Determining Compatibility of Embedded Software Components
by Communication Obligations

Peter Brauh Jan Philipps Bernhard Schéatz

2 |nstitut fur Informatik

! Validas AG Technische Universitat Miinchen
LIChtenbergStr. 8 Boltzmannstr. 3
85748 Garching, Germany 85748 Garching, Germany
{braun,philipps}@validas.de schaetz@in.tum.de

The implementation of automotive systems bkind of state transition diagrams.

steadily growing ECU networks leaves testing increas-|n addition to these behavioral approaches, there are
ingly inappropriate as the only means of assuring colfso modeling approaches that mainly describe sys-
patibility of controller interactions. Other techniquesem structure, while giving the system developer al-
including prescriptive and analytic methods at desigfost complete freedom of how to implement system
level, are needed instead, to ensure an effective and %mponents_for instance, in standard programming
cient development process. While Compatlblllty ChEC|i§§nguageS like C, €+ or Java, or by Wrapping |egacy
restricted on architectural descriptions do not captufgde or COTS components. Here the system structuring
the necessary dynamic aspects, checks based ondgles to restrict the interface complexity between com-

behavioral models do not yet scale for practical applionents. Examples for this approach are AUTOSAR [4]
cations. Here, the description of communication oblind EAST/EEAI[T].

) - I ‘efs, compatibility means only that component outputs
_the_relatlon between interface descriptions and testliqgiy not be connected to other outputs or that a com-
is discussed. ponent input may only be connected to a single compo-
nent output. Usually, type information is also consid-

ered, meaning for instance that integer-valued outputs

1 Introduction may not directly be connected to floating-point-valued

Software engineering for embedded systems is und&RUts-
going a paradigrn shift from (a more or less mono- For behavioral models, more Complex Compatlblllty
lithic view on) ECUs to networks of interacting softchecks can be defined, taking into account the proper
ware components with well-defined interfaces. pairing and timing of output and input commands in the
This component view is supported by a numb@&ystem components; see [2] for such an approach.
of modeling languages for embedded systems. Typ-n this paper, we introduce the concept of compatibil-
ically, these languages are supported by CASE todsfor an interface notion based @ammunication obli-
such as ASCET, MATLAB & Simulink, Statemategations(Sectiorj 2). Essentially, communication obliga-
or AuToFocus. Most of these languages describgons state whether communication between two com-
both the system structure—by some kind of structup@nents is forbidden, whether it is required, or whether
diagrams, which show the interconnection of systeitnis optional. This approach is then extended to deal
components—and system behavior, usually with sométh more complex interaction patterns based on com-

behavior models

timed communication models

Figure 2: Component connection by state sigsal

communication models event signat

structure models

ponents modeled by Simulink block diagrams), in the

Figure 1: Abstraction levels for interface specificatiorggecond case, signal values represent control flow in
the sense that they carry synchronisation information

o . (e.g., between discrete state-based components models
munication schedules][6] (Sectiph 3). by Stateflow state transition diagrams).
As shown in Figur¢ |1, the specification of commu- System components hairgerfaceswhich consist of

nication obligations and communication patterns can, mber of input and outpylorts Connectordink

be regarded as modeling at an abstraction Ievgl .jféﬂtput ports of one component with input ports of an-

between a pure structure model (where compatibilifher For each connector, there is a signal describing

checks are based on type checking) and the detailgd gata or control flow. It is possible for one output

communication models derived from complete behaypt 1o e connected to multiple inputs ports, but we as-

ioral models. sume that in the dual case explicit merge components

In addition to determining whether two componentge incuded to resolve inconsistencies between differ-
can safely beconnectedthe compatibility notion pre- o signals.
sented here also allows us to determine if a componen;:igureB shows a trivial model of two components
can be safelyeplacedby another component. For this, 4 5 \which are connected by a state sigeand an

application scenario it is easy to see that full behaygen signat. Not all components can be connected—
ioral compatibility is not only computationally costlythey must beompatible

but also methodically inadequate: Only rarely is a re-
placement component intended to have precisely the
same behavior as the original component. More often2itl Compatibility
incorporates a number of bug fixes and additional func- .
tionalities. At the level of communication models, how\—Nhat does it mean for componentsand 3 to_ be com-

