Refinement of Information Flow Architectures *

Jan Philipps Bernhard Rumpe

Institut fur Informatik
Technische Universitat Miinchen
D-80290 Miinchen
{philipps,rumpé@informatik.tu-muenchen.de

Abstract Components can be structurally composed to build hierar-
chical models of an architecture, and their behavior can be
A calculus is presented for the stepwise refinement ofrefined.
abstract information flow architectures. We give a mathe- However, so far there is no refinement calculus to incre-
matical model for information flow components based on mentally change an architecture, e.g. by adding new com-
relations between input and output communication histo- ponents or channels, so that the resulting system provably
ries, and describe system architectures using two views: thepreserves or refines the established external behavior. It is
glass box view is a network of basic components, while thethe aim of this paper to establish such a calculus for data
black box view regards the network itself as a component.flow networks.
This allows us to hierarchically compose systems. This paper is structured as follows. In Section 2, we
The calculus consists of basic rules to add or remove present a short motivating example for architecture refine-
components and channels, and to replace components bynent. Sections 3 and 4 contain the mathematical founda-
subnetworks and vice versa. The correctness of the rules igions for components and systems. In Section 5 we present
justified by the refinement relation on the black box view of our refinement calculus. Section 6 compares our approach
architectures. to related work, and Section 7 concludes.

2. Example
1. Introduction

As an example, we consider an imaginary company with
The architecture of a software or hardware system influ- three departments: Management, Production, and Sales.
ences its efficiency, adaptility and the reusability of com- The company’s operation can be modeled as information
ponents. Especially the adaption to new requirements andand material flow as follows (Figure 1).
reuse of existing components cause frequent changes in the Raw materials enter the factory via channel “material”
architecture while the system is developed, or when it is from outside. They are processed in the production depart-
later extended. ment, and the final goods leave the company via channel
In this paper, we study how a given architecture can be “goods” to be delivered to the customers. The production
modified, so that is is a provably correct refinement of the department receives a schedule for the production from the
original architecture. We follow the suggestive box-and- management, and forwards information about the progress
arrow approach that is common in informal notations [3, in the schedule to both the management and the sales de-
13]; we interpret arrows as data flow channels and boxes apartment.
components that process data flows. The sales department sends information about pricing
Our work is based on a precise mathematical model [2] and delivery dates via the channel “custinf’ to the cus-
for such data flow networks. The model is simple, yet pow- tomers. The department receives orders and payment from
erful: when specifying component behavior, certain aspectsthe customers, and forwards them to the management.
can be left open. We refer to this styletasderspecification Based on the information from the production and sales
*This paper partly originates from therSLAB project, which is sup- departments, the management decides about pricing of the

ported by the DFG under the Leibniz program, by Siemens-dixend goods, and the schedule fOI’ their production. .
Siemens Corporate Research. Now Management decides that they spend too much time

In the rest of this paper, we propose a formal semantics

pricing custinf for architectures, and show that these transformations — as
] sales well as several others — are behavioral refinements with
"“ordpay | ordpay respect to our semantics.

3. Preliminaries

progress progress

In this section we introduce the basic mathematical
concepts for the description of systems. We concentrate
Produc- goods on interactive systems that communicate asynchronously

tion through channels. A component is modeled as a relation
over input and output communication histories that obeys
certain causality constraints.

We assume that there is a given set of channel identifiers,
Figure 1. Company Architecture C, and a given set of messaghs, In the example, we have
for instance “material’e C, andM contains information
items like orders and reports as well as materials and goods.

material

processing the data from Production and Sales. Instead of

detailed pieces of data from the departments, they want theStreams. We usestreamso describe communication his-

data to be gathered, evaluated, and summarized in reportdories on channels. A stream over the bkts a finite or

Hence, they form a new department called “Accounting” to infinite sequence of elements frokh. By M* we denote

handle this preprocessing, and change the way informatiorthe finite sequences over the 34t The setM* includes

flows within the company. the empty sequence that we write(@s The set of infinite
In the system architecture model that we present in thesequences ové! is denoted byM.

