
Technical University of MunichInstitute for Computer Sciencec c c cccc ccc ccc cccc c cc �� ��

FOCUS

HauptseminarModelling of the Tamagotchi withAutoFocus
Adaptation Alexander Seitz,Thomas Seliger,Florian KunkelMaintenance Dr. Bernhard Sch�atzSet of Issue Prof. Dr. Manfred BroyDate of Speech 02.02.1999

AbstractWe have modelled the Tamagotchi with AutoFocus.

2

Contents1 Intorduction 51.1 Circumstances . 51.2 Purpose of the Notation/Method . 51.3 History of Development, Authors . 51.4 A Survey of the Notation/Method . 51.4.1 Conceptual Model of the Notation/Method 51.4.2 Methodology, HOWTO use AutoFocus 61.4.3 Modelling . 71.5 A Survey of AutoFocus . 81.5.1 Basic features of AutoFocus ... 82 Apporach and Result 92.1 Which Concrete Strategy has been Followed with Regard to Modelling? . . 92.2 How have the Requirements been Devided and how have the Interfaces beenDe�ned? . 92.3 Scope/Precision of the Speci�cation . 102.4 Did we Already Simulate while Modelling? 102.5 Veri�cation/Validation of the Speci�cation 102.5.1 Is the Speci�cation Consistend and Complete? 102.5.2 Has the Speci�cation been Reviewed Completely According to theRequirements? . 102.5.3 Has the Speci�cation been Tested Completely, Supported by the Tooland According to the Requirements? 102.5.4 Statement about Problems with Consistency Check, Review or Sim-ulation . 102.5.5 Has the Speci�cation been debugged? 102.6 Size of the Speci�cation . 103 Speci�cation of the Funktionality "Playing" 113.1 Realisation of the informal demands . 144 Experiences 144.1 Training Period . 144.2 Tamagotchi implementation duration . 154.3 Modelling the Tamagotchi . 155 Conclusions 185.1 Teamwork with autofocus . 185.2 Subsumption of Autofocus strengths and weaknesses 185.3 Proposal of how to improve Notation, Tool and AutoFocus 195.4 Usefulness of the Modelling and AutoFocus 195.5 Use AutoFocus again? . 206 Appendix 216.1 Tamagotchi . 216.2 Lifecycle . 226.3 Memory . 313

6.4 Keyboard . 456.5 Clock . 576.6 Care . 60

4

5Equal goes it loose.(L�ubke)1 Intorduction1.1 CircumstancesWe are one of eight groups modelling the Tamagotchi | each with another CASE1 tool.Except some basic knowledge about concepts of Software Engineering we did not knowanything about our issue. We knew that there must be something and people call it CASEand mean Computer Supported Software Engineering but we had never seen a CASE tooland | of course | we did not know how many windows you have to deal with when youwork with a CASE tool.1.2 Purpose of the Notation/Method"The purpose of AutoFocus is to aid software developters in specifying anddesingning distributed systems, especially so-called 'embedded systems'."(out of Autofocus Users Manual)1.3 History of Development, Authors"AutoFocus was developed and implemented during the one-semester practicalcourse `Software Engineering' by students and members of the chairs Prof.Broy and Prof. Endres at the faculty of computer science at the TechnischeUniversit�at M�unchen in summer 1996. It will be used and enhanced in severalcooperation projects with Bavarian industrial companies, including SiemensPublic Networks."(out of http://autofocus.informatik.tu-muenchen.de/Infos/a�nfo-en.html)1.4 A Survey of the Notation/Method1.4.1 Conceptual Model of the Notation/MethodWith AutoFocus you can model four di�erent views on your system, accessible from amodelling center (�gure 1): SSDs, STDs, EETs and DTDs (see table 1 and �gures 3, 4, 5). ��

Figure 1: Modelling Center1CASE: Computer Supported Software Engineering

6 1 INTORDUCTIONSSD (System Structure Diagrams) to specify the static communication structure ofa distributed system as a network of interconnected components. An SSD caneither have a sub-SSD or an STD (see below). With the sub-structure you canbuild up your system in a hierarchical way to not lose your grip on it. All thesystem's components described by the SSDs work in parallel. An componentcan have a set of properties (�gure 2) that can only be accessed by its ownSTD, not even by the component STDs of its sub-SSDs.STD (State Transition Diagrams, or automata for short) to model the behaviourof a system's components (i.e., the state transitions dependent on the data acomponent reads). Again, you can use hierarchical technique on it: every statecan be splitted up in a sub-STD. Technically this sub-STD is on the same levelas its parent and has access to the same properties.EET (Extended Event Traces, see Message Sequence Charts) to describe the be-haviour of a (part of a) system from a view based on the communications his-tory between several components. EETs can be automatically created whilesimulation of a component.DTD (Data Type De�nitions) to describe data types, and some functions workingon them. DTDs are a textual description technique.Table 1: Views in AutoFocus ��

Figure 2: Properties of a component1.4.2 Methodology, HOWTO use AutoFocusYou are not forced to follow any given sequence, but in the current version of AutoFocusit is impossible to connect a sub-structure to its parent without designing the parent �rst.But you can very well assign an STD to its SSD in any situation.Anyway, a recommendable order of constructing views is to design the top level SSDs�rst, think about their responsibilities and connect them with channels according to theinformation to be exchanged.If you allready have use cases, you can describe their information
ow with EETs andavoid forgetting important functionality. As soon as your components get their behaviour,AutoFocus can check if the described system can perform your use cases.Then you should try to devide the responsibilities of each component into sub-SSDs aslong as you �nd possibilities to make them work in parallel. Be aware that in the currentversion of AutoFocus you can only simulate components with sub-SSDs but not with anSTD assigned to the component itself. However, you can set a pseudo component betweenthe component to be simulated and its STD. It means stupid work, but then you cansimulate and debug your SSD.The behaviour of every component which has no sub-SSD is to be designed now with

1.4 A Survey of the Notation/Method 7

LifeCycle Memory

Clock

Care

Keyboard

mcGetSatiation:int

memAddSatiation:int

memSetWeight:int

memSetMinWeight:int

memAddMaxAge:int

memAddHappyness:int

memSetPlayCounter:int

mcGetPlayCounter:int

memSetSleeping:boolean

mcReset:boolean

clkReset:boolean

mcTimer:int

mcMinute:int

mcHour:int

clkRadioclockHour:int

clkRadioclockMinute:int

dspHour:int

dspMinute:int

careTimer:int

memReset:boolean

kbdGetSleeping:boolean

kbdLeftbutton:boolean

kbdMiddlebutton:boolean

kbdRightbutton:boolean

kbdResetstripe:boolean

dspGetSatiation:int

dspGetHappyness:int

dspGetWeight:int

dspTimer:int

memAddWeight:int

careGetSatiation:int

careGetWeight:int

careGetMaxAge:int

careGetMinWeight:int

memAddMaxCareAge:int

careWarningActive:boolean

careGetHappyness:int

mcCareState:int

kbdTimer:int

dspControl:int

memKbdAddWeight:int

memKbdAddHappyness:int

memKbdAddSatiation:int

kbdIsDead:boolean

memSwitchWarn:boolean

dspGetKind:int

careGetKind:int

memSetKind:int

memAddPlayCounter:int

dspBeep:boolean

Figure 3: System Structure Diagraman STD. Make sure that this STD is easy to understand. Collect similar states in a singlestate and describe them in its sub-STD. It helps to oversee your STDs.When you are ready with modelling a component with all its sub-components and theirfunctionality, you can simulate it. Try to simulate as soon as possible to make sure thatyou cover as many use cases as possible. This is another reason to make the componentsbecome easy.1.4.3 ModellingThere are no guidelines in the manuals respectively texts of AutoFocus describing, howthings of the real world should be represented in the notation's concepts (e.g. how torepresent states). But in consequence of the simplicity that is given by only four di�erentkinds of views it should be possible to understand the idea behind the noti�cation withouta tutorial. However, a complete list of the tool's special operating needs could help a lot.

8 1 INTORDUCTION

every 2 hours satiation - 1

every 4 hours happyness - 1MametchiDay

MametchiNight

good night

good morning

well done

Reset

Reset

Figure 4: State Transition Diagram
Timer ClockDevice

mcTimer: 0

careTimer: 0

dspTimer: 0

kbdTimer: 0Figure 5: Extended Event Trace1.5 A Survey of AutoFocus1.5.1 Basic features of AutoFocus ...Simulation. As long as you only use standard java data types and java based statetransitions you can simulate your system in a mighty simulation environment. Interactivityis provided by the user beeing able to send data into the input channels of the simulatedcomponent. Both the state transitions and the activities and values of the channels canbe watched in their according diagrams during simulation and in real time. An EETthat represents the communication history of the simulation can be created automatically.It shows all the direct sub-components of the simulated component and, of course, thecommunication between them.Consistency-Check. We have not used it and therefor we do not have any experiencewith it. (...)