In general, we expect that there is a common

e . Bgtible?
ever, compatibility can be ensured for the harmonio giti h ication bet th
interoperation of the system after the replacement. GRnaition on the communication between the compo-

Sectiorj 4 we show how communication obligations caﬂ’?nts that ensures that the sender (comporigminly .
be analysed. generates signals that can be processed by the receiver

Of course, compatibility of component interfacegcompolrllenf)' L
does not guarantee that a system implementation indeetysually, this condition is Justype_z correctnessFor
obeys these conditions; Sect[dn 5 sketches how existg® cOrrectness, the component interfacelaissigns

test processes can be extended to observe whether ¢ f"ChIOf th‘; output portg andOQha type .(i._e.,.ia slet %f
ponent implementation indeed satisfy their obligatio atavaluest al may sen overthe port); similar y, the
based interfaces. component interface aB assigns to each of the input

portsi; andi, a set of values tha® is able to read from

the ports. Type correctness in its simplest form means
2 Communication Obligations that the types assigned 4@ andi, and too, andi, are

identical. Types can be regarded as a simple contract
We consider systems consisting of networks of compleetweenA and B that A does not send values th&t
nents. Components communicate signals i.e. func- cannot process.
tions mapping time values to a data value. Signals carin our model we enhance the notion of compatibility
be used to describe both state-based and event-bdssmnd this simple type correctness condition. First, we
communication. In the first case, signal values repse the distinction between event- and state-based sig-
resent data flow (e.g., between quasi-continuous conals. Second, we introduce communication obligations

for output and input ports of components, which may
change depending on the current mode (respectively the
internal state) of a component. In the following the no-
tion of communication obligations and the definition of
compatibility based upon obligations is introduced.

Mode information:
« User interface: Switches, dials, displays
« Plant state: position, speed, temperature
e Operation phase: initialization, normal,
fail-safe, shutdown

2.2 Static Obligations

Types refer to possible signal values, but not to com=
munication acts themselves. Intuitively, we might ex-
pect state communication to take place throughout sys-
tem execution, and event communication to take place Figure 3: System modes
only at some discrete time points chosen by the sender

component. This is not reflected in the component in- o .
terfaces. however output port; communication must take place at an in-

To formalize the communication aspect, we must eggyt port, but communication only may take place at the

plicitly specify for each port whether we expect comc—)Utlout port.

munication to occur, by assigniri@mmunication obli-
gationsto ports (‘Communication forbidden’, ‘Com-

In the static form presented above, communication

obligations offer little use: If communication is forbid-

munication may occur’, ‘Communication must occur’ (_jen, one might as well just remove the Connectlczn be”-
ttv(\)/een the relevant ports; the difference between “may

For state-based communication, which is used . N o .
: : S and “must’-communication could simply be modeled
convey computational information, it is generally corB

) . . i Y two different connection kinds.
sidered safe to write a signal more often, than it | The situation is different, when the communication
read. Symmetrically, event-based communication usedl.) ' .
. ; obnlganons are dependent on modes or states, as dis-
to transport commands is considered safe, when eac S .
. . cussed below. Furthermore, obligations can combined
raised event is observed. : -) . . .
. . o . with temporal restrictions (like signal periods); this ex-
This leads to the following communication Ob“gafension is presented in Section 3
tions, which can be read as contracts between a compo- P '
nent and its environment: o
2.3 Mode-dependent Obligations
State input signal: The environment provides a sign

whenever the component requests a signal. a'Embedded systems typically operate in different modes.

Modes are rather coarse partitions, distinguishing be-

State output signal: The component provides a signafveen different phases (e.g., start-up, operation, shut-

whenever the environment requests a signal. down) or control schemes (e.g., cranking, warm-up,
running). As theses phases and scheme often affect the

