
Seminar

Werkzeuggestützte Modellierung des Tamagotchi

Ralf Hettesheimer & Kizito Ssamula Mukasa (WS1998/99)
Faculty of Computer Science

University of Kaiserslautern – Germany

1.1 Introduction

1.1.1 The SCR Tool
We have used the Software Cost Reduction specification tool for modeling the Tamagotchi
and the Safety Injection Device (SID). The Tool was developed at the Naval Research
Laboratory of the US Navy. The purpose of this Tool is to assist software developers to
specify software at low costs and without needing much knowledge of mathematical and
theoretical modeling1.

1.1.2 Notation

1.1.2.1 SCR Concepts
The notation as supported by the SCR Tool has two basic concepts. The first is the finite state
machine concept. This explains the possible states the system can take. The second concept is
of connecting the system with its environment. This is done through variables. We will go
through these concepts in modeling the SID.

Fig.1 Our model of the safety injection device as a finite state machine

1.1.2.2 Defining Variables
As described above, we need variables to enable the system to communicate with its
environment. The Tool knows three classes of variables. These three classes are: monitored,
controlled and term. Monitored variables can be measured or monitored by the system, but it
can not affect their values. A variable that a system can affect or control is a controlled

1(SCR is) ... a formal method that software developers can apply without theorem proving
skills, knowledge of temporal and higher order logic, or consultation with
formal methods experts.

Heitmeyer, Contance L. "On the Need for ’Practical’ Formal Methods,"

add_coolan t N orm al_
operation

B locked

W aterpressure > = low

waterpressure<low

Blocksw itch pressed
an d waterpressure< perm it

Resetsw itch pressed
or tim eout

Runn in g (nam e of th e m odeclass)

variable. Terms are functions of monitored variables modes and other terms. We will not need
terms in modeling the SID.
We therefore need the following variables for our SID model:

Monitored variables: waterpressure, blockswitch, resetswitch, timer
Controlled variables: injection

Variables are defined in the "Variable dictionary" shown in the table below.

Table 1: Monitored Variable Dictionary
Name Type Initial Value Accuracy Comment

Blockswitch Switch off
Resetswitch Switch off
Timer Time 0
Waterpressure Pressure 0

Table 2: Controlled Variable Dictionary
Name Type Initial Value Accuracy Comment

Injection Switch off

There is also a "Type dictionary" for defining or renaming variable types. We have defined
three types in order to have a direct connection between the variable name and its meaning.
The following table shows how this can be done.

Table 3: Type Dictionary

Name Base Type Units Legal Values Comment
Pressure Float bar [0,100]
Switch Enumerated N/A on, off
Time Integer min [0,10]

We also have two constants: low and permit. Their definition is done in the following
"Constant dictionary table". The values of low and permit where set on the values shown,
because the requirements did not contain specific values. The same happened to the legal
values of the variable types in Table 3.

Table 4: Constant Dictionary
Name Class Type Value Comment

Low Constant Pressure 20
Permit Constant Pressure 30

1.1.2.3 The System States
According to our specification, the SID can take three different states: normal_operation,
blocked and add_coolant. These states are defined using the "Mode class dictionary". These
states belong to a mode class that we called “running”. The tool can handle different mode
classes at the same time to model independent threads in the modeled system.
For our SID we need only one mode class. Its initial state is normal_operation. The table
below shows the Mode class dictionary.

Table 5: Mode Class Dictionary
Name Modes Initial Mode Table? Comment

running normal_operation,
add_coolant, blocked

normal_operation Yes

After defining the states and mode classes, we have to define the events which cause the
transition of states. An event is an instant in time in which a condition changes from true to
false or vice versa. A condition is a predicate on the environment variables that holds for some
period of time. Events and conditions are connected as follows:
@T(condition(s)) - an event indicating the change of condition(s) from false to true
@F(condition(s)) - an event indicating the change of condition(s) from true to false
@C(condition(s)) - an event indicating the change of condition(s)
@A - an event indicating the change of any monitored variable in the system

The following table contains the mode transitions for SID. It is the "Mode transition table" for
our mode class “running”.