rest of this paper, the new architecture can be obtained Communication histories are represented tiyed

through several transformations. The transformations aresStreams

summarized in Figure 2; Figure 2(d) shows the final archi-

tecture of the company. M —get (M*)

The intuition is that the time axis is divided into an infi-
nite stream of time intervals, where in each interval a finite
number of messages may be transmitted. In Figure 3 we
have choosen days as intervals. During each day the reports
from the accounting department are collected within each
« Then, accounting is connected to the other departmentdnterval (denoted by....)). The order of the incoming re-
so that it receives data from Production via channel POrsis fixed, but the exact arrival time within the interval is
unknown. Of course, we may choose finer time scales, and
for technical applications such as process control the inter-
vals might last only a milli- or even a nanosecond each.

Fori € N andx € M™ we denote by | i the sequence
« Now the departments change their operation: Account- ©f the firsti sequences in the streamin our examplex | i

ing produces reports from the information of Produc- denotes the communication history of the streafor the

tion and Sales, and forwards them to Management; firsti days. _ o .
Management bases its decisions on the input from Ac- A named stream tupie a functionC — M* that assigns

counting, instead of the separate data from Productionhistories to channel names. ForC C we writef) for the
and Sales. Production and Sales forward their data toset of named stream tuples with dom@&in

Accounting (Figure 2(c)). Forx € E) andC’ C C, the named stream tupl&:: €

 Now, the channels for the unprocessed data have bea denotes the restriction afto the channels i’
come superfluous. In a final transformation step, we
can disconnect the channels “progress” and “oréipay Vece C':Xer(c) =x(c)
from Management. (Figure 2(d)).

¢ First, a new department for accounting is introduced.
The exact behavior of this departmentis at the moment
irrelevant for the clients of the company, as it is not yet
cooperating with any other department (Figure 2(a)).

“progress” and from Sales via channel “ordfagnd
that Management receives information from Account-
ing via a new channel, say “reports”. (Figure 2(b)).

i Account-!
o ing |

Account-|
ing

T
I
|

Produc- Produc-

tion tion
(a) Adding components (b) Adding channels
Manage- Manage-
ment ment Sales

Account-| / Account-
ing ing’

Produc- Produc-
tion' tion'

(c) Refining behaviors (no change of structure) (d) Deleting channels

Figure 2. Architecture Refinements

Behaviors. We model the interface behavior of a compo- is called abehavior Since for every input history multiple
nent with the set of input channdlsC C and the set of output histories can be allowed by a behavior, it is possible

output channel® C C by a function to model nondeterminism, or equivalently, to regard rela-
N N tions with multiple outputs for one input as underspecified.
p: 1 —=P(O) In our example (see Figure 1) the behavior of depart-

Intuitively, p maps the incoming input drto the set of pos- ~ Ment Management would map input stream tuples over
sible outputs orD, and thus describes the visible behavior {Progressordpay} to a set of ouip)ut stgam tuples over
of a component with input channdlgnd outputs channels {schedpricing}. A functionf € | — O can be seen

O. as a special case of a deterministic relation. We say the
Equivalently,3 can be seen as a relation over the named time guardediff for all input historiesx andy, and for all
e = i e N
stream tuples inl"~ and the named stream tuples@. p

xli=yli={Ex) i+ =y L{i+1)

WER BRI e T P A time guarded functiof is called astrategyfor a behavior
<< — o > B if for all x we havef (x) € B(x). If B has at least one
— strategy, we say tha is realizable
Time guardedness reflects the notion of time and causal-
Figure 3. Timed stream ity. The output at a certain time interval may only depend

on the input received so far, and not on future input. Given [[D(B)) we say thap is refined byB ., iff
the time scale from Figure 3, a strategy for the management

of our example company would give orders to the produc- Vie T B2(i) C B (i)

tion and sales departments only after having r@hoeports -

of a given day — consequently, the orders can only be im- Refinement means in our context, that each possible chan-
plemented the next day. nel history of the new componentis also a possible channel
history of the original component.

