
Model Checking and Random
Competition – A Study Using the
Model Checking Framework MIC

Alexander K. Wißpeintner, Franz Huber and Jan Philipps

Institut für Informatik, Technische Universität München, 80290 München

E-mail: {wisspein|huberf|philipps}@in.tum.de

1 Introduction

Using verification techniques to prove the correctness of systems is becoming more and
more important. Especially in the domain of embedded and distributed systems, verifica-
tion techniques are increasingly being used for quality assurance today. Model checking is
a verification technique that allows the automatic verification of systems with a finite state
space. Developers create a formal specification of the system and define properties that need
to be satisfied by the system description. The model checking program then uses the state
transition graph of the system to prove whether the specification fulfills the properties.
Two different approaches to model checking are used in practice today. The symbolic model
checking [3] variant stores the state transition graph within a binary decision diagram (BDD).
Symbolic methods are used to prove the validity of the required properties. The most pop-
ular symbolic model checking program is SMV [9].
The second model checking variant is called on-the-fly model checking [6]. This technique
explicitly builds up the state transition graph and searches for states that do not satisfy the
specified properties. The possibly large number of states of a system can lead to very long
run times and very high storage requirements. To cope with these problems, several efficient
algorithms are used.
Parallel search algorithms [15] are used to reduce the run time of the model checking pro-
cess. To reduce the storage requirements of on-the-fly model checking, techniques like state
compaction [7, pages 283–284], state caching [14] and bit-state hashing [7, page 284] are used.
Both storage requirements and run time can be reduced by partial search techniques like
partial order reduction [7, pages 282–823]. A popular on-the-fly model checking program is
SPIN [7].
MODELS IN CHECK (MIC) [16] is a framework for the realization of on-the-fly model check-
ing programs. It has been developed in the research group for Software & Systems Engineer-
ing (Prof. Broy) at the Technische Universität München. MIC is an experimental platform

to study different algorithms and strategies of the model checking process. To speed up the
model checking process it is obviously desirable to use parallel search algorithms. A very
simple approach to parallel computation is random competition [4]. We have used the MIC
framework to study the effects of random competition for model checking.
This paper introduces the MIC framework. In section 2 we show the architecture of MIC.
To study the model checking algorithms, example system specifications are needed. We
describe one example, a central locking system, in more detail in section 3. In section 4 the
results of the study about random competition for model checking are shown.

2 The MIC Framework

The MODELS IN CHECK (MIC) [16] framework is an object-oriented programming library.
It is implemented in the programming language JAVA. MIC can be used to rapidly realize
own model checking programs by using prefabricated components. The framework is in-
tended to serve as an experimental platform. It enables users to study different algorithms
and strategies for model checking. The software architecture of MIC splits the model check-
ing task into different subtasks. This way, users can exchange a single algorithm without
changing the other parts of the whole system. MIC therefore can also be used to carry out
comparative measurements between different algorithms under the same basic conditions.
Users can choose between different search algorithms, state codings and strategies for iden-
tifying already inspected system states. The current version of MIC can verify system spec-
ifications written in the synchronous language ESTEREL [2]. The framework supports the
composition of different ESTEREL modules in a hierarchical structure. Properties can be de-
clared using predicates over the system state and the system outputs. The search algorithms
Breadth-First Search (BFS), Depth-First Search (DFS) and Depth-First Iterative Deepening (DFID)
[10] are available in the framework. DFID is a variant of the DFS algorithm where the search
depth is limited. The limit allows to find short execution paths to incorrect system states.
The search is performed in iterations with increasing search depth limits. Due to the iterative
search the run times of DFID are longer compared to DFS.
Furthermore, MIC offers two different state coding strategies. States can be stored without
any compression as a single system state vector. The second state coding strategy is similar
to the state compaction method of SPIN [7, pages 283–284]. The system state vector consists
of references to the component state vectors. By storing a component state vector only once
for several system states, memory usage can be decreased. The framework stores inspected
states in the main memory. The stored states are used to identify already visited states using
a hashing technique.
Figure 1 on the following page shows the software architecture of MIC. The Main Con-
troller component realizes the check cycle of the model checking process. It controls
the collaboration between the different subsystems of the framework. All communications
between the subsystems take place via the Main Controller component. The System
component acts as an adaptor between the system description and the other parts of MIC.
This component offers functionality to execute the system description provided by the user.
Furthermore, getting and setting the system state are elementary tasks of the System com-