9Interface to the Tool's Environment. Just as Consistency-Check we did not use it,but there had been a project before in which AutoFocus had been commanding a realexisting 'Fischertechnik' model of an elevator system.Platform Independence. AutoFocus is completely written in Java, i.e., you can useit on any platform you can �nd Java for. However, the AutoFocus server needs a UNIXenvironment.Multi User Capability. AutoFocus is designed to be a client server architecture. Anarbitrary (is it really arbitrary?) number of developers can work on a project at the sametime. Each view of the project that one works on is locked for the others. The servershould allways be started within the same UNIX account due to access rights of the datastorage �les. Unfortunately it is not recommendable to develop parts of the project withoutconnection to the server, because diagrams cannot be transfered between di�erent projectswell enough. Maybe this restrictions will disappear when the data storage of AutoFocuswill be reengineered using a database management system, which is planned.2 Apporach and Result2.1 Which Concrete Strategy has been Followed with Regard toModelling?First of all we discussed the top level components and their basic communication channelsdrawing everything on a sheet of paper and made a hardcopy of it for all of us.Then the LifeCycle and the Clock were designed in parallel. That was possible due tothe little amount of communication between them.After development of the LifeCycle had been proceded far enough to exactly knowwhich functionality the Memory should provide we started to design this and also the Carecomponent which is very closely connected to the Memory. Due to that Memory and Carewere created by the same developer.The Keyboard component was designed time-independently but with very active coor-dination to the development of Memory.2.2 How have the Requirements been Devided and how have theInterfaces been De�ned?All of us were responsible for one or two components each (see table 2).Alexander Seitz LifeCycle and AutoFocus learningThomas Seliger Clock and KeyboardFlorian Kunkel Memory and CareTable 2: Divide and ConquereAutoFocus supported us by providing multi user capability. We had to work in thesame room at the same time but were able to work on our components in parallel.

10 2 APPORACH AND RESULT2.3 Scope/Precision of the Speci�cationDid we model all of the requirements exactly? No, we did not. There is no display. TheMemory does not check its values (e.g., satiation can be greater than 4). Our Tamagotchicannot starve. If the Tamagotchi's properties are not in their green ranges, there is a signalevery minute. Not every state transition is deterministic. The timer (Clock) is not moredetailed than one minute.2.4 Did we Already Simulate while Modelling?Yes, we did. Every component has been simulated separately. AutoFocus did a verygood job according to this.2.5 Veri�cation/Validation of the Speci�cation2.5.1 Is the Speci�cation Consistend and Complete?Not completely (see above).2.5.2 Has the Speci�cation been Reviewed Completely According to the Re-quirements?Due to the inconsistencies of the requirements itself, it was not really easy to make surethat every requirement is satis�ed. But we tried to ful�l them all.2.5.3 Has the Speci�cation been Tested Completely, Supported by the Tooland According to the Requirements?Testing all the requirements manually was nearly impossible, because we could not savethe state of our Tamagotchi's life. If we wanted to do so, we would have had to play thegame again and again. The only thing we did was playing several times to make sure thatit works at all.2.5.4 Statement about Problems with Consistency Check, Review or Simula-tionWe had not the time to work with the consistency check, but AutoFocus supports reviewand simulation quite well.2.5.5 Has the Speci�cation been debugged?In consequence of simulating every single component with sub-components we debuggedduring development and of course we did �x it whenever we found a bug. Exceptions arefound above.2.6 Size of the Speci�cationWe designed 6 SSDs and 33 STDs.

113 Speci�cation of the Funktionality "Playing"
Initialize

Egg

Normal

Food

Play

paperstripe drawn
tamagotchi born

left button
left button

Figure 6: simply�ed menu-logicThe State-Transition-Diagram �gure STD 6 shows the simply�ed menu logic. The fullSTD can be found in the appendix. The automaton starts at the initial-state \Initialize"and waits until the paperstripe will be drawn. If this is done, the automaton has to stay�ve minutes in the \Egg" - state before the state \Normal" is achieved.To get to the state named \Play", the user must press the left button twice. Thisactivates the two transitions labeled \left button". The state \Play" contains a sub-automation, which handles the complete game.This sub-automaton shows �gure STD 7. It continues at the state \PlayMain" whichis the target of the second transition labeled \left button" transition coming from thesuperior \Play" state. The actual game starts, if the user presses the middle button.The responsible transition attributes looks like this:PlayMain =) NewRoundstart gameInput reset?, kbdMiddlebutton?true, kbdTimer?xOutput dspControl!41Postcondition Round=0; RoundsWon=0; Savetimer=xStart game will be activated, if no reset signal is present and the middle button is pressed(signal from \kbdMiddlebutton"). The actual time value x is stored in the \Savetimer"variable and will be used as timeout-timer (\kbdTimer" is always valid). x is called atransitions-local-variable and is only present in this transition. It's used as a temporarymemory to read the signal from the port \kbdTimer" and store it in the SSD-local-variable\Savetimer". To show a playing tamagotchi on the the display, the constant 41 is sent over\dspControl". At last the variables \Round" and \RoundsWon" are set to zero.To leave the game, the user has to press the R-key (\about game"). It will also be leftif the timeout occours (\time passed"), the tamagotchi starts sleeping (\starts sleeping")or the user pushes the paperstripe (\reset").

12 3 SPECIFICATION OF THE FUNKTIONALITY "PLAYING"
game won

game lost

PlayMain NewRound

tamagotchi thinks right

tamagotchi thinks left

start game

thinks right

round won

round lost

thinks left

round won

round lost

Figure 7: simply�ed gameNewRound =) tamagotchi thinks leftthinks leftPrecondition Round<5Input reset?, kbdGetSleeping?falseOutput dspControl!41NewRound =) tamagotchi thinks rightthinks rightPrecondition Round<5Input reset?, kbdGetSleeping?falseOutput dspControl!41Now we are at \NewRound" and the tamagotchi is looking left and right (the displaycomponent is also responsible for beeping). At �rst the tamagotchi selects a direction.This is done by the two transitions \thinks left" and \thinks right". Both transitionshave the same pre- and input-condition. Because of this situation is not deterministicalAutoFocus randomizely selects on of the two transitions. The the display receives again41 because the use may not yet see, what the tamagotch is thinking and the automatonchanges into the \tamagotchi thinks right" or \tamagotchi thinks left" state. Now its theusers turn to guess the direction the tamagotchi is thinking of.tamagotchi thinks left =) NewRoundround wonInput reset?, kbdMiddlebutton?trueOutput dspControl!44Postcondition Round++; RoundsWon++

13Supposing the tamagotchi thinks left, then we are in the state \tamagotchi thinks left".If the user selects the middle button (signal from \kbdMiddlebutton"), then the transition\round won" will be activated because the users choice is wrong and the tamagotchi haswon this round. The display receives the constant 44, which stands for a playing tamagotchilooking left happily. The variables \Rounds" and \RoundsWon" in the post-condition areboth increased by one. tamagotchi thinks left =) NewRoundround lostInput reset?, kbdLeftbutton?trueOutput dspControl!45Postcondition Round++When the left button is pressed by the user, he has guest tamagotchis choice and theround is lost from tamagotchis point of view. Therefore the transition \round lost" isactivated. The display receives now the value 44, which stands for a playing tamagotchilooking left sadly. \Rounds" is increased by one and \RoundWon" stays equal. Again weare at the \NewRound" state and round two starts.NewRound =) NewRoundgame wonPrecondition Round==5 && RoundsWon>2Input reset?, kbdTimer?x, kbdGetSleeping?falseOutput dspControl!41, memKbdAddHappyness!1, memKbdAdd-Weight!-1, memAddPlayCounter!1Postcondition Savetimer=x; Round=0; RoundsWon=0NewRound =) NewRoundgame lostPrecondition Round==5 && RoundsWon<3Input reset?, kbdTimer?x, kbdGetSleeping?falseOutput dspControl!41, memKbdAddWeight!-1, memAddPlayCounter!1Postcondition Savetimer=x; Round=0; RoundsWon=0;The procedure described above is repeated for rounds two to �ve. If �ve rounds areover (the variable \Round" has reached the value 5), the game is over and the transition\game won" or \game lost" is activated. The game is won if at least three rounds of �veare won (the games the tamagotchi has won are stored in \RoundsWon"). In this casethe happyness is increased by one and the weight is decreased by one. This is done bysending 1 to \memKbdAddHappyness" and -1 to \memKbdAddWeight" which adds andsubtracts the givel value. Instead of a Get- and Set-function-pair for each memory-port,this method has the advantage that more than one module can alter the values at the sametime whithout interfering with each other.The signal \memAddPlayCounter" is used for the lifecycle component and has no e�ecton the game. \kbdGetSleeping" cares, that a new game can only be started, if the tam-agotchi is awake. This signal is, like \kbdTimer" and the memory-signals always present.At least the variables \Rounds", \RoundsWon" and \Savetimer" are again initialized forthe next game and the display is directed to show a tamagotchi looking left and right (value41 to port \dspControl").

14 4 EXPERIENCES3.1 Realisation of the informal demandsOverview and SSDs To get a structure overview the tamagotchis components aremodelled through System-Structure-Diagrams (SSD) and Sub-System-Structure-Diagrams(Sub-SSD). Each component has its own funktionality, which implementation is hidden inthis view. Behind some Sub-SSDs like the \Memory" are separate Sub-SSDs which giveagain an overview of this spezial component (the \Memory" is devided in memory-cellSub-SSDs).The components are connected to each other, so it can be seen which component sendssignals to another component. For example, the \LifeCycle" has to alter many variablesin the memory. Because the signals are one-way, two ports are necessary, one for readingand one for altering a variable.Functionality and STDs If no re�nement is necessary, the proper funktionality of the(Sub)components is spezi�ed in State-Transition-Diagrams (STD) and their Sub-STDs.The memory-cells in \Memory" are all single automata, which handle the Get- and Add-operations.The individual states of the tamagotchi are represented in the states of the State-Transition-Diagrams. A good example is the \LifeCycle" diagram. For each life-period ex-ists an own state. Some of this states consists of an own easy to read Sub-State-Transition-Diagram. If the tamagotchi is a \Mametchi" and is sleeping, the state \MametchiNight"is active.Timer Another important functionality is the timer. In other CASE-tools, there is anexplicite timer provided by the CASE-tool. In AutoFocus there is no such timer, whichcan easily be used. The timer in our tamagotchi is implemented in the \Clock"-component.In this component there is a clock, to count minutes and hours, and a timer, which countsonly minutes. The timer is implemented with a SSD-local variable, which is increased inevery step by one minute. The timer-signal is sent in every step, so a component can reada valid timer-value at any time needed.The same technique is used by the \Memory". Its easier to send the actual memory-cell-content at every step instead of doing complex synchronisation, because the othercomponents can use the memory at every time they want.4 Experiences4.1 Training PeriodThe �rst project we have done with AutoFocus was the Safety-Injection-System. Thissimple project took approximately 16 hours work in, design and completion. There aresome di�culties in learning AutoFocus. With AutoFocus comes only a short andsimple documentation which describes only the concepts and the menu-structure of theprogram. For example, is it descibed that there are some transition-attributes and howthey are named. But what you have to �ll in and which possibilities there are is missing.You have no change to guess yourself how it works if there is nobody who can help you. Butgod thanks we had someone (thanks to Barnie) who could explain us the hidden featuresof AutoFocus.If we had overcome this hurdle the work in was fast and easy. But the user interfacehandling is to complicated and not intuitiv. For example, the attributes-dialog, which isused very often, is only reachable in the menu and has no key-shortcut. And the window

