
Refinement of Information Flow Architectures �
Jan Philipps Bernhard Rumpe

Institut für Informatik
Technische Universität München

D-80290 Münchenfphilipps,rumpeg@informatik.tu-muenchen.de

Abstract

A calculus is presented for the stepwise refinement of
abstract information flow architectures. We give a mathe-
matical model for information flow components based on
relations between input and output communication histo-
ries, and describe system architectures using two views: the
glass box view is a network of basic components, while the
black box view regards the network itself as a component.
This allows us to hierarchically compose systems.

The calculus consists of basic rules to add or remove
components and channels, and to replace components by
subnetworks and vice versa. The correctness of the rules is
justified by the refinement relation on the black box view of
architectures.

1. Introduction

The architecture of a software or hardware system influ-
ences its efficiency, adaptility and the reusability of com-
ponents. Especially the adaption to new requirements and
reuse of existing components cause frequent changes in the
architecture while the system is developed, or when it is
later extended.

In this paper, we study how a given architecture can be
modified, so that is is a provably correct refinement of the
original architecture. We follow the suggestive box-and-
arrow approach that is common in informal notations [3,
13]; we interpret arrows as data flow channels and boxes as
components that process data flows.

Our work is based on a precise mathematical model [2]
for such data flow networks. The model is simple, yet pow-
erful: when specifying component behavior, certain aspects
can be left open. We refer to this style asunderspecification.�This paper partly originates from the SYSLAB project, which is sup-
ported by the DFG under the Leibniz program, by Siemens-Nixdorf and
Siemens Corporate Research.

Components can be structurally composed to build hierar-
chical models of an architecture, and their behavior can be
refined.

However, so far there is no refinement calculus to incre-
mentally change an architecture, e.g. by adding new com-
ponents or channels, so that the resulting system provably
preserves or refines the established external behavior. It is
the aim of this paper to establish such a calculus for data
flow networks.

This paper is structured as follows. In Section 2, we
present a short motivating example for architecture refine-
ment. Sections 3 and 4 contain the mathematical founda-
tions for components and systems. In Section 5 we present
our refinement calculus. Section 6 compares our approach
to related work, and Section 7 concludes.

2. Example

As an example, we consider an imaginary company with
three departments: Management, Production, and Sales.
The company’s operation can be modeled as information
and material flow as follows (Figure 1).

Raw materials enter the factory via channel “material”
from outside. They are processed in the production depart-
ment, and the final goods leave the company via channel
“goods” to be delivered to the customers. The production
department receives a schedule for the production from the
management, and forwards information about the progress
in the schedule to both the management and the sales de-
partment.

The sales department sends information about pricing
and delivery dates via the channel “custinf” to the cus-
tomers. The department receives orders and payment from
the customers, and forwards them to the management.

Based on the information from the production and sales
departments, the management decides about pricing of the
goods, and the schedule for their production.

Now Management decides that they spend too much time

Manage-
ment Sales

Produc-
tion

material goods

ordpay

custinf

sched progress

pricing

ordpay0
progress

Figure 1. Company Architecture

processing the data from Production and Sales. Instead of
detailed pieces of data from the departments, they want the
data to be gathered, evaluated, and summarized in reports.
Hence, they form a new department called “Accounting” to
handle this preprocessing, and change the way information
flows within the company.

In the system architecture model that we present in the
rest of this paper, the new architecture can be obtained
through several transformations. The transformations are
summarized in Figure 2; Figure 2(d) shows the final archi-
tecture of the company.� First, a new department for accounting is introduced.

The exact behavior of this department is at the moment
irrelevant for the clients of the company, as it is not yet
cooperating with any other department (Figure 2(a)).� Then, accounting is connected to the other departments
so that it receives data from Production via channel
“progress” and from Sales via channel “ordpay0”, and
that Management receives information from Account-
ing via a new channel, say “reports”. (Figure 2(b)).� Now the departments change their operation: Account-
ing produces reports from the information of Produc-
tion and Sales, and forwards them to Management;
Management bases its decisions on the input from Ac-
counting, instead of the separate data from Production
and Sales. Production and Sales forward their data to
Accounting (Figure 2(c)).� Now, the channels for the unprocessed data have be-
come superfluous. In a final transformation step, we
can disconnect the channels “progress” and “ordpay0”
from Management. (Figure 2(d)).

