
Prototype-Based Tests for Hybrid Reactive Systems∗

G. Hahn, J. Philipps
Validas Model Validation AG

gate
Lichtenbergstr. 8, 85748 Garching

Germany

A. Pretschner
Institut für Informatik

Technische Universität München
Boltzmannstr. 3, 85748 Garching

Germany

T. Stauner
BMW Car IT
Petuelring 116

80809 M̈unchen
Germany

Abstract

Model-based testing relies on the use of behavior models
to automatically generate sequences of inputs and expected
outputs. These sequences can be used as test cases to the
end of both validating the model and also verifying an ac-
tual system. In the automotive domain many systems are
reactive and exhibit continuous as well as discrete dynam-
ics. This leads to an explosion of the model state space,
which makes automated test case generation difficult, and,
because of imprecisions in the continuous parts, requires
an adequate treatment of fuzziness both in the dimensions
of time and values. We report on experiments with model-
based testing in the automotive domain. Roughly, the idea is
to use two separate models, a discrete model as an abstract
description of relevant scenarios, and a discrete-continuous
model to produce reference outputs for the actual system.
As an application example we use a fictitious autonomous
cruise control system (ACC). We argue that rapid prototyp-
ing approaches fit well with the use of models that serve as
specifications, as basis for test case generation, or as basis
for production code generation.

1 Introduction

In many areas of software and systems engineering, the
use of models enjoys an increasing popularity. In the do-
main of business information systems, data models as given
by ER or class diagrams have served as specifications for
many years. Platform independent models that abstract
from a concrete communication infrastructure are at the
heart of the OMG’s model driven architecture. Both kinds
of models exhibit the advantage of abstracting from details
of a concrete implementation which turns out to be advanta-
geous for (1) they enable systems engineers to intellectually

∗Work in part supported by the DFG (project KONDISK/IMMA) and
and the BMBF (project Embedded Quality).

master their artifacts even with regard to an ever increasing
complexity, and (2) they allow for generating code or code
skeletons which reduces the necessary coding efforts.

One characteristics of a second important domain, that of
reactive embedded systems, is that the artifacts in question
exhibit a comparably complicated control flow with com-
parably simple data structures. It is a seductive idea to also
abstract from behavior details of a concrete implementation
in order to work with artifacts that, due to their nature of
being simplifications, are easier to understand and thus bet-
ter manageable. The problem is that people want behavior
models to be both abstract and concrete. Models are re-
quired to be abstract so that their intellectual mastery be-
comes realistic, and they are required to be concrete such
that code or test cases can be automatically generated. The
latter requires bridging the gap between different levels of
abstraction which, quite naturally, turns out to be a diffi-
cult problem. Since models are domain- and application-
specific, there is no general design methodology for this
problem. In the automotive and avionics domains, how-
ever, modeling languages and CASE support in tools like
Matlab or ASCET-SD, have reached a level of maturity that
not only simulation code, but also production code for de-
ployment in actual devices, can be generated. Similarly, be-
havior models have proved to be useful for fully automatic
test case generation, as shown in [3] in the domain of chip
cards.

We deem models useful in terms of both the process and
the product. Incremental development of models fits well
with processes that rely on rapid, or evolutionary, proto-
typing. The comparatively high description level of mod-
els eases interaction with customers, and since there is a
considerably smaller body of code, i.e., modeled behavior,
changes turn out to be easier to implement. This is dis-
cussed in detail in [6]. Models play the role of prototypes, of
specifications, and that of mock-ups of the environment in
order to make a model of the system under consideration ex-
ecutable. For instance, this applies to models of machines in
Simultaneous Engineering when programmable logic con-

trols are to be developed, or to models of devices when the
network master of, say, a multimedia bus in modern vehi-
cles is to be developed and validated. That is to say, in
general models are needed for both the system under con-
sideration and its environment.

