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Abstract

For the practical development of provably correct soft-
ware for embedded systems the close integration of CASE
tools and verification tools is required. This paper de-
scribes the combination of the CASE tool AutoFocus with
the model checker SMV. AutoFocus provides graphical de-
scription techniques for system structure and behavior. In
AutoFocus, data types are specified in a functional style,
while SMV supports only primitive data types. Hence, a
data type translation based on the techniques used in com-
piling functional programming languages is a major part in
the mapping from AutoFocus to SMV.

1. Introduction

Common techniques for the quality assurance of soft-
ware are code reviews and tests. Both techniques, however,
fail to ensure the high levels of quality required for software
in embedded systems, where human life or property may be
at stake, or malfunctions can lead to expensive product re-
calls.

Formal methods, on the other hand, allow to prove the
correctness of a program based on mathematical models of
both the program and the correctness criteria. The math-
ematical formalization of programs and properties itself is
a possible source of errors, therefore it is done by experts
in formal methods in order to ensure the adequacy of the
model and the properties.

There are various approaches to close this gap. One is
to base formal methods on common mathematical princi-
ples —e.g. set theory— that are either known to the system
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designers or that are easier to master. Examples for this
approach are the specification methods B [1] and Z [23]. In
both cases, tool support is secondary, and correctness proofs
must be done manually. Neither is there support for graphi-
cal notations for system structure or behavior.

Another approach is to avoid mathematical notation by
defining formal semantics for the programming and mo-
deling languages typically used in industry. Examples are
formalizations of UML [4], SDL [10] or StateCharts [8].
Unfortunately, even when the formalization is sufficiently
precise so that verification support can be provided, the for-
malization is often too complicated for practical, perhaps
even automatic, verification.

A third approach is to use domain-specific programming
languages and to provide verification support for them. Ex-
amples are the model checker SPIN [11] with its program-
ming language PROMELA for communication protocols or
model checkers for subsets of the hardware description lan-
guages Verilog and VHDL, as for example VIS [24] or the
Cadence version of SMV. These systems, however, have no
support for more intuitive graphical description techniques;
they also have no support for data types more complex than
(tuples of) booleans, finite subsets of the integers and enu-
merations.

This paper describes an attempt to address the deficits
of the approaches mentioned by closely integrating graph-
ical notations, straightforward semantics and complex data
types, based on the CASE tool AutoFocus [12, 13]. Au-
toFocus offers graphical, hierarchical and view oriented
descriptions of systems. In contrast to other approaches
the semantics of AutoFocus is based on elementary mathe-
matical concepts, which allows us to use existing automatic
verification tools, in this case the model checker SMV. Like
most automatic verification tools SMV is restricted to rather
simple data types, while AutoFocus allows powerful data
specifications in the style of functional programming lan-
guages. Therefore, data types must be mapped to simple



integer subsets and finite enumerations for verification.

The paper is structured as follows. In the next section,
we introduce the AutoFocus description techniques with a
small avionics example. § 3 contains a short overview of the
SMV features that are used for the translation from Auto-
Focus to SMV. The main part of the paper are the transla-
tion of the user-defined data types and functions in § 4 and
the translation of the graphical description techniques for
system structure and behavior in § 5. § 6 contains some re-
sults of a larger example; in the conclusion (§ 7) we mention
extensions of our approach and give an outlook on further
work.

2. AutoFocus

AutoFocus [12, 13] is a CASE tool for the development
of correct embedded systems software. In embedded sys-
tems a software part runs embedded into a electric or me-
chanical hardware environment. They often follow a cyclic
operation model, similar to the clocked hardware model.
Concepts from object-orientation are not as dominant as in
other areas of software design.

In AutoFocus systems are specified as hierarchical
dataflow graphs; the components themselves are basically
extended Mealy machines. This helps to keep the semantics
of AutoFocus clean and simple. The data types of compo-
nent states and communication channels are specified in a
style similar to that of functional programming languages
[3,9,19].

In addition to the editors for system specification, Auto-
Focus has a consistency wizard [14] which allows the de-
signer to define and check static consistency conditions of
system descriptions. A simulation environment can be used
for rapid prototyping.