4.2 Tamagotchi implementation duration 15positions are not saved. This is especially annoying in the simulator, where many windowsmust be opened every time.When we worked with AutoFocus there were 3 new versions coming out. On the oneside, it's very good, because more functions were implemented or worked more correct, butthere is no history list, where the changes are noticed. Therfore we had to test every newupdate. The greatest advantage was, that we could simulate each component alone. Onebig problem we had, that if we worked at home with the linux port from AutoFocusand wanted to merge our work together to one project, was not possible, because thecut/copy/paste and the import/export functions did not work correctly.At the beginning we didn't realize the cycle-concept correctly. If you want to catch allpossibilities you have to take every port at every cycle in a STD into consideration. Eventhe possibility that no signal is present at one port. The more ports there are, the morecomplex are the transition-conditions. We minimized the problem thereby we de�ned somesignals, that are present at every cycle (like the timer and memory signals).4.2 Tamagotchi implementation durationThe complete develpment took about 140 hours. This time can be devided into four parts.First we made a rough structure of the tamagotchis components and how they haveto interact with each other. Then we de�ned the components interface, which channelshave to be used and the name and type of the ports. Half of this work was not done withAutoFocus, but on paper. Approximately 15% of the time were required for this task.The components modelling and implementation has been done in approximately 25%of the time. This means drawing the System-Structure-Diagrams, the State-Transition-Diagrams and the transition attributes.Testing and debugging with the help from the simulator has been taken approximately10%. Correction of our own errors included.The remaining 50% has been spent to the problems with AutoFocus. This time isdivided up to the points mentioned above. It's not easily possible to assign the problems toone phase of our work. Out problems with AutoFocus were conditioned by some bugs,the complicated user interface, incomplete documentation and only partial implementationsof functions, which we noticed unfortunately later at work that they are not complete.Sometimes the clients and sometimes the server stopped working and we had to restartAutoFocus. Not only once it has happend, that the last work we have done was lostand we had to do it once again. Another time, AutoFocus disconnects the memory-Sub-SSD, which is very complex, from its hihger SSD and there is no way in AutoFocus toreconnect an existing Sub-SSD. Because this component took a long time to create, wesearched for another way to repair it. We analyzed the �les in the repository and alteredmanually the internal database structure.4.3 Modelling the TamagotchiNotation The representation of the System-Structure-Diagrams ans State-Transition-Diagrams is very clear and easy to understand. The diagrams are not overloaded andthere are no mystical signs. Everyone who is familiar with automata can understand thegraphics and how it works. The clearness is among other things achieved with the help ofsub-diagrams. Every component in a SSD can have an own SSD inside. So you can onlysee what is neccesary and the details are hidden. The same technique is used for states inSTDs.A disadvantage is, that the more sub-diagrams you have, the more windows you have toopen, if you want to edit something or simulate your modell. If you don't assign transition

16 4 EXPERIENCESlabels, all attributes are displayed in one row. It would be better to have a well-formated,multiline string, so you can easily see the conditions of the transition, and which variablesare a�ected.Another disadvantage in SSDs is the amount of channels between the components. Forevery signal in every direction an own channel is necessary. If there were bidirectional chan-nels or a bus-system, many things could be done easier and the clearness of the reprentationwould raise.Starting Problems We had some problems to understand the mechanism behind transition-local-variables, SSD-variables, ports and their combination. Here is an example:KuchitamatchiKuchitamatchiNight =) KuchipatchiKuchipatchiNightnot goodPrecondition T > NextStateTimer+7200 && C <= 2Input mcTimer?T, mcCareState?COutput dspMCState!14, memWeight!20, memMinWeight!20, memAdd-MaxAge!12Postcondition SatTimer = T; HappyTimer = TIn this transition there are two transition-local-variables (\T" and \C"). First the Input-line is executed. If the Input-line is true, a signal from the port \mcTimer" and a Signalfrom \mcCareState" must be present. The values are stored in the transition-local-variables\T" and \C" and the Precondition-line is evaluated. There the values of \T" must begreater than \NextStateTimer+7200" and \C" must be less or equal than 2. If all theseconditions are met the transition is activated and the signals in the Output-line are sent. Atlast, the value of the transition-local-variable \T" is stored in the SSD-variable \SatTimer"and \HappyTimer".Secondly, the visibleness of the SSD-variables is not obvious. These variables are onlyvisible in one SSD and not in its Sub-SSD.These problems we had would be no problems, if they were declared in the manual.Tool A very positiv feature of the actual version from AutoFocus is the possibilityof simulating individual components. This is helpfull for complex systems, where manycomponents are put together to one big system. A restriction in AutoFocus is, that acomponent (SSD) can only be simulated separately, if this component has sub-components.Again one thing, that is not mentioned in the manual and that we found out by chance.Another feature are Consistency-Checks. There are checks for garanteeing that allchannels are connected, there are no empty ports, etc. Own checks can also be de�ned.We didn't use Consistency-Checks, because they didn't work correctly in all the version ofAutoFocus we used.Later changes in the strucure of the modell are complicated. One example: If you havetwo states (A1S1, A1S2) in an automaton A1 and these state have both a sub-automaton(A2, A3). A state (A2S1) in sub-automaton A2 is connected with a state (A3S2) insub-automaton A3, then you have three transitions with the same transition-attributes,although it is logically the same transition:1. from state A1S1 to A1S22. from state A2S1 to A1S13. from state A1S2 to A3S1

4.3 Modelling the Tamagotchi 17
A1S1 A1S2

A2S1 A3S1

If you want to change e.g. the Input-condition, you have to alter all three Input-conditions. All three attributes must exactly be the same, because AutoFocus recognicesthese three transitions as one transition through the textual attributes entered in thecorresponding dialog-box. But, it is planned, to give AutoFocus an object-orientedstructure, so this problem won't be existant in the future any more.Some more problems caused the non-existent error-check. In the dialog-boxes you cantype in what you want and AutoFocus accepts it. To check, if your input is correct, youhave to simulate the component. And if you don't work on a fast machine, the preparationsfor the simulation (create java-classes, compile code and execute it) is too long. Especiallyif you are a beginner in AutoFocus and e.g. are unsteady in the syntax of the transition-attributes, which is not described in the manual, it would be a great help, if the inputwould be check for correctness.Errors are hard to �nd, because to �nd them, the component has to be simulated.The simulator �rst generates java-classes from the SSDs and STDs and then compiles thegenerated code. If something is wrong (e.g. channel-names, transition-attributs), you getmany error-messages from the java-compiler. From this messages, you have to concludewhere the real errors are. Sometimes, it's necessary to look into the generated java-code,to locate the error and �nd the cause.

18 5 CONCLUSIONS5 Conclusions5.1 Teamwork with autofocusAutoFocus comes with a good teamwork support. After we got used to some peculiaritiesof AutoFocus the teamwork features were saving a good amount of time. AutoFocusServer architecture is client/server based, so we could start one server and di�erent peoplecould work on di�erent parts of the speci�cation at the same time using mutiple Auto-Focus clients.To get the most out of distributed teamwork we had divided the speci�cation into afew subcomponents. These subcomponents were connected to each other by channels, sowe could start to work distributed after specifying the gerneral interface (the names andtypes of the interconnecting channels).If a clients accesses a part of the speci�cation (e.g. an certain sytem structure diagram),this part is locked and no other client may alter this part. Locking of a document is shownin the project browser. Also a locked document can be viewed in read only mode by otherclient users, while it is edited. After the user of the client closes the edit window, thedocument gets editable by other clients again.The latest version of AutoFocus we used also supported simulation of subcomponentscorrectly. This is a very usefull feature, as we could test small subcomponents for bugs.This reduced the possible errors and made it possible to simulate parts of the tamagotchi,although essential parts of the tamagotchi were not realized in AutoFocus at this time.Although the teamwork support of AutoFocus is already very good, there are somepeculiarities that costed time: The server should be always started by the same person, asthe server runs with the user identity of the user that started it. If the server is started byanother user later there is a chance that one ore more AutoFocus document �le cant beread by this user. Also the client had to be restarted after deleting two documents out ofa project.5.2 Subsumption of Autofocus strengths and weaknessesAutoFocus has its strengths and weaknesses. We appreciated the visualisation of thespeci�cation. The graphs of the system structure diagrams and the state transition dia-grams look good, with only a few "styling" mouse clicks. You get a image of what thesystem does in a short time. Also AutoFocus uses only a few graphical elements (statesand state transitions, structures and channels) and thus the graphs are not "visually over-loaded".A further big advantage of AutoFocus is that you can do a quite raw design of yourspeci�cation at �rst. You can assign general behaviours to components to get a super�cialrealisation. Then you can "deepen" the speci�cation by assigning subcomponents to com-ponents. This works also with state transition diagrams, where you can assign sub-statesto existing states.Also AutoFocus had some nasty weaknesses: Signals that are required by a lot ofcomponents (e.g. the timer of the tamagotcho component clock), have to be passed to eachcomponent by a seperate channel. This can lead to a confusing visualisation. Anotherfeature is the lacking of some timer objects. It is hard to realize realtime systems, becauseall you can do is a clock that is step based. The speed such a clock is based on theperformance of the simulation computer you use. The menus ofAutoFocus didnt supporthotkeys for operations that were needed often and editing the diagrams was partly veryunintuitive and the cut and paste functions didnt work properly. Also it was sometimes very