The focus of this paper is on testing, and we hence do not
carefully touch the problem of production code generation.
The general idea is that a behavior model provides the ref-
erence behavior of an implementation. Roughly, we use the
model to generate test cases that, after suitable concretiza-
tions, are fed into the system to be tested. Again, models
turn out to be out necessary for both the implementation
under test and the environment. Models of the environment
are needed to restrict the otherwise intractable multitude of
its behaviors. For instance, acceleration in a car obeys cer-
tain criteria: not all possible changes in speed can actually
be exerted by a driver.

Now, it is arduous to check whether or not the system
conforms to its specification. The reason is that full con-
formance cannot be established because of the usually infi-
nite nature of the system’s state space. Instead, one needs
to approximate this conformance. This means that a rea-
sonably small set of finite test traces must be selected that
increases confidence in the system’s correctness. Unfor-
tunately, there is no commonly accepted notion for what
constitutes a “good” test case. In turn, this means that for
a given problem, test engineers have to rely on their intu-
ition and experience to build test suites of sufficient quality
(the metrics for which, again, remains vague and implicit).
Hence, this process is bound to the ingenuity of single test
engineers, it is often irreproducible and not systematic.

Testers quickly discovered that coverage criteria are one
means to define the quality of a test suite. It also became
clear that these criteria could also serve as test case speci-
fications. While coverage-based specifications are not ade-
quate in themselves, they turned out to be a useful comple-
ment to functional test case specifications.

As it turns out, the generation of test suites that satisfy a
given coverage criterion reduces to the problem of finding
elements of the system’s state space (e.g., program counters
have to reach each possible statement, or each control state
in a state machine is to be reached). While in general this is
difficult for general programming languages, it is much eas-
ier for restricted modeling languages. In the automotive and
avionics domain embedded systems often exhibit a behavior
that is both (event) discrete and continuous, i.e., hybrid. Be-
cause of the high time resolution and the continuous values
in hybrid systems, the search space (and the test sequences)
are much larger and automatic search becomes intractable.

In this paper, we report on a method for generating test
cases from mixed discrete-continuous models specified in
Matlab Simulink/Stateflow.1 Roughly, the idea is to use

1Stateflow is the state machine tool in the MATLAB/Simulink prod-

two models for test case generation. A discrete model de-
scribes common usage scenarios and control phases of the
system; it is on this model that test suites satisfying cover-
age criteria are generated. After (application-specific) con-
cretization of these test sequences, they are fed into a mixed
discrete-continuous model to obtain reference outputs. Test
execution then feeds the concretized inputs in the actual sys-
tem, and compares the system’s response with the reference
outputs. Of course, this step must allow for some tolerance
both of the values and of the time points these values are
observed.

Contribution. This paper presents an approach to gener-
ating test cases—trajectories—for hybrid systems in a struc-
tured and automatic manner. These test cases can be used
both for validating models and verifying the respective sys-
tems. The ideas are discussed along the lines of a case study,
an automatic cruise control. We are not aware of any pub-
lished work that explicitly targets at generating test cases for
mixed discrete-continuous systems and that does not rely on
pure time discretizations of the overall system.

Outline. The remainder of the paper is organized as fol-
lows. In Sec. 2 the case study, an automatic cruise control,
is described together with its model. Sec. 3 develops the
general approach for testing of mixed discrete-continuous
systems. Sec. 4 describes test sequences for the ACC, and
Sec. 5 concludes. Related work is cited in its context.

2 Automatic Cruise Control

In this section we briefly explain the automatic cruise
control system (ACC) and our model of it. The model is
designed as a typical evaluation system for tests of mixed
discrete-continuous systems. The ACC is a driver assistance
system that controls a car’s speed and the distance to the
car in front (if any). Thus, it extends classic cruise control
systems by also considering distance and not only speed.

The main requirements of the system are (1) to adjust the
car’s speed to the desired speedVset, as set by the driver, if
there is no slower car in front, and (2) to adjust the distance
between the car and a preceding car which is going with a
speed less thanVsetto the set value for the distance,Dset.
These adjustments have to made in a manner which is com-
fortable for the car’s occupants. In particular this means
that sudden, strong accelerations and decelerations must be
avoided. This comfort requirement is highly important. It
motivates that test cases which do not consider continuous
dynamics do not suffice for testing the system. This is be-
cause they can hardly reflect the magnitude of the car’s ac-

uct family [9]. MATLAB/Simulink is widely used in industry for control
system design.