For a detailed description of AutoFocus we refer to
[12, 13]; in this paper we explain the relevant views of Au-
toFocus using a simple avionics example.

2.1. Example

Our example is an alarm management system for a two-
engine aircraft; it is a simplification of a case study from the
project “KorSys” (correct systems, [7]). The system collects
alarms from the engines and displays them to the pilot to-
gether with a list of instructions how the pilot should deal
with the alarm; for example, the pilot might shut down an
overheated engine.

The pilot can select two display modes using function
keys NAV and AC. In navigation mode, the pilot can switch
between different views related to the position of the aircraft
on a map. In alarm control mode, the pilot deals with the
alarms. In each mode different function keys are enabled.

In the navigation mode the pilot can switch between infor-
mation displays with function keys F1, F2, and F3. In the
alarm mode the pilot can browse the “do-lists” (holding the
instructions for possible corrective actions) using a Do key
and acknowledge actions and alarms using an Ack key.

If the alarm management system receives an alarm, the
display automatically switches into the alarm control mode.
The main task of the avionic alarm control is to ensure that
the pilot receives all incoming alarms, that the latest alarm
is displayed in front of other pending alarms and that alarms
are stored until they have been explicitly acknowledged by
the pilot.

In the rest of this section, we demonstrate the AutoFo-
cus description techniques for system structure, system be-
havior and data types.

2.2. System Structure

The system structure is described by system structure di-
agrams (SSDs), which describe the component interconnec-
tion, the syntactical interfaces of the components and the
interface data types. Figure 1 shows the structure of the
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Figure 1. System Structure Diagram

avionics system. It has two subcomponents, one to control
the display, and the other to store the alarms. AutoFocus
descriptions can be hierarchical, and the components could
be refined to further SSDs.

The external channels in Figure 1 describe the interface
of the alarm system. The interface consists of three chan-
nels:

e user:Keys receives key signals (F1, F2, F3, Do, Ack,
NAV and AC) from the pilot to change the displayed
information and to control the reactions on the occur-
rence of alarms.

e env:Alarm receives the alarm messages from the en-
vironment. There are three kinds of alarms: “Fuel”,
denoting that an engine has no fuel, “Temp”, if an
engine is overheated, and “PonR”, signaling that the
point of no return has been reached, i.e. that the fuel
does not suffice to return home.

e show:Display is the output to the display. The dis-
play presents general flight information, the engine
state (all engines operating, one engine inoperative,
all engines inoperative) and the list of alarms, together
with instructions to handle the most recent alarm.



// description of alarm type and alarm store
data Engine = Engl | Eng2;
data Alarm = None | Fuel(Engine)

| Temp(Engine)

| PonR;

data AlarmStore = Store(Bool,Bool,Bool,Bool,Bool);

// constant for an empty alarm store:

const EmptyStore = Store(False, False, False, False, False);

// description of keys
data FunctKeys = F1 | F2 | F3 | Do | Ack;
data ContrlKeys = AC | NAV;
data Keys = FK(getFK:FunctKeys)
// description of engine state

data EngineState = AllEngOp | OneEngInop(Engine)

// abstract description of display information

data Actions = Refill(Engine) | SwitchOff (Engine)

| CK(getCK:ContrlKeys);

| AllEngInop;

| FindOtherBase | GoDown;

data NavigationModes = Sector | Rose | North;
data Display = Nav(NavigationModes,EngineState)

| Err(AlarmStore,EngineState)
| DoList(Actions,EngineState);

Figure 2. Data type declarations

2.3. Data Types

The types of the interfaces are defined using a functional
specification style, similar to the functional programming
languages Haskell or ML [9, 19]. They have the following
general form:

dt = Cy(seli1:typi,...,selix:typind|...|
Cn(Seln,l stypn, ..o, selnm typn,m)

The C; are constructor functions, the sel;; are selector
functions. The constructor and selector names have to be
different. If selectors are omitted in the definition, default
names are generated. Moreover, for every constructor C; an
implicit discriminator function is_C; is generated.

