
Signals, States, Events, and Modes

Peter Braun1 Jan Philipps1 Bernhard Schätz2

1 Validas AG
Lichtenbergstr. 8

85748 Garching, Germany
{braun,philipps}@validas.de

2 Technische Universität München
Boltzmannstr. 3

85748 Garching, Germany
schaetz@in.tum.de

For embedded control software – especially in form of networks of interacting com-
ponents – correctness of inter-communication is a key issue. While architectural com-
patibility notions do not capture the necessary dynamic aspects, analysis based on full
behavioral models does not yet scale for practical applications. Here, communication
obligations offer a trade-off between completeness and usability. For describing em-
bedded control software, these obligations essentially depend on signal-related issues
like state/event communication as well as application-related issues like modes of op-
eration. To motivate the use of communication obligations, we introduce the concepts
of state and event signals as well as modes of communication; furthermore, their for-
malization and analysis using temporal model checking is sketched.

1 Introduction

The increasingly complex functionalities of embedded systems have led to the use of
software components, cooperating by exchange of information and often implemented
on networks of ECUs. To ensure the construction of reliable systems, as a first step
typically component-oriented approaches are used, such as those found in state-of-the-
art modeling languages and their corresponding CASE tools such as Simulink. As
illustrated in Figure 1, these approaches use structural concepts, describing the com-
ponents (e.g., Vehicle Status Manager, Door Control Unit), their communication inter-
faces (e.g.,BATT, DIAG ports) as well as their connections. Additionally, behavior is
described, e.g., using data flow interpretation or some kind of state transition diagrams.

Independent of whether modeling formalisms or standard programming languages
are used to describe the behavior of a component, generally some middleware layer
supports the deployment of these components to the target ECU. Here, the component-
based approach eases the deployment and ensures their (static) communication com-
patibility within frameworks like AUTOSAR [5] and EAST/EEA [8].

However,static compatibility of interaction, e.g., type correctness of messages ex-
changed between components, is only capable of detecting gross — but important —
cases of communication incompatibility. To detect additional sources of defects in the
development process during functional design, in academic approaches the verification
of (an abstracted version of) the behavior of networked components has been investi-
gated. By adding the full description of the interactions of components, arbitrary prop-
erties of these networks can be analyzed. However, these approaches in general require
sophisticated analysis techniques, and do not readily scale to real-world applications.

1

VSM DCU
BATT

DIAG

ERROR

KEY

LOCK

Figure 1: Description of Static Aspects of Components

Thus, in the approach presented here, we focus on the description and analysis of a
notion of compatibility in form of communication obligations as an intermediate aspect
between the description of completely static aspects and fully-fledged dynamic descrip-
tions. As in embedded systems (volatile) signals are used for communication, possible
loss/lack of signals as a source of unintended behavior (e.g., ignored lock/unlock sig-
nals in door control, sporadic status events in sleep mode) is an essential aspect in the
development of embedded control software. As timing of interaction plays a decisive
role in the construction of reliable embedded systems, the detection of possible lack
and loss of signal due to out-of-time reading or writing is considered.

To support such a (practically feasible) notion of compatibility, domain-specific
abstractions of interaction behavior commonly found in embedded systems are used.
To that end,state signals, event signalsandmodes of operationare introduced (Section
2), allowing to describe basic interaction patterns extending static descriptions. By
formalizing these patterns (Section 3), incompatibilities still manageable by analysis
tools like temporal model checkers can be achieved (Section 4).

2 Signals and Obligations

When constructing networks of communicating control components, generallysignal-
based communicationis used. Basically, a signal can be understood as a function
mapping time values to a data value, thus including a value domain (thetypeof the
signal) as well as a temporal domain (the value of a signal depending on the time
point).