Event input signal: The component consumes a sigeverall system, modes of operation are introduced to
nal whenever the environment supplies a SignaLl’eﬂeCt them. Usually, the communication between two
components is mode-dependent.
Event output signal: The environment consumes a In contrast with the (internal) component states, there
signal whenever the component supplies a signas a system-wide agreement on the current mode. Of
course, this agreement must be ensured somehow, ei-
That means for example for an event input port oftaer by common observation of externally visible in-
component, that if communication may occur the corputs, or by a synchronization protocol. The details of
ponent guarantees that the input is consumed. how agreement is ensured are irrelevant for the specifi-
For compatibility checks, it is sufficient to identifycation of application-dependent interface behavior. In-
combinations of communication obligations that are estead, as indicated in FigUrg 3, on the application design
roneous: communication must take place at an outpenel modes can in general be understood as externally
port, but is forbidden at the input port; communicatiowisible states.
must take place at an input port, but is forbidden at theTo describe mode-dependent communication obliga-

external observer, such components are nondetermin-
istic. Because of nondeterminism, interface specifica-
tions may be weaker than intended or even contradic-
tory (for two internal states which map onto the same
Figure 4: Internal State mode).

Note that compatibility checks are substantially more
. . . . expensive for states than for modes, as every reachable
tions, the notion of interface and compatibility check is P o . : I .

. State combination must be examined—in practice, this

adapted as follows:

requires state-space exploration tools like model check-

e A component interface assigns to each port a magS-
ping from modes to communication obligations.

e For compatibility checking, the compatibility of3 Timed Obligations

the communication obligations of two connected
ports must be checked for every mode. The notion of communication obligations can be ex-

tended with a timed dimension, describing for instance
The complexity of a compatibility check is affectedignal periods. The formalization of concepts like state
by the complexity of the modes. As, however, in gemmd event signals and the interface descriptions that de-
eral modes represent a coarse abstraction of envireifle communication obligations is based on timed au-
ment and system state, they do not drastically increaggata and more complex than in the untimed case. As
the complexity; in practice, by structuring the behavighcompatibility of communication obligations can be
of the system, they often decrease the overall complexgarded as lack or loss of signals, these formalizations

ity of a check. are extended to detect those forms of communication
faults.
2.4 State-dependent Obligations Signal scheduledescribe the interface for a single

signal; the interface descriptions follow a standard pat-
In addition to modes, component behavior—and thugyn. These aspects are described below. Signal sched-
its communication behavior—may also depend on aies can also be composed; for instance, their parallel
internal state which is not directly observable. As illussomposition is used to describe the obligations for a
trated in Figur¢ 4, behavior depending on internal staiempound interfaceFor details on the composition of
is often described by state machines, but also arisghedules, se&l[6].
from the control flow in common programming lan-
guages.

To describe (internal) state-dependent communi
tion obligations, the notion of interface and compatgchedules are focused on the description of the interac-
bility check is adapted as follows: tion obligations of components. Thus, in general they
. . represent abstractions of the actual behavior of those
* A_component |r_1terface assigns to each port_ama&)'mponents. For practical usability, it is necessary

ping frpm the internal state to a communicatio, oger standard forms to describe these abstractions.

obligation. Here, we use a modular approach similar_to [5] that al-
e For compatibility checking, the compatibility oflqws to construct complex descriptions by combining
the communication obligations of two connectedMPpler patterns. _

ports must be checked for each reachable pair ofTo illustrate the principles of this form of modular de-

internal states of componertand B. scription, Figur¢ b shows some simple behavioral mod-
ules. Each module describes a part of the overall be-

Internal states, in contrast to modes, are not directigvior of a component. To combine these modules,
controllable by the component environment. Insteagiach module includes (a set of) entry and exit locations.
the component state is dependent on a sequence of e left-hand modulgsy, . . ., s, } of Figure@, e.g., de-
vironment inputs. Components may also enter diffeseribes a partial behavior that, once entered through en-
ent states depending on purely internal choices; to @y locationstart is ready to accept a single signal from