In our avionics example, the alarm type and the alarm
store type are defined as shown in Figure 2. Only for
the data type Keys are explicit selector functions de-
fined. The figure also contains the definition of a constant
EmptyStore

Functions or predicates over data types are also specified
as in functional programming languages. In particular, they
can be defined using pattern matching on the left hand side
of a definition. For example, the avionics system uses a
function insertAlarm, defined by:

fun insertAlarm(Fuel (Engl),Store(el,e2,t1,t2,p))
= Store(True,e2,t1,t2,p)

| insertAlarm(Fuel(Eng2),Store(el,e2,t1,t2,p))
= Store(el,True,t1,t2,p)

| insertAlarm(Temp(Engl),Store(el,e2,t1,t2,p))
= Store(el,e2,True,t2,p)

| insertAlarm(Temp(Eng2),Store(el,e2,t1,t2,p))

= Store(el,e2,tl1,True,p)
| insertAlarm(PonR,Store(el,e2,t1,t2,p))
= Store(el,e2,t1,t2,True);

Components can also have local data state variables. The
local variables of the component AlarmStore are listed in
Figure 3.

| Name | Type | Initial value |
as AlarmStore EmptyStore
es EngineState | A11EngOp
last | Alarm None

Figure 3. AlarmStore variables

2.4. Behavioral View

In AutoFocus—as in many other CASE tools— the be-
havior of components is defined by state machines; the cor-
responding diagrams are called state transition diagrams
(STDs).

We skip the STD for the driver component, as its func-
tion is quite simple: It just ensures continuous output of
display information to the hardware, even if no new signals
arrive from the alarm store. The STD for AlarmStore is
shown in Figure 4. It has two states, each corresponding to
a display mode. Each transition label consists of four parts,
separated by a colon (“:”): a precondition, one or more in-
put statements, one or more output statements and an ac-
tion. Each part is optional.



The precondition can restrict the execution of a transition
depending on the value of the data state variables; the action
changes these variables. Variable names that are used in the
transition label but that are not component variables, are
called transition variables.

Similar to function definitions, transitions in AutoFocus
use pattern matching to read from the input channels and to
bind transition variables. Preconditions, output statements,
and actions can be expressed using user-defined and auto-
matically generated functions from the data type specifica-
tion.

For example, in Figure 4 one of the transitions from NAV
into AC uses the function insertAlarm defined in § 2.3.
The input statements of a transition, too, can use pattern
matching: We can use the more compact user?CK (NAV)
instead of adding is_CK(x) & getCK(x) = NAV to the
precondition together with the input statement user?x.

Like structure diagrams, STDs can be hierarchical. In
our example, the description of the two modes is refined
using sub-STDs automata that describe the behavior in each
state in more detail. Figure 5 shows the sub-STD of the
alarm control state AC.

For each incoming and outgoing transition in the enclos-
ing state transition diagram (cf. Figure 4) there is a connec-
tor, represented as a small bullet. A transition from or to a
connector is an entry or exit transition of the sub-STD. Mul-
tiple transitions may lead to or from an exit (empty bulllet)
or entry (black bullet) connector. In the example the exit
connector is connected to three internal transitions, since
the alarm control mode can be left from all connected states
if the key NAV is pressed.

Figure 5 also shows that transitions can use abbreviated
labels, to avoid cluttering the STDs with the full label def-
inition. StoreFirstAlarm, for example, is the abbreviated
label for the following transition:

isEmptyStore(as)

env7al :
out!Err(insertAlarm(al,as),es)
as = insertAlarm(al,as)

where isEmptyStore is a user-defined function that checks
for equality with the constant EmptyStore from Figure 2.

3. The Model Checker SMV

A model checker is a program that verifies whether a
given system model (described in a simple programming
language) satisfies a property specification (described in a
temporal logic). This verification is done not deductively,
but rather by exhaustively examining every possible behav-
ior of the system. If the property does not hold for a system,
the model checker produces a counter example, i.e. a trace
of a system execution that violates the property.