2

Mode
dSet
dAct
vFol
AccStateReset
Object

aFol

NoControl
0

dControl

vControl

Mode
vSet
vFol
AccStateReset
Object

aFol

AccState
Object
vRel
Vset
vPred

Mode

ACC

Switch

aFol
vPred
InitialDistance
Object

vFol
vrel
dAct

vFolOut

dActOut

1

2
Env

1

2

3

4

5

6

AccStateIn

VsetIn

DsetIn

ObjectIn

InitialDistanceIn

vPredIn

ACCOff
entry:
 Mode=1

ACCOn

LaneEmpty
entry:
 Mode=3;

LaneOccupied

VrelEq0
entry:
 Mode=2;

VpredGRVset
entry:
 Mode=3;

VrelLE0
entry:
 Mode=2;

[AccState==0]
[AccState==1]

[Object==0]

[Object==1]

[vPred-Vset>1 & vRel>=0]

[vPred-Vset<=0 & vRel>=-5]

[vRel<-5]

[vRel<-5]

[vPred-Vset>1 & vRel>=0]

[vRel>=0 & vPred-Vset<=1]

Figure 1. Models of the control logic and the controller with the physical dynamics

celeration and its changes. At least in part, the satisfaction
of this requirement must be verified by real drivers.

The left side of Fig. 1 depicts the main control logic for
the ACC system as a Stateflow Statechart. Since the system
is activated and deactivated by the driver, the control logic
has two top-level statesACCOffandACCOn. Switching be-
tween these states is controlled by input variableAccState.
StateACCOnis refined into the substatesLaneEmptyand
LaneOccupied. If there is another car (which we also re-
fer to as thepredecessorin the following) in the own car’s
driving lane, control is inLaneOccupied. Otherwise, it is
in LaneEmpty. The presence/absence of a predecessor is
signaled by inputObject. If the lane is occupied the con-
trol logic distinguishes between three situations. Either (1)
the predecessor (speedvPred) is faster than the own desired
speedVset(stateVpredGRVset), or (2) the predecessor is
much slower than the follower with current speedvFol (state
VrelLE0; vRel in the diagram denotes the current relative
speedvPred−vFol), or (3) the current relative speed is close
to 0 or the predecessor is faster than the follower but still
slower thanVset(stateVrelEq0).

In statesLaneEmptyandVpredGRVset, the control logic
implements a control law for speed control. In states
VrelEq0andVrelLE0, distance control is used. This is sig-
naled by the output variableModewhich is used by the un-
derlying Simulink model containing the control laws. In
stateACCOff the system does not influence the cars lat-
eral dynamics. The distinction between statesVrelEq0and
VrelLE0allows us to apply a faster, less comfortable control
law in emergency situations with a new slow predecessor in
front (not currently used). Note that switching between dif-
ferent control laws is typical for mixed discrete-continuous
systems. The right side of Fig. 1 depicts the Simulink dia-
gram containing the control logic (top left), the control laws
for distance and speed control (middle) and a model of the

physical dynamics (right).

3 Hybrid System Tests

Discrete systems. Before we turn to mixed discrete-
continuous systems, let us briefly look at model-based test
case generation for purely discrete systems. The general
approach is sketched in Fig. 2; see [5] for details.

Figure 2. Testing for discrete systems

Assume that we are given a system to be tested (the “im-
plementation”), and a model of those parts of the system
behavior that we are interested in. We can then use the
model to find test sequences that satisfy formal test specifi-
cations or coverage criteria over the model description. As
described in [4], this step can be regarded as a search prob-
lem in the computation tree of the model. The input part
of the test cases is fed into a model of the system in order
to produce reference outputs. Then, during test execution
itself, the input part is adapted to the interface of the imple-
mentation. The adapted inputs are fed into the implementa-
tion, and by comparing model and implementation outputs,
a test verdict is formed. Obviously, the verdict finder must
also bridge the difference in interfaces and interface abstrac-
tion levels between model and implementation.

