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Abstract

System specification by state machines together with property specification and
verification by temporal logics are by now standard techniques to reason about
the control flow of hardware components, embedded systems and communication
protocols. The techniques to reason about the dataflow within a system, however,
are less well developed.

This report adapts a UNITY-like formalism for specification and verification to
systems of asynchronously communicating components. The components them-
selves are specified as state machines. The resulting proof techniques allows ab-
stract and compositional reasoning about dataflow properties of systems.

∗This work was supported by the Sonderforschungsbereich 342 “Werkzeuge und Methoden für die
Nutzung paralleler Rechnerarchitekturen” and by a travel grant of the Bayerische Forschungss-
tiftung.
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1 Introduction

To allow precise reasoning about a hard- or software system, a mathematical founda-
tion for both systems and properties is a prerequisite. For some classes of systems
temporal logics have been used successfully to formalize and to reason about their prop-
erties. Prominent examples are circuit design and embedded systems software, where
the clocked or cyclic operation model leads to a straightforward notion of a system state.
The distinction between “allowed” and “forbidden” system states leads to natural invari-
ance properties and proof techniques. Moreover, both hardware circuits and embedded
software have essentially a finite state space, and exhaustive verification techniques, such
as model checking, have been used with some success.

Temporal logic and model checking are less successful, however, when the dataflow be-
tween loosely coupled components that communicate asynchronously via communication
channels is examined. Note that it is not simply a question of guessing an upper bound
of the channel buffer size. Sometimes a system has a —for all purposes— unbounded
buffer size. When examining an email-based groupware system, what would be the size
of the internet between participating parties; and what would be the upper bound of
the length of the list of unread mails?

For such systems, the state-based glass box view of a component is less useful than the
black box view of its input and output. Black box properties of dataflow components
and systems can be concisely formulated as relations over the communication history of
components [12, 3, 13]; such properties are inherently modular and allow easy reasoning
about the global system behavior given the component properties.

But also for data flow components a state-based glass box view can be helpful. State
machines lead to natural proofs of safety properties by induction; they provide an op-
erational intuition that can aid in finding ranking functions for some classes of liveness
proofs; and finally, state machines are good design documents for a component’s imple-
mentation.

In this report we show —based on the ideas of Broy’s verification of the Alternating
Bit Protocol [6]— how abstract specifications of the black box view of a system or
system component can be combined with state machine-based descriptions of the system
operations. Thus we combine techniques for easy verification of dataflow properties with
descriptions that lead to efficient implementations of a system.

The property specification and verification technique is adapted from UNITY [27, 26].
The UNITY axioms for the safety and progress operators are proven to be correct in
our mathematical model. Moreover, our framework allows compositional reasoning:
Properties of single components can be used to deduce properties of the whole system.

This report is structured as follows: In Section 2 we introduce the mathematical basis
for the black box view of components and systems; Section 3 introduces the abstract
syntax and the semantics of state machines and their graphical representation, state
transition diagrams. Safety and progress properties together with their proof techniques
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are described in Sections 4 and 5. The black box and state machine specifications are
related in Section 6. In particular, it is shown how state machine properties can be
used to derive properties of the state machine’s black box view. Section 7 contains an
extended example. The conclusion (Section 8) summarizes the results and contains an
outlook on future work.
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2 Black Box Specifications

A dataflow system is a network of components. Each component has input and output
ports. The ports are connected by directed channels. The black box view regards only
the communication between components and abstracts from the internal workings of the
components.

Focus offers a mathematical basis for the black box view of dataflow systems. A
detailed introduction into Focus can be found in [12, 3]. This section contains only
a short overview over the concepts used in the rest of the report. The communication
history of channels is represented by message sequences called streams (Section 2.1),
components are modeled as relations between communication histories (Section 2.2),
and systems are modeled as the composition of components (Section 2.3); component
composition results again in a component.

2.1 Streams

The communication history of system channels is modeled by streams. A stream is a
finite or infinite sequences of messages. The empty stream is denoted by 〈 〉. Finite
streams can be enumerated, for example: 〈1, 2, 3, . . .10〉. For a set of messages Msg, the
set of finite streams over Msg is denoted by Msg∗, that of infinite streams by Msg∞. By
Msgω we denote Msg∗ ∪Msg∞.

Given two streams s, t and j ∈ N,

• #s denotes the length of s. If s is finite, #s is the number of elements in s; if s is
infinite, #s = ∞.

• s _ t denotes the concatenation of s and t . If s is infinite, s _ t = s.

• s v t holds if s is a prefix of t :

∃ u ∈ Msgω • s _ u = t

• s j denotes the result of concatenating j copies of s; similarly, s∞ results in the
concatenation of infinitely many copies of s.

• s.j is the j -th element of s, if 1 ≤ j ≤ #s, and is undefined otherwise.

• s↓ j is the prefix of s with length j , if 0 ≤ j ≤ #s, and is undefined otherwise.

• ft.s denotes the first element of a stream, i.e. ft.s = s.1, if s 6= 〈 〉.

• rt.s is the stream s without the first element: s = 〈ft.s〉 _ rt.s for all s 6= 〈 〉.
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The set of streams Msgω with the prefix order v forms a CPO with least element 〈 〉. A
chain is a set { si | i ∈ N } of streams, where for each i : si v si+1. Since the set of
streams is a CPO, each such chain has a unique least upper bound s which is denoted
by

⊔
{ si | i ∈ N}

The operators defined above as well as the notion of chains and least upper bounds can
be extended pointwise to tuples of streams.

A function out of Msgω

1 → Msgω

2 is called a continuous function [28], iff
⊔
{ f (si) | i ∈ N} = f (

⊔
{ si | i ∈ N})

Continuous functions are also monotonic:

x v y ⇒ f (x ) v f (y)

An example of a continuous function is the filter function s; Mss is the substream of
s that contains only messages also contained in the set M .

The filter function has the following properties:

Ms〈 〉 = 〈 〉

m ∈ M ⇒ Ms(s a 〈m〉) = (Mss) a 〈m〉

m 6∈ M ⇒ Ms(s a 〈m〉) = (Mss)

2.2 Components

Dataflow components are modeled as relations over communication histories. The rela-
tions are expressed using formulas in predicate logic where the formula’s free variables
range over streams. They represent the communication history over the component’s
input and output ports.

The black box behavior of a dataflow component U is specified by giving a set of input
channel identifiers IU , a set of output channel identifiers OU (where IU ∩OU = ∅) and
a predicate (for simplicity also denoted by U ) with free variables from IU and OU . Each
channel identifier has an assigned type that describes the set of messages allowed on
that channel. We do not treat the typing of the identifiers formally in this paper.

Figure 1 shows a graphical representation of a component with two input channels i1
and i2 of type M1 and M2, where M1 ∩ M2 = ∅, and a single output channel o of
type M = M1 ∪ M2. The intended black box behavior of this component is to merge
the messages on the two input channels: all inputs received on the input channels are
forwarded to the output channel o.

This behavior is specified with the sets for the input and output identifiers

IMerge
df

= {i1, i2}, OMerge
df

= {o}

7
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Identity i1 : M1

i2 : M2

o : MMerge

Figure 1: Component Merge

and the predicate

Merge
df

⇔ M1so = i1 ∧ M2so = i2

stating that the messages sent on o of type Mj are exactly the messages, in the same
order, as received on channel ij (for j ∈ {1, 2}).

Component behavior can be specified in the following more readable style:

Merge
in i1 : M1, i2 : M2

out o : M

M1so = i1
M2so = i2

Not all specifications in Focus are sensible: It is easy to specify inconsistent components
by predicates that restrict the possible input histories of a component. A component is
realizable, if it is possible to achieve its behavior step by step in a way that is causally
correct. This means in particular that it is monotonic: It cannot take back messages
that were sent earlier.

A detailed discussion of these requirements and their formalizations can be found in [15].
The specifications in this report are all consistent and realizable.

2.3 Black Box Composition

The black box view of a system can be derived from the black box views of the sys-
tem’s components by composition. Components may share input channels, but each
output channel must be controlled by a single component. This is captured below in the
definition of compatibility.

8
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Identity

i1 : M1

i2 : M2

o : M

o1 : M1

o2 : M2
Merge Split

Figure 2: System Multiplex

Compatibility. Two components U and V are compatible if they do not share output
channels:

OU ∩ OV = ∅

Composition. Compatible components can be composed. The result of the compo-
sition U ⊗ V is again a component specification. Channels with identical names are
connected, the output of the composition is the union of the two component’s output
channels as output, and the input of the composition consists of those input channels
that remain unconnected.

IU⊗V
df

= (IU ∪ IV ) \ (OU ∪ OV ), OU⊗V
df

= OU ∪OV

The system behavior is the conjunction of the component behavior predicates:

U ⊗ V
df

⇔ U ∧ V

Note that we decided to keep connected channels visible, so that no information is
lost that could be useful in formal proofs. Although not all internals are hidden in
our approach we still call it a black box view since the behavior is only described in
an abstract way through a relation of streams, as opposed to state machines that use
buffers, states and transitions as shown in the next section.

Figure 2 shows a system that models a multiplexing data transfer channel. In addition
to the merge component, it consists of a split component, specified as:

Split
in o : M
out o1 : M1, o2 : M2

o1 = M1so
o2 = M2so

9



The composition of the two black box specifications is shown below:

Multiplex
in i1 : M1, i2 : M2

out o : M , o1 : M1, o2 : M2

M1so = i1
M2so = i2
o1 = M1so
o2 = M2so

2.4 Prefix Properties and Length Properties

A black box specification can be seen as a description of the input and output properties
of a component. In practice, properties of dataflow systems are often expressed as a
conjunction of equations

f (o) = F (i1, . . . in)

where o ∈ O and F is a function that describes the output on o given input histories
i1, . . . in ∈ I . Both f and F are assumed to be continuous. In many cases, f will just be
the identity function.

Such equations can be split into a prefix property

f (o) v F (i1, . . . in)

and a length property

#f (o) ≥ #F (i1, . . . in)

For example, the specification of Merge can equivalently be formulated as follows:

Merge
in i1 : M1, i2 : M2

out o : M

M1so v i1
M2so v i2

#M1so ≥ #i1
#M2so ≥ #i2

Prefix properties are safety properties: Their violation can be detected as soon as an
illegal output is produced. Length properties are liveness properties: Their violation
cannot be detected by an observer, since it is always possible that the output is produced
some time in the future. Liveness properties put demands on complete executions of a
component, while safety properties restrict partial executions.
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3 State Machines

In the previous section black box specifications of components and systems are intro-
duced. With these more abstract specifications only the relation between complete input
and output message streams is considered, but nothing is said about how the behavior
of a component is achieved. In contrast, state machines describe a behavior in a stepwise
manner.

In this section we show how dataflow components can be specified by state machines.
We use the term state machine both for their abstract syntax (state transition systems,
Section 3.2) and for their concrete graphical representation (state transition diagrams,
Section 3.3). Section 3.4 defines the semantics of state machines, Section 3.5 their
composition.

First we give a formal definition of variable valuations for an assertion. Variable valu-
ations allow us to talk about the validity of assertions in the different states of a state
machine execution.

3.1 Variable Valuations

Defining Var as the universe of all (unprimed) variables, we define a valuation α as a
function that assigns to each variable in Var a value from the variable’s type. By free(Φ)
we denote the set of free variables in a logical formula Φ. If an assertion Φ evaluates to
true when each variable v ∈ free(Φ) is replaced by α(v), we write

α |= Φ

Variable names can be primed : For example, v ′ is a new variable name that results from
putting a prime behind v . We extend priming to sets

V ′ df

= { v ′ | v ∈ V }

and to valuations: Given a valuation α of variables in Var, α′ is a valuation of variables
in V ′ with

α′(v ′) = α(v) for all variables v ∈ Var

Priming can also be extended to predicates, functions and other expressions: If Ψ is an
assertion with free(Ψ) ⊆ V , then Ψ′ is the assertion that results from priming all free
variables. Thus, free(Ψ′) = (free(Ψ))′. Similarly, any expression expr′ just denotes the
expression expr with all variables primed.