In the rest of this paper, we propose a formal semantics
for architectures, and show that these transformations — as
well as several others — are behavioral refinements with
respect to our semantics.

3. Preliminaries

In this section we introduce the basic mathematical
concepts for the description of systems. We concentrate
on interactive systems that communicate asynchronously
through channels. A component is modeled as a relation
over input and output communication histories that obeys
certain causality constraints.

We assume that there is a given set of channel identifiers,C , and a given set of messages,M. In the example, we have
for instance “material”2 C , andM contains information
items like orders and reports as well as materials and goods.

Streams. We usestreamsto describe communication his-
tories on channels. A stream over the setM is a finite or
infinite sequence of elements fromM. By M� we denote
the finite sequences over the setM. The setM� includes
the empty sequence that we write ash i. The set of infinite
sequences overM is denoted byM1.

Communication histories are represented bytimed
streams:

M@ =def (M�)1
The intuition is that the time axis is divided into an infi-

nite stream of time intervals, where in each interval a finite
number of messages may be transmitted. In Figure 3 we
have choosen days as intervals. During each day the reports
from the accounting department are collected within each
interval (denoted byh: : :i). The order of the incoming re-
ports is fixed, but the exact arrival time within the interval is
unknown. Of course, we may choose finer time scales, and
for technical applications such as process control the inter-
vals might last only a milli- or even a nanosecond each.

For i 2 N andx 2 M@ we denote byx # i the sequence
of the firsti sequences in the streamx. In our example,x # i
denotes the communication history of the streamx for the
first i days.

A named stream tupleis a functionC ! M@ that assigns

histories to channel names. ForC � C we write
�!
C for the

set of named stream tuples with domainC.

For x 2 �!
C andC0 � C, the named stream tuplexjC0 2�!

C0 denotes the restriction ofx to the channels inC0:8 c 2 C0 : xjC0(c) = x(c)
2

Manage-
ment Sales

Produc-
tion

Account-
ing

(a) Adding components

Manage-
ment Sales

Produc-
tion

Account-
ing

(b) Adding channels

Manage-
ment0 Sales0

Produc-
tion0Account-
ing0

(c) Refining behaviors (no change of structure)

Manage-
ment0 Sales0

Produc-
tion0Account-
ing0

(d) Deleting channels

Figure 2. Architecture Refinements

Behaviors. We model the interface behavior of a compo-
nent with the set of input channelsI � C and the set of
output channelsO� C by a function� : �!I ! P(�!O)
Intuitively,� maps the incoming input onI to the set of pos-
sible outputs onO, and thus describes the visible behavior
of a component with input channelsI and outputs channels
O.

Equivalently,� can be seen as a relation over the named

stream tuples in
�!
I and the named stream tuples in

�!
O . �

Nov 12Nov 12Nov 12 � � �Nov 13Nov 13

Figure 3. Timed stream

is called abehavior. Since for every input history multiple
output histories can be allowed by a behavior, it is possible
to model nondeterminism, or equivalently, to regard rela-
tions with multiple outputs for one input as underspecified.

In our example (see Figure 1) the behavior of depart-
ment Management would map input stream tuples overfprogress; ordpay0g to a set of output stream tuples overfsched; pricingg. A function f 2 �!

I ! �!
O can be seen

as a special case of a deterministic relation. We say thef is
time guarded, iff for all input historiesx andy, and for all
i 2 N

x # i = y # i) (f x) # (i + 1) = (f y) # (i + 1)
A time guarded functionf is called astrategyfor a behavior� if for all x we havef (x) 2 �(x). If � has at least one
strategy, we say that� is realizable.

Time guardedness reflects the notion of time and causal-
ity. The output at a certain time interval may only depend

3

on the input received so far, and not on future input. Given
the time scale from Figure 3, a strategy for the management
of our example company would give orders to the produc-
tion and sales departments only after having readall reports
of a given day — consequently, the orders can only be im-
plemented the next day.

Interface adaption. Given a behavior� : �!I ! P(�!O),
we can define a behavior with a different interface by ex-
tending the set of input channels, and restricting the set of
output channels. IfI � I 0 andO0 � O, then� 0 = �lI 0

O0 is
again a behavior with� 0(i) = (�(ijI))jO.