Current state-of-practice approaches include these value domains of signals in their
interface descriptions. As illustrated in Figure 1 and Table 1 (columns ‘Direction’,
‘Name’, and ‘Domain’), these interface descriptions consists of a number of input and
outputports (e.g.,BATT, ERROR, DIAG), used to receive and send signals; for each
port, furthermore the type of the signal exchanged via this port is defined. When com-
posing components to networks by linking output ports to input ports, compatibility of
the types of the linked ports is ensured. Thus, types can be regarded as a simple (static)
contract between a sender and a receiver of a signal, stating that the former does not
send values that the latter cannot process.

Especially on the implementational level, the temporal domain of an interface of
a component (e.g., in terms of its CAN bus interface) is additionally described. In
general, the temporal description defines when a new signal value is needed or must be
provided at its interface ports. Often, these describe a maximum communication profile
and do not consider the fact that produced and consumed signals may vary throughout
the operation of a component. These coarse type and static communication aspects of

2

Direction Type Phase Period Name Domain

in state 0 ms 100 ms BATT Voltage 5V - 18V, 0.1 V
Integer Value 50 to 180

in event 0 ms 100 ms KEY Door key status
LCK, UNL, HLD

...
...

...
...

...
...

out state 0 ms 500 ms ERROR Error Code Locking
B_LOW_SEAT
B_LOW_KEY
ERROR_KEY

out event 100 ms 100 ms DOOR Door lock command
OPN, CLS, RST

Table 1: Functional Description of Basic Interfaces

a component interface only allow restricted forms of compatibility analysis concerning
the possible lack and loss of signals. Therefore, by introducing classes of signals and
modes of operations into these descriptions, finer distinctions are possible.

2.1 States and Events

Besides the type and the value domain, signals can also be regarded as having a func-
tional domain, which determines how information must be exchanged and used. In the
field of embedded control software, signals generally can be classified asstate signals
typically used to describe data flows communicated between quasi-continuous func-
tional components, modeled, e.g., using Simulink or ASCET; orevent signalstypically
used to describe commands communicated between discrete state-based components,
modeled, e.g., using Stateflow or Rhapsody. This distinction influences the commu-
nication patterns applied when combining components to form reliable systems. As
state signals are especially used to convey computational information, it is generally
considered safe to write a signal more often than it is read, overwriting unused state
information by its more up-to-date version. Symmetrically, as event signals are espe-
cially used to transport commands, it is generally considered safe to read a signal more
often than it is written, ensuring the observation of raised events.

This functional dimension is important since the resulting communication obliga-
tions influence the contract between a system and its environment established by a
schedule:

State input signal: The environment provides a signal whenever the component re-
quests a signal according to the schedule.

State output signal: The component provides a signal whenever the environment re-
quests a signal according to the schedule.

Event input signal: The component consumes a signal whenever the environment
supplies a signal according to the schedule.

Event output signal: The environment consumes a signal whenever the component
supplies a signal according to the schedule.

3

From BATT KEY ERROR LOCK To

STD_BY - LCK,UNL - CLS,OPN NORMAL
...

...
...

...
...

...
...

...

Table 2: Description of a Mode Transition

While event input ports and state output ports offer guarantees about the signals con-
sumed or produced without imposing requirements about the environment, state input
ports and event output ports require the environment to produce or consume signals in
time.

By considering these functional aspects, a more fine-grained analysis of compatibil-
ity is possible. To that end, we must explicitly specify for each port whether we expect
communication to occur, by assiginingcommunication obligationsto ports (‘Com-
munication forbidden’, ‘Communication may occur’, ‘Communication must occur’).
Combined with temporal restrictions, these obligations are added to the interface de-
scription of a component, e.g., using standard variations. As shown in Table 1 (columns
‘Direction’, ‘Type’), combinations like ‘state input’, ‘event input’, ‘state output’ or
‘event output’ can be used to declare that communication must at least/at most occur
during certain intervals. For compatibility checks, it is sufficient to identify combina-
tions of communication obligations that are erroneous, e.g., communication must take
place at an output port, but is forbidden at the input port; or communication must take
place at an input port, but is forbidden at the output port.