Note that an unprimed valuation α assigns values to all unprimed variables, while a
primed valuation β

′
only assigns values to all primed variables. If an assertion Φ contains

both primed and unprimed variables, we need two valuations to determine its truth. If
Φ evaluates to true, we write

α,β
′
|= Φ

11



Two valuations can coincide on a subset V of Var, defined as

α V

= β df

⇔ ∀ v ∈ V • α(v) = β(v)

3.2 State Transition Systems

A state transition system (STS) S is a tuple

(I ,O ,A, I,τ )

with the following components:

• I ,O : Sets of input and output channel variables with I ∩ O = ∅. Each variable
in I and O ranges over finite streams. These variables hold the communication
history from the environment to the component and from the component to its
environment, respectively.

• A: A set of variables containing local state attributes of the STS (variables that
hold the control state of the machine or some additional data) together with the
set { i◦ | i ∈ I }. We assume again A ∩ I = ∅ = A ∩ O . The variables i ◦ also
range over finite streams; they stand for that part of the input i that has already
been processed by the state machine. The part of i that has not been processed
yet is denoted by i+, and uniquely defined via

i = i◦ _ i+

Since our state machines ensure that i ◦ v i , i+ is well-defined. Intuitively, i+ is
the implicit communication buffer of the asynchronous communication.

We introduce V
df

= I∪O∪A as the set containing all variables of an STS. Sometimes
we refer to the variables in I as external variables, while we call the variables in
O ∪ A controlled variables.

• I: An assertion over the variables V which characterizes the set of initial states.
We require that I is satisfiable.This means that there is a valuation α that satisfies
the initial assertion and this validity does not depend on i ∈ I nor is it restricting
the values i ∈ I , i.e. the valuations for i ∈ I can be exchanged arbitrarily:

∃α • α |= I ∧
(
∀β • β O∪A

= α ⇒ β |= I
)

Moreover, I asserts that initially no input has been processed:

I ⇒ i◦ = 〈 〉 for all i ∈ I

12



• τ : A finite set of transitions. Each transition τ ∈ τ is an assertion over the
variables V ∪ V ′. The unprimed variables stand for variable valuations in the
current state, the primed ones for valuations in the successor state.

Each transition τ ∈ τ must fulfill the following requirements for all i ∈ I , o ∈ O .
It may not take back messages it already sent, it may not undo the receipt of a
message, it can only read what was sent to the component and the environment is
not allowed to take back input:

τ ⇒ o v o ′ ∧ i◦ v i◦′ ∧ i◦′ v i ∧ i v i ′

Transitions can only very weakly restrict the changes of the external variables I ,
since nothing should be assumed about the environment. The only constraint of
the environment is that it may only extend the streams that are associated (by
the valuations) with the variables in I , but in an arbitrary way. This can be
formalized as follows: If a transition τ leads from state α to state β (valuations
can be interpreted as states), this transition can contain some specific changes of
the input variables. It must be shown that the same transition is also valid with
an arbitrary extension of the input variables. This means that for all Val ,β,γ:

α,β
′
|= τ ∧ β O∪A

= γ ∧ ∀ i ∈ I • α(i) v γ(i) ⇒ α,γ ′ |= τ

In addition to the transitions in τ there is always an implicit environment transi-
tion τ ε which abstracts the possible behavior of the environment of S. It is defined
as follows:

τ ε
df

⇔
∧

v∈O∪A

v = v ′ ∧
∧

i∈I

i v i ′

The environment transition leaves all controlled variables unchanged, while the
input variables may be extended. The environment transition, too, obeys the
restrictions posed on the transitions in τ . The fairness of transitions is reflected
in the definition of executions in Section 3.4.

Enabledness In Section 3.4, states of an STS are formalized as valuations for the
variables V . Given a valuation α, we say that a transition τ is enabled in α, iff there is
a valuation β for V such that

α,β
′
|= τ

We write

α |= En(τ)

for the assertion that τ is enabled in α. Note that the environment transition τ ε is
enabled in every state (with β = α).

13



To use the predicate in arbitrary (but of course well-formed) formulas, it can also be
defined syntactically as follows:

En(τ)
df

= ∃ v ′ ∈ Var′ • τ

If a transition is not enabled, we denote this as α |= ¬ En(τ).

3.3 State Transition Diagrams

Typically, an STS is not specified by defining formally all elements of the quintuple,
but by a state transition diagram (STD). We use a subset of the STD syntax from the
AutoFocus CASE tool [14, 21]. The channel identifiers in I and O are not directly
specified in an STD; they are taken from system structure diagrams, which describe
component interfaces as well as component interconnection.

STDs are directed graphs where the vertices represent (control) states and the edges
represent transitions between states. One vertex is a designated initial state; graphi-
cally this vertex is marked by an opaque circle in its left half. Edges are labeled; each
label consists of four parts: A precondition, a set of input statements, a set of output
statements and a postcondition. In STDs, transition labels are represented with the
following schema:

{Precondition} Inputs B Outputs {Postcondition}

Inputs and Outputs stand for lists of expressions of the form

i?x and o!exp (i ∈ I , o ∈ O)

, respectively, where x is a constant value or a (transition-local) variable of the type
of i , and exp is an expression of the type of o. The Precondition is a boolean formula
containing data state variables and transition-local variables as free variables, while
Postcondition and exp may additionally contain primed state variables. The distinction
between pre- and postconditions does not increase the expressiveness, but improves
readability. If the pre- or postconditions are equivalent to true, they can be omitted.

The informal meaning of a transition is as follows: If the available messages in the input
channels can be matched with Inputs, the precondition is and the postcondition can be
made true by assigning proper values to the primed variables, the transition is enabled.
If it is chosen, the inputs are read, the outputs are written and the postcondition is
made true.

Example As an example, the merge component from the previous section (Figure 1)
could be specified by the STD in Figure 3. The corresponding STS can be derived in a
schematic way:

14
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{true} i1?a B o!a {true}

{true} i2?a B o!a {true}

Merge

Figure 3: Merge STD

I
df

= {i1, i2}

O
df

= {o}

A
df

= {σ, i◦1 , i◦2}

I
df

= σ = Merge ∧ i ◦1 = 〈 〉 ∧ i◦2 = 〈 〉 ∧ o = 〈 〉

τ df

= { τ1, τ2, τ
ε }

The variable σ holds the current control state of the STD. It is not really necessary here
(since there is only one state) but included for illustration. There are no other internal
variables. Note that I assures that initially no input is read and also it does not restrict
the input variables, and therefore fulfills the necessary requirements. The transition τ1

is defined by

τ1
df

⇔ σ = Merge ∧ σ′ = Merge ∧

∃ a ∈ M1 :

true ∧

ft.i+
1 = a ∧ i◦1

′ = i◦1 _ 〈a〉 ∧ o ′ = o _ 〈a〉 ∧

true ∧

i◦2
′ = i◦2 ∧

i1 v i ′1 ∧ i2 v i ′2

which states the following: The source and target state are both Merge, the empty
precondition is trivially true, there is some message a that is available on channel i1
and not yet read, which is then input and also sent on channel o. The postcondition
is empty and therefore also trivially true. All variables not mentioned in the transition
stay unchanged. In this case this results in a constant i ◦2 , meaning that we don’t read on
channel i2. Finally, the environment can append arbitrary input to the input channels.

Note that the variable a in the transition label in Figure 3 does not appear as a variable
in V . It is a transition-local variable.

15



Transition τ2 is defined similarly by (now omitting “true” in the conjunction)

τ2
df

⇔ σ = Merge ∧ σ′ = Merge ∧

∃ a ∈ M2 :

ft.i+
2 = a ∧ i◦2

′ = i◦2 _ 〈a〉 ∧ o ′ = o _ 〈a〉 ∧

i◦1
′ = i◦1 ∧

i1 v i ′1 ∧ i2 v i ′2

The idle transition τ ε allows the environment to sent messages to Merge, but keeps all
variables unchanged that are under control of Merge.

τ ε
df

⇔ σ′ = σ ∧

i◦1
′ = i◦1 ∧ i ′◦2 = i◦2 ∧ o ′ = o

i1 v i ′1 ∧ i2 v i ′2

In addition to the control state, components can have data state attributes. State at-
tributes can be checked by the preconditions, and modified by the actions of a transition
label, specified in the postcondition. The declaration of data state variables with their
type and initialization can be supplied in an attached box in an STD, as shown in
Figure 10.

A more detailed description of STDs, including extensions of STDs that allow hierarchi-
cal descriptions, can be found in [21, 11].

3.4 Executions

An execution of an STS S is an infinite stream ξ of valuations of the variables V that
satisfies the following requirements:

• The first valuation in ξ satisfies the initialization assertion:

ξ.1 |= I

• Each two subsequent valuations ξ.k , ξ.(k +1) in ξ are related either by a transition
in τ or by the environment transition τ ε:

ξ.k , ξ′.(k + 1) |= τ ε ∨
∨

τ∈τ
τ

• Each transition τ ∈ τ of the STS is taken infinitely often in an execution, unless
it is disabled infinitely often:

(∀ k • ∃ l ≥ k • ξ.l |= ¬ En(τ)) ∨ (∀ k • ∃ l ≥ k • ξ.l , ξ ′.(l + 1) |= τ)
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The set of executions of an STS S is denoted by 〈〈S〉〉; it is defined by

〈〈S〉〉
df

= { ξ | ξ.1 |= I ∧

∀ k ∈ N : ξ.k , ξ′.(k + 1) |= τ ε ∨
∨

τ∈τ
τ ∧

∧

τ∈τ
(( ∀ k • ∃ l ≥ k • ξ.l |= ¬ En(τ)) ∨

(∀ k • ∃ l ≥ k • ξ.l , ξ ′.(l + 1) |= τ)) }

By induction it is easy to show that for each state ξ.k in an execution

ξ.k |= i◦ v i

holds. Moreover, changes in the valuations of input variables I , output variables O and
the processed input variables {i ◦ | i ∈ I } in subsequent states are restricted to the prefix
order v.

3.5 State Machine Composition

State machines can be composed if they are compatible. Similar to the compati-
bility of black box specifications, two state machines S1 = (I1,O1,A1, I1,τ 1) and
S2 = (I2,O2,A2, I2,τ 2) are compatible if their controlled variables are disjoint and
if there is no conflict concerning internal variables, i.e. no machine may access the
internal variables of the other machine:

(O1 ∪ A1) ∩ (O2 ∪ A2) = ∅ ∧

A1 ∩ I2 = ∅ ∧ A2 ∩ I1 = ∅

Thus, the two components may only share variables which are input variables of at
least one of the two components. In Figure 4 the separation of the variables in different
disjoint sets is visualized for a composition of two state machines. All messages on
channels i with i ∈ I1 ∩ I2 can be read by both machines independently. In order to
ensure that the variables from A1 and A2 are disjoint in this case, the variables i ◦ have
to be renamed to i ◦1 or i◦2 throughout the variable sets, transitions and initialization
predicates of S1 and S2, respectively.
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PSfrag replacements

S1

S2

A1

O1 \ I2
O1 ∩ I2

O2 ∩ I1
O2 \ I1
A2

I1 \ (I2 ∪O2)

I1 ∩ I2

I2 \ (I1 ∪O1)

Figure 4: Composition of State Machines

The composition S = S1‖S2 is defined as the STS with the following components:

I
df

= (I1 ∪ I2) \ (O1 ∪ O2)

O
df

= O1 ∪O2

A
df

= A1 ∪ A2

I
df

⇔ I1 ∧ I2

τ df

= { τ1 ∧ τ ε

2 | τ1 ∈ τ 1 } ∪ { τ ε

1 ∧ τ2 | τ2 ∈ τ 2 }

τ ε
df

⇔
∧

v∈O∪A

v = v ′ ∧
∧

i∈I

i v i ′

From the definition above, it is easy to see that composition is associative:

S1‖(S2‖S3) = (S1‖S2)‖S3

The resulting STS satisfies the requirements of Section 3.2:

Proof:

• The variable sets of S satisfy the disjointness and inclusion requirements posed on
I , O and A.

