgame lost
Precondition Round==5 && RoundsWon<3
Input reset?, kbdTimer?x, kbdGetSleeping?false
Output dspControl!41, memKbdAddWeight!-1, memAddPlayCounter!1
Postcondition Savetimer=x; Round=0; RoundsWon=0;
StateStateMain — StateAge
Stateage
Precondition
Input reset?, kbdMiddlebutton?true
Output dspControl!51
Postcondition
StateAge — StateStateMain
Stateback
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!50
Postcondition
StateAge — StateWeight
Stateweight
Precondition
Input reset?, kbdMiddlebutton?true
Output dspControl!52
Postcondition
StateWeight — StateAge
Stateback
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!51

Postcondition

StateWeight — StateSatiation

Statesatiation
Precondition
Input reset?, kbdMiddlebutton?true
Output dspControl!53
Postcondition
StateSatiation — StateWeight
Stateback
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!52
Postcondition
StateSatiation — StateHappyness
Statehappyness
Precondition
Input reset?, kbdMiddlebutton?true
Output dspControl!54
Postcondition
StateHappyness — StateSatiation
Stateback
Precondition
Input reset?, kbdRightbutton?true
Output dspControl!53
Postcondition
StateHappyness =—> StateStateMain
Statestatemain L
Precondition
Input reset?, kbdLeftbutton?true
Output dspControl!50
Postcondition
StateHappyness —> StateStateMain
Statestatemain M
Precondition
Input reset?, kbhdMiddlebutton?true
Output dspControl!50

Postcondition

kbdResetstripe?true:reset!true:

kbdlsDead?true:reset!true: (. CheckResets

kbdResetstripe?false:reset!false:

CheckResets —> CheckResets
kbdResetstripe?true:reset!true:

Precondition
Input kbdResetstripe?true
Output reset!true
Postcondition
CheckResets =— CheckResets
kbdResetstripe?false:reset!false:
Precondition
Input kbdResetstripe’false
Output reset!false
Postcondition
CheckResets =—> CheckResets
kbdIsDead?true:reset!true:
Precondition
Input kbdIsDead?true
Output reset!true
Postcondition

6.5 Clock

clkRadioclogkHour:int clkRadioclockMinute:int

clkReset]boolean

mcHqur:int dspHqur:int mcMinpte:int dspMinpute:int

O ®) ©) ©)

careTimer:int
kbdTimer:int
dspTimer:int

mcTimer:int

@set timerto O

Init timer with O

doTimer

Increment timer

Initial =— doTimer
Init timer with O

Precondition
Input
Output mcTimer!Timervalue, careTimer! Timervalue, dspTi-
mer! Timervalue, kbdTimer!Timervalue
Postcondition Timervalue=0
doTimer — doTimer
Increment timer
Precondition
Input clkReset?
Output mcTimer!Timervalue, careTimer!Timervalue, dspTi-
mer! Timervalue, kbdTimer!Timervalue
Postcondition Timervalue++
doTimer — doTimer
Reset recieved, set timer to 0
Precondition
Input clkReset?true
Output mcTimer!Timervalue, careTimer!Timervalue, dspTi-
mer!Timervalue, kbdTimer!Timervalue
Postcondition Timervalue=0

Init clock values with radioclock time

@~ D~

(Minute = 59 & Hour<23) -> next hour

(Minute < 59) -> next Minute

(Minute=59 & Hour=23) -> next day

Initial = doClock
Init clock values with radioclock time

Precondition
Input clkRadioclockHour?x, clkRadioclockMinute?y
Output mcHour!Hourvalue, mcMinute! Minutevalue,
dspHour!Hourvalue, dspMinute!Minutevalue
Postcondition Hourvalue=x; Minutevalue=y
doClock —> doClock
(Minute < 59) -> next Minute
Precondition Minutevalue < 59
Input
Output mcHour!Hourvalue, mcMinute!Minutevalue,
dspHour!Hourvalue, dspMinute!Minutevalue
Postcondition Minutevalue++
doClock = doClock
(Minute = 59 & Hour<23) -> next hour
Precondition Minutevalue==>59 && Hourvalue<23
Input
Output mcHour!Hourvalue, mcMinute!Minutevalue,
dspHour!Hourvalue, dspMinute!Minutevalue
Postcondition Minutevalue=0; Hourvalue++
doClock =— doClock
(Minute=59 & Hour=23) -> next day
Precondition Minutevalue==59 && Hourvalue == 23
Input
Output mcHour!Hourvalue, mcMinute! Minutevalue,