This corresponds to the change of the component inter-
face by adding input channels, that are ignored by the com-
ponent, and removing output channels that are ignored by
the ingnored by the environment.

Composition. Behaviors can be composed by a variety of
operators. Sequential and parallel composition, as well as
a feedback construction is introduced in [6]. For our work,
we use a generalized operator
 that composes a finite set
of behaviors

B = f�1 : �!I1 ! P(�!O1); : : : ; �n : �!In ! P(�!On)g
in parallel with implicit feedback. We define

O = [1�k�nOk

I = ([1�k�nIk) n O

whereO is the union of all component outputs, andI is
the set of those inputs, that are not connected to any of the
components’ outputs.

Then the relation
B 2 �!
I ! P(�!O) is characterized

by:

o 2 (
B)(i) ,9 l 2 ����!(I [O) :
ljO = o^ ljI = i ^8 k 2 f1; : : : ng : ljOk 2 �k(ljIk)

If all behaviors inB are realizable, then so is
B. The
proof follows [6]; it relies on the time guardedness of strat-
egy functions.

Refinement. Intuitively, a behavior describes the exter-
nally observable input / output relation that the clients of
a component may rely on. Refining a behavior in a modular
way means that the client’s demands are still met, when the
component behavior is specialized.

Formally, the refinement relation in our framework is de-

fined as follows. Given two behaviors�1; �2 2 �!
I !

P(�!O) we say that�1 is refined by�2, iff8 i 2 �!I : �2(i) � �1(i)
Refinement means in our context, that each possible chan-
nel history of the new component is also a possible channel
history of the original component.

4. System Architectures

In this section, we define an abstract notion of system
architecture. As demonstrated in the introductory example,
a system architecture consists of a set ofcomponentsand
theirconnections.

We first define components, and then introduce the ar-
chitecural or glass box view, and the black box view of a
system.

Components. A componentis a tuplec = (n; I ;O; �),
wheren is the name of the component,I � C is the set
of input channels, andO � C the set of output channels.

Moreover,� : �!I ! P(�!O) is a behavior.
The operatorsname:c, in:c, out:c andbehav:c yield n,

I , O and�, respectively. The namen is introduced mainly
as a convenience for the system designer. The channel iden-
tifiers in:c andout:c define the interface of the component.

Architectural view of a system. In the architectural view,
a system comprises a finite set of components. A connec-
tion between components is established by using the same
channel name.

A system is thus a tupleS = (I ;O;C), whereI � C is
the input interface, andO� C is the output interface of the
system.C is a finite set of components.

We want to be able to decompose systems hierarchically.
In fact, as we will see, a system can be regarded as an or-
dinary component. Therefore systems need not be closed
(having empty interfaces), and we introduce the interface
channelsI andO to distinguish external form internal chan-
nels.

We define the operatorsin:S, out:S, arch:Sto returnI , O
andC, respectively. In addition, we write:

in:C =def [c2arch:S(in:c)
out:C =def [c2arch:S(out:c)

for the union of the input or output interfaces, respectively,
of the components ofS.

The following consistency conditions ensure a meaning-
ful architectural view of a systemS. Let c; c1; c2 2 arch:S
be components, withc1 6= c2.

4

1. Each two components have different names:

name:c1 6= name:c2
2. Each channel is controlled by only one component.

Therefore it may be in only one output interface:

out:c1 \ out:c2 = ?
3. Input channels of the system interface are controlled

by the environment. Therefore, they cannot be output
channels of a component:

in:S\ out:c = ?
4. Each input channel of a component is either connected

to a corresponding output channel of another compo-
nent, or it is controlled by the environment:

in:c� out:C[in:S
5. Each channel of the output interface is connected to a

corresponding output channel of a component:

out:S� out:C
Note that we allow that input channels are in more than

one interface: a channel can have multiple readers, even
broadcasting is possible. Not every channel of the system
input interface has to be connected to a component, since
condition 4 only demands subset relation instead of equal-
ity.

We allow a component to read and write on the same
channel if desired; as a consequence of conditions(3) and(5), however, system input and output are disjoint.