• I fulfills the requirements

∃α • α |= I ∧
(
∀β • β O∪A

= α ⇒ β |= I
)

and

I ⇒ i◦ = 〈 〉 for all i ∈ I

what is proved here:

– I is indeed satisfiable for all input valuations of I : With S1 and S2 as proper
STS, we know that there exist α1 and α2 with

α1 |= I1 ∧ ∀β • β
O1∪A1= α1 ⇒ β |= I1

α2 |= I2 ∧ ∀β • β
O2∪A2= α2 ⇒ β |= I2
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and we have to show

∃α • α |= I ∧ ∀β • β O∪A

= α ⇒ β |= I

We now define the α we are looking for on the controlled variables of S by

α(v) =

{
α1(v) if v ∈ O1 ∪ A1

α2(v) if v ∈ O2 ∪ A2

For v ∈ I we allow any valuation. Note that this definition is conflict-free
since (O1 ∪ A1) ∩ (O2 ∪ A2) = ∅ and I ∩ (A1 ∪ A2) = ∅. Hence

α
O1∪A1= α1 ∧ α

O2∪A2= α2

and therefore (instantiating β with α)

α |= I1 ∧ α |= I2 ⇔ α |= I1 ∧ I2 ⇔ α |= I

For some β with β O∪A

= α we have β
O1∪A1= α and β

O2∪A2= α due to the subset
relations, so we conclude

β |= I1 ∧ I2

– The second requirement for I is also fulfilled since all input valuations are
initially empty:

I ⇒ I1 ∧ I2 ⇒ (∀ i1 ∈ I1 • i◦1 = 〈 〉) ∧ (∀ i2 ∈ I2 • i◦2 = 〈 〉) ⇒ ∀ i ∈ I • i ◦ = 〈 〉

• The set τ of the composed system has all properties it should have:

– All transitions τ allow only restricted changes of the channel valuations:

τ ⇒ o v o ′ ∧ i◦ v i◦′ ∧ i◦′ v i ′ ∧ i v i ′

The empty transition τ ε trivially fulfills this requirement. All other transitions
τ consist of τ1 ∧ τ ε

2 or τ2 ∧ τ ε

1 . Because of this symmetry, we show the proof
only for the first case.

τ ⇔ τ1 ∧ τ ε

2

⇒ ∀ o1 ∈ O1, i1 ∈ I1 • o1 v o ′1 ∧ i◦1 v i◦1
′ ∧ i◦1

′ v i ′1 ∧ i1 v i ′1 ∧∧

o2∈O2

o2 = o ′2 ∧
∧

i2∈I2

i◦2 = i◦2
′ ∧

∧

i2∈I2

i2 v i ′2

Note that quantifying over i ∈ I and over i ◦ ∈ A ranges over the same vari-
ables in any occurrence of i ◦, according to the definition of A. By rearranging
the terms we reach

∀ o1 ∈ O1 • o1 v o ′1 ∧ ∀ o2 ∈ O2 • o2 = o ′2
∀ i◦1 ∈ A1 • i◦1 v i◦1

′ ∧ ∀ i◦2 ∈ A2 • i◦2 = i◦2
′ ∧

∀ i1 ∈ I1 • i1 v i ′1 ∧ ∀ i2 ∈ I2 • i2 v i ′2
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and therefore

∀ o ∈ O • o v o ′ ∧ ∀ i◦ ∈ A • i◦ v i◦′ ∧ ∀ i ∈ I • i v i ′

Finally, with i◦2
′ = i◦2

(ax)

v i2 v i ′2 for all i2 ∈ I2 and ∀ i1 ∈ I1 • i◦1
′ v i ′1 we get

∀ i ∈ I • i◦′ v i ′

– Additionally, we show (again for only one of the two cases) that τ is restricting
the variables in I in the proper way, i.e. we assume

α,β
′
|= τ1 ∧ τ ε

2 (1)

β O∪A

= γ (2)

∀ i ∈ I1 ∪ I2 • α(i) v γ(i) (3)

and show

α,γ ′ |= τ1 ∧ τ ε

2

α,γ ′ |= τ1 follows directly from the properties of τ1 with the subset relations
O1 ∪ A1 ⊆ O ∪ A and I1 ⊆ I . It remains to show

α,γ ′ |=
∧

v∈O2∪A2

v = v ′ ∧
∧

i2∈I2

i2 v i ′2

Assuming v ∈ O2 ∪ A2, we prove the first half by

α(v)
(1)
= β

′
(v ′)

(Def .)
= β(v)

(2)
= γ(v)

(Def .)
= γ ′(v ′)

Finally, with

i1 ∈ I1 ⇒ α(i1)
(3)

v γ(i1) ⇒ α,γ ′ |= i1 v i ′1

we conclude the proof.

– There is always an environment transition τ ε that is defined exactly as in
Section 3.2.

• We also prove here that composition maintains the enabledness of transitions, i.e.
it holds

α |= En(τ1) ⇔ α |= En(τ1 ∧ τ ε

2)

α |= En(τ2) ⇔ α |= En(τ2 ∧ τ ε

1)

We only show the first property, and prove for an arbitrary α only that

∃β • α,β
′
|= τ1 ⇒ ∃γ • α,γ ′ |= τ1 ∧ τ ε

2
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The opposite direction is obvious. For some β we define γ by

γ(v) =

{
α(v) if v ∈ (O2 ∩ I1) ∪ (A2 ∪ (O2 \ I1)) ∪ ((I1 ∪ I2) \ (O1 ∪ O2))
β(v) if v ∈ (A1 ∪ (O1 \ I2)) ∪ (O1 ∩ I2)

With this definition we have

γ
A1∪O1= β and ∀ v ∈ I1 • α(v) v γ(v)

and therefore (due to the properties of τ1)

α,γ ′ |= τ1

For v ∈ O2 ∪ A2 we have γ(v) = α(v), so

α,γ ′ |=
∧

v∈O2∪A2

v = v ′

is valid. For v ∈ I2∩O1 we know β(v) = γ(v), and from the assumption α,β
′
|= τ1

that α(v) v β
′
(v ′), since τ1 ⇒ v v v ′ (v ∈ O1!), and this leads to α(v) v γ(v).

For v ∈ I2 \O1 we defined γ(v) = α(v), so that α,γ ′ |= v = v ′. Together, we have

α,γ ′ |=
∧

i2∈I2

i2 v i ′2

and therefore

α,γ ′ |= τ2

which finishes the proof.

2

The main property of the composed system is that the runs of S are subsets of the runs
of S1 and S2:

〈〈S1‖S2〉〉 ⊆ 〈〈S1〉〉 and 〈〈S1‖S2〉〉 ⊆ 〈〈S2〉〉

The converse does not hold: Since each component may restrict the input to the other
component, some executions of the individual components may not be possible after
composition.

Proof: We only need to show that each ξ ∈ 〈〈S1‖S2〉〉 is also in 〈〈S1〉〉; the proof for S2

is symmetrical. Expanding the definition of 〈〈.〉〉, we have to show:

1. If ξ.1 |= I, then also ξ.1 |= I1.

2. For all k ∈ N

ξ.k , ξ′.(k + 1) |= τ ε ∨
∨

τ∈τ
τ ⇒ ξ.k , ξ′.(k + 1) |= τ ε

1 ∨
∨

τ1∈τ 1

τ1
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3. For all τ ∈ τ , if

(∀ k • ∃ l ≥ k • ξ.l |= ¬ En(τ)) ∨ (∀ k • ∃ l ≥ k • ξ.l , ξ.(l + 1) |= τ)

then for all τ1 ∈ τ 1

(∀ k • ∃ l ≥ k • ξ.l |= ¬ En(τ1)) ∨ (∀ k • ∃ l ≥ k • ξ.l , ξ.(l + 1) |= τ1)

The proof for the initialization assertion is immediate, since I ⇒ I1.

The proof of the consecution assertion distinguishes the kind of transition that S makes:

• If S makes the environment transition τ ε, S1 also makes its environment transition
τ ε

1 .

This is valid since τ ε ⇒ τ ε

1 : All inputs of S1 are either also inputs of S (and thus
can only be extended), or outputs of S2 (and thus left unchanged). The other
variables of S1 are left unchanged.

• If S makes a transition that consists of the environment transition τ ε

1 of S1 and a
proper transition τ2 ∈ τ 2, S1 also makes an environment transition.

This is valid since the controlled variables of S1 remain unchanged, the environment
inputs can only be extended, and the inputs connected to outputs of S2 also can
only be extended by τ2.

• If S makes a transition that consists of a proper transition τ1 ∈ τ and the envi-
ronment transition τ ε

2 of S2, S1 makes the transition τ1.

For the fairness assumption, it is sufficient to show the following two properties for each
τ1 ∈ τ 1:

(∀ k • ∃ l • ξ.l |= ¬ En(τ1 ∧ τ ε

2)) ⇒ ( ∀ k • ∃ l • ξ.l |= ¬ En(τ1))

and

(∀ k • ∃ l ≥ k • ξ.l , ξ.(l + 1) |= (τ1 ∧ τ ε

2)) ⇒ (∀ k • ∃ l ≥ k • ξ.l , ξ.(l + 1) |= τ1)

If we identify k and l in the consequences of the implications with the k and l on the
left-hand-sides, respectively, the proofs are immediate. 2
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4 Safety Properties

This section introduces proof principles for safety properties of a state machine. A
typical safety property is invariance, which means that an assertion over the variables
of the state machine holds in every state of every execution.

The proof principles for safety properties are inspired by the UNITY theory [27]. In Sec-
tion 4.1 the constrains operator co of UNITY is adapted to our state machine framework;
Section 4.2 introduces some verification rules. In particular, the axioms of UNITY’s co

are shown to be valid in our framework.

4.1 Predicates and Properties

State machine properties are expressed using assertions that relate communication his-
tories and the values of the attribute variables.

A state predicate of a state machine S = (I ,O ,A, I,τ ) is an assertion Φ where the free
variables range over the variables in V = I ∪ O ∪ A; a history predicate is a formula
where the free variables range only over the input and output variables I ∪O .

An example for a state predicate is the initialization assertion I of the state machine.
Below is the initialization assertion of the state machine Merge (Figure 3):

σ = Merge ∧ i+
1 = i1 ∧ i◦1 = 〈 〉 ∧ i+

2 = i2 ∧ i◦2 = 〈 〉 ∧ o = 〈 〉

An example for a history predicate is the black box specification of Merge (Section 2.2):

M1so = i1 ∧ M2so = i2

State predicates relate the communication histories and state variables at a given point
in a system execution. To express properties about the complete execution, predicates
are lifted to executions by one of the following two operators:

• initially Φ holds for a state machine S and a state predicate Φ, iff Φ is true under
the variable valuation of the first time point of each system run:

∀ ξ ∈ 〈〈S〉〉 • ξ.1 |= Φ

This is denoted by S |= initially Φ. It holds if the characterization of the initial
states imply Φ, i.e. if I ⇒ Φ is valid.

• Φ co Ψ holds for a state machine S and state predicates Φ and Ψ (Φ constrains
Ψ), iff whenever Φ evaluates to true at a point in a system execution, then so does
Ψ at the subsequent point:

∀ ξ ∈ 〈〈S〉〉 • ∀ k • (ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ)

This is denoted by S |= Φ co Ψ. The operator co is defined to have a weaker
binding than all other logical operators.
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We also use the following abbreviations:

S |= stable Φ
df

⇔ S |= Φ co Φ

S |= inv Φ
df

⇔ S |= stable Φ and S |= initially Φ

Informally, a predicate is stable if its validity is preserved by all transitions of a system,
and we call it an invariant, if it holds in all reachable states.

The abbreviations can also be expressed at the level of executions: By induction on k it
can be shown that

S |= inv Φ ⇔ ∀ ξ ∈ 〈〈S〉〉 • ∀ k • ξ.k |= Φ

This characterization can be used to lift tautologies and general results from the state
machine level to the property level. If we have

S |= inv Φ

and know

∀ v ∈ free(Φ) ∪ free(Ψ) • Φ ⇒ Ψ

we can also deduce

S |= inv Ψ

As another example, we know that in every execution ξ ∈ 〈〈S〉〉 and for every input i ∈ I
we have ∀ k • ξ.k |= i ◦ v i We can apply this knowledge in property proofs since it can
be lifted to S |= inv i ◦ v i .

Free variables can be introduced to relate the left and the right side of a co property. This
technique can be used to lift the fact that outputs are only extended within an execution,
either expressed directly with the output variable, or with the output variable’s length:

S |= x = o co x v o

S |= #o = k co #o ≥ k

Free variables as x and k are universally qualified (comparable to so-called rigid vari-
ables). In the semantics, the first of the two properties above is denoted by

∀ ξ ∈ 〈〈S〉〉, k ∈ N, x ∈ X • (ξ.k |= x = o ⇒ ξ ′.(k + 1) |= x v o ′)

where X is the type of the variable x (which should be the same as the type of the state
machine output variable o).