5.3 Proposal of how to improve Notation, Tool and AutoFocus 19annoying to alter a part in a diagram, which has a substructure assigned to it. Alterationsarent passed to referencing parts automatically, it has to be done manually.5.3 Proposal of how to improve Notation, Tool and AutoFocusAfter specifying a rather complex system, like the tamagotchi, in autofocus, we have a fewproposals how to improve and expand the method and the tool.The Method should be expanded with two new features: a reset signal for the automa-tons and a bus object. A reset signal is very usefull for big state transition diagrams: ifthere is a reset, the reset signal is set only for one clock step. So you have to check for areset signal in every state of the automaton and you have an reset transition out of everystate of it. While is is correct from the automtaton therory point of view, it makes a largestate transition diagram confusing. It would icrease the readability of such a diagram, ifyou could de�ne one reset-signal for this automaton, which when it is triggered put theautomaton into a certain state after executing a certain transition. The other valuableexpansion would be a bus object. If a signal is needed by a lot of components, it has tobe passed to every component by a seperate channel. This can render a system structurediagram rather confusing. With the help of a bus object you could pass the signal to allcomponents which are connected to this object.As the tool is still under developement, we have a lot of proposals what should beincluded or expanded: First of all the most important thing that AutoFocus lacks is areal documentation. It should contain general instructions for the tool and a known buglist. Also it should include multiple small and easy to understand examples, sorted bytheme. It would save much time if you could look for a how do i put a variable value intoa channel-example, instead of endless trial and error or hidden feature searching. Maybethis can be done in the style of a tutorial with several lections.Another important issue is the way AutoFocus manages and saves the data. By nowit saves data document based. Many problems could be solved if data storange is doneobject orientated e.g. changes of variable or channel names could be passed to referencingobjects automatically or already existing substructures can be assigned to a new structure.Also it would eliminate an other problem we had. Transitions are referenced by its wholedata, including the test description: so if a transition in a substructure has only one spacecharacter more in its text description, than its equivalent it the structure above, this wouldlead to a error in the sumulation.Furthermore AutoFocus should do some error checking directly after entering data.This should be done for variable, channel and port names. So that one can eliminate typosimmediately without trying to compile the whole speci�cation every time.5.4 Usefulness of the Modelling and AutoFocusWe think that using a case tool to develope the tamagotchi consumed more time than justto do a general speci�cation and then code it in a programming language. One of theadvantage of doing the tamagotchi with a case tool and as a team was, that you look intothe speci�cation more often, to ensure that you are doing right and that your parts still�ts to the pieces that are done by your teammates. In general we would say, modellingthe tamagotchi with autofocus led to a better understanding of the speci�cation. Anotheradvantage is, that a speci�cation that is modelled with a case tool, is much more easyto understand that just code. Once you get used to a modelling type and a tool, thebene�ts will usually surpass the disadvantages. The last big advantage was the simulationenvironment, which enabled us to test sub parts of the speci�cation for bugs, before testingthe whole speci�cation. As a resume we could say that using a
owcharter to develope

20 5 CONCLUSIONSthe modell of the system and then programming it may have been faster. But for testingthe system for correctness, and make it understandable for others AutoFocus did a goodjob.5.5 Use AutoFocus again?Once we got used to AutoFocus, wih its peculiarities, the work progress was good. Wewould use AutoFocus again, if some bugs would be eliminated. We think that this toolshould be developed further, and with a good documentation and a tutorial the time costsfor trial and error developement with AutoFocus would decrease noticeable.

216 Appendix
6.1 Tamagotchi

LifeCycle Memory

Clock

Care

Keyboard

mcGetSatiation:int

memAddSatiation:int

memSetWeight:int

memSetMinWeight:int

memAddMaxAge:int

memAddHappyness:int

memSetPlayCounter:int

mcGetPlayCounter:int

memSetSleeping:boolean

mcReset:boolean

clkReset:boolean

mcTimer:int

mcMinute:int

mcHour:int

clkRadioclockHour:int

clkRadioclockMinute:int

dspHour:int

dspMinute:int

careTimer:int

memReset:boolean

kbdGetSleeping:boolean

kbdLeftbutton:boolean

kbdMiddlebutton:boolean

kbdRightbutton:boolean

kbdResetstripe:boolean

dspGetSatiation:int

dspGetHappyness:int

dspGetWeight:int

dspTimer:int

memAddWeight:int

careGetSatiation:int

careGetWeight:int

careGetMaxAge:int

careGetMinWeight:int

memAddMaxCareAge:int

careWarningActive:boolean

careGetHappyness:int

mcCareState:int

kbdTimer:int

dspControl:int

memKbdAddWeight:int

memKbdAddHappyness:int

memKbdAddSatiation:int

kbdIsDead:boolean

memSwitchWarn:boolean

dspGetKind:int

careGetKind:int

memSetKind:int

memAddPlayCounter:int

dspBeep:boolean

22 6 APPENDIX6.2 Lifecycle

Every 15 min. satiation - 1

MCDisplayClock

MCEgg

MCBabytchi

Marutchi

Init

Tomorrow

Tamatchi

Kuchitamatchi

Mametchi

Kuchipatchi

Masktchi

Tamogotchi is being started

5 min. are over

Reset clock

3 hours are over

now it’s morning

2 games check ok

less than 2 games per day

not good

bad

not good

bad

well done

Reset

Reset

Reset

ResetResetResetReset ResetReset Reset

every 2 hours satiation - 1

every 2 hours happyness - 1

KuchipatchiNight

KuchipatchiDay

good night

good morning

not good

not good

Reset

Reset

every 3 hours happyness - 1

every hour satiation - 1day 1 games check

MarutchiNight

MarutchiDay

now it’s morning

less than 2 games per day

2 games check ok

good night

good morning

Reset

Reset

6.2 Lifecycle 23

every 2 hours satiation - 1

every 4 hours happyness - 1 TamatchiDay

TamatchiNight

good night

good morning

2 games check ok

well done

badnot good

Reset

Reset

every 2 hours satiation - 1

every 4 hours happyness - 1KuchitamatchiDay

KuchitamatchiNight

good night

good morning

less than 2 games per day

not good

bad

Reset

Reset

every 2 hours satiation - 1

every 4 hours happyness - 1MametchiDay

MametchiNight

good night

good morning

well done

Reset

Reset

every 2 hours happyness - 1

every 2 hours satiation - 1

MasktchiNight

MasktchiDay

good night

good morning

bad

bad

Reset

Reset

MCDisplayClock =) MCEggTamogotchi is being startedPreconditionInput mcTimer?T, mcReset?falseOutput dspMCState!2Postcondition SleepTimer = TMCEgg =) MCBabytchi5 min. are overPrecondition st >=SleepTimer + 5Input mcTimer?stOutput memWeight!5, memMinWeight!5, dspMCState!3, clkReset!truePostcondition SatTimer = st; SleepTimer = stMCBabytchi =) MCBabytchiEvery 15 min. satiation - 1Precondition st >= SatTimer + 15Input mcTimer?stOutput memAddSatiation!-1Postcondition SatTimer = stInit =) MCDisplayClockReset clockPreconditionInputOutput clkReset!true, dspMCState!1Postcondition

24 6 APPENDIXMCBabytchi =) Tomorrow3 hours are overPrecondition st >= SleepTimer + 180Input mcTimer?stOutput memSleeping!true, dspMCState!4Postcondition Tomorrow =) MarutchiMarutchiDaynow it's morningPrecondition H >= 9Input mcHour?H, mcTimer?TOutput memSleeping!false, dspMCState!5, memWeight!10, memPlay-Counter!0, memMinWeight!10Postcondition SatTimer = T; HappyTimer = T; TamaKuchiTimer = T;GameState = 0MarutchiMarutchiDay =) TamatchiTamatchiDay2 games check okPrecondition TT >= TamaKuchiTimer + 2880 && GameState == 1 &&PC >= 4Input mcTimer?TT, mcPlayCounter?PCOutput dspMCState!7, memWeight!20, memMinWeight!20Postcondition SatTimer = TT; HappyTimer = TT; NextStateTimer = TTMarutchiMarutchiDay =) KuchitamatchiKuchitamatchiDayless than 2 games per dayPrecondition TT >= TamaKuchiTimer + 2880 && (GameState != 1 jj PC< 4)Input mcTimer?TT, mcPlayCounter?PCOutput dspMCState!9, memWeight!20, memMinWeight!20Postcondition SatTimer = TT; HappyTimer = TT; NextStateTimer = TTTamatchiTamatchiNight =) KuchipatchiKuchipatchiNightnot goodPrecondition T > NextStateTimer + 7200Input mcTimer?T, mcCareState?2Output dspMCState!14, memWeight!20, memMinWeight!20, memAd-dMaxAge!12Postcondition SatTimer = T; HappyTimer = TTamatchiTamatchiNight =) MasktchiMasktchiNightbadPrecondition T > NextStateTimer + 7200Input mcTimer?T, mcCareState?3Output dspMCState!16, memWeight!30, memMinWeight!30, memAd-dMaxAge!18Postcondition SatTimer = T; HappyTimer = T