Black Box view of a system. The behavior of a compo-
nentc is given in terms of its relationbehav:c between in-
put and output streams. We define theblack box behaviorof
a systemS composed of finitely many componentsarch:S
using the composition operator
. The result of this com-
position is then made compatible with the system interface
by restricting the output channels to those inout:S, and by
extending the input channels to those inin:S:[[S]] = (
f behav:c j c 2 arch:Sg)lin:S

out:S
Because of the context conditions for systems the com-

position is well-defined. The hiding of the internal output
channelsout:C n out:S and the extension with the unused
input channelsin:Sn in:C is also well-defined.

The black box behavior has the signature:[[S]] : �!in:S! P(��!out:S)

Thus, the black box behavior can now be used as a com-
ponent description itself. Introducing a fresh namen, we
define the componentcS as:

cS = (n; in:S; out:S; [[S]])
In this way, a hierachy of architectural views can be defined
and iteratively refined and detailed.

Later on we need a more detailed definition of this se-
mantics. By expanding the definitions of the
 andl op-
erators, we obtain the following equivalent characterisation
of [[(I ;O;C)]]:

o 2 [[(I ;O;C)]](i) ,9 l 2 �������!(I [out:C) :
ljO = o^ ljI = i ^8 c 2 C : ljout:c 2 (behav:c)(ljin:c)

This expanded characterisation says, thato is an output
of the system for inputi (line 1), iff there is a mappingl of
all channels to streams (line 2), such thatl coincides with
the given inputi and outputo on the system interface chan-
nels (line 3) and feeding the proper submapping ofl into a
component results also in a submapping ofl.

5. Refinement of system architectures

When a system is refined, it must not break the inter-
action with its environment. The observable behavior of a
refined system must be a refinement of the behavior of the
original system.

In this paper, we leave the interface of the system un-
changed. Interface refinements that affect the signature of a
systemSare described in [1] for black box behaviors; they
can be adapted to our architectural framework. We also ig-
nore aspects of realizability. The techniques used to prove
that a component specification is realizable are orthogonal
to the rules presented here, and will not be considered in
this paper.

We therefore define the refinement relation on systems
as a behavioral refinement on the given interface:

S S0 ,def 8 i 2 �!in:S : [[S0]](i) � [[S]](i)
As explained above, we tacitly assume thatin:S= in:S0 and
out:S= out:S0.

In the rest of this chapter, we define a set of constructive
refinement rules that allow refinements of system architec-
tures. The rules allow us to add and remove components,
to add and remove channels, and to refine the behavior of
components. We justify, but do not formally prove, their
correctness here.

Due to the fact that the refinement relation is transitive

S S0 ^ S0 S00) S S00
5

which can easily be proven from the definition, we can com-
bine the rules to a powerful refinement calculus.

For each rule, we refine a systemS = (I ;O;C) into an-
other systemS0 = (I ;O;C0). We use the syntax

S WITH C := C0
to denote the system(I ;O;C0). In addition, we write

S WITH c := c0
to denote the system(I ;O; (C n fcg) [fc0g).

To create a component with the same name and interface
asc = (n; I ;O; �), but with a different behavior� 0, we use
the syntax

c WITH behav:c := � 0
to denote the component(n; I ;O; � 0). Similarly, we can
change the name or interface of a component.

The refinement rules are presented in the syntax(Premises)(Refinement)
where the premises are conditions to be fulfilled for the

refinement relation to hold.

Behavioral refinement. Systems can be refined by refin-
ing the behavior of their components. Letc 2 C be a com-
ponent. If we refine the behavior ofc to �, we get a refine-
ment of the externally visible, global system behavior:

c 2 C8 i 2 �!in:c : �(i) � behav:c
S S WITH behav:c := �

The validity of this classical refinement rule follows
from the monotonicity of the composition operator
 and
the hiding operatorl. Assumeo 2 [[(I ;O;C0)]](i), then by
expansion of[[:]] and the observation that

ljout:c 2 �(l in:c)
we get

ljout:c 2 behav:c(l in:c)
Note that behavioral refinement of a component usually

leads to true behavioral refinement of the system. This is in
general not the case for the following architectural refine-
ments, which leave the global system behavior unchanged.