We choose SMV [17] as the verification tool, mainly
because its semantics is close to the synchronous execu-
tion model of the current AutoFocus implementation; other
verification systems such as SPIN or STeP aim more at in-
terleaving execution models. SMV is a symbolic model
checker, i.e. it uses BDDs for the representation of state sets,
and does not store states explicitly in a hash table. This is
claimed to be more efficient for hardware-like systems. Last
but not least, SMV is freely available and easily portable to
other platforms.

The typical application field of SMV is hardware verifi-
cation. This is reflected in its input language, which allows
concise specifications of combinatorial hardware and reg-
isters, but offers no direct support for more complex data
types, function declarations, or state machines. In § 4 and
& 5 we show how these higher-level concepts can be mapped
to SMV.

In this section, we give an overview over those parts of
the model and property description languages of SMV that
are relevant to this paper; more information about SMV as
well as the system itself is available from the SMV web site:
http://www.cs.cmu.edu/ modelcheck/.

3.1. Model Language

Fundamentally, an SMV model is a specification of a fi-
nite state machine. The state space of this machine consists
of variables that hold either a Boolean value, a member of
an enumeration, or an element of a finite integer range. For
example,

VAR b: boolean; VAR e: { el, e2 }; VAR i: -5..5;

The initial state of the model is specified by a formula
in propositional logic that refers to the values of the state
variables. For Boolean variables the usual connectives can
be used; for integer values comparisons and arithmetic are
available.

The transition relation is also specified by a formula that
in addition refers to the values of the state variables in the
following state. For example, given the declarations above,
the formula

next(b) = !'b & next(e) = el & (i =0 1] i =1)

specifies a transition relation from all states with 1 € {0, 1}
to states where e equals el, b is inverted, and the value of i
is arbitrary.

Obviously, this relation is not total: there are no tran-
sitions from states where 1 is less than zero, or larger than
one. Itis the task of the model designer —or, in our case, the
compiler from AutoFocus to SMV— to ensure that transi-
tion relations are consistent and total.

To structure larger formulas, SMV allows case-
expressions:



env?al:a2d!Err(insertAlarm(al,as),es):as=insertAlarm(a,as),last=as

isEmptyStore(as):user?CK(AC),env?:a2d!Err(as,es):

~isEmptyStore(as):user?CK(AC),env?:a2d!Err(as,es):

user?CK(NAV),env?:a2d!Nav(Sector,es):

Figure 4. Behavior of AlarmStore

~isEmptyStore(as):user?CK(AC),env?:a2d!Err(as,es):
[}

isEmptyStore(as):user?CK(AC),env?:a2d!Err(as,es):
lErr(insertAlarm(al,as),es):as=insertAlarm(al,as),last=as ¢

O

user?CK(NAV),env?:a2d!Nav(Sector,es):

Figure 5. Behavior of AC

case
cl : el;
c2 : e2;
cn : en;
esac;

is an abbreviation for:
(cl > el) & (lcl & c2 -> e2) &
& ('cl & '... & cn -> en)
Note that since the cases are prioritized, the value of the
case is the first e; with c;. Frequently, a default case is
introduced, by choosing “true” (in SMV: 1) for c,.

For the specification of larger systems, SMV models can
be divided into several modules. Modules can be parameter-
ized, and each module can have local variable declarations,
its own initialization and its own transition relation. The
modules are instantiated in a main module similar to state
variable declarations.

Semantically, the modules operate in parallel: the ini-
tialization predicates of all modules and their transition re-
lations are conjoined.

3.2. Property Language

The second input language of SMV is the property spec-
ification language. Properties are formulated in the compu-
tation tree logic CTL. A detailed description of CTL formu-
las and their semantics can be found in [6].

In general, it is hard to formulate system properties in
temporal logics; [16] contains a classification of typical
property specification patterns and their formalization in
CTL and other languages.

4. Data Type Transation

In this section we describe the translation from user-
defined types and functions into SMV. The concept of the
translation is to define a mapping from all values of the user-
defined type to integer numbers, and to use case statements
instead of function calls. Of course this concept works only
for finite types and functions, but model checking generally
is restricted to finite systems.



The translation is based on the following two steps. First,
functions are normalized by generating symbolic constants
for all values of each data type used in the AutoFocus
model, for all standard functions (constructors, selectors,
discriminators) and for all user-defined functions.