6.2 Lifecycle 25KuchitamatchiKuchitamatchiNight =) KuchipatchiKuchipatchiNightnot goodPrecondition T > NextStateTimer+7200 && C <= 2Input mcTimer?T, mcCareState?COutput dspMCState!14, memWeight!20, memMinWeight!20, memAd-dMaxAge!12Postcondition SatTimer = T; HappyTimer = TKuchitamatchiKuchitamatchiNight =) MasktchiMasktchiNightbadPrecondition T > NextStateTimer + 7200Input mcTimer?T, mcCareState?3Output dspMCState!16, memWeight!30, memMinWeight!30, memAd-dMaxAge!18Postcondition SatTimer = T; HappyTimer = TTamatchiTamatchiNight =) MametchiMametchiNightwell donePrecondition T > NextStateTimer + 7200Input mcTimer?T, mcCareState?1Output dspMCState!12, memWeight!30, memMinWeight!30, memAd-dMaxAge!22Postcondition SatTimer = T; HappyTimer = TMCDisplayClock =) InitResetPreconditionInput mcReset?trueOutputPostcondition MCEgg =) InitResetPreconditionInput mcReset?trueOutputPostcondition MCBabytchi =) InitResetPreconditionInput mcReset?trueOutputPostcondition Tomorrow =) InitResetPreconditionInput mcReset?trueOutputPostcondition

26 6 APPENDIXMarutchiMarutchiNight =) InitResetPreconditionInput mcReset?trueOutputPostcondition TamatchiTamatchiNight =) InitResetPreconditionInput mcReset?trueOutputPostcondition MametchiMametchiDay =) InitResetPreconditionInput mcReset?trueOutputPostcondition KuchitamatchiKuchitamatchiNight =) InitResetPreconditionInput mcReset?trueOutputPostcondition KuchipatchiKuchipatchiNight =) InitResetPreconditionInput mcReset?trueOutputPostcondition MasktchiMasktchiNight =) InitResetPreconditionInput mcReset?trueOutputPostconditionMarutchiMarutchiDay =) MarutchiMarutchiDayMarutchievery 3 hours happyness - 1Precondition ht >= HappyTimer + 180Input mcTimer?htOutput memAddHappyness!-1Postcondition HappyTimer = ht

6.2 Lifecycle 27MarutchiMarutchiDay =) MarutchiMarutchiDayMarutchievery hour satiation - 1Precondition st >= SatTimer + 60Input mcTimer?stOutput memAddSatiation!-1Postcondition SatTimer = stMarutchiMarutchiDay =) MarutchiMarutchiNightMarutchigood nightPrecondition h < 9 jj h >= 20Input mcHour?hOutput memSleeping!true, dspMCState!6PostconditionMarutchiMarutchiNight =) MarutchiMarutchiDayMarutchigood morningPrecondition h >= 9 && h < 20Input mcHour?hOutput memSleeping!false, dspMCState!5, memAddWeight!-2PostconditionMarutchiMarutchiDay =) MarutchiMarutchiDayMarutchiday 1 games checkPrecondition TT >= TamaKuchiTimer + 1440 && GameState == 0 &&PC >= 2Input mcTimer?TT, mcPlayCounter?PCOutputPostcondition GameState = 1TamatchiTamatchiDay =) TamatchiTamatchiDayTamatchievery 2 hours satiation - 1Precondition st >= SatTimer + 120Input mcTimer?stOutput memAddSatiation!-1Postcondition SatTimer = stTamatchiTamatchiDay =) TamatchiTamatchiDayTamatchievery 4 hours happyness - 1Precondition ht >= HappyTimer + 240Input mcTimer?htOutput memAddHappyness!-1Postcondition HappyTimer = htTamatchiTamatchiDay =) TamatchiTamatchiNightTamatchigood nightPrecondition h < 9 jj h >= 21Input mcHour?hOutput memSleeping!true, dspMCState!8Postcondition

28 6 APPENDIXTamatchiTamatchiNight =) TamatchiTamatchiDayTamatchigood morningPrecondition h >= 9 && h < 21Input mcHour?hOutput memSleeping!false, dspMCState!7, memAddWeight!-4PostconditionKuchitamatchiKuchitamatchiDay =) KuchitamatchiKuchitamatchiDayKuchitamatchievery 2 hours satiation - 1Precondition st >= SatTimer + 120Input mcTimer?stOutput memAddSatiation!-1Postcondition SatTimer = stKuchitamatchiKuchitamatchiDay =) KuchitamatchiKuchitamatchiDayKuchitamatchievery 4 hours happyness - 1Precondition ht >= HappyTimer + 240Input mcTimer?htOutput memAddHappyness!-1Postcondition HappyTimer = htKuchitamatchiKuchitamatchiDay =) KuchitamatchiKuchitamatchiNightKuchitamatchigood nightPrecondition h < 9 jj h >= 21Input mcHour?hOutput memSleeping!true, dspMCState!10PostconditionKuchitamatchiKuchitamatchiNight =) KuchitamatchiKuchitamatchiDayKuchitamatchigood morningPrecondition h >= 9 && h < 21Input mcHour?hOutput memSleeping!false, dspMCState!9, memAddWeight!-4PostconditionMametchiMametchiDay =) MametchiMametchiDayMametchievery 2 hours satiation - 1Precondition st >= SatTimer + 120Input mcTimer?stOutput memAddSatiation!-1Postcondition SatTimer = stMametchiMametchiDay =) MametchiMametchiDayMametchievery 4 hours happyness - 1Precondition ht >= HappyTimer + 240Input mcTimer?htOutput memAddHappyness!-1Postcondition HappyTimer = ht

6.2 Lifecycle 29MametchiMametchiDay =) MametchiMametchiNightMametchigood nightPrecondition h < 10 jj h >= 21Input mcHour?hOutput memSleeping!true, dspMCState!12PostconditionMametchiMametchiNight =) MametchiMametchiDayMametchigood morningPrecondition h >= 10 && h < 21Input mcHour?hOutput memSleeping!false, dspMCState!11, memAddWeight!-6PostconditionKuchipatchiKuchipatchiDay =) KuchipatchiKuchipatchiDayKuchipatchievery 2 hours satiation - 1Precondition st >= SatTimer + 120Input mcTimer?stOutput memAddSatiation!-1Postcondition SatTimer = stKuchipatchiKuchipatchiDay =) KuchipatchiKuchipatchiDayKuchipatchievery 2 hours happyness - 1Precondition ht >= HappyTimer + 120Input mcTimer?htOutput memAddHappyness!-1Postcondition HappyTimer = htKuchipatchiKuchipatchiDay =) KuchipatchiKuchipatchiNightKuchipatchigood nightPrecondition h < 10 jj h >= 21Input mcHour?hOutput memSleeping!true, dspMCState!14PostconditionKuchipatchiKuchipatchiNight =) KuchipatchiKuchipatchiDayKuchipatchigood morningPrecondition h >= 10 && h < 21Input mcHour?hOutput memSleeping!false, dspMCState!13, memAddWeight!-6PostconditionMasktchiMasktchiDay =) MasktchiMasktchiDayMasktchievery 2 hours happyness - 1Precondition ht >= HappyTimer + 120Input mcTimer?htOutput memAddHappyness!-1Postcondition HappyTimer = ht

30 6 APPENDIXMasktchiMasktchiDay =) MasktchiMasktchiDayMasktchievery 2 hours satiation - 1Precondition st >= SatTimer + 120Input mcTimer?stOutput memAddSatiation!-1Postcondition SatTimer = st

MasktchiMasktchiDay =) MasktchiMasktchiNightMasktchigood nightPrecondition h < 11 jj h >= 23Input mcHour?hOutput memSleeping!true, dspMCState!16Postcondition

MasktchiMasktchiNight =) MasktchiMasktchiDayMasktchigood morningPrecondition h >= 11 && h < 23Input mcHour?hOutput memSleeping!false, dspMCState!15, memAddWeight!-6Postcondition

6.3 Memory 316.3 Memory
Satiation

Weight

MaxAge

Happyness

Sleeping

PlayCounter

ResetDistribute

minWeight

WarnAct

Kind

mcGetSatiation:int
memAddSatiation:int

memAddWeight:int

memAddMaxAge:int

memSetPlayCounter:int
mcGetPlayCounter:int

memSetSleeping:boolean kbdGetSleeping:boolean

dspGetSatiation:int

dspGetHappyness:int

dspGetWeight:int

memReset:boolean

sR:boolean

wR:boolean

aR:boolean

hR:boolean

pcR:boolean

mcReset:boolean

careGetSatiation:int

careGetWeight:int

careGetHappyness:int

memAddHappyness:int

memSetWeight:int

memSetMinWeight:int careGetMinWeight:int

mwR:boolean

memAddMaxCareAge:int
careGetMaxAge:int

slR:boolean

memKbdAddSatiation:int

careWarningActive:booleanmemSwitchWarn:boolean

memKbdAddHappyness:int

memKbdAddWeight:int

waR:boolean

memAddPlayCounter:int

memSetKind:int
dspGetKind:int

careGetKind:int

kR:boolean

32 6 APPENDIX

go

add_LC

set

add_KBD

add_LC_KBD

init

active

initreset

active =) activegoPreconditionInput memAddWeight?, memKbdAddWeight?, wR?, mem-SetWeight?Output dspGetWeight!Value, careGetWeight!ValuePostcondition init =) activeinitPreconditionInputOutput dspGetWeight!0, careGetWeight!0Postcondition Value = 0 active =) activeadd LCPreconditionInput memAddWeight?temp, memKbdAddWeight?, wR?, mem-SetWeight?Output dspGetWeight!Value, careGetWeight!ValuePostcondition Value = Value + tempactive =) initresetPreconditionInput wR?trueOutput dspGetWeight!0, careGetWeight!0Postcondition Value = 0

