Model-Based Development of
Embedded Systems

Franz Huber, Jan Philipps, Oscar Slotosch

alidas

Validas AG
www.validas.de
{huber,philipps,slotosch}@validas.de

Abstract

We describe concepts and processes for model-based development of embedded control syst
Tool support for such an approach is provided by the award-winning AutoFocus/Quest tool s
jointly developed by TU Minchen and Validas AG. We outline real-time extensions for the mod
eling languages and show how to use time information for testing. A small case study demo
strates these extensions.

Introduction

Software development approaches that rely on modeling a system before performing the act
implementation work have a long history in computing. Among the first ones were data(bas:
modeling approaches using the Entity/Relationship model and similar other techniques. Durit
further development, modeling techniques became increasingly complete, covering not only de
aspects, but also structural/topological and behavioral aspects of systems. Typical representat
of such full-scale modeling approaches are structured methods, such as Structured Analysis
Design, or object-oriented methods like the UML [4].

Models created in such a modeling language can serve different purposes. They can be regai
as a concise, much more formal version of otherwise informally given system requirements.
this view, they serve as a precise guideline for the developers that perform the actual mmplem
tation work, and can furthermore be used as a basis for testing the conformance of the imp
mentation with the requirements.

If a modeling language is rich enough to allow the creatiatonfpletemodels (models thane

compass all aspects of a system on an abstract, implementation-independent level), another |
pose of such models is obvious: The created models can not only be used to precisely capture
requirements upon the system, but to describe the system in detail, reaching up to a compl
description of all aspects of the system. From such a complete description, it is basically possil

(although not always feasible or desired in practice) to generate a complete system implemer
tion automatically. An important advantage of such a model-based approach is (programmin
language independence: Modeling languages are usually driven by the application domain tl
they are used in and provide application-oriented abstractions to describe systems (compone
data entities, states, state transitions, etc.). In contrast, typical programming languages suct
Ada or C are general-purpose languages, providing language elements that reflect the underly
machine model of sequential execution of statements. Using code generation techniques to cre
implementations, such complete models as described previously can be transformed @&ito img
mentations in arbitrary programming languages.

Models are abstractions of a system and are thus particularly less “cluttered” than an impleme
tation, for instance, in C. Therefore, it is much more promising for models than for implemente
tions to apply validation techniques, such as—covering different levels of formality—prototypinc
and simulation [7], test case/test sequence generation [12], or model checking [9]. If the eleme
of a modeling language have been chosen carefully enough to keep the modeling lamguage <
ple, yet complete, it is feasible to provide a sufficiently streamlined formal semantics that eve
allows the application of rigid formal validation/verification techniques [5].

Subsequently, we introduce such a simple, yet powerful modeling language—the AutoFoci
modeling language & framework [8]—and outline some of the validation techniques that can
applied to AutoFocus models. The AutoFocus modeling language has been under developm
since 1995, specially aimed at the development of embedded systems, and shares some conc
with UML/RT.

Model-based Development Concepts

A modeling language—quite similar to a programming language—comprises a set of concey.
that are used to describe systems. In case of programming languages, these concepts are typi
statements, blocks, procedures, functions, and many more. For the AutoFocus modeling langu.
and toolset, these concepts are based on the idea of a system being made up of a networ
communicating components. Usually, the concepts that describe a modeling language are defil
in a so-called meta-model (i.e., a model that describes how models in that modeling language
be constructed). A simplified representation of the AutoFocus meta-model is shown in Fig. :
using the UML class diagram notation as the meta-language.

AutoFocus Modeling Concepts

The core modeling concepts of AutoFocus, i.e., the core elements in the its meta-model are
follows:

Components. They are the main building blocks for systems. Components encaatate-
ternal structure andbehavior Components can communicate with their environment via well-
defined interfaces. Components are concurrent: Each one of them runs sequentially; however
a set of components, each component’s run is independent of the other components’ runs. Cc
ponents can be hierarchically structured, i.e., consist of a set of communicating sub-component

Datatypes. They define the data structures used by components. Data types are constructed fr
a set of basic types (such as integer or float) and a set of constructors, e.g., for record and var

types.