Interface adaption. Given a behaviof : T> — 111’(6)),
we can define a behavior with a different interface by ex- 4., System Architectures
tending the set of input channels, and restricting the set of
output channels. IF C |’ andO’ C O, thenp’ = [SI'C;, is

. , = . In this section, we define an abstract notion of system
again a behavior with (i) = (B(il}))lo.

architecture. As demonstrated in the introductory example,

This corresponds to the change of the componentinter-, gystem architecture consists of a setofponentand
face by adding input channels, that are ignored by the com-yir connections

ponent, and removing output channels that are ignored by We first define components, and then introduce the ar-

the ingnored by the environment. chitecural or glass box view, and the black box view of a
system.

Composition. Behaviors can be composed by a variety of

operators. Sequential and parallel composition, as well as B

a feedback construction is introduced in [6]. For our work, Components. A components a tuplec = (n, 1,0, B),

we use a generalized operatorthat composes a finite set wh_eren is the name of the componedt,C C is the set
of behaviors of input channels, an® C C the set of output channels.

Moreover, : T) —]P(B)) is a behavior.

B={B;: ﬂ) —]P’((Tf], co B I_n) —]P’((E)])} The operatorsame.c, in.c, out.c andbehav.c yield n,
I, O andp, respectively. The nameis introduced mainly
in parallel with implicit feedback. We define as a convenience for the system designer. The channel iden-
tifiersin.c andout.c define the interface of the component.
O = U1<k<nOk
I = (Ur<k<nlk) \ O

Architectural view of a system. Inthe architectural view,
whereO is the union of all component outputs, ahds a system comprises a finite set of components. A connec-
the set of those inputs, that are not connected to any of thetion between components is established by using the same

components’ outputs. channel name.
Then the relationsB € T — P(O) is characterized A system is thus a tuplg = (I,0,C), wherel C Cis
by: the input interface, an® C C is the output interface of the
system.C is a finite set of components.
o€ (®B)(i) & We want to be able to decompose systems hierarchically.

ﬂ) In fact, as we will see, a system can be regarded as an or-
7 GH(cI) i?)/\l\. A dina_ry compon_ent. Therefore syste_ms need not pe closed
vk e {1 N} : o, € Bulll,) (having empty mterfages),_ and we mtroduc_:e the interface
Yo Tk K channeld andO to distinguish external form internal chan-
nels.
We define the operatoins.S, out.S, arch.Sto returnl, O
andC, respectively. In addition, we write:

If all behaviors inB are realizable, then so igB. The
proof follows [6]; it relies on the time guardedness of strat-
egy functions.

. in.C =def Ucearch.s(in-c)
Refinement. Intuitively, a behavior describes the exter- 0Ut.C =gef Uccarch s(OUL.C)

nally observable input / output relation that the clients of

a component may rely on. Refining a behavior in a modular for the union of the input or output interfaces, respectively,
way means that the client's demands are still met, when theyt the components .

component behavigr is specializ.ed.. . The following consistency conditions ensure a meaning-
Formally, the refinement relation in our framework is de- | architectural view of a systeld Letc,cr,cs € arch.S

. . . — . L ’

fined as follows. Given two behaviofs, 2, € | — be components, with; # c;.

1. Each two components have different names: Thus, the black box behavior can now be used as a com-
ponent description itself. Introducing a fresh nameve
name.c; # name.c; define the componeugt as:

2. Each channel is controlled by only one component. ¢s = (n,in.S out.S, [S])

Therefore it may be in only one output interface: In this way, a hierachy of architectural views can be defined

and iteratively refined and detailed.
Later on we need a more detailed definition of this se-
mantics. By expanding the definitions of tlxeand] op-

