
Model-Based Development of
Embedded Systems

Franz Huber, Jan Philipps, Oscar Slotosch

Validas AG
www.validas.de{huber,philipps,slotosch}@validas.de

Abstract
We describe concepts and processes for model-based development of embedded control systems.
Tool support for such an approach is provided by the award-winning AutoFocus/Quest tool set
jointly developed by TU München and Validas AG. We outline real-time extensions for the mod-
eling languages and show how to use time information for testing. A small case study demon-
strates these extensions.

Introduction
Software development approaches that rely on modeling a system before performing the actual
implementation work have a long history in computing. Among the first ones were data(base)
modeling approaches using the Entity/Relationship model and similar other techniques. During
further development, modeling techniques became increasingly complete, covering not only data
aspects, but also structural/topological and behavioral aspects of systems. Typical representatives
of such full-scale modeling approaches are structured methods, such as Structured Analysis &
Design, or object-oriented methods like the UML [4].

Models created in such a modeling language can serve different purposes. They can be regarded
as a concise, much more formal version of otherwise informally given system requirements. In
this view, they serve as a precise guideline for the developers that perform the actual implemen-
tation work, and can furthermore be used as a basis for testing the conformance of the imple-
mentation with the requirements.

If a modeling language is rich enough to allow the creation of complete models (models that en-
compass all aspects of a system on an abstract, implementation-independent level), another pur-
pose of such models is obvious: The created models can not only be used to precisely capture the
requirements upon the system, but to describe the system in detail, reaching up to a complete
description of all aspects of the system. From such a complete description, it is basically possible

(although not always feasible or desired in practice) to generate a complete system implementa-
tion automatically. An important advantage of such a model-based approach is (programming)
language independence: Modeling languages are usually driven by the application domain that
they are used in and provide application-oriented abstractions to describe systems (components,
data entities, states, state transitions, etc.). In contrast, typical programming languages such as
Ada or C are general-purpose languages, providing language elements that reflect the underlying
machine model of sequential execution of statements. Using code generation techniques to create
implementations, such complete models as described previously can be transformed into imple-
mentations in arbitrary programming languages.

Models are abstractions of a system and are thus particularly less “cluttered” than an implemen-
tation, for instance, in C. Therefore, it is much more promising for models than for implementa-
tions to apply validation techniques, such as—covering different levels of formality—prototyping
and simulation [7], test case/test sequence generation [12], or model checking [9]. If the elements
of a modeling language have been chosen carefully enough to keep the modeling language sim-
ple, yet complete, it is feasible to provide a sufficiently streamlined formal semantics that even
allows the application of rigid formal validation/verification techniques [5].

Subsequently, we introduce such a simple, yet powerful modeling language—the AutoFocus
modeling language & framework [8]—and outline some of the validation techniques that can be
applied to AutoFocus models. The AutoFocus modeling language has been under development
since 1995, specially aimed at the development of embedded systems, and shares some concepts
with UML/RT.

Model-based Development Concepts
A modeling language—quite similar to a programming language—comprises a set of concepts
that are used to describe systems. In case of programming languages, these concepts are typically
statements, blocks, procedures, functions, and many more. For the AutoFocus modeling language
and toolset, these concepts are based on the idea of a system being made up of a network of
communicating components. Usually, the concepts that describe a modeling language are defined
in a so-called meta-model (i.e., a model that describes how models in that modeling language can
be constructed). A simplified representation of the AutoFocus meta-model is shown in Fig. 1,
using the UML class diagram notation as the meta-language.

AutoFocus Modeling Concepts
The core modeling concepts of AutoFocus, i.e., the core elements in the its meta-model are as
follows:

Components. They are the main building blocks for systems. Components encapsulate data, in-
ternal structure, and behavior. Components can communicate with their environment via well-
defined interfaces. Components are concurrent: Each one of them runs sequentially; however, in
a set of components, each component’s run is independent of the other components’ runs. Com-
ponents can be hierarchically structured, i.e., consist of a set of communicating sub-components.

Data types. They define the data structures used by components. Data types are constructed from
a set of basic types (such as integer or float) and a set of constructors, e.g., for record and variant
types.