Data. Data elements are encapsulated by a component and provide a means to store persis
state information inside a component. Data elements can be regarded as typed aitdds.vari

Ports. They are a component’s means of communicating with its environment. Components re:
data on input ports and send data on output ports. Ports are named and typed, allowing only ¢
cific kinds of values to be sent/received on them.

Channels. They connect component ports. Channels are unidirectional, named, and typed, a
they define the communication structure (topology) of a system.

Control States andTransitions. These elements define the control state space and the flow of
control inside a component. Each transition connects two distinct controls states (or one cont
state with itself, in case of a loop transition) and carries a set of four annotations determining
firing conditions (its “enabledness”):

* pre-conditionsandpost-conditionswhich are predicates over the data elements of the
component to be fulfilled before and after the transition, respectively, and

* input and output patternsdetermining which values must be available on the cemp
nent’'s input ports to fire the transition and which values are then written to the outpu

ports.
DataElement 0. 1 DataType 1
0.* 1‘ ’ 1
l 0. 0.
Component %O* Port 2 0'1'2 Channel At most two channels can

* - i be connected to a port:
0.5 4 f{ disjoint } oo -- One to the environment of a

SubComponents 0.* component and one to its

i -structure
ControlState InputPort | | OutputPort |1 1| Pattern |2 internal sub-structu
¢ 1
. H
0. 0.* Expression constructed
Connector 0.* | according to the rules
nputPattern .
P for the associated data type,
2 not treated here in detail
0..*
0..2 JOutputPanern
»d
Transition
0..* -
PreCondition 1----| Predicates over the
component's encapsulated
0.* data elements, not treated
“—PostConditionf----| here in detail

Fig. 1. Basic Modeling Concepts éfutoFocus The Meta-Model

These concepts are sufficient to describe a large class of systems. Developers create the mod
an actual system using these concepts; technically speaking (e.g., with a mtmelfog this
language in mind), an actual system model iatanceof this meta-model. The complete meta-
model, together with a set of additional conditions relating to consistency and completeness
models, describes the set of all possible, well-formed models that can be created.

Views and Description Techniques

Developers do not create and manipulate models as a whole, but by picking only specific parts
them, which are of interest during particular development activities. These parts, usually close

related with each other, make up thewsof the system. For instance, the structural view in
AuToFocus considers only elements from the meta-model describing the interface ob-comp
nents and their interconnection.

To manipulate elements of these views we must represent them visu@dllyrdfkocuswe use
mainly graphical notations for that purpose; these notations are introduced in more detail by c
application example. The notations do not represent self-contained documents; instead they a
mere visualization of a clipping from the complete model. Figh@vs an example for this ael
tionship between a set of related elements from the meta-model (inside the shaded area) and 1
visual, diagrammatic representation. In this example, structural aspects of the model are cover
and the notation used to visually represent them is c8lstem Structure DiagraniSSDs for
short).

Part of the meta-model
. related to structural aspects

~

/

[Fp—— R —— -

0.+

Graphical notation
describing structure: SSD

Fig. 2. Structural Parts of the Meta-Model and the Notation representing them

Model-based Development Process

One of the main difficulties in software engineering is that the requirements of the customer a
prone to change while software is being developed. In standard waterfall development proce
models, which are still regularly used in industry, requirements analysis and testing are located
opposite ends of the development process. Evolutionary development processes, on the of
hand, try to alleviate this problem by building the software systenementally Requirements

are not fixed in an early development phase, but instead converge during several incremental
cles with customer interaction after completion of each increment.

In this section, we first give a short overview over incremental development processes, and th
describe how a process based on executable models is supported by modern CASE tools, suc
AutoFocus. Fially, we explain the step from executable models to final code.

Incremental Development

Boehm'’s spiral model [3] is the most famous incremental process model, although it is more
meta-model of a process than a proper development process model. More helpful for-real sc
ware development are the Cleanroom Reference Model (CRM) [11], and so-called agile a
proaches, most notably Extreme Programming (XP) [2], which is based on classical objec
oriented pogramming languages.

We believe that modeling languages fit the demands of an incremental process better than f
gramming languages: Their higher level of abstraction leads to higher productivity of the deve
opers; their suggestive notations ease interaction with the customer and other developers. Ne'
theless, models are executable, which results in immediate feedback for the designer and
customer.