Adding output channels. If a channel is neither con-
nected to a system component, nor part of the system in-
terface, it may be added as a new output channel to a com-
ponentc 2 arch:S:

p 2 C n (I [out:C)� 2 �!in:c! P(������!out:c[fpg)8 i; o : o 2 �(i) , ojout:c 2 behav:c(i)
S S WITH

out:c := out:c[fpg
behav:c := �

The new behavior� does not restrict the possible out-
put on channelp. Hence, the introduction of new output
channels increases the nondeterminism of the component.
It does not, however, affect the behavior of the composed
system, sincep is neither part of the system interface nor
connected to any other component. The contents of the
new channel can be restricted with the behavioral refine-
ment rule.

That S0 is consistent follows directly from the consis-
tency of S and the conditions onp. Assume now that
o 2 [[(I ;O;C0)]](i). Then by the definition of[[:]] and the
observation that whileljfpg is unrestricted, all other chan-
nels are restricted the same way as in[[(I ;O;C)]]. Sincep
is hidden through thel operator, we deduce the identity be-
tween both black box behaviors.

Removing output channels. Provided that an output
channelp 2 out:c is not used elsewhere in the system, it
can be removed from the componentc:

p 62 O[in:C� = behav:clin:c
out:cnfpg

S S WITH

out:c := out:c n fpg
behav:c := �

The new behavior� is the restriction the component be-
haviorbehav:c to the remaining channels.

Adding and removing output channels are complemen-
tary transformations. Consequently, both rules are behavior
preserving. This is not surprising, since the channel in ques-
tion so far is not used by any other component.

Adding input channels. An input channelp 2 C may be
added to a componentc 2 C, if it is already connected to
the output of some other component or to the input from the
environment:

6

p 2 I [out:C� = behav:clin:c[fpg
out:c

S S WITH

in:c := in:c[fpg
behav:c := �

The new behavior� now receives input from the new
input channelp, but is still independent of the data inp.

The consistency of the system resulting from this re-
finement step and the semantical correctness of the rule is
straightforward.

Removing input channels. If the behavior of a compo-
nentc does not depend on the input from a channelp, the
channel may be removed:8 i; i 0 2 �!in:c : ijin:cnfpg = i 0jin:cnfpg) behav:c(i) = behav:c(i 0)8 i 2 �!in:c : �(ijin:cnfpg) = behav:c(i)

S S WITH

in:c := in:c n fpg
behav:c := �

Because the component does not depend on the input
from p (first premise), there is a behavior� satisfying the
second premise.

Note that even if a component does rely on the informa-
tion of an input channel, it can still be removed, when first
other channels containing the same information are added,
or the component’s behavior is refined such that it does not
use this input information any more.

As with output channels, adding and removing input
channels are complementary transformations and thus be-
havior preserving. This is because the input channels do
not influence the component’s behavior, and therefore the
global system behavior is unchanged, too.

Adding components. It is straightforward to add a com-
ponent without changing the global system behavior: we
simply have to ensure that it is not connected to the other
components, or to the system environment. Later, we may
successively add input or output channels, and refine the
new component’s behavior with the previously given rules.8 c 2 C : name:c 6= n

S S WITH C := C[f(n;?;?; �)g
The premise simply ensures that the namen is fresh; the

new behavior� is somewhat subtle: it is the unique behav-
ior of a component with no input and no output channels:f()g = �(()).

This approach to adding components is rather basic. To-
gether with the other rules, we obtain a more powerful rule:8 c 2 C : name:c 6= n

op\ (I [out:C) = ?
ip � op[I [out:C
S S WITH C := C[f(n; ip; op; �)g

Again, the name of the component must not be used else-
where. The second premise requires that the new output
channels are fresh, and the third premise demands that the
new input channels are connected. No additional constraint
is necessary for the behavior� of the newly introduced
component.

With this rule, we can reuse components that are already
defined elsewhere, for instance in a library.

Removing components. Similarly, components may be
removed if they have no output ports that might influence
the functionality of the system.

out:c = ?
S S WITH C := C n fcg

Expanding subcomponents. As we have seen, compo-
nents can be defined with the black box view of systems. In
this way system architectures can be decomposed hierarchi-
cally. We may now want to change the hierarchical structure
of a system. For example, the production department in our
example factory might consist of several production lines
and a coordinator. So far, the lines send their production
estimates to the coordinator, who forwards them to the ac-
counting department. For efficiency, we now want each line
to send its progress information directly to the accounting
department. To accomplish this, we need to incorporate the
individual production lines into the company architecture,
and remove or add the proper channels.