Then, the symbolic constants are eliminated by textual
replacement using the C preprocessor.

First we present the translation of data types and the gen-
eration of the standard functions (see § 4.1). In § 4.2 we
show how user-defined functions are translated into SMV.

4.1. Types

The first step in the translation of data types is to check
whether the data types are finite. A data type dt is finite, if
itis equal to Bool, or if in its definition all types typ;, (see
§ 2.3) are finite and different from dt.

For finite data types the translation starts with the gener-
ation of the symbolic constants for each value of the type.
For each constructor C; we generate symbolic constants as
the concatenation of the constructor name with all possi-
ble combinations of the arguments: if a constructor has no
arguments, just the name of the constructor is used. All
symbolic constants are then numbered.

To use the type in SMV declarations we define a sym-
bolic name for the type by listing all possible values. For
example, translating the data type definition of Alarm in
§ 2.2 results in:

#define FuelEngl O

#define FuelEng2 1

#define TempEngl 2

#define TempEng2 3

#define PonR 4

#define Alarm { FuelEngl, FuelEng2,
TempEngl, TempEng2,
PonR }

Constructors. Constructor functions are translated into
case splits on all possible argument values. For example,
the constructor Fuel of Alarm is translated into:

#define Fuel (X0)

case
X0 = Engl : FuelEngl;
X0 = Eng2 : FuelEng2;
esac

In the case of multiple argument types the case constructs
for each argument are nested into all cases of the previous
arguments.

Discriminators. The generation of discriminator func-
tions uses a case construct with a default case. The trans-
lated discriminator for Fuel looks as follows:

#define is_Fuel (x)
case
x

FuelEngl : True;
x = FuelEng2 : True;
1 : False;

esac

Selectors.  For every argument of a constructor, one se-
lector function is generated. Like discriminator functions,
selector functions have one argument. Fuel is a constructor
with a single argument, hence only one selector is gener-
ated. Selector names are generated schematically.

#define Fuell(x)
case
X

FuelEngl : Engl;
FuelEng2 : Eng2;

X
esac

Using these definitions and the macro mechanism of the
C preprocessor, we can translate expressions like

is_PonR(Fuel(Engl)) = False

into SMV terms. Often, as in this example, the term con-
sists only of constants and functions. Since SMV builds
BDD-based normal forms, such terms are reduced to con-
stant values, in this case to the value “true”. In our experi-
ments so far, SMV had no difficulties parsing the input files.
Of course, to reduce their size, another preprocessor could
simplify such terms before passing them to SMV.

4.2. Functions

User-defined functions in AutoFocus are defined with
pattern matching. A pattern is a variable or a constructor
applied to further patterns. A term matches a pattern if it
has the same constructors; variables in a pattern are bound
to the matching subterms.

For the translation to SMV, constructor patterns are elim-
inated using discriminator and selector functions. Construc-
tor functions remain only on the right hand side of a func-
tion definition.

The translation algorithm for pattern matching follows
the pattern matching semantics given in the Haskell report
[9]; here we only demonstrate the translation using the def-
inition of the function insertAlarm (§ 2.3).

Assume the function is called as insertAlarm(X1,X2).
The function definition uses a pattern Store(el, e2,
t1, t2, p) for the second argument. In order for this
pattern to match, the second argument must be of type
Store. Therefore, in the translation the discriminator
is_Store(X2) is introduced. Now, the variable e1 must be
matched with the first argument of the constructor, which is
represented by the selector Store1(X2). Variables match



everything, so the condition “true” (in SMV: 1) is gener-
ated, and the variable e1 is bound to Store1 (X2). Thus, in
the right hand side of the definition, each occurence of el
is replaced by Store1 (X2). Similarly, the remaining vari-
ables are matched and bound. In addition, the same strategy
is used for the first argument.

The result of the translation of insertAlarm is shown
in Figure 6.

5. Diagram Tranglation

Given the translation of data types and functions from
§ 4, itis straightforward to translate AutoFocus models into
SMV. In this section, we describe how AutoFocus models
are normalized prior to the code generation, how commu-
nication channels are encoded, how system structure dia-
grams are mapped into SMV modules, and finally how state
transitions and state transition diagrams are translated.