2.2 Modes and Obligations

As indicated above, communication obligations of an embedded control component
generally vary during its operation, depending on the current (internal and external)
state of the component. Therefore, a description of the global and thus static inter-
action aspects of a component, as introduced in Subsection 2.1 does not suffice for a
practicable notion of compatibility. However, just as a static description of the com-
munication obligations of a component only allows a very weak characterization of its
dynamic behavior, a complete dynamic description mostly results in characterizations
too complex to be mechanically checked for realistic components. Therefore, a coarse
partitioning is needed that includes the description the interactions of a component, but
is less complex than a full behavioral model.

This partitioning is achieved by means ofmodes of operation. Typically, modes are
coarse partitions, characterizing different phases (e.g., start-up, operation, shut-down)
or control schemes (e.g., cranking, warm-up, running). Each mode is an abstraction
from the exact state of a component; it combines all states of a component that result
in identical obligations. Thus, while residing in a certain mode, the interactions of a
component can be described using, e.g., the notation applied in Table 1.

For the description of the mode-dependent communication obligations of a compo-
nent, the declaration of the modes of a component (including its initial mode), the com-
munication obligations of every mode, and the transition between these modes must be
described. While a mode characterizes the behavior of a component over a certain
range of time (basically defined by the timing conditions assigned to its signals), a
transition is assumed to take no time. As shown in Table 2, a transition is described by
the source mode (‘From’) the transition is originating in, the collection of values for

4

Hπ

start endhold

c ≤ πc = 0 c = 0

c = π::c' = 0
{s1...sn}

start end

c = 0:s1:c' = 0

c = 0:sn:c' = 0

...
c = 0 c = 0

clock cclock c

Figure 2: Simple Patterns of Standard Behaviors

the input signals triggering in the transition (e.g., ‘BATT’, ‘KEY’), the collection of
values for the output signals effected by the transition (e.g., ‘DIAG’, ‘DOOR’), the tar-
get mode (‘To’) the transition is terminating in. A transition enabled in a source mode
terminates the behavior characterized by this mode and continues with the behavior
characterized by the target mode. If no transition is triggered, the component remains
in its current mode for another cycle.

3 Formalizing Obligations

To mechanically check the compatibility of communication obligations, the introduced
concepts like state and event signals and their timing dimensions must be formalized.
Here, timed automata are used. Furthermore, as incompatibility of communication
obligations can be defined as lack or loss of signals, these formalizations are extended
to detect those forms of communication faults.

The interface descriptions introduced define communication obligations; their for-
malizations describecontractsbetween the component and its environment. To con-
struct these contracts, basic patterns of interaction are combined.Signal schedulesde-
scribe these contracts for a single signal; their parallel composition is used to describe
a contract for acompound interface. Finally, combining these compound schedules,
mode schedulesare defined for components with mode-dependent contracts.

3.1 Interaction Patterns

Schedules are focused on the description of the interaction obligations of components.
Thus, in general they represent abstractions of the actual behavior of those components.
For practical usability, it is necessary to offer standard forms to describe these abstrac-
tions. Here, we use a modular approach similar to [6] that allows to construct complex
descriptions by combining simpler patterns.

To illustrate the principles of this form of modular description, Figure 2 shows
some simple behavioral modules. Each module describes a part of the overall behavior
of a component. To combine these modules, each module includes (a set of) entry and
exit locations. The left-hand module{s1, . . . , sn} of Figure 2, e.g., describes a partial
behavior that, once entered through entry locationstart is ready to accept a single
signal from the set{s1, . . . , sn} and can then be exited through exit locationend.

To formalize the behavior of a module, the concepts of timed automata are used:
locations (e.g.,start, end, hold), variables (including clocks, e.g.,c), and transitions.
Here, transitions – connecting locations – are annotated with a pre-condition (char-
acterizing a possible state of the variables prior to the execution of the transition), a

5

sπ

start end`s

cs ≤ π

cs = 0 cs = 0

s´

cs = π::
c's = 0

:s:

cs = 0

sπ

start end`s

cs ≤ π

cs = 0 cs = 0

s´

cs = π::
c's = 0

cs = 0
:s:

cs = π::c's = 0

c ≤ π

clock cs clock cs

Figure 3: Formalization of Schedules for Obligatory and Optional Signals

synchronization label (synchronizing the interactions of a component and its environ-
ment), and a post-condition (characterizing a possible state of the variables after the
execution of the transition). Thus, the label “c = 0 : si : c’ = 0” states that by exchang-
ing signalsi when clockc = 0, the transition can be executed, leavingc = 0 unchanged.
As usual, unprimed variables reference values in the state before the execution of the
transition, primed variables reference values after its execution.