Table 6: Mode Transition Table for running
Source Mode Events Destination Mode

normal_operation @T(waterpressure < low) add_coolant
add_coolant @T(waterpressure >= low) normal_operation
normal_operation @T(blockswitch = on and

waterpressure < permit and
waterpressure > low)

blocked

blocked @T(resetswitch = on or timer > 9) normal_operation

The most important part of the SID is setting the controlled variable “injection” at the right
times to “on” and “off”. In our model this has to happen whenever the state add_coolant is
entered or left. The following “Condition table dictionary” shows how the setting can be done.

Table 7: Condition Table for injection (Sheet of)
Name Mode Class

Injection running

Modes Conditions
add_coolant TRUE FALSE
normal_operation FALSE TRUE
Blocked FALSE TRUE

injection = on off

Whenever the add_coolant mode is entered, the injection goes to on. When any other mode is
entered, the injection will go to off.

1.1.3 The tool
The Tool provides a checker which proves the consistency and completeness of the given
specification. Syntax errors are localized and respective corrections are shown. Besides the
syntax checker the tool provides a Dependency Graph Browser (DGB) which shows the
dependency between variables. The arrows are from the dependent to the independent variable
(see below). The tool also provides a simulator for a given specification. So the user can see
how his model will operate.

Fig.2 The dependencies in our SID model

1.2 Approach and Result

1.2.1 Modeling in team
To model the Tamagotchi in teamwork we decided to split it. Based on the informal
requirements we discovered two big parts of the system. The first one, which we called
backend, is responsible for all internal processing, i.e. the development of the Tamagotchi,
timebased behavior and so on. The second part which we called front-end is handling all the
requirements that involve user interaction, i.e. the main menu, playing, feeding etc.
We took this decision because it seemed to divide the work in two nearly equal big parts and
the needed interface between the two submodels seemed very small. The two submodels were
developed separately by us.

1.2.2 Support of the tool
The tool itself does not support any groupwork. So after the development of the two
submodels we had to combine the two specifications. The tool does not even support
importing a specification in an existing one. So we had to manually input the smaller
specification in the bigger one. Based on the fact that the file-format used by the tool is plain
ASCII, it could be possible to insert one specification in another one with a normal editor. But
because we were not sure about the consistency of that method we did it by retyping.
Another problem in developing models separately concerns the “connecting” terms. These
variables have to be terms in the finally connected specification. But in the development and
testing of a submodel they need to be handled as monitored variables to simulate the
interconnection because there is no support of the tool to manipulate terms in the simulator.
So we had to develop the two submodels using monitored variables and then reimplement
them as terms in the final specification.
Another problem concerns the flat modeling used by the tool. There is no capsulation of local
variables in a modeclass. All the variables used in the specification are visible from every
other modeclass. This can lead to overlapping definitions in separately developed
specifications. We had to get around this problem by using a separate list of the variables used
in the two submodels.
Using the discussed term/monitored variable substitution it was possible to test the two
submodels using the simulator provided by the tool very early in the development process.
The tool makes it possible to test the specification whenever there are no consistency
problems. Situations prohibiting the simulation include inconsistent initial states, dependency
graph cycles (see 1.4) or overlapping mode transitions.

1.2.3 Final specification
The final specification developed includes nearly all the informal requirements. We did not
implement the 5 second timeouts for the menu via an automatically generated term. As
described earlier the tool does not provide timers itself. It can use a monitored variable called
time to handle time-based requirements. The unit we used on this variable is a minute. So it
was not possible to model the second-based requirements. Instead we implemented a
monitored variable that can be seen as the output of an external 5 second timer to control the
timeouts.
Random based requirements, i.e. winning or losing a game, were modeled using monitored
variables that can be seen as the outputs of external random generators.
The final specification does not contain a simulation frontend. The user or tester of the
specification has to imagine the graphical output from the textual output via the controlled
variables in the simulator.
The final model is consistent and complete in itself. This has been proved by the CC-Checker
provided by the tool. A problem with the CC-Checker made it impossible to test the
disjointness of the mode transitions from a certain size of the specification on. It seems that
the Checker hangs in an endless loop while performing this special test. All other tests have
been executed and resulted in a “no error” message.
There are no more errors in relation to the informal requirements as far as we know. The
specification was reviewed against the informal requirements and no requirements were found
that did not have an equivalent in the model. In the other direction nothing in the model does
not correspond directly or indirectly to the informal requirements.
Because of the complexity of the modeled system and the non-interactive simulator (and the
free time of the developers) not all allowed and possible situations in the life of a Tamagotchi