5.1. Normalization

All AutoFocus description techniques support hierar-
chy as a means to reduce the complexity of specifications.
For the SMV code, however, this hierarchy need not be
preserved. In particular, it is sufficient to translate only
those components into SMV that contain state transition
diagrams. We refer to these components as basic compo-
nents. Thus, before code generation we build a flattened Au-
toFocus model which consists only of basic components,
and whose channels are derived from the transitive hull of
the original system connection structure. To avoid name
clashes in the flattened system structure, each component
name is adorned with a unique number.

The state transition diagrams, too, are flattened. A flat
STD is an STD where no state contains a sub-SSD. Note
that a hierarchical STD can be regarded as a tree. The leaves
of the tree are flat STDs, the inner STDs contain at least
one state that holds a sub-STD. From this tree a new STD
is built which contains all control states and state-to-state
transitions of the tree’s leaf STDs. In addition, state-to-state
transitions of the inner STDs are resolved by finding the cor-
responding connectors in the corresponding sub-STD and
merging all connected transition segments. Again, control
states need to be renamed to avoid name clashes. This is
done by concatenating the names of the STDs on the path
from root to the leaf STD, followed by the name of the con-
trol state in the leaf STD.

For example, in the normalization of the hierarchical
STD of AlarmStore (Figure 4, 5), the states Do, Alarm,
OK are renamed to ACDo, ACAlarm and ACOK, respec-
tively. The transitions between the states in Figure 5 are all
included. The transitions from the state NAV to AC in Fig-
ure 4 are linked with the corresponding transitions from the

entry connection points in Figure 5; they now lead to states
ACAlarm and ACOK.

The result of normalization is a flat SSD, where each
component contains a flat STD with basic states only and
transitions between them.

5.2. Channéls

For the synchronous semantics of AutoFocus, each
channel can carry at most one data value in each clock cy-
cle. Hence simple variables suffice to hold the channel data.
However, the presence or absence of a proper data value
must also be encoded. Thus, each channel C is encoded as
two variables: a value-carrying variable C_v, and a Boolean
variable C_p that denotes whether a proper value is present
on the channel, or whether the channel is empty.

It is not really important where in the SMV code the
channel variables are declared. We choose to declare each
channel in the code of the STD that outputs into it.

5.3. System Structure

Each component of the flattened SSD is mapped into an
SMV module. Each component module is parameterized
with the value/presence variable pair for each component
input channel. As mentioned above, output channels are
declared locally in each component. Initially, all channels
are empty: the presence variable of each output channel is
set to false.

Below is the code fragment for the AlarmStore compo-
nent. The parts marked by “...” are produced by the STD
translation, which is described in § 5.5.

MODULE AlarmStore_O(user_v, user_p, env_v, env_p)

VAR out_v : Display;
VAR out_p : boolean;
INIT
lout_p & ...
TRANS

The type name Display is later replaced by integer ranges
in a preprocessing step (see § 4.1).

The channels Keys and Alarm are inputs from the en-
vironment. They are declared in an abstract environment
module, which is not present in the SSD but generated in
the code generation:

MODULE Avionic_Env(show_v, show_p)
VAR user_v : Keys;

VAR user_p : boolean;

VAR env_v : Alarm;

VAR env_p : boolean;
INIT

luser_p & 'env_p
TRANS 1



#define insertAlarm(X1,X2)
case

is_Fuel(X1) & is_Engl(Fuell(X1)) & is_Store(X2) & 1 & 1 & 1 & 1 & 1 :
Store(True,Store2(X2),Store3(X2),Stored4(X2),Store5(X2));
is_Fuel(X1) & is_Eng2(Fuell(X1)) & is_Store(X2) & 1 & 1 & 1 & 1 & 1 :
Store(Storel(X2),True,Store3(X2),Stored4(X2),Store5(X2));
is_Temp(X1) & is_Engl(Templ(X1)) & is_Store(X2) & 1 & 1 & 1 & 1 & 1 :
Store(Storel(X2),Store2(X2),True,Stored4 (X2),Store5(X2));
is_Temp(X1) & is_Eng2(Templ(X1)) & is_Store(X2) & 1 & 1 & 1 & 1 & 1 :
Store(Storel(X2),Store2(X2),Store3(X2),True,Store5(X2));
is_PonR(X1) & is_Store(X2) & 1 & 1 & 1 & 1 & 1 :
Store(Storel(X2),Store2(X2),Store3(X2),Stored4 (X2),True);