Note that entry and exit locations need not be disjoint; the right-hand moduleHπ

describes a partial behavior with overlapping entry and exit location (indicated by the
dashed lines connecting them to the internal locationhold). To define the behavior –
requiring a component to repeatedly hold all interaction for a duration ofπ until exited
– invariants are used, restricting the possible state of variables while in that location.
Invariant “c ≤ π”, e.g., enforces a transition at timeπ.

3.2 Signal Schedules

Embedded software is generally built upon periodic behavior (e.g., speed measurement
activated every 500 ms); therefore, in the domain of embedded control software, modu-
lar forms of periodic behavior are essential patterns to base more complex descriptions
on. For a component with a very basic communication scheme, its communication
schedule can be defined independently for all its ports. A standard communication
behavior consists of repeatedly performing an interaction; the delay between those
equidistant interactions is calledperiod.

However, besides this timing aspect, additional functional aspects must be con-
sidered when describing those patterns, especially the distinction between event-based
and state-based communication paradigms discussed in Subsection 2.1. This functional
dimension is important since it does influence the obligations of either systems and en-
vironment established by a schedule, as discussed in Subsection 2.1. While event input
and state output signals offer guarantees about the signals consumed or produced with-
out imposing requirements about the environment, state input and event output signals
require the environment to produce or consume signals in time. Thus, the former can be
understood as optional obligations to interact, while the later are obligatory obligations
to interact.

Figure 3 shows the formalization of these kinds of signal schedules. The modulesπ

in the left-hand side describes the obligatory case. The corresponding automaton uses a
clock variablecs to formalize the timing conditions defined by the schedule. Location
`s characterizes the state prior to the reception of a signal; locations´ characterizes

6

OK500 | HI500

start end

cO = 500
::c'O = 0

:HI:

`O,H´O ,́̀ H

`O,̀ H

O ,́H´
:OK:

:OK:

cH = 500
::c'H = 0

cO = 500
::c'O = 0
cH = 500
::c'H = 0

:HI:

cH = 0,cO = 0

cH ≤ 500,cO ≤ 500

cH ≤ 500,
cO = 0

cH = 0,
cO ≤ 500

cH = 0,
cO = 0

cH = 0,
cO = 0

clock cH, cO

Figure 4: Combining Signal Schedules to Compound Schedules

the state when a signal has been exchanged. Location`s is both an entry and an exit
location as well.

The transition from̀ s to s´ – labeled “: s :” – corresponds to the exchange of a
signal at time0. The transition froms´ to `s – labeled “cs = π : s : c′

s = 0” – marks
the end of the current period and the beginning of the next. Note that this formalization
states that theexchange must take place at the defined time points: as`s restrictscs to
0, the corresponding transitionmustbe taken, unless the signal schedule is aborted. As
cs = 0 is entry and exit condition, the schedule is started at time0 and may be aborted
at any timen× π for n ∈ N.

The right-hand side of Figure 3 shows the formalizationsπ of an optional obligation
for signal exchange. In contrast to modulesπ, an optional signal offers an exchange
each period,but does not require the exchange to be imposed on the environment.
Therefore, compared to obligatory schedule its formalization allows the environment
to ignore the interaction by means of a weakened invariantcs ≤ π, while the synchro-
nization transition is strengthened tocs = 0 : s :. Furthermore, a feedback transition in
location`s with pre-conditioncout = π, resetting the clock variable (c′

s = 0) is added.
By using several transitions from̀s to s´, each using a different synchronization

label as in the basic module{s1, . . . , sn} of Figure 2, the exchange of signals with
distinct values communicated over a single port is formalized. Thus, by means of
obligatory and optional schedules, state input and event output as well as event input
and state output signals can be adequately described: a state input signal corresponds
to a obligatory schedule, as does a event output signal; symmetrically, a state output
signal corresponds to an optional schedule, as does an event input signal.