6.3 Memory 33active =) activesetPreconditionInput memSetWeight?temp, wR?Output careGetWeight!temp, dspGetWeight!tempPostcondition Value = temp
active =) activeadd KBDPreconditionInput memKbdAddWeight?temp, memAddWeight?, wR?, mem-SetWeight?Output dspGetWeight!Value, careGetWeight!ValuePostcondition Value = Value + temp
active =) activeadd LC KBDPreconditionInput memAddWeight?temp1, memKbdAddWeight?temp2, wR?,memSetWeight?Output dspGetWeight!Value, careGetWeight!ValuePostcondition Value = Value + temp1 + temp2

34 6 APPENDIX
stayAwake1 stayAwake2

sleepLonger1sleepLonger2

awake

sleeping

goToSleepwakeUp reset

awake =) sleepinggoToSleepPreconditionInput memSetSleeping?true, slR?Output kbdGetSleeping!truePostcondition

6.3 Memory 35sleeping =) awakewakeUpPreconditionInput memSetSleeping?falseOutput kbdGetSleeping!falsePostcondition awake =) awakestayAwake1PreconditionInput memSetSleeping?Output kbdGetSleeping!falsePostcondition awake =) awakestayAwake2PreconditionInput memSetSleeping?falseOutput kbdGetSleeping!falsePostcondition sleeping =) sleepingsleepLonger1PreconditionInput memSetSleeping?, slR?Output kbdGetSleeping!truePostcondition sleeping =) sleepingsleepLonger2PreconditionInput slR?, memSetSleeping?trueOutput kbdGetSleeping!truePostcondition sleeping =) awakeresetPreconditionInput slR?trueOutput kbdGetSleeping!falsePostcondition

36 6 APPENDIX

go

add_LC add_KBD

add_LC_KBD

init

active

init reset

active =) activegoPreconditionInput memAddSatiation?, memKbdAddSatiation?, sR?Output mcGetSatiation!Value, dspGetSatiation!Value, careGetSatia-tion!ValuePostcondition init =) activeinitPreconditionInputOutput mcGetSatiation!4, dspGetSatiation!4, careGetSatiation!4Postcondition Value = 4 active =) activeadd LCPreconditionInput memAddSatiation?temp, memKbdAddSatiation?, sR?Output mcGetSatiation!Value, dspGetSatiation!Value, careGetSatia-tion!ValuePostcondition Value = Value + tempactive =) initresetPreconditionInput sR?trueOutput dspGetSatiation!4, mcGetSatiation!4, careGetSatiation!4Postcondition Value = 4

6.3 Memory 37active =) activeadd KBDPreconditionInput memKbdAddSatiation?temp, memAddSatiation?, sR?Output mcGetSatiation!Value, careGetSatiation!Value, dspGetSatia-tion!ValuePostcondition Value = Value + tempactive =) activeadd LC KBDPreconditionInput memAddSatiation?temp1, memKbdAddSatiation?temp2, sR?Output mcGetSatiation!Value, careGetSatiation!Value, dspGetSatia-tion!ValuePostcondition Value = Value + temp1 + temp2

go

add add1

add2

init

active

init

reset

active =) activegoPreconditionInput memAddMaxAge?, memAddMaxCareAge?, aR?Output careGetMaxAge!ValuePostcondition init =) activeinitPreconditionInputOutput careGetMaxAge!0Postcondition Value = 0 active =) activeaddPreconditionInput memAddMaxAge?temp, memAddMaxCareAge?, aR?Output careGetMaxAge!ValuePostcondition Value = Value + temp

38 6 APPENDIXactive =) initresetPreconditionInput aR?trueOutput careGetMaxAge!0Postcondition Value = 0 active =) activeadd1PreconditionInput memAddMaxCareAge?temp, aR?, memAddMaxAge?Output careGetMaxAge!ValuePostcondition Value = Value + tempactive =) activeadd2PreconditionInput memAddMaxAge?temp1, memAddMaxCareAge?temp2, aR?Output careGetMaxAge!ValuePostcondition Value = Value + temp1 + temp2

set

goadd

init

active

init

reset

init =) activeinitPreconditionInputOutput mcGetPlayCounter!0Postcondition Value = 0

6.3 Memory 39active =) initresetPreconditionInput pcR?trueOutput mcGetPlayCounter!0Postcondition Value = 0 active =) activesetPreconditionInput memSetPlayCounter?temp, pcR?Output mcGetPlayCounter!tempPostcondition Value = tempactive =) activegoPreconditionInput memSetPlayCounter?, pcR?, memAddPlayCounter?Output mcGetPlayCounter!ValuePostcondition active =) activeaddPreconditionInput memAddPlayCounter?temp, pcR?, memSetPlayCounter?Output mcGetPlayCounter!ValuePostcondition Value = Value + temp

go

add_LC
add_KBD

add_LC_KBD

init

active

init reset

active =) activegoPreconditionInput hR?, memAddHappyness?, memKbdAddHappyness?Output dspGetHappyness!Value, careGetHappyness!ValuePostcondition

40 6 APPENDIXinit =) activeinitPreconditionInputOutput dspGetHappyness!4, careGetHappyness!4Postcondition Value = 4 active =) activeadd LCPreconditionInput memAddHappyness?temp, memKbdAddHappyness?, hR?Output careGetHappyness!Value, dspGetHappyness!ValuePostcondition Value = Value + tempactive =) initresetPreconditionInput hR?trueOutput dspGetHappyness!4, careGetHappyness!4Postcondition Value = 4 active =) activeadd KBDPreconditionInput memKbdAddHappyness?temp, memAddHappyness?, hR?Output careGetHappyness!Value, dspGetHappyness!ValuePostcondition Value = Value + tempactive =) activeadd LC KBDPreconditionInput memKbdAddHappyness?temp1, memAddHappyness?temp2,hR?Output careGetHappyness!Value, dspGetHappyness!ValuePostcondition Value = Value + temp1 + temp2

go

set

init

active

init reset

6.3 Memory 41active =) activegoPreconditionInput mwR?, memSetMinWeight?Output careGetMinWeight!ValuePostcondition init =) activeinitPreconditionInputOutput careGetMinWeight!0Postcondition Value = 0 active =) activesetPreconditionInput memSetMinWeight?temp, mwR?Output careGetMinWeight!tempPostcondition Value = tempactive =) initresetPreconditionInput mwR?trueOutput careGetMinWeight!0Postcondition Value = 0
go

go

WarningActive

WarningInActive

resetswitchOFF switchON

42 6 APPENDIXWarningInActive =) WarningActiveresetPreconditionInput waR?trueOutput careWarningActive!truePostcondition
WarningActive =) WarningInActiveswitchOFFPreconditionInput memSwitchWarn?true, waR?Output careWarningActive!falsePostcondition WarningInActive =) WarningActiveswitchONPreconditionInput memSwitchWarn?true, waR?Output careWarningActive!truePostcondition WarningActive =) WarningActivegoPreconditionInput memSwitchWarn?Output careWarningActive!truePostcondition WarningInActive =) WarningInActivegoPreconditionInput waR?, memSwitchWarn?Output careWarningActive!falsePostcondition

6.3 Memory 43

set

go

init

active

init

reset

init =) activeinitPreconditionInputOutput dspGetKind!1, careGetKind!1Postcondition Value = 1 active =) initresetPreconditionInput kR?trueOutput dspGetKind!1, careGetKind!1Postcondition Value = 1 active =) activesetPreconditionInput memSetKind?temp, kR?Output dspGetKind!temp, careGetKind!tempPostcondition Value = tempactive =) activegoPreconditionInput memSetKind?, kR?Output dspGetKind!Value, careGetKind!ValuePostcondition

44 6 APPENDIX
Distribution

forward mcReset!false

init

init =) initDistributionPreconditionInput memReset?trueOutput sR!true, wR!true, aR!true, hR!true, pcR!true, slR!true,mwR!true, mcReset!true, waR!true, kR!truePostcondition

init =) initforward mcReset!falsePreconditionInput memReset?falseOutput mcReset!falsePostcondition