3.1 Interaction Patterns

{SpeS,}

clock ¢

c=0:54¢'=0

Figure 5: Simple Patterns of Standard Behaviors

the set{s,...,s,} and can then be exited through exibehavior consists of repeatedly performing an interac-
locationend. tion; the delay between those equidistant interactions is
To formalize the behavior of a module, the conceptslledperiod
of timed automata are used: locations (estart, end, However, besides this timing aspect, additional func-
hold), variables (including clocks, e.gc), and tran- tional aspects must be considered when describing
sitions. Here, transitions—connecting locations—atkose patterns, especially the distinction between event-
annotated with a pre-condition (characterizing a posbiased and state-based communication paradigms dis-
ble state of the variables prior to the execution of thmissed in Subsectidn 2.2. This functional dimension
transition), a synchronization label (synchronizing thie important since it does influence the obligations of
interactions of a component and its environment), aeither systems and environment established by a sched-
a post-condition (characterizing a possible state of thie, as discussed in Subsection|2.2.
variables after the execution of the transition). Thus, While event input and state output signals offer guar-
the label 't = 0 : s; : ¢’ = 0” states that by exchangingantees about the signals consumed or produced without
signals; when clockc = 0, the transition can be exeimposing requirements about the environment, state in-
cuted, leavingc = 0 unchanged. As usual, unprimegut and event output signals require the environment to
variables reference values in the state before the exggtoduce or consume signals in time. Thus, the former
tion of the transition, primed variables reference valugan be understood as optional obligations to interact,
after its execution. while the later are obligatory obligations to interact.
Note that entry and exit locations need not be dis- Figure[§ shows the formalization of these kinds of
joint; the right-hand modul#l,. describes a partial be-signal schedules. The modug in the left-hand side
havior with overlapping entry and exit location (indidescribes the obligatory case. The corresponding au-
cated by the dashed lines connecting them to the intgsmaton uses a clock variahigto formalize the timing
nal locationhold). To define the behavior—requiring aconditions defined by the schedule. Locatisnchar-
component to repeatedly hold all interaction for a dcterizes the state prior to the reception of a signal; lo-
ration of 7 until exited—invariants are used, restrictingations” characterizes the state when a signal has been
the possible state of variables while in that location. lexchanged. Locatiors is both an entry and an exit lo-
variant “c < n”, e.g., enforces a transition at time cation as well.
The transition from’s to s"—labeled * s :"—

3.2 Signal Schedules corre§ponds to ’the \exchange of a signal at tﬁm(’i”he

transition froms” to "s—labeled t; = 7 :: ¢, = 0"—
Embedded software is generally built upon periodic betarks the end of the current period and the beginning
havior (e.g., speed measurement activated every %@he next. Note that this formalization states that the
ms); therefore, in the domain of embedded control sofixchange must take place at the defined time po#rsts
ware, modular forms of periodic behavior are essentialrestrictsc, to 0, the corresponding transitianustbe
patterns to base more complex descriptions on. Fota&en, unless the signal schedule is abortedcAs 0
component with a very basic communication schenie,entry and exit condition, the schedule is started at
its communication schedule can be defined indepdime 0 and may be aborted at any timex 7 for n € N.
dently for all its ports. A standard communication The right-hand side of Figufg 6 shows the formaliza-

(Sy A (Sx)

clock cg clock ¢

Figure 6: Formalization of Schedules for Obligatory and Optional Signals

tions,; of an optional obligation for signal exchange. In Intuitively, by means of compatibility we want to en-

contrast to modulg,;, an optional signal offers an ex-sure that no signal is lacking or lost when exchanged
change each periothut does not require the exchangéetween a component and its environment. More for-
to be imposed on the environmemherefore, comparedmally, if a signal interaction is imposed by a compo-

to obligatory schedule its formalization allows the enviaent, it must not be rejected by the environment and
ronment to ignore the interaction by means of a weakice versa. Obviously, the schedules introduced in Sub-
ened invariant; < 7, while the synchronization tran-section| are generally not enabled to accept any sig-
sition is strengthened to, = 0 : s :. Furthermore, nal at any time: for some states and signals, no tran-
a feedback transition in locatiols with pre-condition sitions with a corresponding synchronization labels are
¢ = m, resetting the clock variable(= 0) is added. enabled; thus the exchange of those signals is blocked.