Note that Φ ⇒ Ψ cannot be concluded from Φ co Ψ, as the following counterexample
shows: Assume a state machine S with a integer variable x , that is initialized with the
value 0 and that can only be incremented. Obviously we have true co x ≥ 0, while
true ⇒ x ≥ 0 is not valid. Properties using co have only to be valid for all reachable
states, while an implication must be true for all valuations of the variables.
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I ⇒ Φ

S |= initially Φ

(a) Initiality

Φ ∧ τ ε ⇒ Ψ′

Φ ∧ τ ⇒ Ψ′ for all τ ∈ τ
S |= Φ co Ψ

(b) Consecution

S |= Φ1 co Ψ1

S |= Φ2 co Ψ2

S |= Φ1 ∧ Φ2 co Ψ1 ∧ Ψ2

S |= Φ1 ∨ Φ2 co Ψ1 ∨ Ψ2

(c) Conjunction and Disjunction

S |= Φ co Ψ
S |= Ψ co χ

S |= Φ co χ

(d) Transitivity

S |= Φ co Ψ

S |= Φ ∧ χ co Ψ

(e) LHS Strengthening

S |= Φ co Ψ

S |= Φ co Ψ ∨ χ

(f) RHS Weakening

Figure 5: Basic rules for co

4.2 Verification Rules

With suitable verification rules it is possible to verify system properties from the abstract
syntax of state machines, without having to expand the definitions of initially and co

and to verify properties semantically.

In this section, we state and prove some verification rules.

4.2.1 Basic Rules

Figure 5 shows a number rules that are frequently used in verification:

The initialization and consecution rules (Figure 5(a), 5(b)) lift the semantic definitions
of initially Φ and Φ co Ψ to the level of the abstract syntax of state machines. The con-
junction and disjunction rule (Figure 5(c)) combine two co-properties into one. Note the
similarity of this rule —as well as the strengthening and weakening rules in Figure 5(e),
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5(f)— to the usual rules for logical implication. Indeed, as Misra remarks [27], the co

operator is a kind of temporal implication. Finally, co is transitive (Figure 5(d)).

Proof:

Initialization. The validity of the initialization rule follows immediately from the defi-

nition of initially Φ.

Consecution. For the consecution rule, assume that ξ ∈ 〈〈S〉〉 and that ξ.k |= Φ for an
arbitrary k ∈ N. Then,

ξ.k , ξ′.(k + 1) |= Φ

since free(Φ) ⊆ V , i.e. Φ contains no primed variables. From the definition of executions,
we know that

ξ.k , ξ′.(k + 1) |= τ ε ∨
∨

τ∈τ
τ

Assume now that

ξ.k , ξ′.(k + 1) |= τ ε

and therefore

ξ.k , ξ′.(k + 1) |= Φ ∧ τ ε

From the first premise we conclude

ξ.k , ξ′.(k + 1) |= Ψ′

On the other hand, if for a τ ∈ τ

ξ.k , ξ′.(k + 1) |= τ

we know

ξ.k , ξ′.(k + 1) |= Φ ∧ τ

Because of the second premise also

ξ.k , ξ′.(k + 1) |= Ψ′

Since free(Ψ′) ⊆ V ′,

ξ′(k + 1) |= Ψ′

therefore

ξ.(k + 1) |= Ψ
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which concludes the proof.

Conjunction and Disjunction. We just show the conjunction part of the rule. Assume
that

ξ.k |= Φ1 ∧ Φ2

or, equivalently

ξ.k |= Φ1 and ξ.k |= Φ2

From the premises we conclude

ξ.(k + 1) |= Ψ1 and ξ.(k + 1) |= Ψ2

and thus

ξ.(k + 1) |= Ψ1 ∧ Ψ2

The proof of the disjunction part is similar. The rules for the strengthening of the left
hand side and weakening of the right hand side of co are corollaries of the conjunction
and disjunction rule.

Transitivity rule. The validity of the rule is not obvious: The conclusion relates two
consecutive states, as do the two premises. Intuitively, then, χ should hold not in the
state following Φ, but in the one after that. The rule is proven by introducing a stuttering
step via an additional environment transition into an execution.

Given arbitrary ξ ∈ 〈〈S〉〉 and k ∈ N such that ξ.k |= Φ, we need to show that

ξ.(k + 1) |= χ

First, we construct a sequence ξ̂ from ξ by repeating the k -th state of ξ:

ξ̂.l =





ξ.l if l ≤ k
ξ.k if l = k + 1
ξ.(l − 1) if l > k + 1

The repetition of the state ξ.k corresponds to an environment transition τ ε which leaves
the external variables unchanged; hence ξ̂, too, is an execution of S.

Now,

ξ.k |= Φ ⇒ ξ̂.k |= Φ, since ξ̂.k = ξ.k

⇒ ξ̂.(k + 1) |= Ψ, since S |= Φ co Ψ

⇒ ξ̂.(k + 2) |= χ, since S |= Ψ co χ

⇒ ξ.(k + 1) |= χ, since ξ̂.(k + 2) = ξ.(k + 1)

2
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4.2.2 Invariant Substitution Rules

The two rules in Figure 6 are related to UNITY’s substitution axiom; they are taken
from Paulson’s Isabelle formalization of UNITY [30].

S |= inv χ

S |= Φ ∧ χ co Ψ

S |= Φ co Ψ

(a) LHS Invariant Elimination

S |= inv χ

S |= Φ co Ψ

S |= Φ co Ψ ∧ χ

(b) RHS Invariant Introduction

Figure 6: Invariant substitution rules

The first rule allows us to remove invariants on the left hand side, while the second one
allows us to to introduce invariants on the right hand side. The proofs of these rules
are shown below. Invariant introduction on the left side and invariant elimination on
the right side is also possible: This can be handled by the strengthening and weakening
rules of Figure 5.

Proof:

Invariant elimination on the left side. We need to show that if

(1) ∀ ξ ∈ 〈〈S〉〉, k • ξ.k |= χ

and

(2) ∀ ξ ∈ 〈〈S〉〉, k • ξ.k |= Φ ∧ χ ⇒ ξ.(k + 1) |= Ψ

then for arbitrary ξ ∈ 〈〈S〉〉, k :

ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ

After instantiating the quantifiers in (2), we have

ξ.k |= Φ ∧ χ ⇒ ξ.(k + 1) |= Ψ

hence

ξ.k |= χ ∧ ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ

or, equivalently,

ξ.k |= χ ⇒ (ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ)
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Instantiating (1), we have

ξ.k |= χ

and therefore

ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ

which concludes the proof.

Invariant introduction on the right side. We need to show that if

(1) ∀ ξ ∈ 〈〈S〉〉, k • ξ.k |= χ

and

(2) ∀ ξ ∈ 〈〈S〉〉, k • ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ

then for arbitrary ξ ∈ 〈〈S〉〉, k :

ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ ∧ χ

After instantiating the quantifiers in (2) and (1), we have

ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ and ξ.(k + 1) |= χ

Thus,

ξ.k |= Φ ⇒ (ξ.(k + 1) |= Ψ ∧ ξ.(k + 1) |= χ)

which concludes the proof. 2

4.3 Example

As an example of how to use the verification rules in practice, we continue our example
of Section 3.3 and show that the state machine of Merge (Figure 3) only produces output
that has been received on its input channels before:

We need to show that

Merge |= invM1so v i1 and Merge |= inv M2so v i2

Note that this is not identical to the prefix properties of the Merge component as for-
mulated in Section 2.4; here we only show that the prefix properties hold in every state
of an execution, not that it holds for the complete I/O behavior of an execution. In
Section 6, we show how to relate complete I/O behavior with invariants.
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The two properties are symmetrical; we just show the one for i1. With i1 = i◦1 _ i+
1 we

know that

(M1so) = i◦1 ⇒ (M1so) v i1

so that according to the observation of Section 4.1 it suffices to show

Merge |= invM1so = i◦1

According to the definition of inv and the verification rules for initially and co this
expands to the following proof obligations:

I ⇒ M1so = i◦1 (1)

M1so = i◦1 ∧ τ ε ⇒ M1so ′ = i◦1
′ (2)

M1so = i◦1 ∧ τ1 ⇒ M1so ′ = i◦1
′ (3)

M1so = i◦1 ∧ τ2 ⇒ M1so ′ = i◦1
′ (4)

Proof: Since I implies o = i ◦1 = 〈 〉, (1) is trivial. The idle transition τ ε implies i◦′ = i◦

and o ′ = o, so that (2) is also obvious.

Expanding τ1 in (3) shows its validity:

M1so ′ = i◦1
′ ⇔

M1s(o _ 〈a〉) = i ◦1 _ 〈a〉
a∈M1⇔

(M1so) _ 〈a〉 = i ◦1 _ 〈a〉 ⇔

M1so = i◦1

Using the definition of τ2 in (4) completes the proof:

M1so ′ = i◦1
′ ⇔

M1s(o _ 〈a〉) = i ◦1
a 6∈M1⇔

M1so = i◦1

2

4.4 Compositionality

From the compositionality result of Section 3.5 we can derive the following rules:

S1 |= initially Φ

S1‖S2 |= initially Φ

S1 |= Φ co Ψ

S1‖S2 |= Φ co Ψ
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Proof: Let ξ be an arbitrary execution from [[S1‖S2]]. From Section 3.5 we know that
then ξ ∈ [[S1]] also holds. The premises of the two rules imply

ξ.1 |= Φ

and

∀ k • (ξ.k |= Φ ⇒ ξ.(k + 1) |= Ψ)

Since ξ is also a run of [[S1‖S2]], this also means

S1‖S2 |= initially Φ

and

S1‖S2 |= Φ co Ψ

2

A corollary of the above rules is that every invariant of a system remains an invariant
after composition:

S1 |= inv Φ

S1‖S2 |= inv Φ

The compositionality of initiality, constraints and invariants is due to the dataflow struc-
ture of our systems: Components interact only by the transmission of messages, and since
the arrival of new messages cannot disable component transitions, components cannot
interfere in an unexpected way.

In UNITY, components can interfere; hence, compositionality rules like the ones above
are not valid in general.
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5 Progress Properties

Safety properties are useful to show that the system does not enter an illegal state or
output illegal data. It is easy to build a system that fulfills safety properties: A system
that simply does nothing fulfills any safety property.

To ensure that a system indeed processes its input and produces output, progress prop-
erties are used. As for safety properties, the progress properties are related to UNITY
[26]. They are based on a “leadsto” operator 7→ (Section 5.1).

5.1 Leads-To Properties

Progress is expressed by the leadsto operator 7→. Intuitively, Φ 7→ Ψ means that when-
ever in a state machine execution a state is reached where Φ holds, at the same or at a
later point in the execution a state is reached where Ψ holds.

The semantic definition of S |= Φ 7→ Ψ is as follows. For all ξ ∈ 〈〈S〉〉,

∀ k • (ξ.k |= Φ) ⇒ (∃ l ≥ k • ξ.l |= Ψ)

From the semantic definition it follows immediately that 7→ is transitive, and that when-
ever Φ ⇒ Ψ, then also Φ 7→ Ψ.

5.2 Verification Rules

For the leadsto operator there is also a set of verification rules so that properties can
be shown at the level of state transition systems without reasoning about the system
executions themselves.

5.2.1 Basic Rules

Figure 7 shows a number rules that are frequently used in verification. Essentially,
leadsto properties are proved as follows. With the ensure rule (Figure 7(a)) leadsto
properties that relate states that are separated by only a single proper transition are
shown; this transition is called the helpful transition. From this basis, more elaborate
properties are derived by the transitivity (Figure 7(b)) and disjunction (Figure 7(c))
rules.

Rule 7(f) (RHS weakening) is a special case of Rule 7(c) (disjunction). It would be
sufficient for finite state systems; the disjunction rule is needed to show properties of
infinite state systems (see [26] for a detailed explanation).