We therefore need a rule for expansion of components.
Assume a given system architectureS = (IS;OS;CS) that
contains a componentc 2 CS. This componentc is itself de-
scribed by an architectureT = (IT;OT;CT). The names of
the components inT are assumed to be disjoint from those
in S; through renaming this can always be ensured. The ex-
pansion ofT in S takes the components and channels ofT
and incorporates them withinS.

c = (n; IT;OT; [[T]])
out:CT \ out:CS = out:c
out:CT \ IS = ?
S S WITH CS := CS n fcg [CT

The first premise means that the architectureT describes
the componentc. The other two premises require that the

7

internal channels ofT, which are given byout:CT n OT, are
not used inS. In general, this can be accomplished through
a renaming rule. We do not give one here, but it would be
straightforward to define.

Due to the premises, the expanded system is consistent.
For the behavioral equivalence of the original systemSand
the refined systemS0 =def S WITH CS := CS n fcg [CT,
we expand the definition of[[S]] and the nested definition of[[T]].

This results in existentially quantified conditions over

the two named stream tupleslS : �����������!(in:CS[out:CS) and

lT : �����������!(in:CT [out:CT). On the common channelsIT [OT

the two stream tuples coincide. We can therefore re-
place them by an existentially quantified stream tuplel :������������������������!(in:CS[out:CS[in:CT [out:CT), which is the same as in
the expanded definition of[[S0]].

The rules for the introduction of a new component and
for the unfolding of that component may be combined to
introduce whole subarchitectures into a system. In this way,
architectural patterns can be introduced.

Folding component groups. The complementary opera-
tion to the expansion of a component is the folding of a
subarchitectureT = (IT;OT;CT) of a given systemS =(I ;O;C).

T is a subarchitecure ofS, if� the componentsCT are a subset of the componentsC
of S;� the inputsIT at least include the inputs of the compo-
nents inCT that are not connected to some output of
a component inCT; they may include other inputs as
well, except those input channels that are either in the
global system inputI or controlled by a component in
the complete systemC;� similarly, the outputsOT are a subset of the component
outputsout:CT, and include at least those outputs from
out:CT that are connected to either the environment or
to other components inC.

Formally, the folding rule is defined as follows:

CT � C
in:CT n OT � IT � (I [out:C) n OT

out:CT \ (O[in:(C n CT)) � OT � out:CT8 c 2 C n CT : name:c 6= n

S S WITH C := C n CT [f(n; IT;OT; [[T]])g
The first three premises are the conditions mentioned

above; the fourth premise requires that the namen of the
new component is not used elsewhere in the resulting sys-
tem.

Interestingly, folding an empty subset of components has
the same effect, as introducing a new component without
input and output channels.

Component expansions and architecture folding form a
powerful mechanism to restructure system architectures. It
is possible to move components from one substructure to
another; this is for instance necessary if company structures
are rearranged or if integrated circuits are moved from one
board to another.

Note however, that expansion and folding of substruc-
tures does not preserve the functionality of the affected sub-
structures, but only the functionality of the systems inter-
face.

Behavioral refinement with invariants. While the rules
that add or remove channels are powerful enough for the
example presented in Section 2, the refinement of the com-
ponent behaviors for departments can not be shown with
our previously given behavior rule. What is needed is the
knowledge that the channel from the accounting department
to the management contains a processed form of the infor-
mation that the management received before from the sales
and production departments.

To overcome this problem, we introduce the notion of
behavioral refinement in the context of aninvariant. An
invariant over the possible message flows within a system
S = (I ;O;C) is given as a predicate	 over all streams
within the system:	 : �������!(I [out:C) ! B
An invariant is valid within a system, if it holds for all
named stream tuplesl defining the system’s streams. This
can be formally expressed similar to the expanded definition
of the system semantics[[S]] presented in Section 4:8 l 2 �������!(I [out:C) :(8 c 2 C : ljout:c 2 (behav:c)(ljin:c))) 	(l)

Note that invariants are not allowed to restrict the pos-
sible inputs on channels fromI , but only characterize the
internal message flow.