Main Controller

Environment System Observer

Search Algorithm State Coding
State Already

Visited

Figure 1: The MIC Architecture—Data Flow Diagram

ponent. This part of MIC has to be adapted to add support for a new system description
language.
The Observer component monitors the correctness of the specified properties during the
model checking process. It realizes an adaptor between the properties specified by the user
and the MIC system. The Environment produces system inputs from the system environ-
ment. By choosing a specific Search Algorithm subsystem, the search algorithm to be
used for model checking is fixed. The components State Coding and State Already
Visited specify the kind of state coding algorithm and the strategy to identify already
inspected states.
An additional statistics component can be used to record measured values during single
model checking runs. The run time, the number of check cycles, the number of found system
states and the current search depth are written to a log file. Furthermore, the memory usage
of the search data structure and the table for identifying already inspected states are logged
during the model checking run.
Using the existing components, a complete model checking program can be realized within
only a few lines of code. The only task to perform is to choose between the alternative al-
gorithms provided by MIC and register them at the Main Controller component. The
architecture of MIC supports extensibility. Users can easily extend the framework by im-
plementing new algorithms. Even support for further system description languages and
property languages can be realized. Every MIC component has a well-defined interface.
This interface has to be implemented to realize a new variant of the component.

3 Example System Specifications

We need different system specifications to make quantitative measurements and compare
different algorithms and strategies. For that purpose, we used three example systems. A
traffic light control system [11] was checked by MIC. The traffic light controller on purpose
contained a specification error resulting in unfairness. Furthermore, we verified a commu-
nication protocol realizing mutual exclusion (mutex) [13]. Here, a specification error broke

the rule of exclusive access. The third example was a central locking control system, which
we now describe in more detail.
The central locking system is adopted from an example used in [12]. This system was origi-
nally specified using Statecharts [5]. We transferred the system into the Synccharts [1] descrip-
tion technique. Synccharts are very similar to Statecharts and allow the automatic transla-
tion into an ESTEREL program. The system controls two door locks of a car. The doors can
be locked or unlocked by turning a key. Furthermore, the car has a crash sensor. If the car
has an accident, the central locking system must immediately unlock all doors.
Figure 2 on the next page shows the Syncchart defining the normal operation of the system.
The signal open represents the user interaction of turning the key to unlock the doors. It
is used to branch into the sub-Syncchart Unlocking to perform the unlocking operation.
A close signal is used to enter the Locking Syncchart. Figure 3 on the following page
shows the Unlocking Syncchart. When entering this sub-Syncchart, the signals left_up
and right_up are sent to both door locks to open them. The control system waits un-
til both door locks acknowledge the execution of the unlocking operation by the signals
left_ready and right_ready . The sub-Syncchart Locking is analogous to Unlock-
ing .
To implement the requirement to unlock the doors during a crash, another Syncchart is used
(Figure 4). Whenever a crash is detected and the ignition of the car is turned on, the central
locking system is deactivated by branching into the Crash state. The signals left_up and
right_up are sent to directly unlock the doors. The Syncchart specifications of the door
locks are not shown in this paper.
To verify the central locking system, we define a temporal safety property. If a crash is
detected while the ignition of the car is on, the doors must be unlocked after five clock cycles.
There is a specification error hidden in this system description. If an accident happens while
the driver locks the doors, the doors cannot react on the signals to unlock the doors. The
doors stay locked.

4 Using Random Competition

Random competition [4] is a simple principle of parallel computation that requires little com-
munication between processors. The calculations are done simultaneously on different pro-
cessing units, each of them using a different calculation method. One of the processors is
able to solve the problem first. This processor wins the competition and reports the result.
To adopt the principle of random competition for model checking, we use random vari-
ants of the DFS and DFID search algorithms. On each processor where the model checking
process is started, the system states are explored in a different order. In case of a system
specification that satisfies the defined properties, this method will not achieve speed-ups
worth mentioning. Each processor has to search the whole state space of the system. But
in case of an incorrect system description one processor will find the incorrect system state
first. In this way, using several processors can speed up the model checking process.

Normal

Locking

Unlocking

Unlocked

Locked

close

open

Figure 2: Syncchart Normal Operation—Central Locking System

Unlocking

Left

None
left_ready and

right_ready

Right

Both

left_ready

right_ready

right_ready

left_ready

/left_up,
right_up

Figure 3: Syncchart Unlocking the Doors—Central Locking System

Control

Normal Crash

crash and ignition/
left_up, right_up

Figure 4: Syncchart Crash Detection—Central Locking System

We have used the MIC framework to study the effects of random competition for model
checking. Incorrect versions of the example systems described in Section 3 were verified by
a model checking program using the random search algorithms. The aim was to determine
the expected speed-up when using multiple processors for model checking in contrast to
one processor. The speed-up S is often defined as follows.

S =
sequential run time Tseq

parallel run time Tpar
(1)

The number of check cycles needed to find a specification error is almost proportional to the
run time. To avoid inaccuracies in the run time measurements, we measure the number of
check cycles instead. Our definition of the speed-up for k processing units Sk in terms of
check cycles is given below. C1 is the number of check cycles needed to find the error when
using a single processor. Ck stands for the number of check cycles when using k processors.