could be tested. The simulator needs an event-queue to be generated before it can simulate the
model. The tool (simulator) does not support starting the model in a predefined state. It would
be possible to change the initial state of the model to reflect the needed starting point but as
the tool does not provide any help in doing that a lot of tables would have to be manipulated
manually.
The model has been tested against the informal requirements and reworked until no more
errors were found. We can therefore say that the final specification contains no errors.
There are two versions of the final specification relating to the two different solutions
for the cycle-problem discussed in 1.4. The first one using the “userbased” solution
consists of 71 tables. The second one using the “time displacement” solution consists
of 66 tables.

1.3 Specification of Functionality “Playing”
Please note that we will be using the word “Tamagotchi” throughout this section to
mean the artificial creature in the spefication we are modeling, regardless of its
development stage.

1.3.1 Customer Requirements (CRs)
First of all we would like to give a short description of the CRs regarding playing
with Tamagotchi.

CR-23:

The user selects “Playing” from the main menu and a playing Tamagotchi is seen on
the display. A peep tone ist to be heard regularly. If the game is not aborted, another
game follows. The game can be aborted by pressing the R-Button. Each game consist
of five rounds. A game can be lost or won.
We have added sleeping time as another condition for breaking the game, so that
Tamagotchi can automatically go to sleep when it’s time without needing to break
the game first.

CR-24:

In each round Tamagotchi looks left and right. Then the user chooses one of the
directions and presses the L-Button for the left direction or the M-Button for the right
direction. Thereafter chooses Tamagotchi one of the directions randomly. If it’s the
same as that of the user, a round is won, and a laughing Tamagotchi is seen on the
display, otherwise a crying one.

CR-25:

At the end of each game, lost and won rounds are dispalyed. A game is won, if the
number of rounds won is not less than three. Tamagotchi loses one unit of weight per
game, and if the game is won, his happyness increases by one unit.

1.3.2 The Modes
In order to meet the CRs, we had to model Playing as a Mode of the Mode Class
selectedAction (sa), which is responsible for the menu Functionality. Names of all
modes which belong to this class have a prefix sa. The mode saGames corresponds to
Playing in
CR-23. But with this mode alone, the L-Button could not have been used for playing,
because pressing it could lead to a change to the next menu point “saInformations”
(see CR-4). In this way the game could have been aborted against CR-23. We have
solved this problem by introducing another mode called saPlaying. This mode is
reached by pressing the M-Buton after choosing the saGames mode. Being in this
Mode, playing can take place als required.
But this alone is not enough because according to CR-23, the next game has to follow
after each game, if no abortion occurs. This means, that the variables used to count
rounds and scores have to be reset. We need an expression of the form:

if(x=c) then x = 0,

where c is the value of any variable at the end of the game (after five rounds).
But the tool does not allow such expressions, i.e including the variable whose value
is to be changed in the condition. This forced us to introduce another mode called
saReset. We have made the change from saPlaying to saReset and vice versa as
smooth as possible. That means after every five rounds the system changes
automatically to the saReset and pressing the L or M-Button brings the user back to
saPlaying. In this way the user does not lose his playing rhythm.

The table below shows mode transitons for the modes mentioned above. See 1.1.2.3
for the Notation used.