3

Open-loop systems. The first idea that comes to mind
when considering test cases for mixed discrete-continuous
systems is that of using a time discretization (roughly, sub-
stituting differential by difference equations) and applying
the procedure outlined above. This approach is pursued in
[7, 1]. It quickly turns out, however, that the test sequences
are too long and the search space is too large for system-
atic exploration, a result both of the small steps (millisec-
onds) in the dimension of time and of the continuous val-
ues. Discrete-event abstractions might appear as the natural
solution to the problem. These abstractions are too coarse,
however, to be used for generating test cases that are applied
to an actual system.

Figure 3. Testing: Open-loop Hybrid Systems

For open-loop-controlled systems, we suggest a different
approach (Fig. 3). Instead of a single model of the system,
which also serves for test case generation, we assume that
we are given both a mixed discrete-continuous model of the
system and a purely discrete abstraction of the model, which
is tailored for common usage scenarios or control phases.
Furthermore, we assume that a test suite has been generated
for the discrete model. This test suite might cover all tran-
sitions of the discrete model, or all pairs of transitions, or it
might be based on a completely different coverage criterion.

Since the discrete abstraction was chosen with some ab-
straction criterion in mind, it is possible to choose a con-
cretization mapping that is dual to this abstraction. Here,
the degrees of freedom include the duration of what has
been abstracted by one single signal and the signal’s evo-
lution in this time slot.

In general, the output cannot be concretized in the same
manner because the relationship between input and output
cannot be reconstructed. This is because the abstraction
in the discrete model usually is too coarse. We can, how-
ever, use the concretized input and feed it into the contin-
uous model to obtain reference output sequences. These
concretized inputs and the generated outputs can then be
used just as test sequences for the purely discrete situation
described above. Of course, inputs still have to be further

adapted for the implementation, and the verdict finder must
allow small derivations for the output values; we also need
to allow small derivations for the times of the discrete mode
changes.

Closed-loop systems. As experience shows, the situation
is more complicated for closed-loop systems, where we
consider not only the controller, but also the environment
(the plant). Environment models are desirable in order to
reduce the complexity of the discrete model, the concretizer
and the verdict finder, and thus to indirectly also reduce the
search space for test cases. For instance, the ACC intro-
duced in Sec. 2 bases its decision partly on the current vehi-
cle speed; it influences this speed indirectly through vehicle
acceleration or deceleration. The dependency between ac-
celeration and speed is trivial, but its exclusion by consider-
ing only open-loop systems would immensely increase the
search space, thus requiring more elaborate discrete models
to restrict the search.

However, now test case generation requires a feedback
construction as shown in Fig. 4, in a way that the discrete
model enforces a new control law only after the mixed
model has reached a certain state. This state information
is abstracted from the mixed model outputs. Typically, the
abstractions used are simple partitions of the output value
space.

Figure 4. Closed-loop hybrid systems

Test case generation. For the test scenarios shown in
Figs. 3 and 4, model-based test case generation techniques
can be used to generate sets of input traces that satisfy cov-
erage metrics over the discrete model.

For instance, if transition coverage is to be achieved, then
a heuristics could be implemented as follows: for each dis-
crete state (mode), it is recorded which transitions have al-
ready been taken. If a particular state is reentered, then a
transition is chosen that has not been chosen before. If all
transitions have been chosen before, then one can compute
the transition that is most likely to lead to a transition that

4

has not been taken before. This involves the definition of
proximity metrics on the state space, or fitness functions
that compute the “distance” to all the transitions that have
not fired before. The transition that is “closest” to one that
did not fire before is chosen [4].

Test case execution. In the three situations mentioned
above, we only hinted at the critical steps of the adaption
of the test case inputs for the implementation and the com-
parison of model and implementation output (verdicts).