3. Input channels of the system interface are controlled erators, we obtain the following equivalent characterisation
by the environment. Therefore, they cannot be output of [(1,0,C)I:

channels of a component:

out.ci Nout.c, =g

oe [(I,0,C)fi) &
_—
Jl e (luout.C):
|‘o:0/\”| =i
Vce C: lout.c € (behav.c)(lfinc)

in.SNout.c=o

4. Each input channel of a componentis either connected
to a corresponding output channel of another compo-
nent, or it is controlled by the environment: This expanded characterisation says, thist an output

of the system for inpuit (line 1), iff there is a mappingof

all channels to streams (line 2), such thabincides with

the given input and outpub on the system interface chan-

5. Each channel of the output interface is connected to apg|s (line 3) and feeding the proper submappingiofo a
corresponding output channel of a component: component results also in a submapping of

in.c C out.CUIin.S

out.SC out.C . .
5. Refinement of system architectures

Note that we allow that input channels are in more than . _ _)
one interface: a channel can have multiple readers, even When a system is refined, it must not break the inter-
broadcasting is possible. Not every channel of the systemaCt'O” with its environment. The observable behavior of a
input interface has to be connected to a component, sincd€fined system must be a refinement of the behavior of the

condition 4 only demands subset relation instead of equal-Ciginal system. _
ity. In this paper, we leave the interface of the system un-

We allow a component to read and write on the same changed. Interface refinements that affect the signature of a
channel if desired; as a consequence of conditi@hsnd systemS are described in [1_] for black box behaviors; they
(5), however, system input and output are disjoint. can be adapted to our ar_thtectural framework. We also ig-
nore aspects of realizability. The techniques used to prove
that a component specification is realizable are orthogonal
to the rules presented here, and will not be considered in
this paper.

We therefore define the refinement relation on systems
as a behavioral refinement on the given interface:

Black Box view of a system. The behavior of a compo-
nentc is given in terms of its relatiobehav.c between in-
put and output streams. We define biack box behavioof

a systemS composed of finitely many componertsch.S
using the composition operatar. The result of this com-
position is then made compatible with the system interface y R S P ;
by restricting the output channels to thoseint.S, and by S8 e Vi € in5: [ST(0) € S0

extending the input channels to thoseénrs: As explained above, we tacitly assume tima$ = in.S' and
ins out.S=out.S.
[S] = (®{ behav.c|c € arch.S})Tg; s In the rest of this chapter, we define a set of constructive

refinement rules that allow refinements of system architec-
tures. The rules allow us to add and remove components,
to add and remove channels, and to refine the behavior of
components. We justify, but do not formally prove, their
correctness here.

Due to the fact that the refinement relation is transitive

Because of the context conditions for systems the com-
position is well-defined. The hiding of the internal output
channelout.C \ out.Sand the extension with the unused
input channelin.S\ in.C is also well-defined.

The black box behavior has the signature:

IS :in.S— P(out.9) SwS A S = SwuS

which can easily be proven from the definition, we can com-

bine the rules to a powerful refinement calculus.
For each rule, we refine a systédn= (I, O, C) into an-
other systen®’ = (1,0, C’). We use the syntax

SWITH C:=C'’
to denote the systefi, O, C’). In addition, we write
SWITH c:=¢'

to denote the systeff, O, (C\ {c}) U {c'}).

Adding output channels. If a channel is neither con-
nected to a system component, nor part of the system in-
terface, it may be added as a new output channel to a com-
ponentc € arch.S:

peC\(luout.C)

B ciné— PloutcU{p))

Vi,0: 0€ B(i) < Olout.c € behav.c(i)

SwSWITH
out.c:= out.cU {p}
behav.c:=

To create a component with the same name and interface

asc = (n, 1,0,), but with a different behavigp’, we use
the syntax

C WITH behav.c:= B’
to denote the componefin, 1,0, 3’). Similarly, we can
change the name or interface of a component.

The refinement rules are presented in the syntax

‘ (Premise$

‘ (Refinement

where the premises are conditions to be fulfilled for the
refinement relation to hold.

Behavioral refinement. Systems can be refined by refin-
ing the behavior of their components. leee C be a com-
ponent. If we refine the behavior oto 3, we get a refine-
ment of the externally visible, global system behavior:

ceC
Vieinc: (i) C behav.c

‘ SwSWITH behav.c:= 3

The validity of this classical refinement rule follows
from the monotonicity of the composition operatorand
the hiding operatof. Assumeo € [(l,O,C')](i), then by
expansion of..] and the observation that

I‘out.c € B(Iin.c]
we get

llout.c € behav.c(lin¢)

The new behavioy does not restrict the possible out-
put on channep. Hence, the introduction of new output
channels increases the nondeterminism of the component.
It does not, however, affect the behavior of the composed
system, since is neither part of the system interface nor
connected to any other component. The contents of the
new channel can be restricted with the behavioral refine-
ment rule.