Proof:

Ensure. The proof is by contradiction. Assume that the premises of the rule in Fig-
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S |= Φ ∧ ¬ Ψ co Φ ∨ Ψ

For a transition τ ∈ τ :
Φ ∧ ¬ Ψ ⇒ En(τ)

and
Φ ∧ ¬ Ψ ∧ τ ⇒ Ψ′

S |= Φ 7→ Ψ

(a) Ensure

S |= Φ 7→ Ψ
S |= Ψ 7→ χ

S |= Φ 7→ χ

(b) Transitivity

S |= Φ(x ) 7→ Ψ for all x ∈ X

S |= ( ∃ x ∈ X • Φ(x )) 7→ Ψ

(c) Disjunction

Φ ⇒ Ψ

S |= Φ 7→ Ψ

(d) Implication

S |= Φ 7→ Ψ

S |= Φ ∧ χ 7→ Ψ

(e) LHS Strengthening

S |= Φ 7→ Ψ

S |= Φ 7→ Ψ ∨ χ

(f) RHS Weakening

Figure 7: Basic rules for 7→
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ure 7(a) hold, but not its conclusion. Then there is an execution ξ ∈ 〈〈S〉〉 and a k ∈ N

with

ξ.k |= Φ

but for all l ≥ k

ξ.l |= ¬ Ψ

In particular, then

ξ.k |= ¬ Ψ

and, by induction and the first premise, for all n ≥ k :

ξ.n |= Φ ∧ ¬ Ψ

By the first part of the second premise, there is a τ ∈ τ such that for all n ≥ k

ξ.n |= En(τ)

Because of the fairness assumption of state machine executions (Section 3.4), this means
that there is an m ≥ k such that

ξ.m, ξ′.(m + 1) |= τ

and thus

ξ.m, ξ′.(m + 1) |= Φ ∧ ¬ Ψ ∧ τ

Because of the second part of the second premise, this implies

ξ.m, ξ′.(m + 1) |= Ψ′

hence

ξ.(m + 1) |= Ψ

which contradicts the assumption that there is no l ≥ k which validates Ψ.

Transitivity and implication. These rules are immediate consequences of the semantic
definition of 7→ (Section 5.1).

Disjunction. Let X be an arbitrary set, Φ(x ) a shear of state predicates parameterized
by x ∈ X . Assume that ξ ∈ 〈〈S〉〉, and k and x such that

ξ.k |= Φ(x )

From the premise we know that

∃ l ≥ k • ξ.l |= Ψ

Hence, the rule is valid.

Strengthening and weakening. The validity of these rules follows immediately from the
semantic definition of 7→. 2
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5.2.2 Induction Rule

Non-trivial progress proofs often make use of some kind of a ranking function or measure,
based on well-founded orders. This is formalized in the following rule. Let (W ,≺) be
a well-founded order, m a variable that ranges over W , and M a W -valued expression
with free variables from V .

S |= (p ∧ M = m) 7→ (p ∧ M < m) ∨ q for all m ∈ W

S |= p 7→ q

The validity proof of this rule in analogous to the proof of this rule in [27].

5.2.3 Invariant Substitution Rules

The UNITY substitution axiom holds for leadsto properties as well; the four rules in
Figure 8 correspond to the substitution rules for co in Section 4.2.

S |= inv χ

S |= Φ ∧ χ 7→ Ψ

S |= Φ 7→ Ψ

(a) LHS Invariant Elimination

S |= inv χ

S |= Φ 7→ Ψ

S |= Φ 7→ Ψ ∧ χ

(b) RHS Invariant Introduction

Figure 8: Invariant substitution rules

The proof of these rules is analogous to the proof of the corresponding rules in Section 4.2.
Again, invariant introduction on the left side and invariant elimination on the right side
follow immediately from the strengthening and weakening rules.

5.2.4 Output Extension Rule

The typical application for leadsto properties in dataflow systems is to show that a
component produces output. Such properties can be formalized using the following
property pattern:

S |= #o = k ∧ k < ` 7→ #o > k

where o ∈ O is an output variable of the component, and ` is a N-valued expression
with free(`) ⊆ I ∪ O that is monotonic in the values of its free variables.
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For output extension, the ensure rule can be further simplified. For the first premise of
ensure, we need to show

S |= #o = k ∧ k < ` ∧ #o ≤ k

co (#o = k ∧ k < `) ∨ #o > k

By predicate logic, this is equivalent to

S |= #o = k ∧ k < ` co #o ≥ k ∧ (k < ` ∨ #o > k)

We now show that in dataflow systems this property always holds. For all variables
v ∈ I ∪O ,

(1) S |= #v = k co #v ≥ k

(see Section 4.1). This implies in particular that ` cannot become smaller because ` is
monotone, i.e.

(2) S |= k < ` co k < `

By LHS strengthening (1) with k < ` we obtain

S |= #o = k ∧ k < ` co #o ≥ k

Similarly, we strengthen the LHS of (2) with #o = k and weaken its RHS with #o > k :

S |= #o = k ∧ k < ` co k < ` ∨ #o > k

These two properties can be combined with the conjunction rule of co to yield the first
premise of the ensure rule.

Thus, for output extension, the following rule is already sufficient:

For a transition τ ∈ τ :
#o = k ∧ k < ` ⇒ En(τ)

and
#o = k ∧ k < ` ∧ τ ⇒ #o ′ > k

S |= #o = k ∧ k < ` 7→ #o > k

Note that this is a quite substantial reduction in practice: It reduces the number of
verification conditions from n + 3 to 2, where n is the number of transitions in τ .

The output extension rule is still valid, when o is replaced by f (o), where f is a function
that is monotonic according to the prefix order v.

Another useful variation is the following rule, where the left hand sides of the 7→ operator
are strengthened by Φ.
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For a transition τ ∈ τ :
Φ ∧ #o = k ∧ k < ` ⇒ En(τ)

and
Φ ∧ #o = k ∧ k < ` ∧ τ ⇒ #o ′ > k

S |= Φ ∧ #o = k ∧ k < ` 7→ #o > k

5.3 Example

To demonstrate the verification rules for 7→, we continue the example of Section 3.3 and
Section 4.3.

In Section 4.3, we learned that

Merge |= invM1so = i◦1

and therefore

Merge |= invM1so v i1

This is a pure safety property: no M1-output is emitted by the merge component, that
has not been received on i1 before; moreover, the order of the messages from M1 on i1
and o is identical.

This property also holds for a component that never reads from its input channels and
never outputs anything on its output channel.

However, for the merge component we can show that

Merge |= #M1so = k ∧ #i1 > k 7→ #M1so > k

Informally, this property means that whenever data is available on the input channel i1,
the component will at some time output further data of type M1 on its output channel.
Note that this does not mean that the output on o is indeed the same data that the
component received from i1; this has already been shown by the safety property of
Section 4.3.

Proof: In this case, it is sufficient to just use the output extension rule. The rule
has two premises, where we have to choose a transition τ ∈ τ . The obvious choice is
transition τ1.

• For showing the first premise, we assume

#M1so = k ∧ k < #i1
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and have to show that τ1 is enabled, i.e. we need values for the primed variables
that evaluate τ1 to true. From Section 4.3 we know (M1so) = i◦1 , so we have

#i1 = #(i◦1 _ i+
1 ) = #i◦1 + #i+

1 = #(M1so) + #i+
1 = k + #i+

1

Therefore we have with k < #i1

#i+
1 > 0 ⇒ ∃ a ∈ M1 • ft.i+

1 = a

The values for the remaining primed variables can be chosen according to τ1.

• The second premise states

#(M1so) = k ∧ k < #i1 ∧ τ1 ⇒ #(M1so ′) > k

and is easy to show:

#(M1so ′) = #(M1so _ 〈a〉)
a∈M1= #(M1so) + 1 = k + 1 > k

Note that we only showed that the output is eventually produced when input is available
on i1. This does not necessarily imply that indeed all input from i1 appears on o; in
Section 6 this gap is closed.

The proof that M2so is extended when messages are available on channel i2 is analogous.
2

5.4 Compositionality

Leadsto properties are compositional. The validity of the following rule follows from
the compositionality result from Section 3.5; the proof is similar to the compositionality
result of Section 4.4.

S1 |= Φ 7→ Ψ

S1‖S2 |= Φ 7→ Ψ
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6 Black Box Views of State Machines

Both safety and liveness properties of state machines are based on state and history
predicates. These predicates relate communication histories up to a time point and
attribute values at this time point.

Typical dataflow properties cannot be expressed in this way. For example, the Merge
component property that all input of channel i1 is forwarded to the output is a property
about the complete state machine execution, and not of the individual states in the
execution.

This section closes the gap between state machines and black box views that describe
the I/O behavior of a system for complete executions. In Section 6.1 the black box
view of a state machine is defined; Sections 6.2 and 6.3 show how safety and liveness
properties of a state machine can be used to deduce properties of its black box view.

6.1 Black Box Views

Within a state machine execution ξ, changes in the valuations for the input and output
variables I , O are restricted to the prefix order v: For each variable v ∈ I ∪ O and
every k ∈ N,

(ξ.k)(v) v (ξ.(k + 1))(v)

Thus the valuations of each input and output variable within an execution form a chain,
and for each execution and each variable v ∈ I ∪ O there is a least upper bound

ξ.∞(v)
df

=
⊔
{ (ξ.k)(v) | k ∈ N }

Note that ξ.∞(v) is only defined for the input and output variables, not for the attribute
variables of a state machine.

The black box view of a state machine S = (I ,O ,A, I,τ ) is a set of valuations for the
variables I ∪O . It is denoted by [[S]] and defined via the least upper bounds of the input
and output histories of the machine’s executions:

[[S]] = { α | ∃ ξ ∈ 〈〈S〉〉 •
∧

i∈I

α(i) = ξ.∞(i) ∧
∧

o∈O

α(o) = ξ.∞(o) }

Since both the proper transitions τ ∈ τ and the environment transition τ ε of a state
machine allow arbitrary extension of the input variable valuations, it is possible to
successively approximate every possible input history. This means that the black box
view [[S]] is complete with respect to the input variables of S: For an arbitrary input
there is always some reaction of the system. Formally, this reads as: For each valuation
α for the variables I ∪O there exists a valuation β for I ∪O such that

α I

= β and β ∈ [[S]]
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6.2 Safety Properties

In practice, it is difficult to directly use the black box semantics of a state machine
defined in Section 6.1. Instead, we deduce properties about the black box view from
properties of the state machine. Technically, a property of the black box view [[S]] is a
history predicate Φ (see Section 4.1) which is valid for each valuation in a system’s black
box view:

∀α ∈ [[S]] • α |= Φ

We then write [[S]] ⇒ Φ.

A useful class of history predicates is that of admissible predicates [28]. A history
predicate Φ is admissible in a set of variable W ⊆ free(Φ) if it holds for the limit of a
chain of valuations for its variables, provided that it holds for each element of the chain.
If predicate Φ is admissible in free(Φ) it is simply called admissible. The free variables
in a history predicate all range over the CPO of streams; the concepts of chain and limit
are taken from Section 2.1).

If Φ is an admissible invariant history property of a state machine, it holds not only in
every state of a system run, but also for the complete communication history:

free(Φ) ⊆ I ∪ O

adm Φ
S |= inv Φ

[[S]] ⇒ Φ

Proof: Expanding the definition of S |= inv Φ, we have

∀ ξ ∈ 〈〈S〉〉, k ∈ N • ξ.k |= Φ

In other words, Φ holds when its free variables v (where v ∈ I ∪ O) are replaced by

ξ.k(v)

for each k ∈ N. Since Φ is admissible, it also holds when its free variables are replaced
by the least upper bounds

ξ.∞(v)

This implies the conclusion of the rule. 2

It is in general not trivial to show the admissibility of a given property. However, Paulson
gives in [28] some simple syntactical criteria for admissibility. For example, conjunctions
and disjunctions of the following expressions over streams s, t , u are admissible in both
s and t , but not in u:
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s = t #s = #t

s v t #s ≤ #t

u @ s #u < #s

Here s, t , u need not be simple stream variables or constants; they can also be terms
built from continuous functions (according to the prefix order v), because admissibility
is compositional through continuous functions.

Example

In Section 4.3, the following invariant property of the merge component has been derived:

S |= M1so v i1 ∧ M2so v i2

Since this property is admissible —see above—, the following black box property of the
component holds:

[[Merge]] ⇒ M1so v i1 ∧ M2so v i2

6.3 Liveness Properties

In general, progress properties expressed with the leadsto operator 7→ cannot be lifted
to complete executions. Still, from output extension properties (Section 5.2), liveness
properties of a state machine’s black box view can be derived.