Data. Data elements are encapsulated by a component and provide a means to store persistent
state information inside a component. Data elements can be regarded as typed state variables.

Ports. They are a component’s means of communicating with its environment. Components read
data on input ports and send data on output ports. Ports are named and typed, allowing only spe-
cific kinds of values to be sent/received on them.

Channels. They connect component ports. Channels are unidirectional, named, and typed, and
they define the communication structure (topology) of a system.

Control States and Transitions. These elements define the control state space and the flow of
control inside a component. Each transition connects two distinct controls states (or one control
state with itself, in case of a loop transition) and carries a set of four annotations determining its
firing conditions (its “enabledness”):

• pre-conditions and post-conditions, which are predicates over the data elements of the
component to be fulfilled before and after the transition, respectively, and

• input and output patterns, determining which values must be available on the compo-
nent’s input ports to fire the transition and which values are then written to the output
ports.

Component

SubComponents

Channel

ControlState

Transition

InputPort OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataTypeDataElement

Port
0..*

1..*0..*
0..*

0..*
0..*

0..*

0..*

0..*

0..2

0..*

2

1

2

1
1

1..*

1

1

1

0..*

0..*

0..*

Connector

0..*

0..2

0..* 1

10..*

Predicates over the

component's encapsulated

data elements, not treated

here in detail

Expression constructed

according to the rules

for the associated data type,

not treated here in detail

At most two channels can

be connected to a port:

One to the environment of a

component and one to its

internal sub-structure

Fig. 1. Basic Modeling Concepts of AUTOFOCUS: The Meta-Model

These concepts are sufficient to describe a large class of systems. Developers create the model of
an actual system using these concepts; technically speaking (e.g., with a modeling tool for this
language in mind), an actual system model is an instance of this meta-model. The complete meta-
model, together with a set of additional conditions relating to consistency and completeness of
models, describes the set of all possible, well-formed models that can be created.

Views and Description Techniques
Developers do not create and manipulate models as a whole, but by picking only specific parts of
them, which are of interest during particular development activities. These parts, usually closely

related with each other, make up the views of the system. For instance, the structural view in
AUTOFOCUS considers only elements from the meta-model describing the interface of compo-
nents and their interconnection.

To manipulate elements of these views we must represent them visually. In AUTOFOCUS we use
mainly graphical notations for that purpose; these notations are introduced in more detail by our
application example. The notations do not represent self-contained documents; instead they are a
mere visualization of a clipping from the complete model. Fig. 2 shows an example for this rela-
tionship between a set of related elements from the meta-model (inside the shaded area) and their
visual, diagrammatic representation. In this example, structural aspects of the model are covered,
and the notation used to visually represent them is called System Structure Diagrams (SSDs for
short).

Component
SubComponents

Channel
ControlState

Transition

InputPort
OutputPort

{ disjoint }

Pattern

OutputPattern

InputPattern

PreCondition

PostCondition

DataType

DataElement

Port

0..*

1..*

0..* 0..*

0..*
0..*

0..*

0..*

0..*0..2

0..*

2

1

2

1 1

1..*

1

1

1

0..*0..*

0..*

Connector

0..*

0..2

0..*

1

1

0..*

SystemClock

ProductionCellController

SystemTime: int

r: RobotOp

rs: RobotStatus

p1: PressStatus

p1: PressOp p2: PressOp t: TableOp

Part of the meta-model
related to structural aspects

Graphical notation
describing structure: SSD

Fig. 2. Structural Parts of the Meta-Model and the Notation representing them

Model-based Development Process
One of the main difficulties in software engineering is that the requirements of the customer are
prone to change while software is being developed. In standard waterfall development process
models, which are still regularly used in industry, requirements analysis and testing are located at
opposite ends of the development process. Evolutionary development processes, on the other
hand, try to alleviate this problem by building the software system incrementally. Requirements
are not fixed in an early development phase, but instead converge during several incremental cy-
cles with customer interaction after completion of each increment.

In this section, we first give a short overview over incremental development processes, and then
describe how a process based on executable models is supported by modern CASE tools, such as
AutoFocus. Finally, we explain the step from executable models to final code.