That S’ is consistent follows directly from the consis-
tency of S and the conditions op. Assume now that
o € [(I,0,C")](i). Then by the definition of.] and the
observation that whilé|;,, is unrestricted, all other chan-
nels are restricted the same way ag(ih O, C)]. Sincep
is hidden through th§ operator, we deduce the identity be-
tween both black box behaviors.

Removing output channels. Provided that an output
channelp € out.c is not used elsewhere in the system, it
can be removed from the component

pZOouin.C

in.c
B = behaV-CIout.C\{p}

SwSWITH
out.c:= out.c\ {p}
behav.c:= 3

The new behaviop is the restriction the component be-
haviorbehav.c to the remaining channels.

Adding and removing output channels are complemen-
tary transformations. Consequently, both rules are behavior
preserving. This is not surprising, since the channelin ques-
tion so far is not used by any other component.

Note that behavioral refinement of a component usually Adding input channels. An input channep € C may be
leads to true behavioral refinement of the system. This is inadded to a componente C, if it is already connected to

general not the case for the following architectural refine-

the output of some other component or to the input from the

ments, which leave the global system behavior unchanged.environment:

peluout.C This approach to adding components is rather basic. To-

B = behav.clg‘ljff{p} gether with the other rules, we obtain a more powerful rule:
S»SWITH Yce C: name.c#n
in.c:=in.cU{p} opN (lUout.C) =g
behav.c:=f ip C opUl Uout.C
The new behaviop now receives input from the new ‘ SwSWITH C:= CU{(n,ip,0p,)}

input channep, but is still independent of the datajn

The consistency of the system resulting from this re-
finement step and the semantical correctness of the rule i
straightforward.

Again, the name of the component must not be used else-
where. The second premise requires that the new output
Thannels are fresh, and the third premise demands that the
new input channels are connected. No additional constraint

is necessary for the behavigr of the newly introduced
Removing input channels. If the behavior of a compo- component.

nentc does not depend on the input from a charmehe With this rule, we can reuse components that are already
channel may be removed: defined elsewhere, for instance in a library.
ViLieine: ilneum —i'l . »
1€ IN.C: Hlinevipt = Plin.c\{p} Removing components. Similarly, components may be

= behav.c(i) = behav.c(i') removed if they have no output ports that might influence

ici i : the functionality of th tem.
Vi€ine: Blineyp) = behav.cli € functionality ot the system

SSWITH ‘ oute=2
in.c:=in.c\{p} ‘ SwSWITH C:= C\ {c}
behav.c:=p

Fxpanding subcomponents. As we have seen, compo-
nents can be defined with the black box view of systems. In
this way system architectures can be decomposed hierarchi-
cally. We may now want to change the hierarchical structure
of a system. For example, the production departmentin our
example factory might consist of several production lines
and a coordinator. So far, the lines send their production

Because the component does not depend on the inpu
from p (first premise), there is a behavifrsatisfying the
second premise.

Note that even if a component does rely on the informa-
tion of an input channel, it can still be removed, when first
other channels containing the same information are added

or the component’s behavior is refined such that it does not__. .
o . . estimates to the coordinator, who forwards them to the ac-
use this input information any more. . -)
. . N counting department. For efficiency, we now want each line
As with output channels, adding and removing input . . ; " .
. to send its progress information directly to the accounting
channels are complementary transformations and thus be- : : :
. ! S) department. To accomplish this, we need to incorporate the
havior preserving. This is because the input channels do. . " S . .
: . . individual production lines into the company architecture,
not influence the component’s behavior, and therefore the

T and remove or add the proper channels.
global system behavior is unchanged, too. brop .
We therefore need a rule for expansion of components.