Part of the Mode Transition Table for selectedAction

Source Mode Events Destination Mode Corresponding CR
saNoction @T(m_lbutton = pressed) saFoodAndSnacks
saFoodAndSnacks @T(m_lbutton = pressed) saGames
saGames @T(m_rbutton = pressed) saNoAction CR-23
saGames @T(t_awake = FALSE) saSleep CR-23
saGames @T(m_mbutton = pressed) saPlaying mCR-23
saPlaying @T((m_mbutton = pressed

OR m_lbutton = pressed)
AND (c_playedrounds < 5))

saPlaying mCR-24

saPlaying @T(m_rbutton = pressed) saNoAction CR-23
saPlaying @T(t_awake = FALSE) saSleep CR-23
saGames @T(m_lbutton = pressed) saInformations
saPlaying @T(c_playedrounds = 5

AND (m_mbutton = pressed
OR m_lbutton = pressed))

saReset mCR-24

saReset @T(m_lbutton = pressed
OR m_mbutton = pressed)

saPlaying mCR-24

saReset @T(t_awake = FALSE) saSleep mCR-23

The CRs have the prefix “m” for “modified” bacause the Events do not correspond 100% to
the original CRs. We had to modify them for the implementation

1.3.3 The Variables
Variables belog to the class monitored, controlled, or term. In order to identify them
easily, we have prefixed their names as follows; monitored with m_, controllled with
c_ and terms with t_. While monitored variables can and must be set by the user,
controlled variables and terms are set internally by the system according to rules
specified in the Event or Condition Tables of the correspondig variables. For this
reason, the user must create either an Event or a Condition Table for each controlled
variable or term used in the specification, but not both. We have used Event Tables
only.

But first, lets see variables definition in the Variable Dictonary.

Table 9: Table for Term Dictionary

Name Type Initial Value Accuracy Comment

t_deltaHappyness Integer 0 offset. set to 1 if the game is
won and added to the total
happyness

t_deltaWeight Integer 0 offset. set to -1 after every
game and added to the total
weight

Table 10: Table for Controlled Variable Dictionary

Name Type Initial Value Accuracy Comment

c_lost Integer 0 number of round lost

c_playedrounds Integer 0 number of round already played per
game

c_playbeep Boolean FALSE peep tone during playing

c_scores Integer 0 number of rounds won

Table 11: Table for Monitored Variable Dictionary

Name Type Initial Value Accuracy Comment

m_lbutton button notpressed L-Button

m_mbutton button notpressed M-Button

m_rbutton button notpressed R-Button

m_tamdirection direction middle for Tamagotchi random direction

Because the tool lacks a random generator, the user plays this role. He or she
has to set the variable m_tamdirection to left or right after pressing the L or M-
Button. He or she then has to set it to middle before the next round begins,
otherwise no event will occur if the value of m_tamdirection is the same in
consecutive rounds. That’s why m_tamdirection takes three values; left, middle
and right

After defining variables, the next step is creating tables.
An Event Table consists of the name of the variable and the name of the Mode
Class, in which the variable is used. That makes the first two rows. Then follows
a two column row for the Modes (States) and Events. The “Modes” column
contains rows for all modes, which belong to the mentioned Mode Class, one
row for each group of modes with common events. Events are specified in the
“Events” column. This can have more than one column. Lastly is the row with
the primed variable name and the value it attains, when specified events occur.
The prime on the variable name indicates the new value of the corresponding
variable.
We will explain the Event Table for the variable c_playedrounds in details. We
then hope that the reader will be in position to understand other tables.
The variable c_playedrounds counts the number of correct rounds played in
one game. A round is correct and counted, if it does not violet order of playing
specified in CR-24 i.e the user must choose the direction before Tamagotchi
does the random selection.

To ensure that this is obeyed, we had to use an event of the form

@T(condition_2) WHEN (condition_1)

This event occurs, when condition_1 occurs before condition_2, and both must be

changing from false to true.