Incremental Development
Boehm’s spiral model [3] is the most famous incremental process model, although it is more a
meta-model of a process than a proper development process model. More helpful for real soft-
ware development are the Cleanroom Reference Model (CRM) [11], and so-called agile ap-
proaches, most notably Extreme Programming (XP) [2], which is based on classical object-
oriented programming languages.

We believe that modeling languages fit the demands of an incremental process better than pro-
gramming languages: Their higher level of abstraction leads to higher productivity of the devel-
opers; their suggestive notations ease interaction with the customer and other developers. Never-
theless, models are executable, which results in immediate feedback for the designer and the
customer.

The idea of incremental model-based development amounts to specifying the model of the system
as precisely as possible, so that the model is always executable. In order to handle the complexity
of the system, in a first step only a small part of the core functionality of the system is described.
The specification is then (together with the customer) validated and verified by simulation, in-
spection and reviews, and by formal verification and analysis techniques. Later steps refine this
model: More components are added to the model in order to add functionality; the behavioral
specifications of the components are elaborated to handle exceptional cases; additional inputs and
outputs are added, for instance to ease maintenance of the final product.

Besides the modeling activities themselves, the process consists of the following activities:

• Simulation: Model executability is the basis of the main validation technique employed
in our incremental process [7]. Together with the customer, exemplary system runs are
produced that demonstrate the model essentially operates according to the customer’s re-
quirements.
Simulation is not restricted to interactive step-by-step executions. Using advanced sym-
bolic execution techniques based on constraint-logic-programming, it is possible to auto-
matically derive simulation runs from abstract test case specifications; a test case specifi-
cation typically demands that the model is brought into a certain state (functional tests) or
that every transition is executed at least once (structural tests).

• Analysis: While simulation is helpful to determine that the system indeed fulfils its re-
quirements, there are some questions related to quality assurance that cannot be answered
by simulation alone, since simulation gives answers only about single system runs, not
about all possible system runs (mathematically, simulation shows existential properties,
not universal ones). Some typical questions are whether the model is deterministic (i.e.,
for each input from the system environment there is at most one possible output specified)
and complete (i.e., for each input from the system environment there is at least one possi-
ble output specified). The AutoFocus toolset includes analysis tools that help to answer
such questions. It also includes verification tools such as model checkers [9], which are
used for mathematical proofs of critical system properties. Since such proofs are very ex-
pensive (in terms of time, effort and required expertise of the tool user), the use of verifi-
cation tools must be carefully judged against the economic risk of system malfunctions.

• Refactoring: An obvious problem with any incremental system development process is
that the resulting system specification may be cluttered and hard to understand, as its

structure is determined partly by the order in which the increments occurred. Extreme
programming makes use of elaborated refactoring [6] patterns to clean up the system after
each increment so that it is both easier to understand and more amenable to further incre-
ments. Similar techniques can be used for executable models; however, this is still an ac-
tive area of research.

To summarize, we advocate a development process that consists of several iterations where at the
end of each loop, instead of hand-written code an executable system model is presented to the
customer. This approach is similar to Extreme Programming, but focuses on a more abstract
modeling of the system rather than its implementation. In contrast with Extreme Programming,
however, production of the final code is deferred until the end of the development process.

From Models to Products
Once the model is considered to be sufficiently correct and detailed, it is used as the basis for the
production of the target code. For the target code, too, quality assurance must be performed. As
the resulting code is likely not amenable to automatic analysis, the core activity here is testing
(see, e.g., [10]). Essentially, there are two approaches:

• The target code is produced by hand. This is a typical situation for customer/supplier re-
lationships, where the model serves as the software specification of the final product. In
this case, the code produced by the supplier must be tested to ensure its conformity with
the model. It is possible to automatically derive test sequences for the implementation
from simulation runs, in particular from the runs produced by symbolic execution as
mentioned above.