Returning to our example in Section 2, a suitable invari-
ant for the refinement of Management would be:

Every day, the information sent from Accounting
to Management is a summary of the information
sent both from Sales to Management, and from
Production to Management.

If we denote thek-th interval of a timed streams (see
Figure 3) bysi , the invariant could be formalized as:	(l) ,def 8 k : reportsk+1 = process(oldpay0k; progressk)

8

Herereportsis the name of the new channel from Account-
ing to Management (Figure 2(b)), and we assume there is a
functionprocess(a; b) that summarizes the data from Sales
and Production. Note that the invariant is quite simple, and
just relates the stream contents for each interval (days, in
our example). We expect this to be not unusual.

Let us now assume that we want to replace the behav-
ior of componentc by a new behavior�. The latter is a
refinement ofbehav:c under the invariant	, when:8 l 2 �������!(I [out:C) :	(l)) �(ljin:c) � (behav:c)(ljin:c)

The complete refinement rule is as follows. The two
premises express that	 is a valid invariant, and that� re-
finesbehav:c under this invariant.8 l 2 �������!(I [out:C) :(8 c 2 C : ljout:c 2 (behav:c)(ljin:c))) 	(l)8 l 2 �������!(I [out:C) :	(l)) �(ljin:c) � (behav:c)(ljin:c)

S S WITH behav:c := �
The formal proof uses the expanded definition of[[S]]. It

is then immediate that	(l) is valid for all occuring streams;
thus� is a refinement ofbehav:c for all possible input
streams.

Finding a proper invariant	 that is easy to establish and
to use is a diffcult task for the system designer. The maxi-
mal invariant	(l) = Trueleads to our initially given simple
refinement rule without an invariant. The minimal possible	 gives an exact description of the internal behavior of a
system, but it is often difficult to find and too complex to
use. However, if the designer wants to change the behav-
ioral descriptions of a component — in our example, for in-
stance, to change management so that it accesses the reports
from the accounting department —, he can take advantage
of his knowlege about the dependencies between internal
streams.

One advantage of this use of invariants is that the invari-
ant is only used within one rule and does not have to be
maintained as a system invariant over all rule applications.
If desired, however, another element	 could be added to
system descriptions: the new form(I ;O;C;) explicitely
describes system invariants. It is rather straightforward to
adapt the refinement rules accordingly.

The above given rule is the only one that requires global
properties of a system as a premise. The other rules only
deal locally with one affected component. However, also
the validity of the invariant	 can be proved locally for the
involved components.

6. Related Work

Our work is heavily influenced by the theory of nondeter-
ministic, hierachical dataflow networks that emerges from
[9, 2, 6].

These dataflow networks can be given a compositional
semantics, and refinement relations can be established.
There are basically three classes of refinement relations:

1. behavioral refinement (black box refinement)

2. structural refinement (glass box refinement)

3. signature refinement

While black box refinement only works with black box
behaviors of not further detailed components, structural re-
finement allows to refine an unstructered (black box) be-
havior by a subsystem architecture. Signature refinement
[1] deals with the manipulation of the system or component
interfaces. All three classes can be reduced to the simple
behavioral subset relation defined in Section 3.

Until now, there was no concept of architectural refine-
ment that relates two glass box architectures. As with the
three refinement classes mentioned above, we define the ar-
chitectural refinement rules of Section 5 in terms of behav-
ioral refinement.

In the field of software architectures, dataflow networks
are sometimes called pipelining architectures [7, 4, 5],
which exhibit basically the same ideas. However, the proper
formalization of software architectures, together with the
definition of a refinement calculus which is correct relative
to a given semantics has to our knowledge not been done
before. The same holds for the so-called structured design
techniques [3, 13].

The most promising attempt at architecture refinement so
far has been given in [10, 11]. In that work, data flow archi-
tectures are implemented by shared-memory architectures.
However, the semantics used is not particularly well-suited
for data flow, and they do not seem to support nondetermin-
ism or underspecification.