The idea of incremental model-based development amounts to specifying the model of the syst
as precisely as possible, so that the model is always executable. In order to handle the comple
of the system, in a first step only a small part of the core functionality of the system is describe
The specification is then (together with the customer) validated and verified by simulation, i

spection and reviews, and by formal verification and analysis techniques. Later steps refine ti
model: More components are added to the model in order to add functionality; the behavior
specifications of the components are elaborated to handle exceptional cases; additional inputs
outputs are added, for instance to ease maintenance of the final product.

Besides the modeling activities themselves, the process consists of the following activities:

» Simulation: Model executability is the basis of the main validation technique employed

in our incremental process [7]. Together with the customer, exemplary system runs a
produced that demonstrate the model essentially operates according to the custemer’s
guirements.
Simulation is not restricted to interactive step-by-step executions. Using advanted sy
bolic execution techniques based on constraint-logic-programming, it is possible to autc
matically derive simulation runs from abstract test case specifications; a test case spec
cation typically demands that the model is brought into a certain state (functional tests) «
that every transition is executed at least once (structural tests).

* Analysis: While simulation is helpful to determine that the system indeed fulfils its re-
guirements, there are some questions related to quality assurance that cannot be answ:
by simulation alone, since simulation gives answers only adiogte system runs, not
aboutall possiblesystem runs (mathematically, simulation shows existential properties,
not universal ones). Some typical questions are whether the matitkrsninistic(i.e.,
for each input from the system environment theed ilmostone possible output specified)
andcomplete(i.e., for each input from the system environment thea¢ lisastone possi
ble output specified). The AutoFocus toolset includes analysis tools that help to answi
such questions. It also includes verification tools such as model checkers [9], which al
used for mathematical proofs of critical system properties. Since such proofs arge-very e
pensive (in terms of time, effort and required expertise of the tool user), the use of verif
cation tools must be carefully judged against the economic risk of system malfunctions.

» Refactoring: An obvious problem with any incremental system development process is
that the resulting system specification may be cluttered and hard to understand, as

structure is determined partly by the order in which the increments occurred. Extrem
programming makes use of elaboratefhctoring[6] patterns to clean up the system after
each increment so that it is both easier to understand and more amenable to further inc
ments. Similar techniques can be used for executable models; however, this is still an ¢
tive area of research.

To summarize, we advocate a development process that consists of several iterations where a
end of each loop, instead of hand-written code an executable system model is presented to
customer. This approach is similar to Extreme Programming, but focuses on a more abstri
modeling of the system rather than its implementation. In contrast with Extreme Programmin:
however, production of the final code is deferred until the end of the development process.

From Models to Products

Once the model is considered to be sufficiently correct and detailed, it is used as the basis for
production of the target code. For the target code, too, quality assurance must be performed.
the resulting code is likely not amenable to automatic analysis, the core activity here is testil
(see, e.g., [10]). Essentially, there are two approaches:

* The target code is produced by hand. This is a typical situation for customer/supplier r
lationships, where the model serves as the software specification of the final product. |
this case, the code produced by the supplier must be tested to ensure its conformity w
the model. It is possible to automatically derive test sequences for the implementatic
from simulation runs, in particular from the runs produced by symbolic execution as
mentioned above.

* The target code is produced by an automatic code generator. While in principle it is po
sible to mathematically verify code generators, in practice there is still some risk (albeit
very small one) that the code generator produces incorrect code. Thus, even foriautoms
cally generated code it is prudent to test the code. For avionics systems, rigorous testing
even required: Standards such as DO-178B require, among other points, tests with cle
code coverage criteria (MC/DC); it is not sufficient to have coverage only on the models.

In both cases, however, additional tests must be performed to ensure that the model is not be
on incorrect assumptions about the interaction with the environment, which could lead to timin
problems and race conditions. Such tests can be performed by Hardware-in-the-loop approach:

Example: A Digital Watch

As an example of the description techniques of AutoFocus, this section presents parts of a mo
for a digital watch. The watch has three buttons (T1, T2, T3) that are used to change the disp
mode (date, time, stopwatch) and to set the current time and date after a battery change. Fi
shows the top-level structure diagram of the watch model.