Let ` be an N-valued expression with free(`) ⊆ I that is monotonic in the values of its
free variables, and o ∈ O .

free(`) ⊆ I ∪O

S |= #o = ν ∧ ν < ` 7→ #o > ν

[[S]] ⇒ #o ≥ `

Proof: The proof is by contradiction. Assume that the premises of the rule hold, but
not its conclusion. Thus, there is a valuation α ∈ [[S]] with α |= #o < `, and hence
α |= #o < ∞. This means that there is an execution ξ ∈ 〈〈S〉〉 with

α(o) = ξ.∞(o)

With ν
df

= #ξ.∞(o) there is an n1, such that

#ξ.n1(o) = ν

and an n2 with

ξ.n2 |= ν < `
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With n
df

= max(n1, n2) we have

ξ.n |= #o = ν ∧ ν < `

since o cannot be extended beyond ν in ξ, and because of monotonicity ` cannot become
smaller, as its arguments are not shortened.

Semantically, the second premise then implies

∃m ≥ n : ξ.m |= #o > ν

which contradicts the assumption that #o does not exceed ν.

Hence the assumption that α |= #o < ` is invalid, and for all α ∈ [[S]]

α |= #o ≥ `

2

In the rule above, o can be replaced by f (o), where f is a continuous function. The rule
is also valid if the constant value ∞ is used for `: The component then produces infinite
output for any input.

Example

In Section 5.3, the following progress properties of the merge component have been
derived:

Merge |= #M1so = k ∧ #i1 > k 7→ #M1so > k

Merge |= #M2so = k ∧ #i2 > k 7→ #M2so > k

With the length function `
df

= #i1 (and `
df

= #i2 for the second input channel), and since
s is continuous, the rule above allows us to conclude

[[Merge]] ⇒ (#M1so ≥ #i1) ∧ (#M2so ≥ #i2)

6.4 Methodology

That only length properties are lifted to the black box specification level seems to be
quite restrictive. In practice, however, length properties are sufficient for the verification
of liveness properties of a state machine’s black box view. In Section 2.4 we stated that
typical dataflow properties can be formulated as a set of equations, one for each output
variable of a component. Each equation can be split into a prefix property (the safety
part) and a length property (the liveness part).

The safety part can be verified using the techniques of Section 4; the liveness part can
be verified using the techniques of Section 5. For both parts, properties of the black box
view can be deduced as shown above.
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Example

From Section 6.2, we know the following prefix property of the Merge component:

[[Merge]] ⇒ M1so v i1 ∧ M2so v i2

The following length property of Merge has been shown in Section 6.3:

[[Merge]] ⇒ (#M1so ≥ #i1) ∧ (#M2so ≥ #i2)

Together, these properties imply

[[Merge]] ⇒ M1so = i1 ∧ M2so = i2

In other words, the state machine from Figure 3 indeed fulfills the black box specification
given in Section 2.2.

6.5 Compatibility of the composition operators

The black box composition operator ⊗ and the state machine composition operator ||
are syntactically compatible: They coincide on the definition of the input and output
channels of the composed system. Concerning the behavior of the resulting system, the
following holds:

[[S1 || S2]] ⇒ [[S1]]⊗ [[S2]]

The implication is easily proved:

Proof: For the implication, we need to show that when α ∈ [[S1 || S2]], then also
α ∈ [[S1]] and α ∈ [[S2]]. Given the left hand side, we know that there exists an execution
ξ ∈ 〈〈S1 || S2〉〉 with

∀ v ∈ I ∪O • α(v) = ξ.∞(v)

where I = (I1 ∪ I2) \ (O1 ∪ O2) and O = O1 ∪O2.

From Section 3 we know that ξ is also a run of S1. Since I1 ⊆ I ∪O and O1 ⊆ I ∪O we
can conclude that

α ∈ [[S1]]

Similarly, we get α ∈ [[S2]]. 2

A counterexample shows that the opposite direction does not hold:

Proof: Assume a system S1 that reads from channel y , and writes on channel x .
Both channels can only transmit the message a. The system has only one state and one
transition:

y?a B x !a
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Obviously, if the system is fed with a∞ as input, it reacts by sending a∞. System S2 is
similar, but it reads from channel x , writes onto y .

The composed system S1⊗S2 has no input channels and two output channels. Assigning
a∞ to both x and y represents a possible behavior of this system.

However, this is not a behavior of S1 || S2. Here both machines wait for a first message
of the other machine; they never send output a message and the only behavior is the
one that assigns 〈 〉 to both x and y . 2

Black box views are an abstraction of a system’s behavior. In this abstraction operational
information, such as the causality between input and output messages, is lost [4]. One
approach to include the causality information also in the black box views is to explicitly
introduce time into the communication histories [7, 20]; however, this makes the black
box specifications more complex.
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7 Example: Communication System

Figure 9 shows a communication system (originally proposed by the VSE group in the
DFKI, Saarbrücken, [22]). The system consists of a sender and a receiver connected via
a queue component. The queue’s buffer can hold N data elements. To ensure that the
buffer does not overflow a handshaking protocol is used. We assume that the sender
“pushes” data (it sends a datum, then waits for an acknowledgment from the queue),
while the receiver “pulls” data (it sends a request to the queue, then awaits a datum).
Request and acknowledgment signals are modeled with the singleton set Signal = {~}.

PSfrag replacements

Sender Queue Receiver
i : Msg o : Msg

x : Msg y : Msg

ack : Signal req : Signal

Figure 9: Bounded Buffer

This section first gives black box specifications (Section 7.1) and state machine speci-
fications (Section 7.2) for the communication system’s components. Section 7.3 proofs
that the state machines imply the safety part of the black box specifications; Section 7.4
shows the same for the liveness part. A discussion about the verification techniques is
in Section 7.5.

7.1 Black Box Specifications

The specification of the three components are divided into prefix (safety) and length
(progress) properties. The prefix parts simply state the obvious requirement that each
component’s output is a prefix of its data input.

Sender
in i : Msg, ack : Signal
out x : Msg

x v i
#x ≥ min(#i , 1 + #ack)

The length property of the sender expresses its “push” behavior: The length of the out-
put is one more than the number of acknowledgments received from the queue, provided
there is still data from the environment available.
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Receiver
in y : Msg
out req : Signal, o : Signal

o v y
#o ≥ #y
#req = 1 + #y

The receiver’s length property expresses its “pull” behavior: It sends requests initially
and after receiving each message from the queue.

Note that here the length property for the requests is an equality. This is because it also
incorporates the safety property that the length of req must be less or equal than 1+#y ;
since it is only the number of requests that is relevant, instead of a prefix property a
numerical inequality is used as an upper bound on the length of the communication
history.

Queue(N )
in x : Msg, req : Signal
out ack : Signal, y : Msg

y v x
#y ≥ min(#x , #req)
#ack = min(#x , #req + N − 1)

The specification for the composition of sender, queue and receiver in our example is
shown below.

System(N )
in i : Msg
out o : Signal, x : Msg, ack : Signal, y : Msg, req : Signal

x v i
y v x
o v y

#x ≥ min(#i , 1 + #ack)

#y ≥ min(#x , #req)
#ack = min(#x , #req + N − 1)

#o ≥ #y
#req = 1 + #y

From the specification of System(N ) above, we can immediately see that the output is
a prefix of the input. By some case analysis it can also be shown that the length of the

46



output equals the length of the input. This implies

o = i

for all input streams i . The communication system implements the identity relation.

7.2 State Machine Specifications

Figure 10 shows the state transitions diagrams of the sender, queue and receiver compo-
nents. The queue component has an attribute variable q , which holds a finite sequence
of messages.

Following Section 3.3, the diagrams can be converted schematically into state transition
systems. Below is the STS for each component. For brevity, the names of the STS
components and transitions are not differentiated. In the proofs of the verification
conditions, it will be clear from the context, which component is referred to.

Sender STS

The STS for the sender is formally defined by

I
df

= {i , ack}

O
df

= {x}

V
df

= {i , i◦, ack , ack ◦, x , σ}

I
df

= σ = Transmit ∧ i ◦ = 〈 〉 ∧ ack ◦ = 〈 〉 ∧ x = 〈 〉

τ df

= {τ1, τ2}

The transitions τ1 and τ2 are the following assertions; they correspond to the arrows in
the sender’s STD (Figure 10).

τ1
df

= ∃ d . σ = Transmit We move from the source state
∧ σ′ = WaitAck to the target state.
∧ ft .i+ = d There is a message d available in channel i
∧ i◦′ = i◦ _ 〈d〉 that we consume
∧ x ′ = x _ 〈d〉 and send on channel x ,
∧ ack ◦′ = ack ◦ while we don’t read from channel ack .
∧ i v i ′ ∧ ack v ack ′ The input channels can be extended.

τ2
df

= σ = WaitAck
∧ σ′ = Transmit
∧ ft .ack+ = ~

∧ ack ◦′ = ack ◦ _ 〈~〉
∧ i◦′ = i◦

∧ x ′ = x
∧ i v i ′ ∧ ack v ack ′
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PSfrag replacements

Transmit WaitAck

i?d B x !d

ack?b B

PSfrag replacements

y?d B o!d , req !~

ReceiveInit
B req !~

PSfrag replacements Empty Nonempty

Full

x?d B ack ! ~ {q ′ = q _ 〈d〉}

{#q = 1} req?b B y !ft.q {q ′ = rt.q}

{#q > 1} req?b B y !ft.q {q ′ = rt.q}

{#q < N − 1} x?d B ack ! ~ {q ′ = q _ 〈d〉}

{#q = N − 1} x?d B

{q ′ = q _ 〈d〉}

req?b B ack !~, y !ft.q {q ′ = rt.q}

var q : Msg∗ = 〈 〉

Figure 10: Sender, Receiver and Queue STDs
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The environment transition τ ε is defined according to the schema in Section 3.2:

τ ε
df

= σ = σ′

∧ i◦′ = i◦

∧ ack ◦′ = ack ◦

∧ x ′ = x
∧ i v i ′ ∧ ack v ack ′

Queue STS

The Queue STS contains the sets

I
df

= {x , req}

O
df

= {y , ack}

V
df

= {x , x ◦, req , req◦, y , ack , q , σ}

I
df

= σ = Empty ∧ x ◦ = 〈 〉 ∧ req◦ = 〈 〉 ∧ y = 〈 〉 ∧ ack = 〈 〉 ∧ q = 〈 〉

τ df

= {τ1, τ2, τ3, τ4, τ5, τ6}

where the transitions are defined by

τ1
df

= ∃ d . σ = Empty
∧ σ′ = Nonempty
∧ ft .x+ = d
∧ x ◦′ = x ◦ _ 〈d〉
∧ req◦′ = req◦

∧ y ′ = y
∧ ack ′ = ack _ 〈~〉
∧ q ′ = q _ 〈d〉
∧ x v x ′ ∧ req v req ′

τ2
df

= σ = Nonempty
∧ σ′ = Nonempty
∧ #q > 1
∧ ft .req+ = ~

∧ req◦′ = req◦ _ 〈~〉
∧ x ◦′ = x ◦

∧ y ′ = y _ 〈ft .q〉
∧ ack ′ = ack
∧ q ′ = rt .q
∧ x v x ′ ∧ req v req ′

τ3
df

= ∃ d . σ = Nonempty
∧ σ′ = Nonempty
∧ #q < N − 1
∧ ft .x+ = d
∧ x ◦′ = x ◦ _ 〈d〉
∧ req◦′ = req◦

∧ y ′ = y
∧ ack ′ = ack _ 〈~〉
∧ q ′ = q _ 〈d〉
∧ x v x ′ ∧ req v req ′

τ4
df

= σ = Full
∧ σ′ = Nonempty
∧ ft .req+ = ~

∧ req◦′ = req◦ _ 〈~〉
∧ x ◦′ = x ◦

∧ y ′ = y _ 〈ft .q〉
∧ ack ′ = ack _ 〈~〉
∧ q ′ = rt .q
∧ x v x ′ ∧ req v req ′
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τ5
df

= ∃ d . σ = Nonempty
∧ σ′ = Full
∧ #q = N − 1
∧ ft .x+ = d
∧ x ◦′ = x ◦ _ 〈d〉
∧ req◦′ = req◦

∧ y ′ = y
∧ ack ′ = ack
∧ q ′ = q _ 〈d〉
∧ x v x ′ ∧ req v req ′

τ6
df

= σ = Nonempty
∧ σ′ = Empty
∧ #q = 1
∧ ft .req+ = ~

∧ req◦′ = req◦ _ 〈~〉
∧ x ◦′ = x ◦

∧ y ′ = y _ 〈ft .q〉
∧ ack ′ = ack
∧ q ′ = rt .q
∧ x v x ′ ∧ req v req ′

The environment transition τ ε is defined as follows:

τ ε
df

= σ = σ′

∧ x ◦′ = x ◦

∧ req◦′ = req◦

∧ q ′ = q
∧ y ′ = y
∧ ack ′ = ack
∧ x v x ′

∧ req v req ′

Receiver STS

The receiver is defined formally through

I
df

= {y}

O
df

= {req , o}

V
df

= {y , y◦, req , o, σ}

I
df

= σ = Init ∧ y◦ = 〈 〉 ∧ req = 〈 〉 ∧ o = 〈 〉

τ df

= {τ1, τ2}

with just the following two transitions:

τ1
df

= σ = Init
∧ σ′ = Receive
∧ y◦′ = y◦

∧ req ′ = req _ 〈~〉
∧ o ′ = o
∧ y v y ′

τ2
df

= ∃ d . σ = Receive
∧ σ′ = Receive
∧ ft .y+ = d
∧ y◦′ = y◦ _ 〈d〉
∧ o ′ = o _ 〈d〉
∧ req ′ = req _ 〈~〉
∧ y v y ′
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Again, the environment transition τ ε is defined schematically:

τ ε
df

= σ = σ′

∧ y◦′ = y◦

∧ req ′ = req
∧ o ′ = o
∧ y v y ′

7.3 Safety Proofs

In this section we show that for each of the system’s three components, the state machine
specification implies the safety part of the black box specification.