6.4 Keyboard 456.4 Keyboard
KeyboardDevice

ResetGiver

kbdGetSleeping:boolean

kbdRightbutton:boolean

kbdMiddlebutton:boolean

kbdLeftbutton:boolean

memReset:boolean

kbdResetstripe:boolean

reset:boolean

kbdIsDead:boolean

dspControl:int

memSwitchWarn:boolean

memKbdAddWeight:int

memKbdAddSatiation:int

memKbdAddHappyness:int

kbdTimer:int

memAddPlayCounter:int

paperstripe not drawn

paperstripe not drawn

left + right button switch warning

Initialize

Egg

Normal

displayClock

Food

Play

State

Sleeping

paperstripe drawnreset

tamagotchi born

reset

middle button

time passed

reset

left button

time passed
reset

back to normal

left button

back to food

time passed

reset

left button

back to play

time passed

left button

reset

sleeping

wakes up

reset

sushi

snack

abort game

time passed

starts sleeping

46 6 APPENDIX

FoodMain

FoodSushi

FoodSnack

left button back to food

left button

reset

reset reset

time passed

time passed

time passed

back to normal

sushi

snack

select sushi

select snack

back

back

select main

6.4 Keyboard 47

StateMain

Age

Weight

Satiation

Happyness

left button

back to play

left button

time passed

reset

reset

reset

reset

reset

time passed

time passed

time passed

time passed

age

back

weight
back

satiation

back

happyness

back

statemain L

statemain M

game won

game lost

PlayMain

NewRound

tamagotchi thinks right

tamagotchi thinks left

left button

reset

reset

abort game

abort game

abort game

reset

reset

back to play

back to food

time passed

time passed

time passed

start game

thinks left

round won

round lost

round lost

round won

left button

thinks right

time passed

starts sleeping

48 6 APPENDIXInitialize =) Initializepaperstripe not drawnPreconditionInput reset?trueOutput dspControl!10Postcondition Initialize =) Initializepaperstripe not drawnPreconditionInput reset?Output dspControl!10Postcondition Initialize =) Eggpaperstripe drawnPreconditionInput reset?falseOutput memReset!false, dspControl!20Postcondition Egg =) InitializeresetPreconditionInput reset?trueOutput memReset!true, dspControl!10Postcondition Egg =) Normaltamagotchi bornPreconditionInput kbdTimer?0OutputPostcondition Normal =) InitializeresetPreconditionInput reset?trueOutput memReset!true, dspControl!10Postcondition Normal =) displayClockmiddle buttonPreconditionInput reset?, kbdTimer?x, kbdMiddlebutton?trueOutput dspControl!10Postcondition Savetimer=x

6.4 Keyboard 49displayClock =) Normaltime passedPrecondition x>Savetimer+5Input kbdTimer?xOutput dspControl!20Postcondition Savetimer=0displayClock =) InitializeresetPreconditionInput reset?trueOutput memReset!true, dspControl!10Postcondition Normal =) Normalleft + right button switch warningPreconditionInput reset?, kbdLeftbutton?true, kbdRightbutton?true, kbdGet-Sleeping?falseOutput memSwitchWarn!truePostcondition Normal =) FoodFoodMainleft buttonPreconditionInput reset?, kbdLeftbutton?true, kbdTimer?x, kbdGetSleeping?falseOutput dspControl!30Postcondition Savetimer=xFoodFoodSushi =) Normaltime passedPrecondition x>Savetimer+20Input kbdTimer?xOutput dspControl!20Postcondition FoodFoodSnack =) InitializeresetPreconditionInput reset?trueOutput memReset!true, dspControl!10Postcondition FoodFoodMain =) Normalback to normalPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!20Postcondition

50 6 APPENDIXFoodFoodMain =) PlayPlayMainleft buttonPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!40Postcondition PlayPlayMain =) FoodFoodMainback to foodPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!30Postcondition PlayNewRound =) Normaltime passedPrecondition x>Savetimer+20Input reset?, kbdTimer?xOutput dspControl!20Postcondition Playtamagotchi thinks left =) InitializeresetPreconditionInput reset?trueOutput memReset!true, dspControl!10Postcondition PlayPlayMain =) StateStateMainleft buttonPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!50Postcondition StateStateMain =) PlayPlayMainback to playPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!40Postcondition StateWeight =) Normaltime passedPrecondition x>Savetimer+20Input reset?, kbdTimer?xOutput dspControl!20Postcondition

6.4 Keyboard 51StateStateMain =) Normalleft buttonPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!20Postcondition StateHappyness =) InitializeresetPreconditionInput reset?trueOutput memReset!true, dspControl!10Postcondition Normal =) SleepingsleepingPreconditionInput reset?, kbdGetSleeping?trueOutput dspControl!21Postcondition Sleeping =) Normalwakes upPreconditionInput kbdGetSleeping?falseOutput dspControl!20Postcondition Sleeping =) InitializeresetPreconditionInput reset?trueOutput memReset!true, dspControl!10Postcondition FoodFoodSushi =) NormalsushiPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!20, memKbdAddSatiation!1, memKbdAd-dWeight!1Postcondition FoodFoodSnack =) NormalsnackPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!22, memKbdAddHappyness!1, memKbdAd-dWeight!2Postcondition

52 6 APPENDIXPlaytamagotchi thinks right =) Normalabort gamePreconditionInput reset?, kbdRightbutton?trueOutput dspControl!20Postcondition PlayNewRound =) Normaltime passedPrecondition x>Savetimer+50Input reset?, kbdTimer?xOutput dspControl!20Postcondition PlayNewRound =) Normalstarts sleepingPreconditionInput reset?, kbdGetSleeping?trueOutput dspControl!20Postcondition FoodFoodMain =) FoodFoodSushiFoodselect sushiPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!31Postcondition FoodFoodSushi =) FoodFoodSnackFoodselect snackPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!32Postcondition FoodFoodSushi =) FoodFoodMainFoodbackPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!30Postcondition FoodFoodSnack =) FoodFoodSushiFoodbackPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!31Postcondition

6.4 Keyboard 53FoodFoodSnack =) FoodFoodMainFoodselect mainPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!30Postcondition PlayPlayMain =) PlayNewRoundPlaystart gamePreconditionInput reset?, kbdMiddlebutton?true, kbdTimer?xOutput dspControl!41Postcondition Round=0; RoundsWon=0; Savetimer=xPlayNewRound =) Playtamagotchi thinks leftPlaythinks leftPrecondition Round<5Input reset?, kbdGetSleeping?falseOutput dspControl!41PostconditionPlaytamagotchi thinks left =) PlayNewRoundPlayround wonPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!44Postcondition Round++; RoundsWon++Playtamagotchi thinks left =) PlayNewRoundPlayround lostPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!45Postcondition Round++Playtamagotchi thinks right =) PlayNewRoundPlayround lostPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!43Postcondition Round++Playtamagotchi thinks right =) PlayNewRoundPlayround wonPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!42Postcondition Round++; RoundsWon++

54 6 APPENDIXPlayNewRound =) Playtamagotchi thinks rightPlaythinks rightPrecondition Round<5Input reset?, kbdGetSleeping?falseOutput dspControl!41Postcondition PlayNewRound =) PlayNewRoundPlaygame wonPrecondition Round==5 && RoundsWon>2Input reset?, kbdTimer?x, kbdGetSleeping?falseOutput dspControl!41, memKbdAddHappyness!1,memKbdAddWeight!-1, memAddPlayCounter!1Postcondition Savetimer=x; Round=0; RoundsWon=0PlayNewRound =) PlayNewRoundPlaygame lostPrecondition Round==5 && RoundsWon<3Input reset?, kbdTimer?x, kbdGetSleeping?falseOutput dspControl!41, memKbdAddWeight!-1, memAddPlayCounter!1Postcondition Savetimer=x; Round=0; RoundsWon=0;StateStateMain =) StateAgeStateagePreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!51Postcondition StateAge =) StateStateMainStatebackPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!50Postcondition StateAge =) StateWeightStateweightPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!52Postcondition StateWeight =) StateAgeStatebackPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!51Postcondition

6.4 Keyboard 55StateWeight =) StateSatiationStatesatiationPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!53Postcondition StateSatiation =) StateWeightStatebackPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!52Postcondition StateSatiation =) StateHappynessStatehappynessPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!54Postcondition StateHappyness =) StateSatiationStatebackPreconditionInput reset?, kbdRightbutton?trueOutput dspControl!53Postcondition StateHappyness =) StateStateMainStatestatemain LPreconditionInput reset?, kbdLeftbutton?trueOutput dspControl!50Postcondition StateHappyness =) StateStateMainStatestatemain MPreconditionInput reset?, kbdMiddlebutton?trueOutput dspControl!50Postcondition

56 6 APPENDIX
kbdResetstripe?true:reset!true:

kbdResetstripe?false:reset!false:

kbdIsDead?true:reset!true: CheckResets

CheckResets =) CheckResetskbdResetstripe?true:reset!true:PreconditionInput kbdResetstripe?trueOutput reset!truePostcondition
CheckResets =) CheckResetskbdResetstripe?false:reset!false:PreconditionInput kbdResetstripe?falseOutput reset!falsePostcondition
CheckResets =) CheckResetskbdIsDead?true:reset!true:PreconditionInput kbdIsDead?trueOutput reset!truePostcondition

6.5 Clock 576.5 Clock

Timer ClockDevice

clkReset:boolean

mcTimer:int

dspMinute:intdspHour:intmcHour:int mcMinute:int

clkRadioclockMinute:intclkRadioclockHour:int

careTimer:int

dspTimer:int

kbdTimer:int

clkSimSetTimer:int

58 6 APPENDIX

Increment timer

Reset recieved, set timer to 0

Initial

doTimer

Init timer with 0

Initial =) doTimerInit timer with 0PreconditionInputOutput mcTimer!Timervalue, careTimer!Timervalue, dspTi-mer!Timervalue, kbdTimer!TimervaluePostcondition Timervalue=0doTimer =) doTimerIncrement timerPreconditionInput clkReset?Output mcTimer!Timervalue, careTimer!Timervalue, dspTi-mer!Timervalue, kbdTimer!TimervaluePostcondition Timervalue++doTimer =) doTimerReset recieved, set timer to 0PreconditionInput clkReset?trueOutput mcTimer!Timervalue, careTimer!Timervalue, dspTi-mer!Timervalue, kbdTimer!TimervaluePostcondition Timervalue=0