Assume a given system architecti8e= (Is, Os, Cs) that
Adding components. It is straightforward to add a com- contains a componente Cs. This componentis itself de-
ponent without changing the global system behavior: we s¢riped by an architectui® = (It, Or, Cr). The names of
simply have to ensure that it is not connected to the otherihe components iff are assumed to be disjoint from those
components, or to the system environment. Later, we mayin s; through renaming this can always be ensured. The ex-

new component's behavior with the previously given rules. ang incorporates them withi:

‘ Vce C: name.c#£n c=(n,lt,Or, [T])
out.CrNls=o
The premise simply ensures that the nanmefresh; the ‘ SwSWITH Cs:= Cs\ {c} U Ct

new behavior is somewhat subtle: it is the unique behav-
ior of a component with no input and no output channels: The first premise means that the architecfidescribes
{0} = a(()). the component. The other two premises require that the

internal channels of, which are given byut.Ct \ Oy, are Interestingly, folding an empty subset of components has
not used irS. In general, this can be accomplished through the same effect, as introducing a new component without
a renaming rule. We do not give one here, but it would be input and output channels.

straightforward to define. Component expansions and architecture folding form a

Due to the premises, the expanded system is consistenfpowerful mechanism to restructure system architectures. It
For the behavioral equivalence of the original systeamd is possible to move components from one substructure to
the refined syster8' =gt S WITH Cs := Cs \ {c} U Cr, another; this is for instance necessary if company structures
we expand the definition dfS] and the nested definition of are rearranged or if integrated circuits are moved from one
[TI. board to another.

This results in existentially quantified conditions over Note however, that expansion and folding of substruc-

the two named stream tuplds : —Hn CsUout.Cs) and tures does not preserve the functionality of the affected sub-
structures, but only the functionality of the systems inter-

_—
It : (in.Cy Uout.Cy). On the common channels U Or face.
the two stream tuples coincide. We can therefore re-

place them by an existentially quantified stream tupte Behavioral refinement with invariants. While the rules

(in.CsUout.CsU in.Cy U out.Cr), which is the same asin that add or remove channels are powerful enough for the
the expanded definition ¢&']. example presented in Section 2, the refinement of the com-
The rules for the introduction of a new component and ponent behaviors for departments can not be shown with
for the unfolding of that component may be combined to our previously given behavior rule. What is needed is the
introduce whole subarchitectures into a system. In this way, knowledge that the channel from the accounting department
architectural patterns can be introduced. to the management contains a processed form of the infor-
mation that the management received before from the sales
Folding component groups. The complementary opera- and production departments.
tion to the expansion of a component is the folding of a ~ To overcome this problem, we introduce the notion of

subarchitecturd = (1, Oy, Cy) of a given systens = behavioral refinement in the context of @mvariant An
(1,0,C). invariant over the possible message flows within a system
T is a subarchitecure &, if S = (I,0,C) is given as a predicat¢ over all streams

within the system:
e the component€r are a subset of the componefts

of S

e the inputslt at least include the inputs of the compo-)) . N .
nents inCr that are not connected to some output of An invariant is valid within a system, if it holds for all
a component irCr; they may include other inputs as named stream tupldsdefining the system’s streams. This

well, except those input channels that are either in the €1 be formally expressed similar to the expanded definition

global system inputt or controlled by a componentin ©Of the system semanti¢s] presented in Section 4:
the complete systef@;

—
Y:(luoutC)— B

E——
Vle (luout.C):
¢ similarly, the output©r are a subset of the component (Ve e C:lloutc € (behav.c)(llinc)) = W(I)

outputsout.Cr, and include at least those outputs from

out.Cy that are connected to either the environmentor Note that invariants are not allowed to restrict the pos-
to other components iG. sible inputs on channels froy but only characterize the
internal message flow.

Formally, the folding rule is defined as follows: Returning to our example in Section 2, a suitable invari-

CrccC ant for the refinement of Management would be:
in.C Cly C (luoutC . . .
I(:]ut (T:T\ r?T(Ob inT (6\(CT))OUC O)T\Cogut Cr Every day, the information sent from Accounting

to Management is a summary of the information
sent both from Sales to Management, and from
‘ SwSWITH C:=C\ Cr U{(n,It, O, [T} Production to Management.