The data types of the channels are defined using Data Type Definitions (DTDs) as follows:
data Signal = Present;
data Segments = Date (Int,Int,Int,Int,Int,Int)
| Time (Int, Int,Int,Int,Int,Int)
| Stop (Int,Int,Int,Int,Int,Int);

T1l:Signal

T2:Signal : x Display:Segments

T3:Signal

Fig. 3. Top-Level View of the Watch

Deeper in the modeling hierarchy, the watch component contains a time componeninthat co
putes the time of day from internally derived signals £s) that hold the time of day in 1/100s
and 1/10s; they are derived from an internal counter. There are other components to keep tracl
the current date and to model the stopwatch function.

The time component (see Fig. 4) is quite complex, because it is also responsible for the adjt
ment of the time by the user. It has separate components to compute the segment digits for
display Gecl, Secl10, Minl, Min10 andH12); depending on the current display mode they either
display the relevant part of the current time, or the current time setting when the watch own
changes the time.

TL:5i ..
1A reset:signal ’ valslint

T2:Signal _ k k:Bool
. S
1 Resetsisignal . R valz1o:int bs) Display:Segments

T3:Signal Overslo-Bool
M incM L:signal

ValM L:int

4:Bocl
>] valmioine

Mode:Madus
incM10:Signal

OverMiliD:Eaal
o= valHL:int _ L

>
%

incH:Signal

valH1o:nt

CarryDpy:Bool

Fig. 4. Component Network inside the Time Component of the Watch

Note that in the diagram there are two kinds of channel conneBelsyedchannels (marked

with a circle) andmmediatechannels (marked with a diamond). Messages sent through-an im
mediate channel are visible to the receiver in the same reaction; messages sent through a del:
channel are visible in the following reaction. There are some subtle methodical issues involved

their use. Generally, immediate channels should be used for the data flow within an embedd
controller. Without immediate channels it would not be possible to switch from 23:59:59 tc
00:00:00 within one model reaction, because the overflow-values would be present only in ti
next time step. On the other hand, for mathematical reasons every communication cycle in t
system must contain at least one delayed channel.

Fig. 5 shows the behavior of the comporsgiting as an example for state transition diagram. It
describes the way to set the time using the sighilg 2, T3 and the current mode that is com
puted by another component of the model (the mode signal is also computed from the three t
tons, but it is handled separately for reasons of modularity). For example, incrementing the mi
utes display is modeled with the transitib2?P; T3?; IncM 1!Present which connects the state
Minutel to itself. The semantics of this transition is as follows: When bUi®is not pressed,

but buttonT 2 is, then send the sign@i esent to the minute segment component.

‘Mode? Zeit; T17P:;

s] 17F, T37INEM 10IPres Nt
I'

:Tl?P; T3?:incM1Present: UTI?P Tar: mcHIPresenU

CT2%F; T37 ResetslFresent: (T27P, T3v:incM 1lPresent: T2FF; T3%:incM10lFresent; T27P; T3%:incH!Present:

Fig. 5. State Transition Diagram of the Setting Component

In addition to input and output statements transitions can be annotated with preconditions (whi
are predicates over local variables and values read from input channels) and actions (which
assignments to local variables). Together with the DTD specifications, this allow models that a
completely independent from the target programming language. This is important for reusing tl
models for other targets (for example with a different processor and a different instruction set).

While the model itself is not very ambitious, its implementation is, since the resources of th
watch are severely limited (4bit processor, 2KB of memory). The model is indeed the basis of
watch implementation with an industrial partner, but we did not yet implement a code generat
for the assembly language used in the project. Given the rigorous semantics of AutoFocus, wh
is very close to the description techniques, and the limited size of the watch model, it isistill ma
ageable to translate the model into assembly language by hand.

The code that results from the watch model is not used stand-alone; it is linked with a number
arithmetic and 1I/O libraries.