6.5 Clock 59
(Minute < 59) -> next Minute

(Minute = 59 & Hour<23) -> next hour

(Minute=59 & Hour=23) -> next day

Initial doClock

Init clock values with radioclock time

Initial =) doClockInit clock values with radioclock timePreconditionInput clkRadioclockHour?x, clkRadioclockMinute?yOutput mcHour!Hourvalue, mcMinute!Minutevalue,dspHour!Hourvalue, dspMinute!MinutevaluePostcondition Hourvalue=x; Minutevalue=ydoClock =) doClock(Minute < 59) -> next MinutePrecondition Minutevalue < 59InputOutput mcHour!Hourvalue, mcMinute!Minutevalue,dspHour!Hourvalue, dspMinute!MinutevaluePostcondition Minutevalue++doClock =) doClock(Minute = 59 & Hour<23) -> next hourPrecondition Minutevalue==59 && Hourvalue<23InputOutput mcHour!Hourvalue, mcMinute!Minutevalue,dspHour!Hourvalue, dspMinute!MinutevaluePostcondition Minutevalue=0; Hourvalue++doClock =) doClock(Minute=59 & Hour=23) -> next dayPrecondition Minutevalue==59 && Hourvalue == 23InputOutput mcHour!Hourvalue, mcMinute!Minutevalue,dspHour!Hourvalue, dspMinute!MinutevaluePostcondition Minutevalue=0; Hourvalue=0

60 6 APPENDIX6.6 Care

LifeTimeCheck

WarningTone

Weight

Satiation

Happyness

lowerMaxAge

kind

careState

careGetMaxAge:int

memReset:boolean

careTimer:int

careWarningActive:boolean

WeightTone:boolean

SatiationTone:boolean

HappynessTone:boolean

memAddMaxCareAge:int

lowerAge:boolean

careGetKind:int

satGetKind:int

hapGetKind:int

SatiationLT3:boolean

HappynessLT3:boolean

WeightLTmin:boolean

mcCareState:int

kbdIsDead:boolean

careGetWeight:int

careGetSatiation:int

careGetHappyness:int

careGetMinWeight:int

nastySatTone:boolean

nastyHappTone:boolean

dspBeep:boolean

ageCareState:int

ageKind:int

dist

distribute

distribute =) distributedistPreconditionInput careGetKind?xOutput ageKind!x, hapGetKind!x, satGetKind!xPostcondition

6.6 Care 61
OK

too_fat

oneDayTooFat tooLessWeightlook

look =) lookOKPrecondition (2*w < 3*m) && (w>m)Input careGetWeight?w, careGetMinWeight?mOutput WeightTone!false, lowerAge!false, WeightLTmin!falsePostcondition Timer = 1440look =) looktoo fatPrecondition (2*w > 3*m) && (Timer > 0)Input careGetMinWeight?m, careGetWeight?wOutput WeightTone!true, lowerAge!false, WeightLTmin!falsePostcondition Timer = Timer - 1look =) lookoneDayTooFatPrecondition (2*w > 3*m) && (Timer <= 0)Input careGetMinWeight?m, careGetWeight?wOutput WeightTone!false, lowerAge!true, WeightLTmin!falsePostcondition Timer = 1440look =) looktooLessWeightPrecondition w < mInput careGetMinWeight?m, careGetWeight?wOutput WeightTone!true, lowerAge!false, WeightLTmin!truePostcondition Timer = 1440
MaxAge > Age ?

Check

62 6 APPENDIXCheck =) CheckMaxAge > Age ?Precondition MaxAge * 1440 > AgeInput careGetMaxAge?MaxAge, careTimer?AgeOutput careReset!true, kbdIsDead!truePostcondition
OK

nastyOK

notOK look

look =) lookOKPrecondition (s >= 3) && ((k != 15) jj ((k == 15) && (s >= oldValue)))Input careGetSatiation?s, satGetKind?kOutput SatiationTone!false, nastySatTone!false, SatiationLT3!falsePostcondition oldValue = s look =) looknastyOKPrecondition (s >= 3) && (k == 15) && (s < oldValue)Input careGetSatiation?s, satGetKind?kOutput SatiationTone!false, nastySatTone!true, SatiationLT3!falsePostcondition oldValue = s look =) looknotOKPrecondition (s < 3)Input careGetSatiation?sOutput SatiationTone!true, nastySatTone!false, SatiationLT3!truePostcondition oldValue = s
OK

nastyOK

notOK look

6.6 Care 63look =) lookOKPrecondition (h >= 3) && ((k != 15) jj (h >= oldValue))Input careGetHappyness?h, hapGetKind?kOutput HappynessTone!false, nastyHappTone!false, Happy-nessLT3!falsePostcondition oldValue = h look =) looknastyOKPrecondition (h >= 3) && (k == 15) && (h < oldValue)Input careGetHappyness?h, hapGetKind?kOutput HappynessTone!false, nastyHappTone!true, Happy-nessLT3!falsePostcondition oldValue = h look =) looknotOKPrecondition (h < 3)Input careGetHappyness?hOutput HappynessTone!true, nastyHappTone!false, HappynessLT3!truePostcondition oldValue = h
lowerMaxAge

subtractMaxAge

look

look =) looklowerMaxAgePrecondition ((k == 11) && (cs > 1)) jj ((k == 13) && (cs > 2))Input ageKind?k, ageCareState?cs, lowerAge?falseOutput memAddMaxCareAge!-1Postcondition look =) looksubtractMaxAgePreconditionInput lowerAge?trueOutput memAddMaxCareAge!-1Postcondition

64 6 APPENDIX
go

go_w

go_s
go_h

go_ws

go_wh go_sh
go_wsh

abuseCont

go

sehrGut

unbefriedigend

mangelhaft

befriedigend

s

h

w

wsh

ws

wh

sh

abuse

rescue
w

s
h
ws

wh
sh
wsh

sehrGut =) unbefriedigendsPreconditionInput WeightLTmin?, SatiationLT3?true, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = 120

6.6 Care 65sehrGut =) unbefriedigendhPreconditionInput WeightLTmin?, SatiationLT3?, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120sehrGut =) unbefriedigendwPreconditionInput WeightLTmin?true, SatiationLT3?, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = 120sehrGut =) sehrGutgoPreconditionInput WeightLTmin?, SatiationLT3?, HappynessLT3?Output mcCareState!1, ageCareState!1Postcondition unbefriedigend =) unbefriedigendgo wPrecondition Timer > 0Input WeightLTmin?true, SatiationLT3?, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = Timer - 1sehrGut =) unbefriedigendwshPreconditionInput WeightLTmin?true, SatiationLT3?true, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120sehrGut =) unbefriedigendwsPreconditionInput WeightLTmin?true, SatiationLT3?true, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = 120sehrGut =) unbefriedigendwhPreconditionInput WeightLTmin?true, SatiationLT3?, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120

66 6 APPENDIXsehrGut =) unbefriedigendshPreconditionInput WeightLTmin?, SatiationLT3?true, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120unbefriedigend =) unbefriedigendgo sPrecondition Timer > 0Input WeightLTmin?, SatiationLT3?true, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = Timer - 1unbefriedigend =) unbefriedigendgo hPrecondition Timer > 0Input WeightLTmin?, SatiationLT3?, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = Timer - 1unbefriedigend =) unbefriedigendgo wsPrecondition Timer > 0Input WeightLTmin?true, SatiationLT3?true, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = Timer - 1unbefriedigend =) unbefriedigendgo whPrecondition Timer > 0Input WeightLTmin?true, SatiationLT3?, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = Timer - 1unbefriedigend =) unbefriedigendgo shPrecondition Timer > 0Input WeightLTmin?, SatiationLT3?true, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = Timer - 1unbefriedigend =) unbefriedigendgo wshPrecondition Timer > 0Input WeightLTmin?true, SatiationLT3?true, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = Timer - 1

6.6 Care 67unbefriedigend =) mangelhaftabusePrecondition Timer <= 0InputOutput mcCareState!3, ageCareState!3Postcondition mangelhaft =) mangelhaftabuseContPreconditionInputOutput mcCareState!3, ageCareState!3Postcondition unbefriedigend =) befriedigendrescuePreconditionInput WeightLTmin?, SatiationLT3?, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition befriedigend =) unbefriedigendwPreconditionInput WeightLTmin?true, SatiationLT3?, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = 120befriedigend =) unbefriedigendsPreconditionInput WeightLTmin?, SatiationLT3?true, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = 120befriedigend =) unbefriedigendhPreconditionInput WeightLTmin?, SatiationLT3?, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120befriedigend =) unbefriedigendwsPreconditionInput WeightLTmin?true, SatiationLT3?true, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition Timer = 120

68 6 APPENDIXbefriedigend =) unbefriedigendwhPreconditionInput WeightLTmin?true, SatiationLT3?, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120befriedigend =) unbefriedigendshPreconditionInput WeightLTmin?, SatiationLT3?true, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120befriedigend =) unbefriedigendwshPreconditionInput WeightLTmin?true, SatiationLT3?true, HappynessLT3?trueOutput mcCareState!2, ageCareState!2Postcondition Timer = 120befriedigend =) befriedigendgoPreconditionInput WeightLTmin?, SatiationLT3?, HappynessLT3?Output mcCareState!2, ageCareState!2Postcondition
beep beepWarningActive WarningInactive

no tone

toneWarningActive =) WarningInactiveno tonePreconditionInput careWarningActive?false, SatiationTone?false, nastySat-Tone?false, WeightTone?false, HappynessTone?false, nasty-HappTone?falseOutputPostcondition

6.6 Care 69WarningInactive =) WarningActivetonePreconditionInput careWarningActive?true, WeightTone?false, Satiation-Tone?false, nastySatTone?false, HappynessTone?false, nasty-HappTone?falseOutputPostcondition WarningActive =) WarningActivebeepPrecondition x1 jj x2 jj x3 jj x4 jj x5Input WeightTone?x1, SatiationTone?x2, nastySatTone?x3, Happy-nessTone?x4, nastyHappTone?x5Output dspBeep!truePostcondition WarningInactive =) WarningInactivebeepPrecondition x1 jj x2Input nastySatTone?x1, nastyHappTone?x2Output dspBeep!truePostcondition