Vce C\Cr: name.c#n

The first three premises are the conditions mentioned |f we denote thek-th interval of a timed stream (see

above; the fourth premise requires that the nanwé the Figure 3) bys, the invariant could be formalized as:
new component is not used elsewhere in the resulting sys-

tem. Y(l) <qef YK reports 1 = processoldpay, progresg)

Herereportsis the name of the new channel from Account-

6. Related Work

ing to Management (Figure 2(b)), and we assume there is a

functionprocess$a, b) that summarizes the data from Sales
and Production. Note that the invariant is quite simple, and

Our work is heavily influenced by the theory of nondeter-
ministic, hierachical dataflow networks that emerges from

just relates the stream contents for each interval (days, in[g, 2, g].

our example). We expect this to be not unusual.

These dataflow networks can be given a compositional

Let us now assume that we want to replace the behav-semantics, and refinement relations can be established.

ior of component by a new behaviof. The latter is a
refinement obehav.c under the invariari, when:

_—
VIe (luout.C):
Y(l) = B(llinc) € (behav.c)(lfin.c)

The complete refinement rule is as follows. The two
premises express th#tis a valid invariant, and thai re-
finesbehav.c under this invariant.

Vie(l Uout.Ci:
(Vc e C:lout.c € (behav.c)(lfinc)) = ¥(I)

_—
VIie (luout.C):
Y(l) = B(llin.c) € (behav.c)(lfin.c)

SwSWITH behav.c:= 3

The formal proof uses the expanded definitio Sf. It
is then immediate thak(l) is valid for all occuring streams;
thus is a refinement obehav.c for all possible input
streams.

Finding a proper invariailt’ that is easy to establish and
to use is a diffcult task for the system designer. The maxi-
mal invariant/(l) = Trueleads to our initially given simple
refinement rule without an invariant. The minimal possible
W gives an exact description of the internal behavior of a
system, but it is often difficult to find and too complex to

use. However, if the designer wants to change the behav

ioral descriptions of a component — in our example, for in-

There are basically three classes of refinement relations:
1. behavioral refinement (black box refinement)
2. structural refinement (glass box refinement)
3. signature refinement

While black box refinement only works with black box
behaviors of not further detailed components, structural re-
finement allows to refine an unstructered (black box) be-
havior by a subsystem architecture. Signature refinement
[1] deals with the manipulation of the system or component
interfaces. All three classes can be reduced to the simple
behavioral subset relation defined in Section 3.

Until now, there was no concept of architectural refine-
ment that relates two glass box architectures. As with the
three refinement classes mentioned above, we define the ar-
chitectural refinement rules of Section 5 in terms of behav-
ioral refinement.

In the field of software architectures, dataflow networks
are sometimes called pipelining architectures [7, 4, 5],
which exhibit basically the same ideas. However, the proper
formalization of software architectures, together with the
definition of a refinement calculus which is correct relative
to a given semantics has to our knowledge not been done
before. The same holds for the so-called structured design
techniques [3, 13].

The most promising attempt at architecture refinement so

far has been givenin [10, 11]. In that work, data flow archi-

tectures are implemented by shared-memory architectures.

stance, to change management so that it accesses the repohg)wever, the semantics used is not particularly well-suite_zd
from the accounting department —, he can take advantagéor data flow, and they do not seem to support nondetermin-

of his knowlege about the dependencies between internalSM OF underspecification.

streams.

One advantage of this use of invariants is that the invari-
ant is only used within one rule and does not have to be
maintained as a system invariant over all rule applications.

If desired, however, another eleméhtcould be added to
system descriptions: the new forfh O, C, W) explicitely

describes system invariants. It is rather straightforward to

adapt the refinement rules accordingly.

The above given rule is the only one that requires global

Furthermore they only allow “faithful implementation”
which is in contrast to our approach. They do not allow
adding or removing data flow connections, which seems to
stem from the lack of support for underspecification in their
model. Underspecification is the primary source that allows
us to change the information structure of an architecture.
In our history-based semantics, underspecification can be
easily handled.

properties of a system as a premise. The other rules only/- Conclusion

deal locally with one affected component. However, also
the validity of the invarian¥ can be proved locally for the
involved components.