Input adaption is comparatively straightforward, but it is
highly dependent on the used test bed. The comparison of
model and implementation outputs is less trivial, however.
Obviously there will always be some mismatch between
both the values and the timing of the two outputs, since the
implementation will suffer from some effects (e.g. friction),
which can only roughly be described in the model. The so-
lution here is to add “tolerance tubes” around the model out-
put, and to accept an implementation output if its time/value
combination falls within the tube, as shown in Fig. 5. Note
that the tubes define a tolerance both for value and for time
(note that the tubes extend beyond the boundaries of the dif-
ferent phases). While this approach is conceptually simple,
the definition of suitable tubes is surprisingly intricate, it is
described in more detail in [2, 8].

Figure 5. Tolerance tubes around a reference
signal

Of course, there are some subtle deviations which are not
tolerated by the tube construction—although they arguably
should be. These deviations occur when the implementation
roughly conforms to the mixed model, but is consistently
faster (or slower) than the model. In this case, correspond-
ing time/value points will fall outside the tolerance tube. We
assume that such deviations should be handled in the model,
and our experiments have not led us to believe otherwise. It
is possible, of course, to augment the approach by retim-
ing relations, which allow a certain, bounded, speed-up or
slow-down of the implementation.

One may wonder whether the mixed model is indeed
necessary—certainly the implementation could be directly
driven by the discrete model. The discrete model, however,
is too abstract. In particular, even if it were extended to
produce reference outputs, finding a verdict would be much

more difficult; a suitable verdict finder would have to con-
tain part of the mixed model, which only shifts the problem.

4 ACC Test Cases

A natural abstraction of the ACC that reflects the qualita-
tive states of the overall system, which includes ACC con-
trol logic, control laws, lateral dynamics and the behavior
of predecessor cars, is as follows. In the overall system we
have the qualitative statesOff, where the ACC is switched
off, andOnEmptywith the ACC switched on and the driv-
ing lane empty and some further states when the lane is oc-
cupied and the ACC is on. These further states reflect the
values of the predecessor’s speed, the follower’s speed and
the set value for the follower’s speed relative to each other.
Not all combinations of these speeds result in qualitatively
different states. For instance, speed control in the ACC sys-
tem is active if there is no car in front regardless of whether
vFol is less than or greater thanVset. The interesting com-
binations are:vPred≤ Vset+ 1m

s ∧ vPred< vFol− 5m
s

(statePredMin), vFol− 5m
s ≤ vPred≤ Vset+ 1m

s (state
FolPredSet), Vset+ 1m

s < vPred < vFol − 5m
s (state

SetPredFol) andVset+1m
s < vPred∧ vFol−5m

s ≤ vPred
(statePredMax).

These combinations are relevant, because they cor-
respond to transition guards in the ACC control logic
(Fig. 1, left side) which enforce that statesVrelLE0 and
VpredGRVset, respectively, are entered. StateVrelEq0 is
more or less “in between” those other two states when the
values for the velocities are considered. The abstract states
SetPredFoland PredMin can be unified to a single state,
PredFol, since whenever one of the two predicates is true,
the concrete ACC logic is in stateVrelLE0 without distin-
guishing further.

Figure 6. State machine of the discrete model

The state machine for the discrete abstract driver for test
case generation is shown in Fig. 6. It consists of these
five states (with the unified one). They are strongly con-
nected by transitions that reflect the corresponding condi-
tions which have to be satisfied when the state is entered.
As described above, to the end of test case generation, we

5

can compute (1) sequences that cover all (pairs of) states,
and (2) sequences that cover all (pairs of) transitions.

Abstraction and concretization. The abstraction map-
ping from the detailed discrete-continuous model to the ab-
stract driver is simple. All the above states correspond to
predicates over the overall system’s state space. The ab-
straction mapping evaluates these predicates and makes the
result available to the state machine of the abstract driver
whose transitions are triggered by them.