Postcondition

dspHour!Hourvalue, dspMinute!Minutevalue
Minutevalue=0; Hourvalue=0

6.6 Care

careTiny

careGetMaxAge:int

kbdI:

careGeiftind:int

careG

ight:int

ight:in

f:boolean

careGetSafiation:int

WeightTone|boolean

careWarningActive:boolean

careGetHappyness:int

SatiationTone:boolean

satGetKind:int

nastySatTone:boolean

hapGetKind:int

WeightLTrRin:boolean

lowerAgé:boolean

SatiationLTf3:boolean

ageKind:int

i ageCareState:int

memAddMaxCareAge:int

[©] [¢]

. distribute

Happynessl.T3:boolean

mcCare$tate:int

HappynessTone:boolean,

()
nastyHappTone:boolean 3

dspBeeg:boolean

distribute = distribute
dist

Precondition
Input

Output
Postcondition

careGetKind7x

ageKind!x, hapGetKind!x, satGetKind!x

oneDayTooFat 0 tooLessWeight

look =— look
OK

Precondition (2*w < 3*m) && (w>m)
Input careGet Weight?w, careGetMinWeight?m
Output WeightTone!false, lowerAge!false, Weight LT min!false
Postcondition Timer = 1440

look — look

too_fat

Precondition (2*w > 3*m) && (Timer > 0)
Input careGetMinWeight?m, careGetWeight?w
Output WeightTone!true, lowerAge!false, WeightLTmin!false
Postcondition Timer = Timer - 1

look — look

oneDayTooFat
Precondition (2*w > 3*m) && (Timer <= 0)
Input careGetMinWeight?m, careGetWeight?w
Output WeightTone!false, lowerAgel!true, WeightL Tmin!false
Postcondition Timer = 1440

look — look

tooLessWeight
Precondition w < m
Input careGetMinWeight?m, careGetWeight?w
Output WeightTone!true, lowerAge!false, WeightLLTmin!true
Postcondition Timer = 1440

MaxAge > Age ?

Check =— Check
MaxAge > Age ?

Precondition MaxAge * 1440 > Age
Input careGetMaxAge?MaxAge, careTimer?Age
Output careReset!true, kbdIsDead!true
Postcondition

look — look

OK

Precondition (s >=3) && ((k = 15) || ((k == 15) && (s >= oldValue)))
Input careGetSatiation?s, satGetKind7k
Output SatiationTone!false, nastySatTone!false, SatiationLT3!false
Postcondition oldValue = s

look — look

nastyOK

Precondition (s >=3) && (k == 15) && (s < oldValue)
Input careGetSatiation?s, satGetKind 7k
Output SatiationTone!false, nastySatToneltrue, SatiationL'T3!false
Postcondition oldValue = s

look — look

notOK

Precondition (s < 3)
Input careGetSatiation?s
Output SatiationTone!true, nastySatTone!false, SatiationT3!true

Postcondition

oldValue = s

look =— look
OK

Precondition (h >=3) && ((k !=15) || (h >= oldValue))
Input careGetHappyness’h, hapGetKind7k
Output HappynessTone!false, nastyHappTone!false, Happy-
nessL'T3!false

Postcondition oldValue = h

look — look

nastyOK
Precondition (h >=3) && (k == 15) && (h < oldValue)
Input careGetHappyness?h, hapGetKind7k
Output HappynessTone!false, nastyHappTone!true, Happy-
nessL.T3!false

Postcondition oldValue = h

look — look

notOK

Precondition (h < 3)
Input careGetHappyness’h
Output HappynessTone!true, nastyHappTone!false, HappynessLT3!true
Postcondition oldValue = h

look — look

lowerMaxAge
Precondition (k ==11) && (cs > 1)) || ((k == 13) && (cs > 2))
Input ageKind?k, ageCareState?cs, lowerAge?false
Output memAddMaxCareAge!-1
Postcondition

look — look

subtractMaxAge

Precondition
Input lowerAge?true
Output memAddMaxCareAge!-1

Postcondition

. sehrGut

go_wh
go_ws
unbefriedigend rescue
go_w
befriedigend
abyse
mangelhaft
sehrGut — unbefriedigend
S
Precondition
Input WeightLTmin?, Satiation.T37true, Happynessl.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120

sehrGut — unbefriedigend

h
Precondition
Input WeightLTmin?, Satiation.T37, Happyness['T3?true
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
sehrGut = unbefriedigend
W
Precondition
Input WeightLTmin?true, Satiation.T37, Happynessl.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
sehrGut — sehrGut
go
Precondition
Input WeightLTmin?, Satiation.T37, Happyness['T3?
Output mcCareState!1, ageCareState!l
Postcondition
unbefriedigend =— unbefriedigend
go_w
Precondition Timer > 0
Input WeightLTmin?true, Satiation.T37, Happynessl.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = Timer - 1
sehrGut =— unbefriedigend
wsh
Precondition
Input WeightLTmin?true, SatiationL.T37true, HappynessLL'T3?true
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
sehrGut = unbefriedigend
wSs
Precondition
Input WeightLTmin?true, Satiation.T37true, HappynessL.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
sehrGut =— unbefriedigend
wh
Precondition
Input WeightLTmin?true, Satiation.LT37, Happyness.T37true
Output mcCareState!2, ageCareState!2