Sk =
C1

Ck
(2)

The number Ck is the number of check cycles needed by the fastest of the k processors. It is
the minimum of the check cycles c1 to ck that are measured for the k competing processors.

Ck = min{c1, c2, ..., ck} (3)

To eliminate random effects caused by the random search algorithms, the expected values
of C1 and Ck are used.
A characteristic of random competition is that the processing units do not need to commu-
nicate with each other during the working phase. The calculations done by the participating
processors are independent of each other. This is why it is only necessary to measure single
independent model checking runs. We can calculate the expected values of check cycles for
k processors from the results measured on one processor. Therefore, we need the probability
distribution fCk(i). This discrete distribution defines the probability that the fastest of the k
processors needs i check cycles to find the specification error. Details on calculating fCk(i)
from the measured values are given in [16, pages 106–109].
With the known fCk(i) distribution we can calculate to the speed-up factor using the ex-
pected values.

Sk =
E(fC1(i))
E(fCk(i)) (4)

A large number of measurements are needed to get stable expected values for the speed-up
calculation. To calculate the expected speed-up using random DFS for the central locking
and traffic lights systems we carried out 10,000 single runs each. For the simpler mutex
example, 1,000 measured runs are sufficient to calculate the expected speed-up.
Figure 5 on the next page shows the histogram of the fCk(i) distribution of the central lock-
ing system. The values for one to 20 processors are shown using a bucket interval of 5,000
check cycles. The probability distribution for one processor is the direct result of the mea-
surements. The values for several processors have been calculated using the distribution for
a single processor. A larger number of processors leads to a higher probability of finding the
specification error in less time.

�������
�������
�������
�������
��� 	
�
��� 	
�
�������
�������

��
����
 ��
����
 ���
����
 ���
����
 �
�

����
 �� ��
����
 �

�
� ��� ��� 	
�� �� �

�� ��
� �
!"�
#$%

&�')(+*-, &-. *�/ (+0 1 243-576-8
8 3
2 8

Figure 5: Histogram fCk(i) Distribution—Random DFS—Central Locking System

The expected speed-ups using the random DFS algorithm on multiple processors are shown
in Figure 6 on the following page. The run time for the verification of the central locking
and mutex examples can be greatly decreased using the principle of random competition.
Using 10 processors leads to a speed-up factor of 2.2 for the central locking system. The
speed-up can be increased further by using more processing units. A speed-up factor of
6.6 is achieved by using 100 processors for verifying the central locking system. The mutex
example achieves a speed-up of 5.1 with 10 processors. Due to the small size of this system
specification, the speed-up factor can not be improved significantly by using more proces-
sors. The result of the traffic lights system using random DFS, however, is less promising.
The speed-up factors of 1.7 with 10 and 2.5 with 100 processors are quite low.
The studies show substantial differences in the efficiency of random competition. General
statements about the suitability of a system for model checking using random competition
are difficult to find. The speed-ups that can be achieved strongly depend on the structure of
the state space of the system to be verified. Good results can be achieved if the specification
error is not obvious. If the error can only be found via a few long execution paths, then the
expected value for the run time on one processor will be large. Nevertheless, using random
DFS it is possible to find a solution in a short time. A large variance of the run times of the
model checking process leads to a good speed-up when using random competition.
Besides the random DFS algorithms we have used the random DFID algorithm for parallel
model checking. Figure 7 on the next page shows the speed-up for the central locking sys-
tem calculated from 500 single model checking runs with the DFID search algorithm and a
constant search depth increment of 10. Using 100 processors for model checking leads to a
speed-up of 1.6. This is very low in comparison to the speed-up factor 6.6 when using the
DFS algorithm to verify the same system description. There are two reasons for this effect.