By using several transitions frofs to s”, each using To check for compatibility of components, we com-
a different SynChronization label as in the basic mogose their Corresponding schedules in para||e| and
ule {s1,...,s,} of Figure[§, the exchange of signalgheck whether the combined schedules may lead to a
with distinct values communicated over a single pogrminating (i.e., dead-lock) state. Fig{ife 7 illustrates
is formalized. Thus, by means of obligatory and ophis for the case of a state sigrsalised both as an input
tional schedules, state input and event output as wellszf@nm with a period 0100 and as an output signal with
event input and state output signals can be adequatglyeriod 0f200. Composing their schedules—shown in
described: a state input signal corresponds to a obligie |eft-hand side—in parallel with synchronization on
atory schedule, as does a event output signal; symmgtransitions, leads to the behavior shown in the right-
rically, a state output signal corresponds to an optiongdnd side, depicting only the reachable states. Dur-
schedule, as does an event input signal. ing execution, the combined timed automata reaches
a deadlock at time point00 while the receiver is in
location's; with ¢c; = 0 restricting any further delay,
4 Ana|yzing Ob|igation3 the sender is in locatiogy” with co = 100. Thus, the
only transition leaving this combined state—depicted in
By explicitly describing the interaction obligations of &r&y—is not enabled, leading to a deadlock.
component, we can check whether the interactions ofThus, a collection of interface descriptions is con-
two components are compatible, or whether the obtiidered incompatible if their parallel composition may
gations imposed on a system are ensured by the intigadlock. While in an asynchronous implementation—
actions of its components. To that end, the notion aé found, e.g., in embedded control networks imple-
compatibilityof interface descriptions is introduced, tanentation via CAN and OSEK—deadlock does not
detect possible loss or lack of signals when composiagcur, it corresponds to the lack or loss of signal.
components to form systems. Correspondingly, compositional compatibility can be

¢, <100,
$1°52) ¢, <200

c1 <100

. ¢, =100::
o ¢y =0

¢, =0

¢, =0,
¢, <200

.’ ¢, =0,
¥ ¢, <200
5 <

Figure 7: Incompatible Signal Schedules

rephrase as a question of reachability (i.e., reachinglaserver to the realized system without changing the
deadlock state), making it accessible to standard modemmunication behavior of a component. So for ex-
checking procedures. ample the componentd and B of Figure[2 may be
Based on the kind of deadlock state, furthermorealized by two separate ECUs as depicted in Fighre 8,
the class of the error can be identified: if the sendextended by an additional observer.
is blocked from performing its synchronized action, Using this extension, the additional observer compo-
loss of event occurs in an asynchronous implementent monitors the communication betwednand B.
tion; symmetrically, blocking the receiver correspondss the specification is usually more abstract than the
to lack of data. In the example in Figure 7, lack of sign@&chnical realization, an abstractor has to be used to in-
s is detected, assuming theais a state signal. As, sym-terpret the observed technical signals on the abstraction
metrically the schedules also describe an event outfeuel of the specification. In case of CAN, the signals,
signal with period100 and an event input signal withspecifically coded and packed into messages, have to be
period200, under the assumption thais an event sig- unpacked and decoded appropriately.
nal, the loss signal is detected. Using this form of abstraction, the observed commu-
nication can be used to evaluate the current mode of the
; observed componentd and B. As explained in Sec-
5 Interface Testing tion[2 the mode of an component can be deduced from
the observed environment state signals. The current
In the preceding sections different abstraction levelgode of a component determines the actual communi-
for modeling interfaces of components are describggtion obligations. As the communication betweén
Furthermore a notion of compatibility was introducegngp is also observed, the evaluator can establish if the
which allows to check the consistency of a compositigiymmunication is conform to the specification; e.g., if a
of components for untimed and timed communicatiafjate signal is not observed whileis in a mode where

models. Butbeyond checking the compatibility of inteft muyst provide that signal, a violation of the specifica-
face specifications of different components, it must be

shown that the implemented system in form of the de-

ployed components indeed satisfies its specification. In Evaluator
this section we illustrate how the conformance of com- Abstractor
ponent realizations to their specifications can be estab- Observer

lished by tests.
Usually, distributed embedded systems use some
kind of bus for communication between different ECUs. @ @

In automotive systems most commonly the CAN bus is
used, which allows state as well as event communica- _ _
tion. In such a configuration, it is possible to add an Figure 8: Observer for realized systems

tion by the implementation is detected. loss of signals.