Postcondition

Timer = 120

sehrGut — unbefriedigend

sh
Precondition
Input WeightLTmin?, Satiation.T37true, Happyness.T37true
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
unbefriedigend — unbefriedigend
g0_S
Precondition Timer > 0
Input WeightLTmin?, Satiation.T37true, Happynessl.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = Timer - 1
unbefriedigend — unbefriedigend
go_h
Precondition Timer > 0
Input WeightLTmin?, Satiation.T37, Happyness['T3?true
Output mcCareState!2, ageCareState!2
Postcondition Timer = Timer - 1
unbefriedigend — unbefriedigend
gO_WS
Precondition Timer > 0
Input WeightLTmin?true, Satiation.T37true, HappynessL.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = Timer - 1
unbefriedigend =— unbefriedigend
go_wh
Precondition Timer > 0
Input WeightLTmin?true, Satiation.LT37, Happyness.T37true
Output mcCareState!2, ageCareState!2
Postcondition Timer = Timer - 1
unbefriedigend =— unbefriedigend
go_sh
Precondition Timer > 0
Input WeightLTmin?, Satiation.T37true, HappynessL.T37true
Output mcCareState!2, ageCareState!2
Postcondition Timer = Timer - 1
unbefriedigend =— unbefriedigend
go_wsh
Precondition Timer > 0
Input WeightLTmin?true, SatiationL.T37true, HappynessLL'T3?true
Output mcCareState!2, ageCareState!2

Postcondition

Timer = Timer - 1

unbefriedigend — mangelhaft

abuse
Precondition Timer <=0
Input
Output mcCareState!3, ageCareState!3
Postcondition
mangelhaft — mangelhaft
abuseCont
Precondition
Input
Output mcCareState!3, ageCareState!3
Postcondition
unbefriedigend — befriedigend
rescue
Precondition
Input WeightLTmin?, Satiation.T37, Happyness['T3?
Output mcCareState!2, ageCareState!2
Postcondition
befriedigend — unbefriedigend
W
Precondition
Input WeightLTmin?true, Satiation.T37, Happynessl.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
befriedigend = unbefriedigend
S
Precondition
Input WeightLTmin?, Satiation.T37true, Happynessl.T3?
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
befriedigend = unbefriedigend
h
Precondition
Input WeightLTmin?, Satiation.T37, Happyness['T3?true
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120
befriedigend = unbefriedigend
wSs
Precondition
Input WeightLTmin?true, Satiation.T37true, HappynessL.T3?
Output mcCareState!2, ageCareState!2

Postcondition

Timer = 120

befriedigend — unbefriedigend

wh
Precondition
Input WeightLTmin?true, Satiation.LT37, Happyness.T37true
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120

befriedigend — unbefriedigend

sh
Precondition
Input WeightLTmin?, Satiation.T37true, Happyness.T37true
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120

befriedigend — unbefriedigend

wsh
Precondition
Input WeightLTmin?true, SatiationLT37true, HappynessLL'T3?true
Output mcCareState!2, ageCareState!2
Postcondition Timer = 120

befriedigend — befriedigend

go
Precondition
Input WeightLTmin?, Satiation.T37, Happyness['T3?
Output mcCareState!2, ageCareState!2
Postcondition

@ \amingActive

no tone
m
Warninglnactive
tone

WarningActive —- WarninglInactive

Precondition
Input

Output
Postcondition

no tone
careWarningActive?false, SatiationTone?false, nastySat-
Tone?false, WeightTone?false, HappynessTone?false, nasty-
HappTone?false

WarninglInactive —> WarningActive

tone
Precondition
Input careWarningActive?true, Weight Tone?false, Satiation-
Tone?false, nastySatTone?false, HappynessTone?false, nasty-
HappTone?false
Output
Postcondition
WarningActive —> WarningActive
beep
Precondition x1 || x2 || x3 || x4 || x5
Input WeightTone?x1, SatiationTone?x2, nastySatTone?x3, Happy-
nessTone?x4, nastyHappTone?x5
Output dspBeep!true
Postcondition
WarningInactive =— WarninglInactive
beep
Precondition x1 || x2
Input nastySatTone?x1, nastyHappTone?x2
Output dspBeep!true

Postcondition