To our knowledge, a basic calculus, dealing with simple
addition ond removing of channels and components in an

architectural style has not been considered before. We think [5] D. Garlan and M. Shaw. Characteristics of higher-leagt|

that such a calculus — well-suited for graphical manipula-

tion of dataflow networks — is crucial for the applicability
of a formal method.

We therefore have defined our calculus in such a way, [61
that it is easy to understand and use — possibly assisted by

CASE-tools. A prototypical CASE-tool, étoFocus|[8],
is currently under development at our department. It will in-

corporate this calculus together with automata-based speci-
fication mechanisms for component behavior. The concrete [8]
representation of an architecture is graphical, and we do not
plan to design a textual representation: for a formalization
of architectures it suffices to give a definition of the abstract
syntax in such a way, that concrete graphical representation

and abstract syntax are closely related.

The calculus defined in this paper allows to reuse given
architectures (or architectural patterns) and adapt them to[10]
specific needs. Itis therefore interesting to develop a library

of dataflow architecture designs for different applications.

Our calculus currently only deals with refinement inter- [11]

nal to the system. As future work, we will extend it with

rules to change the interface signature in the style of [1].

The new rules will allow us to change the input or output

channels of a system, as well as to split one channel into

guages for software architecture. Technical Report CMU-
CS-94-210, School of Computer Science and Software En-
gineering Institute, Carnegie Mellon University, 1994.

R. Grosu and K. Stoelen. A Model for Mobile Point-to-
Point Data-flow Networks without Channel Sharing . In
M. Wirsing, editor, AMAST'96 LNCS, 1996.

C. Hofmann, E. Horn, W. Keller, K. Renzel, and
M. Schmidt. The field of software architecture. TUM-I
9641, Technische Universitat Munchen, 1996.

F. Huber, B. Schatz, A. Schmidt, and K. Spies. AutoFo-
cus - A Tool for Distributed Systems Specification . In J. P.
Bengt Jonsson, editoRroceedings FTRTFT'96 - Formal
Techniques in Real-Time and Fault-Tolerant Systerages
467-470. LNCS 1135, Springer Verlag, 1996.

G. Kahn. The semantics of a simple language for parallel
programming. In J. Rosenfeld, edittmformation Process-
ing 74 pages 471-475. North-Holland, 1974.

M. Moriconi and X. Qian. Correctness and composition
software architectures. IRroceedings of ACM SIGSOFT
‘94, pages 164-174, 1994.

M. Moriconi, X. Qian, and R. Riemenschneider. Correct
architecture refinementEEE Transaction on Software En-
gineering 21(4):356-372, April 1995.

B. Rumpe. Formale Methodik des Entwurfs verteilter ob-
jektorientierter Systemé>hD thesis, Technische Universitat
Miinchen, 1996.

seV(_eraI channels carrying parts of the original information [13] E. Yourdon and L. Constantin&tructured DesignYourdon
or vice versa.

Another interesting direction is the description of com-

ponent behaviors by state machines and the application of
state machine refinement rules (as defined e.g. in [12]) for

component behavior refinement.
We also hope that our article will be of some influence

to the software architecture community, where the defini-

tion of architecture is still rather informal. In particular,

the question of how to manipulate and adapt an architec-
ture during system development has not been adequately

addressed so far.

References

(1]

(2]

M. Broy. Interaction refinement the easy way. In M. Broy,
editor,Program Design Calculi. Springer NATO ASI Series,
Series F: Computer and System Sciences, Vol. 1993.

M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzne
and R. Weber. The Design of Distributed Systems -
An Introduction to FOCUS. Technical Report SFB
342/2/92 A, Technische Universitat Minchen, 1993.
http://www4.informatik.tu-muenchen.de/reports/TUM-
19202.ps.gz.

[3] T. DeMarco. Structured Analysis and System Specification

(4]

Yourdon Press, 1978.

D. Garlan and M. ShawAdvances in Software Engineering
and Knowledge Engineering/olume |, chapter An Intro-
duction to Software Architecture. World Scientific Publish
ing Company, 1993.

10

Press, 1975.