Furthermore they only allow “faithful implementation”
which is in contrast to our approach. They do not allow
adding or removing data flow connections, which seems to
stem from the lack of support for underspecification in their
model. Underspecification is the primary source that allows
us to change the information structure of an architecture.
In our history-based semantics, underspecification can be
easily handled.

7. Conclusion

To our knowledge, a basic calculus, dealing with simple
addition ond removing of channels and components in an

9

architectural style has not been considered before. We think
that such a calculus — well-suited for graphical manipula-
tion of dataflow networks — is crucial for the applicability
of a formal method.

We therefore have defined our calculus in such a way,
that it is easy to understand and use — possibly assisted by
CASE-tools. A prototypical CASE-tool, AUTOFOCUS [8],
is currently under development at our department. It will in-
corporate this calculus together with automata-based speci-
fication mechanisms for component behavior. The concrete
representation of an architecture is graphical, and we do not
plan to design a textual representation: for a formalization
of architectures it suffices to give a definition of the abstract
syntax in such a way, that concrete graphical representation
and abstract syntax are closely related.

The calculus defined in this paper allows to reuse given
architectures (or architectural patterns) and adapt them to
specific needs. It is therefore interesting to develop a library
of dataflow architecture designs for different applications.

Our calculus currently only deals with refinement inter-
nal to the system. As future work, we will extend it with
rules to change the interface signature in the style of [1].
The new rules will allow us to change the input or output
channels of a system, as well as to split one channel into
several channels carrying parts of the original information
or vice versa.

Another interesting direction is the description of com-
ponent behaviors by state machines and the application of
state machine refinement rules (as defined e.g. in [12]) for
component behavior refinement.

We also hope that our article will be of some influence
to the software architecture community, where the defini-
tion of architecture is still rather informal. In particular,
the question of how to manipulate and adapt an architec-
ture during system development has not been adequately
addressed so far.

References

[1] M. Broy. Interaction refinement the easy way. In M. Broy,
editor,Program Design Calculi. Springer NATO ASI Series,
Series F: Computer and System Sciences, Vol. 118, 1993.

[2] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner,
and R. Weber. The Design of Distributed Systems -
An Introduction to FOCUS. Technical Report SFB
342/2/92 A, Technische Universität München, 1993.
http://www4.informatik.tu-muenchen.de/reports/TUM-
I9202.ps.gz.

[3] T. DeMarco. Structured Analysis and System Specification.
Yourdon Press, 1978.

[4] D. Garlan and M. Shaw.Advances in Software Engineering
and Knowledge Engineering, volume I, chapter An Intro-
duction to Software Architecture. World Scientific Publish-
ing Company, 1993.

[5] D. Garlan and M. Shaw. Characteristics of higher-level lan-
guages for software architecture. Technical Report CMU-
CS-94-210, School of Computer Science and Software En-
gineering Institute, Carnegie Mellon University, 1994.

[6] R. Grosu and K. Stoelen. A Model for Mobile Point-to-
Point Data-flow Networks without Channel Sharing . In
M. Wirsing, editor,AMAST’96. LNCS, 1996.

[7] C. Hofmann, E. Horn, W. Keller, K. Renzel, and
M. Schmidt. The field of software architecture. TUM-I
9641, Technische Universität München, 1996.

[8] F. Huber, B. Schätz, A. Schmidt, and K. Spies. AutoFo-
cus - A Tool for Distributed Systems Specification . In J. P.
Bengt Jonsson, editor,Proceedings FTRTFT’96 - Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages
467–470. LNCS 1135, Springer Verlag, 1996.

[9] G. Kahn. The semantics of a simple language for parallel
programming. In J. Rosenfeld, editor,Information Process-
ing 74, pages 471–475. North-Holland, 1974.

[10] M. Moriconi and X. Qian. Correctness and composition
software architectures. InProceedings of ACM SIGSOFT
’94, pages 164–174, 1994.

[11] M. Moriconi, X. Qian, and R. Riemenschneider. Correct
architecture refinement.IEEE Transaction on Software En-
gineering, 21(4):356–372, April 1995.

[12] B. Rumpe. Formale Methodik des Entwurfs verteilter ob-
jektorientierter Systeme. PhD thesis, Technische Universität
München, 1996.

[13] E. Yourdon and L. Constantine.Structured Design. Yourdon
Press, 1975.

10