• The target code is produced by an automatic code generator. While in principle it is pos-
sible to mathematically verify code generators, in practice there is still some risk (albeit a
very small one) that the code generator produces incorrect code. Thus, even for automati-
cally generated code it is prudent to test the code. For avionics systems, rigorous testing is
even required: Standards such as DO-178B require, among other points, tests with clear
code coverage criteria (MC/DC); it is not sufficient to have coverage only on the models.

In both cases, however, additional tests must be performed to ensure that the model is not based
on incorrect assumptions about the interaction with the environment, which could lead to timing
problems and race conditions. Such tests can be performed by Hardware-in-the-loop approaches.

Example: A Digital Watch
As an example of the description techniques of AutoFocus, this section presents parts of a model
for a digital watch. The watch has three buttons (T1, T2, T3) that are used to change the display
mode (date, time, stopwatch) and to set the current time and date after a battery change. Fig. 3
shows the top-level structure diagram of the watch model.

The data types of the channels are defined using Data Type Definitions (DTDs) as follows:

 data Signal = Present;
 data Segments = Date(Int,Int,Int,Int,Int,Int)
 | Time(Int,Int,Int,Int,Int,Int)
 | Stop(Int,Int,Int,Int,Int,Int);

Fig. 3. Top-Level View of the Watch

Deeper in the modeling hierarchy, the watch component contains a time component that com-
putes the time of day from internally derived signals (hs, zs) that hold the time of day in 1/100s
and 1/10s; they are derived from an internal counter. There are other components to keep track of
the current date and to model the stopwatch function.

The time component (see Fig. 4) is quite complex, because it is also responsible for the adjust-
ment of the time by the user. It has separate components to compute the segment digits for the
display (Sec1, Sec10, Min1, Min10 and H12); depending on the current display mode they either
display the relevant part of the current time, or the current time setting when the watch owner
changes the time.

Fig. 4. Component Network inside the Time Component of the Watch

Note that in the diagram there are two kinds of channel connectors: Delayed channels (marked
with a circle) and immediate channels (marked with a diamond). Messages sent through an im-
mediate channel are visible to the receiver in the same reaction; messages sent through a delayed
channel are visible in the following reaction. There are some subtle methodical issues involved in

their use. Generally, immediate channels should be used for the data flow within an embedded
controller. Without immediate channels it would not be possible to switch from 23:59:59 to
00:00:00 within one model reaction, because the overflow-values would be present only in the
next time step. On the other hand, for mathematical reasons every communication cycle in the
system must contain at least one delayed channel.

Fig. 5 shows the behavior of the component Setting as an example for state transition diagram. It
describes the way to set the time using the signals T1, T2, T3 and the current mode that is com-
puted by another component of the model (the mode signal is also computed from the three but-
tons, but it is handled separately for reasons of modularity). For example, incrementing the min-
utes display is modeled with the transition T2?P; T3?; IncM1!Present which connects the state
Minute1 to itself. The semantics of this transition is as follows: When button T3 is not pressed,
but button T2 is, then send the signal Present to the minute segment component.

Fig. 5. State Transition Diagram of the Setting Component

In addition to input and output statements transitions can be annotated with preconditions (which
are predicates over local variables and values read from input channels) and actions (which are
assignments to local variables). Together with the DTD specifications, this allow models that are
completely independent from the target programming language. This is important for reusing the
models for other targets (for example with a different processor and a different instruction set).

While the model itself is not very ambitious, its implementation is, since the resources of the
watch are severely limited (4bit processor, 2KB of memory). The model is indeed the basis of a
watch implementation with an industrial partner, but we did not yet implement a code generator
for the assembly language used in the project. Given the rigorous semantics of AutoFocus, which
is very close to the description techniques, and the limited size of the watch model, it is still man-
ageable to translate the model into assembly language by hand.

The code that results from the watch model is not used stand-alone; it is linked with a number of
arithmetic and I/O libraries.

Extensions for Real-Time
With the description techniques presented so far, models describe the functionality of the system
under development in terms of input/output reactions. For the final implementation, in addition to

the functionality, timing requirements must be considered. They relate system executions with
the physical time of the system’s environment. Typical timing requirements are stated as separa-
tion requirements (two inputs or outputs must be separated by at least a certain duration), or as
proximity requirements (two inputs or outputs must be separated by at most a certain duration).
Timing requirements fulfill two purposes: They impose demands on the maximal execution time
for an input/output reaction of the system (and thus on the performance of the target hardware),
and they state assumptions on the duration of activities of the controlled hardware.