For all components, the proof is structured identically:

1. Show that the data output of a component equals the processed part of its input;

2. Conclude that the output is a prefix of the input;

3. Conclude that this also holds for the black box view.

Sender

We show the following property:

Sender |= inv x = i ◦

According to the rules in sections 4.1 and 4.2 we need to prove

I ⇒ x = i◦ (5)
∧

τ∈τ
τ ∧ (x = i◦) ⇒ x ′ = i◦′ (6)

Since I ⇒ x = 〈 〉 = i ◦, obligation (5) is trivially fulfilled. We now show (6) for all τ :

• Transition τ1:

x = i◦ ∧ τ1

⇒ x _ 〈d〉 = i ◦ _ 〈d〉

⇒ x ′ = i◦′

• Transition τ2:

x = i◦ ∧ τ2

⇒ x ′ = i◦′
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• Transition τ ε:

x = i◦ ∧ τ2

⇒ x ′ = i◦′

Since i◦ v i is also an invariant of the sender, we can conclude that

Sender |= inv x v i

and therefore

[[Sender ]] ⇒ x v i

Thus, the state machine of the sender implies the safety part of the sender’s black box
specification.

Queue

For the queue component, we show the following property:

Queue |= inv y _ q = x ◦

Since I ⇒ y = q = x ◦ = 〈 〉 the property above holds initially. We now show that is
also stable, and therefore indeed an invariant:

• Transition τ1:

y _ q = x ◦ ∧ τ1

⇒ y _ q _ 〈ft.x+〉 = x ◦ _ 〈ft.x+〉

⇒ y ′ _ q ′ = x ◦′

The proof is analogous for the transitions τ3 and τ5.

• Transition τ2:

y _ q = x ◦ ∧ τ2

⇒ y _ 〈ft .q〉 _ rt .q = x ◦

⇒ y ′ _ q ′ = x ◦′

The proof is analogous for the transitions τ4 and τ6.

• Transition τ ε:

y _ q = x ◦ ∧ τ ε

⇒ y _ q = x ◦ ∧ y ′ = y ∧ x ◦′ = x ◦ ∧ q ′ = q

⇒ y ′ _ q ′ = x ◦′
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From the invariants y _ q = x ◦ and the invariant x ◦ v x , we conclude

Queue |= inv y v x

Hence, the queue component fulfills the safety part of its black box specification, since

[[Queue]] ⇒ y v x

Receiver

For the receiver, we show

Receiver |= inv o = y◦

That this property holds initially is immediate since

I ⇒ o = y◦ = 〈 〉

It remains to show that the property is stable under the two receiver transitions τ1 and
τ2 and the environment transition τ ε.

• Transition τ1 (the proof is analogous for τ ε):

o = y◦ ∧ τ1

⇒ o ′ = y◦′

• Transition τ2:

o = y◦ ∧ τ2

o _ 〈ft.y+〉 = y◦ _ 〈ft.y+〉

⇒ o ′ = y◦′

Thus, o = y◦ is an invariant of the receiver. Since also i ◦ v y is an invariant, we can
conclude

Receiver |= inv o v y

From this, we can immediately conclude the safety part of the receiver’s black box
specification:

[[Receiver ]] ⇒ o v y
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7.4 Liveness Proofs

For each component, the liveness part of the black box specification is derived from the
component’s output extension properties.

Usually, the liveness proofs require some knowledge about the relation between control
state, attribute values and the length or contents of the variables i ◦. Such relations are
expressed by additional invariants of the components. For the liveness proofs below, we
just list the invariants. Their proof is analogous to the proof of the prefix properties in
the previous section.

Sender

We need to prove that the output x ∈ O is extended; the length function ` is the
min-Term of the black box specification: `

df

= min(#i , 1 + #ack).

First we prove the following two properties that reflect the effect of the sender’s two
transitions.

• Transition τ1 indeed extends the output:

(1) σ = Transmit ∧ #x = k ∧ k < ` 7→ #x > k

• Transition τ2, however, leaves the output unchanged. The length expression may
become larger, but in any case it will stay larger than k :

(2) σ = WaitAck ∧ #x = k ∧ k < ` 7→ σ = Transmit ∧ #x = k ∧ k < `

The first property is proven with the output extension rule. We need to show the
following premises, where we choose τ1 as the helpful transition:

(1.1) σ = Transmit ∧ #x = k ∧ k < ` ⇒ En(τ1)

(1.2) σ = Transmit ∧ #x = k ∧ k < ` ∧ τ1 ⇒ #x ′ > k

Premise (1.1) is fulfilled, since the enabledness condition of τ1 corresponds to

σ = Transmit ∧ #i+ > 0

which holds since

#i ≥ min(#i , 1 + #ack) = ` > k = #x = #i ◦

using the fact that #x = #i ◦ as shown in Section 7.3. Hence, #i+ = #i −#i◦ > 0.

Premise (1.2) follows immediately from the definition of τ1 with x ′ = x _ 〈d〉.
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For property (2), we use the ensure rule; the helpful transition in this case is τ2. We
need to discharge the following three premises:

(2.1) S |= (σ = WaitAck ∧ #x = k ∧ ` > k) ∧ ¬ (σ = Transmit ∧ #x = k ∧ ` > k)
co

(σ = WaitAck ∧ #x = k ∧ ` > k) ∨ (σ = Transmit ∧ #x = k ∧ ` > k)

(2.2) (σ = WaitAck ∧ #x = k ∧ ` > k) ∧

¬ (σ = Transmit ∧ #x = k ∧ ` > k) ⇒ En(τ2)

(2.3) (σ = WaitAck ∧ #x = k ∧ ` > k) ∧ ¬ (σ = Transmit ∧ #x = k ∧ ` > k) ∧
τ2 ⇒ σ′ = Transmit ∧ #x ′ = k ∧ `′ > k

Premise (2.1) holds, since transition τ1 is not enabled in states that satisfy the premise’s
left hand side; the environment transition leaves σ as well as #x unchanged, while `

cannot become smaller. Finally, transition τ2 leads to a state where σ = Transmit ∧
#x = k ∧ ` > k . This also implies premise (2.3).

For premise (2.2), we need to show that #ack+ > 0. This premise requires an additional
invariant, namely

S |= inv(σ = Transmit ⇒ #x = #ack ◦) ∧ (σ = WaitAck ⇒ #x = 1 + #ack ◦)

The proof of this invariant follows the structure of the proofs in Section 7.3.

From this invariant and the left hand side of the implication (2.2), we conclude

1 + #ack ≥ ` > k = #x = 1 + #ack ◦

Hence, #ack+ = #ack −#ack ◦ > 0. 2

The two leadsto properties (1) and (2) can be combined by the transitivity rule, which
yields:

(3) σ = WaitAck ∧ #x = k ∧ ` > k 7→ #x > k

Properties (1) and (3) are combined by the disjunction rule:

(4) (σ = WaitAck ∨ σ = Transmit) ∧ #x = k ∧ ` > k 7→ #x > k

Since the two control states WaitAck and Transmit are the only control states of the
sender, the disjunction on the left hand side of (4) is equivalent to true; thus, (4) can
be simplified which yields

(5) #x = k ∧ ` > k 7→ #x > k

Now, from (5) we obtain

[[Sender ]] ⇒ #x ≥ min(#i , 1 + #ack)
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2

Queue

The queue has two output variables. For each output, the following extension properties
are valid:

#y = k ∧ min(#x , #req) > k 7→ #y > k

#ack = k ∧ min(#x , #req + N ) > k 7→ #ack > k

We want to show only the first property here.

To prove the first property, we need the following invariants which relate control and
data state, as well as control state and the lengths of the processed input variables.
These invariants can be shown in the same style as the prefix property in Section 7.3.

Queue |= inv (σ = Empty ∧ #q = 0) ∨

(σ = Nonempty ∧ 1 ≤ #q ≤ N − 1) ∨

(σ = Full ∧ #q = N )

Queue |= inv (σ = Empty ⇒ #y = #req◦ ∧ #ack = #x ◦) ∧

(σ = Nonempty ⇒ #y = #req◦ ∧ #ack = #x ◦) ∧

(σ = Full ⇒ #y = #req◦ ∧ #ack + 1 = #x ◦)

Queue |= inv #x ◦ = #req◦ + #q

The transitions that extend y are τ2, τ4, τ6. Choosing these transitions as helpful tran-
sitions in the output extension rule, we can show (with `

df

= min(#x , #req)):

(1) σ = NonEmpty ∧ #q > 1 ∧ #y = k ∧ ` > k 7→ #y > k

(2) σ = Full ∧ #q = N ∧ #y = k ∧ ` > k 7→ #y > k

(3) σ = NonEmpty ∧ #q = 1 ∧ #y = k ∧ ` > k 7→ #y > k

In each rule application, the invariants above has to be used to show that the transitions
τ2, τ4, τ6, respectively, are enabled.

Examining the first two invariants above, we note that the only state where no helpful
transition is enabled when ` > k is the control state Empty .

Now, because of the invariants, we know that when σ = Empty , then also #q = 0, and

#x ◦ = #req◦ = #y = k < ` ≤ #x
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This means that transition τ1 is enabled, since #x+ > 0. Therefore, with

Φ ≡ σ = Empty ∧ #q = 0 ∧ #y = k ∧ ` > k

Ψ ≡ σ = NonEmpty ∧ #q = 1 ∧ #y = k ∧ ` > k

we got

Φ ∧ ¬ Ψ ⇒ En(τ1)

Since τ1 leads to the state NonEmpty and increases the length of q to 1, without changing
y and not decreasing `, we also have

Φ ∧ ¬ Ψ ∧ τ1 ⇒ Ψ′

The property

Φ ∧ ¬ Ψ co Φ ∨ Ψ

holds for τ1, as already seen. The other transition in τ are not enabled, and for τ ε the
validity of Φ does not change. So, we can use the ensure rule and conclude

(4) σ = Empty ∧ #q = 0 ∧ #y = k ∧ ` > k

7→ σ = NonEmpty ∧ #q = 1 ∧ #y = k ∧ ` > k

By transitivity of 7→, we obtain from (4) and (3):

(5) σ = Empty ∧ #q = 0 ∧ #y = k ∧ ` > k 7→ #y > k

The properties (1), (2), (3), (5) can be combined with a finite variant of the disjunction
rule; after invariant elimination on the left hand side, we obtain

#y = k ∧ min(#x , #req) > k 7→ #y > k

2

Receiver

The liveness proof of the receiver is quite similar to the one for the sender. We omit
the proof here. For each output of the receiver, it needs two applications of the out-
put extension rule, one application of the transitivity rule and one application of the
disjunction rule.

7.5 Comments

The proofs that the state machines satisfy the black box specifications might seem
frighteningly complicated. We believe, however, that this is less a matter of complexity,
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and more a matter of the total size of the proof. The verification conditions themselves
can be reduced to implications in predicate logic, and are not too difficult to discharge.