The sketched technique for testing the conformanceFor practical use, the presented concepts have been
of a specification and its realization can be easily addi&dmalized and tool support is under development; first
into existing testing environments. As the observease studies in the domain of body electronics have
doesn't influence the system itself, it is reasonable demonstrated the basic feasibility of the presented ap-
add this observer component while the standard testpodach. Obviously, there are many areas for improve-
a system take place. ment: Depending on the application domain, the con-

One problem with such “piggy backed” tests is thatept of modes can be detailed and systematized; the
it is not certain that sufficient test coverage has beeammunication schedules can be extended with mech-
reached. To determine coverage, the evaluator can &ysms for communication over unreliable media; fur-
the modes which were reached while executing a givéhrermore concepts for test case generation in addition
test case. Then, mode coverage can be computed ncbverage measurement should be included.
thus the tester is informed, which modes are not reached
within a test case. Based on the modes, an abstract test
scenario for reaching a certain mode can also be co -eferences
puted, using, e.g., model checking techniques expl
ing the model of Sectidn 3.

As mentioned before, in contrast to modes, states
may lead to nondeterminism on the level of commu-
nication obligations. The evaluator has no knowledge
about the current internal state of a component, buf{#] Luca de Alfaro and Thomas A. Henzinger. Inter-
can approximate the set of states, which may hold at a face theories for component-based designPio-
given time. Based upon this set the evaluator can check ceedings of EMSOFT 2001, LNCS 222001.
if at least the communication obligation of one state is)
fulfilled or violated. [3] I__"uca de A_Ifaro, _Thom_as A. Henzinger, and Mar-

While we used these testing techniques successfully 1€/l€ Stoelinga. Timed interfaces. EMSOFT Em-
in practice, they have several limitations. In particular, Pedded Softwargages 108-122, 2002.
the communication between two components has to[a¢ Harald Heinecke, Klaus-Peter Schnelle, Helmut
observable. This is a problem if the relevant communi- Fennel, Jiirgen Bortolazzi, Lennart Lundh, Jean
cation takes place within a single ECU. Another limi- | eflour, Jean-Luc Maté, Keniji Nishikawa, and
tation is that the evaluator may need some time to syn- Thomas Scharnhorst. AUTomotive Open System
chronize its local mode or state model with the system ARchitecture - An Industry-Wide Initiative to Man-
by inferring state information from bus communication age the Comp|ex|ty of Emerging Automotive E/E-

at the start of a test; during this time, of course, the Architectures. Whitepaper, www.autosar.org, 2004.
evaluator may pass no verdicts. However, the described

techniques can be adapted to most situations and leatPlo Thomas A. Henzinger. Masaccio: A Formal Model
highly automated and cost-efficient tests. for Embedded Components. Rroceeding of the

First International IFIP Conference of Theoretical
Computer Scieng@ages 549-563. Springer, 2000.

6 Conclusion LNCS 1872.

O[li] Luca de Alfaro and Thomas A. Henzinger. Inter-
face automata. IEuropean Software Engineering
Conference/ACM SIGSOFT Foundations of Soft-
ware Engineeringpages 109-120, 2001.

Thi introduced thodoloaical h [g Bernhard Schétz. Interface descriptions for embed-
'S paper introduced a methodological approac ded systems. IProc. 3rd Workshop on Object-

ensuret th% crc])mpatil?i_lit%/ c;f emcljaeddgdf softwar? com—f oriented Modeling of Embeddded Real-Time Sys-
ponents. Behavioral interface descriptions, notions of (OMER'05)Paderborn, 2005.

compatibility and refinement have been investigated in

approaches liké [1], o [3], however focusing on block7] Thurner et al. Das Projekt EAST-EEA — Eine
ing communication in general. In contrast, here we fo- middlewarebasierte Softwarearchitektur fir vernet-
cus on the methodical implications of modeling com- zte Kfz-Steuergerate. DI-Kongress Elektronik
munication obligations, distinguish between event- and im Kraftfahrzeug number 1789 in VDI Berichte,
signal-based communication, and avoidance of lack or Baden-Baden, 2003.

	Introduction
	Communication Obligations
	Compatibility
	Static Obligations
	Mode-dependent Obligations
	State-dependent Obligations

	Timed Obligations
	Interaction Patterns
	Signal Schedules

	Analyzing Obligations
	Interface Testing
	Conclusion