Timing requirements can be concisely specified by annotated Message Sequence Charts. Fig. 6
shows a simple timing requirements for the watch: It states that the watch, when switched to date
mode by pressing button T3, displays the date for three seconds (rather, any number of display
messages are sent to the hardware until exactly 3 seconds have passed) and then returns to time
mode. This requirement is a combination of proximity and separation requirement. Further (quite
trivial) requirements specify that a second (rather, 1/100s) of model time corresponds to a second
of real time.

Watch
Display!Time(...)

Display!Date(...)

Display!Date(...)T3?Pressed

Display!Time(...)

0-*

= 3sec

Fig. 6. Timing Requirements in a Message Sequence Chart (MSC)

Obviously, the relationship between model time and real time must be verified. Currently, this is
done by hand-written test cases, which measure controller execution time and environment re-
sponse times. A more automatic scheme will translate time-annotated MSCs like the one above
into special time observer components. These components run in parallel to a standard hardware-
in-the-loop setup (see Fig. 7) and give verdicts on the satisfaction of timing requirements for not
only special timing test cases, but for all previously derived functional test cases as well.

Controller

HW-in-the-loop

Time Observer Component

Actuator
commandsSensor

readings

Verdict

Fig. 7. Time Observer Component in Parallel with Hardware-in-the-Loop

Conclusion
This paper touches only some of the issues of model-based development. While the classical ar-
eas of CASE tools (description techniques and code generators) are quite stable in our toolset, the
validation and verification tools are still undergoing development and field studies with our part-
ners and customers. In particular, the promising field of model-based test case generation is
making rapid progress. In order to cover not only the later phases of system design, but also re-
quirements analysis, the AutoFocus toolset has been connected to the requirements management
tool DOORS [1].

Acknowledgment. Peter Braun, Heiko Lötzbeyer, Alexander Pretschner and Dr. Bernhard
Schätz, our colleagues from TU München, have contributed greatly to our understanding of
model-based development and to the AutoFocus toolset itself.

References
1. B. Bajraktari: Modellbasiertes Requirements Tracing. Master thesis, TU München, 2001.

2. K. Beck: Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

3. B.W. Boehm: A spiral model for software development and enhancement. Software Engi-
neering Notes, 11(4), 1994.

4. G. Booch, I. Jacobson, J. Rumbaugh: The Unified Modeling Language User Guide. Addison-
Wesley, 1998.

5. M. Broy, O. Slotosch: Enriching the Software Development Process by Formal Methods,
Proceedings of FM-Trends 98, LNCS 1641.

6. M. Fowler: Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.

7. F. Huber, S. Molterer, A. Rausch, B. Schätz, M. Sihling, O. Slotosch: Tool supported Speci-
fication and Simulation of Distributed Systems, Proceedings of International Symposium on
Software Engineering for Parallel and Distributed Systems, 1998.

8. F. Huber, B. Schätz: Integrated Development of Embedded Systems with AutoFOCUS.
Technical Report TUM-I0107, Fakultät für Informatik, TU München, 2001.

9. J. Philipps, O. Slotosch: The Quest for Correct Systems: Model Checking of Diagrams and
Datatypes, Proceedings of Asia Pacific Software Engineering Conference 1999, 449-458.

10. A. Pretschner, O. Slotosch, H. Lötzbeyer, E. Aiglstorfer, S. Kriebel: Model Based Testing for
Real: The Inhouse Card Case Study in Proc. 6th Intl. Workshop on Formal Methods for In-
dustrial Critical Systems (FMICS01), Paris, July 2001.

11. S. Prowell, C. Trammell, R. Linger, J. Poore: Cleanroom Software Engineering. Addison-
Wesley, 1999.

12. G. Wimmel, A. Pretschner, O. Slotosch: Specification Based Test Sequence Generation with
Propositional Logic, Journal on Software Testing Verification and Reliability (to appear).