Extensions for Real-Time

With the description techniques presented so far, models describe the functionality of the syst
under development in terms of input/output reactions. For the final implementation, in addition t

the functionality, timing requirements must be considered. They relate system executions wi
the physical time of the system’s environment. Typical timing requirements are statgmhes

tion requirements (two inputs or outputs must be separatedlbgsita certain duration), or as
proximity requirements (two inputs or outputs must be separated st certain duration).
Timing requirements fulfill two purposes: They impose demands on the maximal execution tim
for an input/output reaction of the system (and thus on the performance of the target hardwar
and they state assumptions on the duration of activities of the controlled hardware.

Timing requirements can be concisely specified by annotated Message Sequence Charts. Fir
shows a simple timing requirements for the watch: It states that the watch, when switched to di
mode by pressing button T3, displays the date for three seconds (rather, any number of disp
messages are sent to the hardware until exactly 3 seconds have passed) and then returns to
mode. This requirement is a combination of proximity and separation requirement. Further (qui
trivial) requirements specify that a second (rather, 1/100s) of modetamesponds to a second

of real time.

Watch

Display!Time(...)

T3?Pressed N

o

»1 Display!Date(...)_ =3sec

Display!Time(...)

]
Fig. 6. Timing Requirements in a Message Sequence Chart (MSC)

Obviously, the relationship between model time and real time must be verified. Currently, this
done by hand-written test cases, which measure controller execution time and environment
sponse times. A more automatic scheme will translate time-annotated MSCs like the one abc
into special time observer components. These components run in parallel to a standard hardwi
in-the-loop setup (see Fig. 7) and give verdicts on the satisfaction of timing requirements for n
only special timing test cases, but for all previously derived functional test cases as well.

Controller

Sensor Actuator
readings commands

HWe-in-the-loop

L]
1 Verdict
Time Observer Component I-__*

Fig. 7. Time Observer Component in Parallel with Hardware-in-the-Loop

Conclusion

This paper touches only some of the issues of model-based development. While the ctassical
eas of CASE tools (description techniques and code generators) are quite stable in our toolset,
validation and verification tools are still undergoing development and field studies with eur part
ners and customers. In particular, the promising field of model-based test case generation
making rapid progress. In order to cover not only the later phases of system design, but also
guirements analysis, the AutoFocus toolset has been connected to the requirements managet
tool DOORS [1].

Acknowledgment. Peter Braun, Heiko Lotzbeyer, Alexander Pretschner and Dr. Bernhard
Schatz, our colleagues from TU Minchen, have contributed greatly to our understanding
model-based development and to the AutoFocus toolset itself.

References
1. B. Bajraktari: Modellbasiertes Requirements Tracing. Master thesis, TU Miunchen, 2001.
2. K. Beck: Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.

3. B.W. Boehm: A spiral model for software development and enhancement. Software Eng
neering Notes, 11(4), 1994.

4. G. Booch, I. Jacobson, J. Rumbaugh: The Unified Modeling Language User Guide. Addison
Wesley, 1998.

5. M. Broy, O. Slotosch: Enriching the Software Development Process by Formal Methods,
Proceedings of FM-Trends 9BNCS 1641.

6. M. Fowler: Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.

7. F.Huber, S. Molterer, A. Rausch, B. Schatz, M. Sihling, O. Slotosch: Tool supported Spec
fication and Simulation of Distributed SysterRspceedings of International Symposium on
Sotware Engineering for Parallel and Distributed Systei#98.

8. F. Huber, B. Schatz: Integrated Development of Embedded Systems with AutoFOCUS.
Techncal Report TUM-10107, Fakultat fir Informatik, TU Minchen, 2001.

9. J. Philipps, O. Slotosch: The Quest for Correct Systems: Model Checking of Diagrams and
Datatypes, Poceedings of Asia Pacific Software Engineering Conference 4999458.

10.A. Pretschner, O. Slotosch, H. Létzbeyer, E. Aiglstorfer, S. Kriebel: Model Based Testing for
Real: The Inhouse Card Case Study in Proc. 6th Intl. Workshop on Formal Methads for |
dustrial Critical Systems (FMICSO01), Paris, July 2001.

11.S. Prowell, C. Trammell, R. Linger, J. Poore: Cleanroom Software Engineering. Addison-
Wesley, 1999.

12.G. Wimmel, A. Pretschner, O. Slotosch: Specification Based Test Sequence Generation witl
Propositional LogicJournal on Software Testing Verification and Reliabifity appear).