Table 12: Event Table for c_playedrounds (CR-24)

Name Mode Class

c_playedrounds SelectedAction

Modes Events (CR-24)

saPlaying @T(m_tamdirection = left)

WHEN

(m_lbutton = pressed

OR

m_mbutton = pressed)

@T(

m_tamdirection = right)

WHEN

(m_lbutton = pressed

OR

m_mbutton = pressed)

NEVER

saReset NEVER NEVER @T(

m_lbutton = pressed

OR

m_mbutton = pressed

OR

m_rbutton = pressed)

saSleep,saNoAction,
saGames,saFood,
saSnacks,
saFoodAndSnacks,

NEVER NEVER @A

saInformations,
saHunger,
saHappyness,
saWeightAndAge,
saTime

c_playedrounds’ = c_playedrounds + 1 c_playedrounds + 1 0

In the table above, we see that the value of c_playedrounds is incremented, if the user
presses either the L- or M-Button and Tamagotchi chooses one of the directions. This
happens in the mode (state) saPlaying. In all other modes incrementation is NEVER
allowed. In the saReset mode we are able to set the value of c_playedrounds to zero.
The same applies, if any event occurs (@A) in any of the mentioned modes, but
NEVER in saPlaying.

The following are Event Tables for other variables.

Table 13: Event Table for c_scores

Name Mode Class

c_scores SelectedAction

Modes Events(CR-24)

saPlaying @T(
m_tamdirection = left)
WHEN
(m_lbutton = pressed)

@T(
m_tamdirection = right)
WHEN
(m_mbutton = pressed)

NEVER

saReset NEVER NEVER @T(
m_mbutton = pressed
OR
m_lbutton = pressed
OR
m_rbutton = pressed)

saSleep,saNoAction,
saGames,saFood,
saSnacks,
saFoodAndSnacks,
saInformations,
saHunger,
saHappyness,
saWeightAndAge,
saTime

NEVER NEVER @A

c_scores’ = c_scores + 1 c_scores + 1 0

Table 14: Event Table for c_lost

Name Mode Class

c_lost SelectedAction

Modes Events(CR-25)

saPlaying @T(c_playedrounds = 5) @F(c_playedrounds = 5)

saReset NEVER @T(m_mbutton = pressed
OR m_lbutton = pressed

OR m_rbutton = pressed)

saSleep,saNoAction,
saGames,saFood,
saSnacks,
saFoodAndSnacks,
saInformations,
saHunger,saHappyness,
saWeightAndAge

NEVER @A

c_lost’ = c_playedrounds – c_scores 0

Table 15: Event Table for c_playbeep

Name Mode Class

c_playbeep selectedAction

Modes Events(CR-23)

saPlaying @T(m_tamdirection = left
OR m_tamdirection = right)

@F(m_tamdirection = left
OR m_tamdirection = right)

saSleep,saNoAction,
saGames,saFood,
saSnacks,
saFoodAndSnacks,
saInformations,
saHunger,saHappyness,
saWeightAndAge,
saTime,saReset

NEVER @A

c_playbeep' = TRUE FALSE

Table 16: Event Table for t_deltaHappyness

Name Mode Class

t_deltaHappyness selectedAction

Modes Events(CR-25)

saPlaying @T(c_scores>=3
AND c_playedrounds =5)

@T(c_scores < 3)

saSnacks @T(m_mbutton = pressed) NEVER

saSleep,saNoAction,saGames,
saFood,saFoodAndSnacks,
saInformations,saHunger,
saHappyness,
saWeightAndAge,saTime

NEVER @A

t_deltaHappyness' = 1 0

Table 17: Event Table for t_deltaWeight(CR-25)

Name Mode Class

t_deltaWeight selectedAction

Modes Events

saPlaying @T(
c_playedrounds
=5)

NEVER NEVER NEVER

saFood NEVER @T(NEVER NEVER

m_mbutton
= pressed)

saSnacks NEVER NEVER @T(m_mbutton
=pressed)

NEVER

saSleep,saGames,saNoAction,
saFoodAndSnacks,
saInformations,saHunger,saTime,
saHappyness,saWeightAndAge

NEVER NEVER NEVER @A

t_deltaWeight’ = -1 1 2 0

We have been able to implement all Customer Requirements, except those, which the
tool does not support, i.e displaying Tamagotchi, producing a beep tone and random
selection of directions. Despite of these shortcomings, it is possible to play with
Tamagotchi. We wish you will enjoy it!