esac

Figure 6. Translation of insertAlarm

The transition relation of the environment is completely
nondeterministic: The environment may send arbitrary key
signals and alarms to the system in each cycle.

Finally, these modules are instantiated in the main mod-
ule. The parameters of the individual modules are filled in
with the variable names of the corresponding channels; the
AlarmsStore is instantiated as follows:

VAR AlarmStore_0O : AlarmStore_O(
Avionic_Env.user_v, Avionic_Env.user_p,

Avionic_Env.env_v, Avionic_Env.env_p

)
5.4. Transitions

The translation of transitions is similar to the translation
of user-defined functions; in particular, pattern matching
within the input patterns and transition variables are elimi-
nated.

The result of the translation for the transition Store-
FirstAlarm (§ 2.4) is:

env_p =1 -- input
& isEmptyStore(as) -- precondition
& next(out_p) = 1 -- output

& next(out_v) =
Err(insertAlarm(env_v, as), es)

& next(last) = -- actions
env_v

& next(as) =
insertAlarm(env_v, as)

& ControlState = csACOK
& next(ControlState) = csACAlarm

The variable names ending in “_p” and “_v” refer to the
presence status and current value of communication chan-
nels, as mentioned in § 5.2. The last two lines represent the
control state change of the transition; the state names are
prefixed with AC because of the normalization step.

5.5. Behavior

In addition to the output channel variables, each compo-
nent defines the following state variables:

e A control state variable (an enumeration type).

e The data state variables; like channel types, their types
are later replaced by integer ranges in a preprocessing
step.

Initially, the control state variable is set to the name of the
STD’s initial state; for the component AlarmStore this a
state called Sector in NAV. The data variables are set to
their initial values (see Figure 3). Again, the symbolic con-
stants are later replaced by integer values in the preprocess-
ing step.

MODULE AlarmStore_O(user_v, user_p, env_v, env_p)
VAR out_v : Display;
VAR out_p : boolean;
VAR ControlState: {
csNAVSector, csNAVNorth, csNAVRose,
csACAlarm, csACDo, csACOK };
VAR as : AlarmStore;
VAR es : EngineState;
VAR last : Alarm;
INIT
lout_p &
ControlState = csNAVSector &
as = EmptyStore & es = AllEngOp & last = None
TRANS



| | Components | Channels | Types | Constants | States | Transitions | Inputs | BDD nodes | Memory | Time ]

ALARM 3 4 7 43 13 13 140 25287 36MB | 18s
SSB 27 56 2 8 20 62 186624 12642 1.7MB | 04s
SSB2 27 56 3 10 22 90 470596 51339 46MB | 25s
SSBBig 27 56 2 8 22 62 96 Mio 12003 296 MB | 139s

Figure 7. Verification Results

—-- Transition relation:

—-- Idle transition:

The transition relation is expressed as a formula in disjunc-
tive normal form. Each minterm is a single transition of the
STD, as presented above.

The last transition is the idle transition, which is not ex-
plicitly visible in the AutoFocus model. Its purpose is to
make the transition relation total. It is taken when no other
transition is enabled. Thus its precondition is the negation
of the conjunction of all other transition’s preconditions and
input statements; it leaves all data variables and the control
state unchanged and clears all output channels.

6. Case Study: Storm Surge Barrier

The storm surge barrier in Oosterschelde prevents the
Netherlands from catastrophic floods like the one in 1959,
which took the lives of more than 1000 people. The barrier
consists of several slides that separate the Eastern Scheldt
(inside) from the North Sea (outside). The slides are closed,
when the water level of the north sea is too high.