The deal with the sheer number of verification conditions, obviously some kind of tool
support in the form of interactive theorem provers is needed. Since the verification
conditions themselves are mainly first-order logic, and no elaborate theory of streams is
needed (see [17] for a discussion of the difficulties of stream formalizations), the demands
of the prover are not very high.

Another problem is the structure of the proofs. A solution might be the use of verification
diagrams [5] which represent proof structures as directed diagrams. The vertices are
labeled with state predicates, the labels with transitions. Each transition represents a
verification condition.
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8 Conclusion

This report shows how to combine state-based and history-based specification and ver-
ification of safety and liveness properties of distributed systems. Properties for state
machines are formulated in a UNITY-like language; since our approach is based on
proof principles for invariants and leadsto properties, other linear-time temporal logics
[25, 24] can be used as well.

Dataflow systems are interference free: Components cannot disable transitions of other
components. Noninterference means that our proof system is compositional for both
safety and liveness properties. This has also been exploited for UNITY by Charpentier
and Chandy [16]; however, they do not use their dataflow properties to reason about
complete communication histories.

Since the number of verification conditions for concrete systems can be quite large, some
kind of tool support is needed. Tool support is not infeasible, since each condition itself
is rather simple and can be expressed in first-order logic. In particular, the black box
properties that refer to potentially infinite streams are derived from state properties that
refer only to finite streams. Hence, the comparatively simple theory of lists is sufficient
to discharge the verification conditions; the difficulties of the encoding of infinite streams
or lazy lists —which requires corecursion or a CPO theory [17]— can be avoided.

As a case study in tool support, the safety properties of the communication system exam-
ple have been verified using the STeP [2] proof environment. Except for the instantiation
of some stream axioms, the verification conditions are discharged automatically. Using a
theorem prover with stronger automatization, such as Isabelle [29], would further reduce
the manual effort for discharging the proof obligations. Recently, a Unity formalization
in Isabelle has been developed [30], which could probably be adapted to our framework.

Previous work on the combination of state machine descriptions and the stream-based
specification of Focus has dealt primarily with stream-based semantics of state ma-
chines [11, 19]; the connection of that work to the proof principles in this report and
Broy’s verification of the Alternating Bit Protocol [6] has to be explored. An open ques-
tion is also the connection to state machine refinement calculi [32] and refinement in
general [9, 10]. For the special case of architectural refinement [31], our proof techniques
allow the formulation and verification of invariants.

Our specification and proof techniques are so far only suited for time-independent sys-
tems. The extension of history-based specifications raises some interesting questions [8].
A straightforward solution might be to explicitly include “time ticks” in the message
streams [18]. Such time ticks can also be used to ensure progress of a state machine.
But also without explicit time, progress is not restricted to the weak fairness condition
of Section 3.4. An alternative would be to just demand that some transition is taken
whenever at least one transition is persistently enabled; the definition of interleaving
composition, however, would be slightly more complicated.

Finally, our techniques can be adapted to different state-based description techniques.
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SDL [1, 23] and ROOM [33], in particular, would be good candidates for a concrete state
machine syntax, given their use in the specification of communication protocols.
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342/09/95 A Ketil Stølen: Assumption/Commitment Rules for Data-flow Net-

works - with an Emphasis on Completeness
342/10/95 A Ketil Stølen, Max Fuchs: A Formal Method for Hardware/Software

Co-Design
342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System
342/12/95 A Javier Esparza, Stefan Römer, Walter Vogler: An Improvement of

McMillan’s Unfolding Algorithm
342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via

Integer Programming
342/14/95 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile Point-

to-Point Dataflow Networks
342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-

pute the Concurrency Relation of Free-Choice Signal Transition
Graphs

342/16/95 A Bernhard Schätz, Katharina Spies: Formale Syntax zur logischen
Kernsprache der Focus-Entwicklungsmethodik

342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations
342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismüller:

Workshop on PVM, MPI, Tools and Applications
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342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into
ParMod-C

342/20/95 A Ketil Stølen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages
for Cache Coherency Control

342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

342/23/95 A Petr Jančar, Javier Esparza: Deciding Finiteness of Petri Nets up
to Bisimulation

342/24/95 A M. Jung, U. Rüde: Implicit Extrapolation Methods for Variable
Coefficient Problems

342/01/96 A Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic
Multigrid Methods for the Solution of the Navier-Stokes Equations
in Complicated Geometries

342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix
Dependent Geometric Coarsening and Algebraic-Multigrid Coars-
ening for Second Order Elliptic PDEs

342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Em-
beddings of Complete Binary Trees into Hypercubes

342/04/96 A Thomas Huckle: Efficient Computation of Sparse Approximate In-
verses

342/05/96 A Thomas Ludwig, Roland Wismüller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri
Net Components

342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes
342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht
342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher,

F. Weimer, H.-M. Windisch: Sprachkonzepte zur Konstruktion
verteilter Systeme

342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian Röder, Arndt Bode:
PFSLib – A File System for Parallel Programming Environments

342/11/96 A Manfred Broy, Gheorghe Ştefănescu: The Algebra of Stream Pro-
cessing Functions

342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice Petri
Nets is NP-complete

342/13/96 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile Many-
to-Many Data-flow Networks

342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard
Mitschang, Angelika Reiser, Stephan Zimmermann: On Transform-
ing a Sequential SQL-DBMS into a Parallel One: First Results and
Experiences of the MIDAS Project
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342/15/96 A Richard Mayr: A Tableau System for Model Checking Petri Nets
with a Fragment of the Linear Time µ -Calculus

342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezifikation von
mobilen, dynamischen Focus-Netzen

342/17/96 A Richard Mayr: Model Checking PA-Processes
342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model

Checker on Diet: Verification on Local States
342/01/97 A Tobias Müller, Stefan Lamberts, Ursula Maier, Georg Stellner:

Evaluierung der Leistungsf”ahigkeit eines ATM-Netzes mit paral-
lelen Programmierbibliotheken

342/02/97 A Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: Re-
cent Developments for Elliptic Partial Differential Equations

342/03/97 A Bernhard Mitschang: Technologie f”ur Parallele Datenbanken -
Bericht zum Workshop

342/04/97 A nicht erschienen
342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchis-

che Basen zur effizienten Kopplung substrukturierter Probleme der
Strukturmechanik

342/06/97 A Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Ne-
unhoeffer, Stefan Schulte: Fluid Structure Interaction: 3D Numer-
ical Simulation and Visualization of a Micropump

342/07/97 A Javier Esparza, Stephan Melzer: Model Checking LTL using Con-
straint Programming

342/08/97 A Niels Reimer: Untersuchung von Strategien für verteiltes Last- und
Ressourcenmanagement

342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-
Compiler gic

342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Schätz, Katharina
Spies: The Steamboiler Specification - A Case Study in Focus

342/11/97 A Christine Röckl: How to Make Substitution Preserve Strong Bisim-
ilarity

342/12/97 A Christian B. Czech: Architektur und Konzept des Dycos-Kerns
342/13/97 A Jan Philipps, Alexander Schmidt: Traffic Flow by Data Flow
342/14/97 A Norbert Fröhlich, Rolf Schlagenhaft, Josef Fleischmann: Partition-

ing VLSI-Circuits for Parallel Simulation on Transistor Level
342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausführung

und zur Visualisierung von INSEL-Programmen
342/16/97 A Niels Reimer, Jürgen Rudolph, Katharina Spies: Von FOCUS nach

INSEL - Eine Aufzugssteuerung
342/17/97 A Radu Grosu, Ketil Stølen, Manfred Broy: A Denotational Model for

Mobile Point-to-Point Data-flow Networks with Channel Sharing
342/18/97 A Christian Röder, Georg Stellner: Design of Load Management for

Parallel Applications in Networks of Heterogenous Workstations
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342/19/97 A Frank Wallner: Model Checking LTL Using Net Unfoldings
342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen

Theorembeweisers in einer taktikgesteuerten Beweisumgebung zur
Lösung eines Beispiels aus der Hardware-Verifikation – Fallstudie –

342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated The-
orem Proving

342/22/97 A T. Ludwig, R. Wismüller, V. Sunderam, A. Bode: OMIS - On-line
Monitoring Interface Specification (Version 2.0)

342/23/97 A Stephan Merkel: Verification of Fault Tolerant Algorithms Using
PEP

342/24/97 A Manfred Broy, Max Breitling, Bernhard Schätz, Katharina Spies:
Summary of Case Studies in Focus - Part II

342/25/97 A Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel
Processing of Aggregat and Scalar Functions in Object-Relational
DBMS

342/26/97 A Marc Fuchs: Similarity-Based Lemma Generation with Lemma-
Delaying Tableau Enumeration

342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase Frame-

Work for the Evaluation and Maintenance of Automated Theorem
Prover Data (incl. Documentation)

342/29/97 A Radu Grosu, Ketil Stølen: Compositional Specification of Mobile
Systems

342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schie-
mann, T. Schnekenburger (Herausgeber): ”‘Anwendungsbezogene
Lastverteilung”’, ALV’98

342/02/98 A Ursula Hinkel: Home Shopping - Die Spezifikation einer Kommu-
nikationsanwendung in Focus

342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung von Be-
triebssystemkonzepten

342/04/98 A Stefan Bischof, Ernst-W. Mayr: On-Line Scheduling of Parallel
Jobs with Runtime Restrictions

342/05/98 A St. Bischof, R. Ebner, Th. Erlebach: Load Balancing for Problems
with Good Bisectors and Applications in Finite Element Simula-
tions: Worst-case Analysis and Practical Results

342/06/98 A Giannis Bozas, Susanne Kober: Logging and Crash Recovery in
Shared-Disk Database Systems

342/07/98 A Markus Pizka: Distributed Virtual Address Space Management in
the MoDiS-OS

342/08/98 A Niels Reimer: Strategien für ein verteiltes Last- und Ressourcen-
management

342/09/98 A Javier Esparza, Editor: Proceedings of INFINITY’98
342/10/98 A Richard Mayr: Lossy Counter Machines
342/11/98 A Thomas Huckle: Matrix Multilevel Methods and Preconditioning
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342/12/98 A Thomas Huckle: Approximate Sparsity Patterns for the Inverse of
a Matrix and Preconditioning

342/13/98 A Antonin Kucera, Richard Mayr: Weak Bisimilarity with Infinite-
State Systems can be Decided in Polynomial Time

342/01/99 A Antonin Kucera, Richard Mayr: Simulation Preorder on Simple
Process Algebras

342/02/99 A Johann Schumann, Max Breitling: Formalisierung und Beweis einer
Verfeinerung aus FOCUS mit automatischen Theorembeweisern –
Fallstudie –

342/03/99 A M. Bader, M. Schimper, Chr. Zenger: Hierarchical Bases for the
Indefinite Helmholtz Equation

342/04/99 A Frank Strobl, Alexander Wisspeintner: Specification of an Elevator
Control System

342/05/99 A Ralf Ebner, Thomas Erlebach, Andreas Ganz, Claudia Gold,
Clemens Harlfinger, Roland Wism”uller: A Framework for Record-
ing and Visualizing Event Traces in Parallel Systems with Load
Balancing

342/06/99 A Michael Jaedicke, Bernhard Mitschang: The Multi-Operator
Method: Integrating Algorithms for the Efficient and Parallel Eval-
uation of User-Defined Predicates into ORDBMS

342/07/99 A Max Breitling, Jan Philipps: Black Box Views of State Machines
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342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Specifications
342/2/90 B Jörg Desel: On Abstraction of Nets
342/3/90 B Jörg Desel: Reduction and Design of Well-behaved Free-choice Sys-

tems
342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-Jürgen Plewan: Das

Werkzeug runtime zur Beobachtung verteilter und paralleler Pro-
gramme

342/1/91 B Barbara Paech1: Concurrency as a Modality
342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox

-Anwenderbeschreibung
342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop

über Parallelisierung von Datenbanksystemen
342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Meth-

ods
342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually

Shared Memory Scheme: Formal Specification and Analysis
342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification

and Correctness Proof of a Virtually Shared Memory Scheme
342/7/91 B W. Reisig: Concurrent Temporal Logic
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-

of-Support
Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturüberblick

342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen für MIDAS