3.3 Compound Schedules

Signal schedules describe interactions concerning a single (generally multivalued) sig-
nal, e.g., occurring at a single port of a component. By combining signal schedules to
compound schedulesthe restrictions imposed on the interactions of a components are
described, which are communicating via multiple ports.

To formalize the definition of a compound schedule, conjunctive composition of
modular descriptions by means of their interface locations is used, similar to [6]. Ba-
sically, conjunctive composition is obtained by constructing the product space of the
models, using the locations and local variables of either module. The transitions are
obtained by applying the original transitions on either part of the product space. Lo-

7

HLD500 + { UNL, LCK} + D500

clock c

start `HLD holdc = 0:LCK:

c = 0:UNL:

c ≤ 500 HLD´
c = 500::
c' = 0

c = 0:
HLD:

c = 500::c' = 0

c ≤ 500

c = 500::
c' = 0

c ≤ 500

end

 { OPN,CLS } + D100 + { OPN,CLS, RST }100

start

clock c

holdc = 0:OPN:

c = 0:CLS:

c = 100::
c' = 0

c ≤ 100

end`OCR

c ≤ 100

OCR´
c = 100::

c' = 0
:OPN: :RST::CLS:

c = 0

{ HLD, UNL, LCK}100

clock c

H500

start endhold

c ≤ 500

c = 500::c' = 0

clock c

start end`HUL

c ≤ 100

HUL´

c = 100::
c' = 0

:HLD: :UNL::LCK:

c = 100::c' = 0

c ≤ 100

STD_BY

start end start end

NORMAL

Figure 5: Combining Compound Schedules to Mode Schedules

cation invariants are obtained by the conjunctions of the corresponding invariants of
either module; entry and exit locations obtained from locations corresponding to entry
and exit locations in both modules.

Figure 4 illustrates this composition for the signal schedulesOK500 andHI500,
describing the interaction obligations for a component with an event output signalOK
(e.g., ECU status information) and a state input signalHI (e.g. battery status informa-
tion). Intuitively, the activation of the compound schedule through its entry locations
corresponds to the joint activation of the signal schedules through their entry location
connectors; their joint deactivation corresponds to the deactivation of the component.

Thus, by combining signal schedules into compound schedules the interaction obli-
gations can be described for components with a stereotypic behavior unchanged during
its execution.

3.4 Mode Schedules

When controlling a (technical) process, the corresponding control scheme of the con-
trol system does not remain unchanged during its execution; often it can rather be bro-
ken up into distinct subschemes depending on state of the controlled process. E.g.,
when controlling fuel injection, the applied control scheme essentially depends on
whether the engine is turned off, cranking, warming up, or running normally. Fur-
thermore, often user-controlled modes of operation are used when constructing control
schemes. E.g., in engine control, a set-up mode, a maintenance mode, and a normal
operation mode are commonly found.

Basically, mode schedules are constructed from compound schedules and basic de-
scription modules by sequential composition: As compound schedules are well-suited
to describe stereotypic interaction obligations, they are used to characterize the inter-
action within a single mode; basic modules are used to describe the switch between
modes. Figure 5 illustrates this form of combination for the transition of Table 2,
switching from mode ‘STD_BY’ to mode ‘NORMAL’. For each mode, its compound
schedule is described by the parallel composition of its signal schedules (here, the
‘DOOR’ and the ‘KEY’ schedule). In the originating mode, no ‘DOOR’ event signal

8

is provided, while the event input signal ‘KEY’ is observed with a period of 500. In the
terminating mode, both signals are provided and observed with a period of 100. The
switch is triggered upon reception of eitherUNL or LCK; it results in the initializing
the output to eitherOPN or CLS.