There is an emergency closing system that controls the
slides. This system is currently redesigned, and due to the
high criticality of the system the design has to be formally
verified. One safety critical property is that the “open” sig-
nal is sent to the barrier when

o the “close” signal had been sent before, and

o the inside water level becomes higher than the outside
water level (plus a fixed constant) for the first time after
the “close” signal was true, and

o the operator did not forbid giving the “open” signal.

The AutoFocus model is a complete model of the system,
according to the informal specification of the functions. It
also includes redundancy for the water level sensors with
a two-three majority vote. The only abstraction made was
that we used discrete input values for the six sensor signals
that measure the water levels. The model has been trans-
lated to SMV; the proof of the critical properties takes less
than one second.

Figure 7 shows some results concerning the size of some
variations of the case study. For each system, we measured
the number of components, channels, data types; the num-
ber of values and constants produced by the data type trans-
lation, the number of states and transitions in the STDs, and
the number of possible input combinations from the envi-
ronment to the system (in one time interval). The other
numbers describe the ressources used by SMV; the results
were produced on a SUN Ultra 2.

The SSB2 system in the figure is a refinement of the
storm surge barrier that allows the sensors to send errors
to the system. It could be proved that the system behaves
correctly, even if there are faulty input values. SSBBig is
a system which allows more different input values for the
water level sensor signals.

The first line of the table results from the alarm manage-
ment system that we used throughout this paper; the prop-
erty checked was a trivial consistency test.

Our experience from the storm surge barrier case study is
that the AutoFocus model is adequate for the formalization
of the system, and that the critical properties of the barrier
could be verified using our translation approach and SMV.
Moreover, the description techniques of AutoFocus posed
no difficulties for the engineers working with us.

7. Conclusion and Further Work

The main goal of our work is to combine intuitive graphi-
cal description techniques for system structure and behavior
and an expressive data type specification language with au-
tomatic verification techniques. Thus we hope to reduce the
problem of the acceptability of formal models and to make
verification more accessible to industrial software develop-
ers.

This paper is a first step towards this goal. We show
how high-level specifications can be translated into the
hardware-oriented language of SMV. To our knowledge, no
other automatic verification system allows functional spec-
ification of data types. We believe this is a main feature
of our approach, as pattern matching allows us to concisely
formulate complex transition conditions and actions of tran-
sition diagrams. Without user-defined functions it would of-
ten be necessary to introduce a special component that com-
putes a function’s result. The system specification would



then have to trigger this component and to wait for its re-
sult; this introduces lots of intermediate states and leads to
cluttered and overly complicated specifications.

The translation of diagrammatic and functional specifi-
cations is part of a larger ongoing project: Within the project
Quest [22, 20], we develop a tool set that consists of Au-
toFocus, the model checker SMV, a test environment as
well as the theorem proving system VSE [15]. Moreover,
using similar techniques as the ones presented in this paper,
we can also directly generate production code from Auto-
Focus.

In particular, the theorem prover is essential for the veri-
fication of larger systems. Using AutoFocus it is easy to
model systems that cannot be handled directly by SMV, es-
pecially when more complex or even recursive (i.e. infi-
nite) data types are used. Using the Quest toolset, it is pos-
sible to verify a system by abstraction. Properties that are
proven for a smaller system also hold in the original system,
provided a number of abstraction conditions hold [5, 18].
These abstraction conditions are automatically generated by
AutoFocus and fed to the VSE prover, where they can be
discharged using interactive proof. The conditions are for-
mulas in simple predicate logic, and much easier to prove
than temporal logic formulas. Abstraction can be used to
reduce the system SSBBig to SSB (Figure 7).

Another extension that is currently being integrated into
AutoFocus is the visualization of the counter examples
generated by SMV as extended event traces (EETs, [21]).
EETs are a simple variant of message sequence charts;
they are a diagrammatic notation for single system runs or
groups of similar runs. EETs can also be used to drive the
simulation facilities of AutoFocus, so that counter exam-
ples can be interactively replayed.

Finally, the data type translation techniques presented in
this paper can be applied for other specification and pro-
gramming notations; for example, the synchronous pro-
gramming language Esterel [2] could be extended with a
host language independent data type system.
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