1.4 Experiences

1.4.1 Getting used to the Tool and the Notation
In order to get used to the tool and notation, we started with modeling a small Safety
Injection System (SID). We spent about 40 hours on modeling the SID. The only
information source we had was the Tool Guide. This User Guide to SCR* Toolset
consists of 77 pages. However, it does not mention some important features. For
example the use of the function Duration() for monitoring time. This Term is
generated automatically by the tool, if the user defines a monitored variable “time”.
We just discovered it accidentally because it appears in a screenshot in the User
Guide! Also the Events @A and @C are only shortly mentioned. This means, that one
has to use them for try and error in order to know how they are properly used.
Moreover, the Guide doesn’t clearly state the use of Terms and the fundamental
difference between them and the controlled variables. These drawbacks are big
problems for the beginner. Another problem is that there is no description of the
example used in the User Guide. One sees only some of the tables, without knowing
their background. This makes it difficult to understand them. Including the
requirements to the specification could have provided the background of the system
model in the examples.

1.4.2 Modeling Tamagotchi
Our approach to modeling Tamagotchi is explained in 1.2. It took some 100 hours.
We didn’t have problems with the notation, but with the tool. Some of the problems
have already been mentioned, and others follow now.

L The cycle problem
The tool has a problem with cyclic dependencies between mode classes. The following
diagram shows what this means. It shows an excerpt of our first Tamagotchi specification.

Fig.3 A dependency cycle

The arrows in the diagram show the direction of the dependency. I.e. t_minweight is set in the
modeclass development and therefore depends on this modeclass. The modeclass mametchi is
modeling the possibility of a Tamagotchi evolving into a mametchi. It has to check the actual
weight of the Tamagotchi to t_minweight to fulfill CR-35 (The weight of the Tamagotchi
must not fall below t_minweight to allow the development of a mametchi). So the modeclass
mametchi depends on the Term t_minweight. In the mametchi modeclass the boolean variable
t_mametchi is set to TRUE of FALSE and finally the development modeclass depends on this
variable when it evolves the Tamagotchi. The dependency cycle is closed!
The problem with such a cycle is that the tool can not simulate a specification containing one
or more of these cycles. The possible problem concerning dependency cycles is that
specifications containing them could easily get into endless loops that the tools can not detect
before execution.
Dependency cycles do not need to exist between two modeclasses directly. The cycle can
include a lot of modeclasses which means the cycle is not always as obvious as in the above
example. In our first approaches we included a lot of such cycles.
The tool developers know of the problem and say they are working on a solution. But until
now no such solution is implemented in the tool. So it is up to the user to fix the problem. We
discovered two possible solutions that both have their good and bad sides.

Solution 1: User interaction

Fig.4 Opening the dependency cycle via user interaction

While simulating a specification based on this solution the user has to manually adjust the
monitored variables, i.e. m_mametchi to the values presented to him in the controlled
variables, i.e. c_mametchi. This makes simulation very difficult (some observers said nearly
impossible) because the user has to look at a lot of variables at the same time and adjust the

development

t_minweight

mametchi

t_mametchi

development

t_minweight

mametchi

User
m_mametchi c_mametchi

monitored variables on any change. But it provides the possibility to react on any event
immediately.

Solution 2: “Time displacement” solution

The second solution is based on the discovery that the tool can simulate a specification when
the use of one of the variables in the cycle is displaced in time. Instead of using the connecting
variable directly in a dependant modeclass it is used via the WHEN statement.
This means it is possible to use a dependency cycle like in Fig.3
Compare the two following definitions:

Definition 1
Source Mode Events Destination Mode

mam_idle @T(t_weight < t_minweight) mam_nomametchi

Definition 2
Source Mode Events Destination Mode

mam_idle @A WHEN(t_weight <
t_minweight)

mam_nomametchi

In definition 1 t_minweight is used directly. In definition2 the value of t_minweight in the
state before the actual one is used.
The problem with this solution is that a change in an internal term can not be recognized
immediately. It will only be recognized when any of the monitored variables change. So
multiple events can be displaced. As the tool is targeted to real-time systems this solution is
not really acceptable. But compared to solution one it provides an easy to use simulation
possibility.

L Variable definition.