While compound schedules are described via conjunctive composition of descrip-
tion modules, mode-based schedules are described via disjunctive composition. To that
end, the union space of the modules is constructed, with locations and variables as well
as transitions from both modules. To connect modules, additionally, entry and exit loca-
tions can be identified to form shared locations. Intuitively, entering a shared exit/entry
location corresponds to simultaneously deactivate and activate the corresponding mod-
ules.

While conjunctive and disjunctive composition of signal schedules and basic mod-
ules allow the construction of complex mode-based schedules, arbitrary behavioral de-
scriptions can be constructed by using very general basic modules.

4 Analyzing Obligations

By explicitly describing the interaction obligations of a component, we can check
whether the interactions of two components are compatible, or whether the obligations
imposed on a system are ensured by the interactions of its components. To that end, the
notion of compatibilityof interface descriptions is introduced, to detect possible loss
or lack of signals when composing components to form systems.

Intuitively, by means of compatibility we want to ensure that no signal is lacking
or lost when exchanged between a component and its environment. More formally, if
a signal interaction is imposed by a component, it must not be rejected by the environ-
ment and vice versa. Obviously, the schedules introduced in Subsection 3 are generally
not enabled to accept any signal at any time: for some states and signals, no transitions
with a corresponding synchronization labels are enabled; thus the exchange of those
signals is blocked.

By using obligations to describe the interactions of components, two forms of com-
patibility can be ensured in the development process:compatibility of compositionand
compatibility of abstraction. The former is used to ensure that the obligations of two
components interacting with each other are compatible, thus avoiding any lack or loss
of signals in their communication; the latter is used to ensure that the obligations im-
posed on a system by means of its interface description are met by the obligations of
its constituting component interface descriptions.

4.1 Compositional Compatibility

To check for compatibility of components, we compose their corresponding schedules
in parallel and check whether the combined schedules may lead to a terminating (i.e.,
dead-lock) state. Figure 6 illustrates this for the case of a state signals used both as an
input signal with a period of100 and as an output signal with a period of200. Com-
posing their schedules – shown in the left-hand side – in parallel with synchronization
on s-transitions, leads to the behavior shown in the right-hand side, depicting only the
reachable states. During execution, the combined timed automata reaches a deadlock
at time point100 while the receiver is in locatioǹs1 with c1 = 0 restricting any further
delay, the sender is in locations2́ with c2 = 100. Thus, the only transition leaving this
combined state – depicted in gray – is not enabled, leading to a deadlock.

9

`s1

c1 ≤ 100s1´

c1 = 100::
c'1 = 0

:s:

c1 = 0

`s2

c2 ≤ 200s2´

c2 = 200::
c'2 = 0

c2 = 0
:s:

c2 = 200::c'2 = 0

c2 ≤ 200

c1 = 100::
c'1 = 0

`s1 s2´

`s1`s2

s1´ s2´

:s:

c1 = 0,
c2 ≤ 200

c1 ≤ 100,
c2 ≤ 200

c1 = 0,
c2 ≤ 200

c2 = 200::
c'2 = 0

Figure 6: Incompatible Signal Schedules

Thus, a collection of interface descriptions is considered incompatible if their paral-
lel composition may deadlock. While in an asynchronous implementation – as found,
e.g., in embedded control networks implementation via CAN and OSEK – deadlock
does not occur, it corresponds to the lack or loss of signal. Correspondingly, com-
positional compatibility can be rephrase as a question of reachability (i.e., reaching a
deadlock state), making it accessible to standard model checking procedures.

Based on the kind of deadlock state, furthermore the class of the error can be iden-
tified: if the sender is blocked from performing its synchronized action, loss of event
occurs in an asynchronous implementation; symmetrically, blocking the receiver corre-
sponds to lack of data. In the example in Figure 6, lack of signals is detected, assuming
thats is a state signal. As, symmetrically the schedules also describe an event output
signal with period100 and an event input signal with period200, under the assumption
thats is an event signal, the loss signals is detected.