The concretization is a lot more difficult, since there are
whole ranges of legal values for the speeds in the states. Ve-
locities can even change with the qualitative state remaining
the same. For instance, in stateFolPredSet, vPredcan in-
crease untilVset+ 1m

s without a change in the qualitative
state. In our case we used the following more or less arbi-
trary concretization: Since the main application area for the
ACC system is highway traffic, we focus on ranges for the
speeds between30 and 45m

s . Furthermore, accelerations
and decelerations are limited by physics. We therefore con-
sider accelerations/decelerations up to±3 m

s2 . With these
limitations one sensible way of concretization is to ran-
domly select linear trajectories for the velocities which are
within these bounds. Operationally, this means that when
entering a state, we use heuristics to determine which state
or transition is desired to be visited/executed next. Based
on the corresponding transition guard we can randomly se-
lect values which make the guards true for those continu-
ous variables which are input to the concrete model. Based
on the allowed accelerations/decelerations we can further-
more determine when the selected values can and should be
reached. Then we linearly interpolate between the present
values and the desired future values and provide the result-
ing trajectory as input for the concrete model.

In the ACC modelvFol need not be concretized, because
it is an output of the discrete-continuous system and input
to the abstract driver. For the events of switching the system
on and off and newly occurring predecessors a stochastic is
used. A further stochastic model gives concrete values for
the initial distance in which a predecessor appears in the
driving lane.

Example test sequence. Fig. 7 shows an output of the
Matlab model for a test case derived using the ideas de-
scribed above. We describe a test case that was generated
according to a specification that required all five states to be
covered. VariabledActdenotes the actual distance between
predecessor and follower,vFol andvPredare as above. The
vertical lines in the plots define segments of50s, the ver-
tical lines in the plot fordActdefine segments of50m and
those in the plots forvFol and vPred define segments of
5m

s . In the test case, the ACC is first switched off. At time
t = 10s the system is switched on and the car accelerates

to Vset= 30m
s . After approximately80s from start the set

value is increased to35m
s and the car accelerates further.

Between time125s and160s the ACC is switched off and
on again. This is not visible in the trajectory forvFol be-
cause the used model of the cars lateral dynamics does not
include loss of energy by aerodynamics and friction. Af-
ter approximately160s a new car withvPred = 33m

s ap-
pears in the driving lane at an initial distance of100m. This
causes the ACC control logic to change to stateVrelEq0and
activate distance control. Thus the car first accelerates to de-
crease the distance until time165s and then decelerates in
order to obtain the desired distance.2 Before this distance
is reached the predecessor starts to steadily accelerate to a
speed higher thanVset, namely to40m

s . This causes the
ACC control logic to switch back to speed control after ap-
proximately250s. After 300s the predecessor disappears
which is not visible in the trajectory forvFol, because the
follower still pursues speed control. The next event occurs
at about340s. A new predecessor appears in a distance of
30m with vPredbeing6m

s smaller thenvFol at that point in
time. Due to the much smaller speed, the ACC control logic
enters stateVrelLE0 and the follower decelerates. Some
time later stateVrelEq0is entered and the desired distance
of 50m is obtained.

5 Conclusions

Short development cycles and frequently changing re-
quirements render development of embedded automotive
systems a particularly demanding area of software and sys-
tems engineering. It is our firm belief that the use of models
in conjunction with processes that are based on rapid, or
evolutionary, prototyping is a promising approach to cop-
ing with the intricacies of such processes. As long as suf-
ficiently efficient production code generators—that, at the
same time, do not put too many restrictions on the use of
the respective modeling language—do not exist, we con-
sider the following scenario as appalling. In close interac-
tion with all involved parties, behavior models of a system
under development are incrementally built (cf. the coarse
treatment of this issue in Sec. 1 w.r.t. the necessity of be-
havior models of the environment). The resulting model
not only serves as specification, but also as the basis for
test cases. Serving as specifications, behavior models in the
form of state machines are advantageous when compared
to scenario-based formalisms such as Message Sequence
Charts because they encodeall behaviors. Since car manu-
facturers and manufactures of electronic control units often
are distinct parties, the further clearly have an interest in
checking whether or not the latter have built an ECU that

2A real ACC system would have more control states and would thereby
be able to realize that acceleration is undesirable in this situation. For the
purpose of this paper, however, we use the simple example system.