����������	�	��
��	
� ���

� ��� �
� ��� �
� ��� ��� ��� �����

� �
��
���
��

�

�

�

�

�

�

���������! �#"� $
%'&�	

(#)'&���*

+ �
,'&-���/.'"����'0' ,1$

Figure 6: Speed-ups Using Random DFS

����������	�	��
��	
� ���

� ��� �
� ��� �
� ��� ��� ��� �����

� �
��
���
��

�����
�����
���

�����

��� �
�����
��� �

Figure 7: Speed-ups Using Random DFID—Central Locking System

S
ea

rc
h

D
ep

th

3

6

Iteration 3 Iteration 4 Iteration 5 Iteration 6

1

2

4
5

Figure 8: Search Trees of the DFID Algorithm during the Single Iterations

The specification error is found in the n-th iteration of the DFID algorithm. Therefore all
processors must pass trough n− 1 search iterations before the n-th iteration is reached. The
run times for the n− 1 iterations are almost equal for all processors. In these iterations each
processor searches all states that are reached within the search depth limit. Only the n-th
iteration of the search process is decisive for the achieved speed-up. The fixed run time for
n− 1 iterations therefore decreases the speed-up.
The second reason for the bad results is determined by the structure of common software
systems. In most software systems states can be reached over short and long execution
paths. Without any search depth limits DFS strategies tend to find new states in deep search
depths. By limiting the search depth the system states are found via short search paths
causing the search algorithm to span a less deeper but broader tree. Due to the search depth
limit not all system states can be found. But even with low search depth limits very many
states are reached by the search algorithm creating a broad search tree. By increasing the
search depth limit the search tree gets more deeper and less broader. In the course of this
the number of found states grows very slow. This effect leads to a non-exponential growth
of the run time of the DFID iterations with increasing search depth limits. The run time
of a DFID iteration is only a bit longer than the time of the previous iteration. This effect,
together with the fact of the fixed run time for n− 1 iterations, leads to very low achievable
speed-ups. Figure 8 on the preceding page clarifies the described effect by an example.

5 Conclusion

In this paper a framework for on-the-fly model checking was introduced. The framework
allows the rapid development of a model checker that can be used to study strategies and
algorithms of the model checking verification technique. The MIC framework is focused
on extensibility to allow the implementation of new algorithms for model checking. It is
possible to perform comparative measurements between different algorithms during the
model checking process.
We have shown the suitability of MIC in a study about using random competition for model
checking. This simple principle of parallel computation can highly decrease the run time for
model checking in case of specification errors. The excepted speed-up using random com-
petition heavily depends on the system to be verified. Nevertheless system descriptions
including complex specification errors are good candidates for the usage of random compe-
tition.
The random search algorithms DFS and DFID have been used to implement the approach
of random competition. The results of the random DFID algorithm are less promising due
to fundamental problems with regard to parallel computation. With the random DFS algo-
rithm good speed-ups can be achieved. This search algorithm is suitable for model checking
with random competition.
In the future, the MIC framework will support system descriptions created in the CASE
tool AUTOFOCUS [8]. Furthermore, one of the next releases of MIC will support temporal
logic to define system properties. Our future work will be focused on studying additional
approaches to parallel model checking.

References

[1] Charles André. SyncCharts: A visual representation of reactive behaviors. Technical
report, Laboratoire I3S, UNSA/CNRS, Nice, France, 1995.

[2] G. Berry and G. Gonthier. The Esterel synchronous programming language: design,
semantics, implementation. Science of Computer Programming, 19(2):87–152, 1992.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142–170, June 1992.

[4] Wolfgang Ertel. Parallele Suche mit randomisiertem Wettbewerb in Influenzsystemen. PhD
thesis, Technische Universität München, 1992.

[5] David Harel. Statecharts: A visual formulation for complex systems. Science of Computer
Programming, 8(3):231–274, June 1987.

[6] Gerard J. Holzmann. Design and Validation of Computer Protocols, chapter 11–14, pages
214–350. Prentice Hall, 1991.

[7] Gerard J. Holzmann. The Model Checker Spin. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997.

[8] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies. Autofocus -
a tool for distributed systems specification. In FTRTFT’96, LNCS 1135, pages 467–470.
Springer, 1996.

[9] K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1992.

[10] Pearl and Korf. Search techniques. ANNREVCS: Annual Review of Computer Science, 2,
1987.

[11] Jan Philipps and Alexander Schmidt. Traffic flow by data flow. Technical Report TUM-
I9718, Institut für Informatik, Technische Universität München, 1997.

[12] Jan Philipps and Peter Scholz. Formal verification of statecharts with instantaneous
chain reactions. In TACAS’97, LNCS 1217, pages 224–238. Springer, 1997.

[13] C. Puchol. The TempEst Program Verfication Toolkit – Example Slides. AT&T Bell Labora-
tories, 1997.

[14] U. Stern and D.L. Dill. Combining state space caching and hash compaction. In Bernd
Straube and Jens Schoenherr, editors, 4. GI/ITG/GME Workshop zur Methoden des En-
twurfs und der Verifikation Digitaler Systeme, Berichte aus der Informatik, pages 81–90,
Kreischa, March 1996. GI/ITG/GME, Shaker Verlag, Aachen.

[15] U. Stern and D.L. Dill. Parallelizing the murϕ verifier. In 9th International Conference on
Computer Aided Verification, 1997.

[16] Alexander K. Wißpeintner. Model-Checking Strategien mit MIC. Master’s thesis, Tech-
nische Universität München, November 1999.

	1 Introduction
	2 The MIC Framework
	3 Example System Specifications
	4 Using Random Competition
	5 Conclusion
	References