4.2 Abstraction Compatibility

In case ofcompatibility of abstraction, to show that system meets the requirements
imposed by its interface description, we ensure that

• the system only requires to read some input from the environment when the
interface description requires to read that input

• the system at least guarantees to read some input from the environment when the
interface description guarantees to read that input

• the system only guarantees to produce some output to the environment when the
interface description guarantees to produce that output

• the system only requires to produce output to the environment when the interface
description requires to

To check compatibility of interface schedules, a technique based on the canonical com-
pletion of temporal automata and their parallel composition, e.g., described in [2], can
be used, checking the existence of a (pre-)simulation relation between an abstract and
a concrete timed automaton. As in the case of the compositional consistency, incom-
patibility can be rephrased as a reachability issue. Again, the nature of offending state
of the composed system can be used to characterize the nature of the incompatibility
(lack or loss of signal).

10

5 Conclusion

This paper introduced a methodological approach to ensure the compatibility of em-
bedded software components.

The idea of using contracts as a basis of interface descriptions has a long tradition
(e.g., [7]). By transferring this notion to interaction-based interface descriptions, this
concept was applied to the domain of distributed systems (e.g., [1]). To explore possi-
bilities of automatic checks, behavioral interface descriptions, notions of compatibility
and refinement have been investigated in approaches like [3], or [4].

However, while these approaches provide general frameworks, (e.g., focusing on
blocking communication in general), here, in contrast, we focus on the domain-specific
patterns of event- and signal-based communication and the avoidance of lack or loss of
signals.

To automatically perform the compatibility analysis steps, UPPAAL [2] is used.
To that end, interface descriptions are schematically translated in synchronized timed
automata using the modular construction of schedules introduced here. Using parallel
composition, compatibility of composition and abstraction is ensured via the validity
of the safety properties ensuring the unreachability of locations resulting in loss or lack
of signal. The basic techniques of this approach have been applied to case studies in
chassis electronics in the automotive domain, demonstrating the basic feasibility of the
presented approach.

References

[1] Robert Allen and David Garlan. A formal basis for architectural connection.ACM
Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

[2] Gerd Behrmann, Alexandre David, and Kim G. Larsen.A Tutorial on Uppaal.
Department of Computer Science, Aalborg University, Denmark, November 2004.

[3] Luca de Alfaro and Thomas A. Henzinger. Interface automata. InEuropean Soft-
ware Engineering Conference/ACM SIGSOFT Foundations of Software Engineer-
ing, pages 109–120, 2001.

[4] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed interfaces.
In EMSOFT Embedded Software, pages 108–122, 2002.

[5] Harald Heinecke, Klaus-Peter Schnelle, Helmut Fennel, Jürgen Bortolazzi,
Lennart Lundh, Jean Leflour, Jean-Luc Maté, Kenji Nishikawa, and Thomas
Scharnhorst. AUTomotive Open System ARchitecture - An Industry-Wide Ini-
tiative to Manage the Complexity of Emerging Automotive E/E-Architectures.
Whitepaper, www.autosar.org, 2004.

[6] Thomas A. Henzinger. Masaccio: A Formal Model for Embedded Components.
In Proceeding of the First International IFIP Conference of Theoretical Computer
Science, pages 549–563. Springer, 2000. LNCS 1872.

[7] B. Meyer. Applying "design by contract".IEEE Computer, 25(10):40–51, 1992.

[8] Thurner et al. Das Projekt EAST-EEA – Eine middlewarebasierte Soft-
warearchitektur für vernetzte Kfz-Steuergeräte. InVDI-Kongress Elektronik im
Kraftfahrzeug, number 1789 in VDI Berichte, Baden-Baden, 2003.

11

	Introduction
	Signals and Obligations
	States and Events
	Modes and Obligations

	Formalizing Obligations
	Interaction Patterns
	Signal Schedules
	Compound Schedules
	Mode Schedules

	Analyzing Obligations
	Compositional Compatibility
	Abstraction Compatibility

	Conclusion