The tool does not allow more than one mode classes to change the value of a
variable. That means, that only one Mode Class is allowed to alter the value of a
variable. But in our Tamagotchi Model, we have variables which must be set in
diefferent modes classes, for example weight, happyness, hunger and life
expectation. As a solution we had to define some variables as offsets, e.g
t_deltaWeight, in each mode class. The values of these offsets can be read and added
to the main variable ,e.g t_Weight, by the mode class responsible for changing the
respective variable. This results in variable explosion, but it works!

1.4.2 Review and Simulation
We reviewed the specification modeled by the UML / Rhapsody group. Our specification was
very large compared to theirs, although we had not yet combined our two parts of the

specification. Probably because of redundant variables and mode classes we had (see above).
It was difficult for them to understand our specification because it has a lot of tables and one
graph, the Dependency Graph (DG). This graph was also very large and confusing. It could
not be displayed completely on the 19” screen!
Simulating our specification was also difficult. The simulator displays all variables with sub
windows for monitored variables, controlled variables and terms. Because we had many
variables, they could not be displayed all at once. So one had to scroll on. With a desert of
variables on one screen, it is very difficult for the user to know which one to use, when and
how. In this way, it even more difficult to trace the effect of an event and to test the CRs. By
the UML / Rhapsody, it was easy to specify the variables one needed to observe, and to trace
their effect. There was no error found in our specification besides the fact that we had not yet
merged the part specifications.
At the time of the review we had not yet discovered the possibility of the “time displacement”
solution. As this makes simulation a lot easier we think our partner team would have get a
better impression of the system we used if they revied this version of our specification.

1.5 Conclusions

1.5.1 Teamwork
The teamwork worked very well on the given specification. This results on the format of the
informal requirements that could be split in two relatively equal parts worked out by us in
separate submodels. The modeling of the submodels could be paralleled very well compared
to the sequential work by other teams including the model we reviewed (UML / Rhapsody).
The combination of the two submodels had to be done manually because the tool does not
provide any help on this. The problems concerning the combination were discussed explicitly
in 1.2.

1.5.2 Modeling
Modeling Tamagotchi was helpful to get a deeper understanding of the informal requirements.
It also led to a structured overview of the dependencies in the system.
Because of the tricks we had to use to fulfill the requirements a later implementation of the
specification would need a lot of rework. A new specification of a bigger system would lead
to better results in a shorter time. This is based not only on the experiences we made during
the modeling of the Tamagotchi but mainly on the better understanding of the special
problems with the tool that should be described in the user guide.

1.5.3 The tool
The tool is working very well on smaller systems like the Safety injection device described in
1.1 because it provides very good modules (CC-Checker) to test models on consistency and
completeness. Because of the weaknesses described earlier bigger models like the Tamagotchi
are getting more complicated and difficult to survey than they need to be.
Areas in which the tool should be extended include the support of groupwork. The tool should
at least support the import of subspecifications into an existing one. Corresponding to that it
should support testing and simulating of submodels. The developers of the tool should
consider implementing a feature in the simulator that allows changing of terms manually. We
know this could lead in an inconsistent state but it would support subspec development a lot.

The developer could be warned and notified about a possibly inconsistent state when changing
a term so that the gain of the feature is bigger than the loss of consistency.
Exchanging parts of the model is not supported by the tool. If for example a modeclass is
deleted all the variables defined in this modeclass lose their context but are not removed from
the specification automatically. The user has to delete them manually to avoid consistency
problems.
The tool is a prototype. A really good and complete user guide should not be demanded. But
the user guide coming with the tool is really bad. It does not even describe the complete
notation. For example we discovered the duration functionality by ourselves through trial and
error because the duration-function appeared in a screenshot in the user guide.. This was very
helpful for modeling the Tamagotchi. The duration2 functionality, helping to solve a special
cycle-problem, was only mentioned in an email from the tool-developers.
Moreover, the Guide doesn’t clearly state the use of Terms and their fundamental difference
from controlled variables. These setbacks are big problems for the beginner.
We would use the tool again on modeling smaller systems like the safety injection device but
not on bigger systems like the Tamagotchi until the described problems are solved by the
developers.