6

Figure 7. Trajectories of vPred, vFol, dAct (input to the concrete model)

conforms to its specification. It is the process of checking
this conformance that we address in this paper, and we ap-
proximate a full conformance check by means of automati-
cally generated test cases. Generating test cases for purely
discrete systems is a difficult undertaking, and the sheer size
of the state space makes mixed discrete-continuous systems
even more demanding w.r.t. quality assurance.

The main benefit of the method we reported on is to
have a systematic and highly automatic means for deriv-
ing test for mixed discrete-continuous systems. If test cases
are sought manually the danger to forget an important case
is high. In particular we encountered that it is indeed very
likely to forget to test one of the qualitative states of the
system. Possibly this is due to focusing too strongly on the
continuous aspects—the details—while forgetting about the
discrete states—the big picture—of the system.

Test case generation is based on a two-tiered modeling
approach: A mixed discrete-continuous model serves as the
reference for verdicts, while a purely discrete model de-
scribes usage scenarios and serves as a source for relevant
test sequences. In this paper, we demonstrated our approach
with Matlab models. The approach itself, however, is inde-
pendent of the modeling language. The essence is the no-
tion of “model-in-the-loop” simulation in order to resolve
the nondeterminism of the environment of the system.

Our current work focuses on finding verdicts when the
physical system is triggered with the generated sequences,
in particular on finding suitable “tolerance tubes” around
the reference sequences. If the tolerance is too high, inac-
ceptable system behavior might go undetected; if the tol-
erance is too low, small perturbations in the environment
will lead to false test failures. While our approach is usable
as described in this paper, solving the tolerance problem is
essential to making our approach cost-effective: The main
cost occurs in the construction of the mixed model. Reuse
of model building blocks will reduce these costs, but the risk
of behavior mismatches between the model and the imple-
mentation system is higher than for a custom-built model.

References

[1] A. Ciarlini and T. Fr̈uhwirth. Automatic derivation of mean-
ingful experiments for hybrid systems. InProc. ACM SIGSIM
Conf. on Artificial Intelligence, Simulation, and Planning
(AIS’00), Tucson, AZ, March 2000.

[2] V. Gupta, T. Henzinger, and R. Jagadeesan. Robust timed
automata. In O. Maler, editor,HART 97: Hybrid and Real-
Time Systems, LNCS 1201, pages 331–345. 1997.

[3] J. Philipps, A. Pretschner, O. Slotosch, E. Aiglstorfer,
S. Kriebel, and K. Scholl. Model-based test case generation
for smart cards. Submitted to FMICS’03, 2003.

[4] A. Pretschner. Classical search strategies for test case gen-
eration with Constraint Logic Programming. InProc. For-
mal Approaches to Testing of Software, pages 47–60, August
2001.

[5] A. Pretschner, H. L̈otzbeyer, and J. Philipps. Model Based
Testing in Evolutionary Software Development. InProc. 11th
IEEE Intl. Workshop on Rapid System Prototyping, pages
155–160, 2001.

[6] A. Pretschner, H. L̈otzbeyer, and J. Philipps. Model Based
Testing in Incremental System Development.The Journal of
Systems and Software, 2003. To appear.

[7] A. Pretschner, O. Slotosch, and T. Stauner. Developing Cor-
rect Safety Critical, Hybrid, Embedded Systems. InProc.
New Information Processing Techniques for Military Systems,
Istanbul, October 2000. NATO Research and Technology Or-
ganization.

[8] T. Stauner.Systematic Development of Hybrid Systems. PhD
thesis, Technische Universität München, 2001.

[9] The MathWorks Inc. MATLAB Product Family.
http://www.mathworks.com/products/ matlab/, 2000.

7

