
Bridging System Views ?

Max Breitling and Jan Philipps

Institut für Informatik
Technische Universität München

80290 München, Germany
{max.breitling|jan.philipps}@in.tum.de

Abstract. System specification by state machines together with prop-
erty specification and verification by temporal logics are by now standard
techniques to reason about the control flow of hardware components and
embedded systems. The techniques to reason about the dataflow within
loosely coupled systems, however, are less well developed.
In this contribution, we propose a formalism for the verification of sys-
tems with asynchronously communicating components. The components
themselves are specified as state machines, while the dataflow between
components is described as a relation over the input and output his-
tories of a system. Communication history properties are derived from
temporal logic properties of the component state machines.
For temporal reasoning we employ verification diagrams and theorem
provers. We sketch the use of our approach with two examples, a com-
munication system and the NetBill protocol.

1 Introduction

State transition diagrams in various incarnations have become a popular tech-
nique to specify software and hardware systems. Their suggestive notation leads
to readable design documents for a component’s implementation. With tempo-
ral logics there are precise property specification and verification techniques for
state machines. Temporal logic proofs often follow the operational intuition be-
hind state machines: Invariants, for example, are typically shown using induction
over the machine transitions.
For systems with loosely coupled components, which communicate asyn-

chronously via communication channels, however, temporal logics and model
checking are less successful. Here a black box view which just relates input and
output is more useful than the state-based glass box view of a component. Black
box properties of dataflow components and systems can be concisely formulated
as relations over the communication history of components [8]; such properties
are inherently modular and allow easy reasoning about the global system behav-
ior.
State based and history based descriptions of systems and components can

be integrated [1, 3, 5, 7]. History properties of a component are derived from

? This work has been partially funded by the Sonderforschungsbereich 342 of the DFG.

invariance and response properties in temporal logic together with a continuity
argument. For a high-level view on the temporal logic proofs we adopt Manna
and Pnueli’s verification diagrams [14]; tool support is provided through the
theorem prover Isabelle [11, 17].
The utility of this approach is that is allows formulation of system properties

at different abstraction levels and compositional reasoning about dataflow prop-
erties within a unified mathematical framework; we shortly describe two case
studies that highlight these points.

2 Distributed Systems

We model a system by describing its interface to the system’s environment,
its components and the component interconnection structure. The components
are connected via directed channels. The system’s interface is described by the
communication channels with the types of the message that are sent on them.
The communication along all channels is modeled by finite or infinite message
streams. Component behavior is described by state machines; the behavior of
the complete system is defined by the behavior of its components.

PSfrag replacements

System interface level

System architecture level

Component behavior level

Fig. 1. Distributed System Levels

This system model leads to various abstraction levels in the design of dis-
tributed systems (Fig. 1). The most abstract level regards the whole system
as a black box, and only refers to the interfaces between system and environ-
ment. The next level also refers to the internal architecture of the system; it
can be regarded as a hierarchical decomposition of the interface level. In the
third level, the internal behavior of the components, modeled by state transition

2

systems, becomes visible. For some concrete state transition system notations
— like Statecharts or ROOMcharts — hierarchical decomposition could be ap-
plied to this level, too.

In the rest of this section, we give an overview over the formalization of these
levels. The black box aspects of the formalization are taken from the Focus

system model [8]; the formalization of the state transition systems is elaborated
in [1].

2.1 Streams

The communication history between components is modeled by streams. A stream
is a finite or infinite sequences of messages. Finite streams can be enumerated,
for example: 〈1, 2, 3, . . . 10〉; the empty stream is denoted by 〈 〉. For a set of
messages M , the set of finite streams over M is denoted by M ∗, that of infinite
streams by M∞. By M ω we denote M ∗ ∪M∞.

Given two streams s, t and j ∈ N, #s denotes the length of s. If s is finite,
#s is the number of elements in s; if s is infinite, #s =∞. We write s _ t for
the concatenation of s and t . If s is infinite, s _ t = s. We write s v t , if s is
a prefix of t , i.e. if ∃ u ∈ M ω • s _ u = t . The j -th element of s is denoted by
s.j , if 1 ≤ j ≤ #s; it is undefined otherwise. ft.s denotes the first element of a
stream, i.e. ft.s = s.1, if s 6= 〈 〉. For A ⊆ M we denote by Ass the subsequence
that results from s by removing all elements not in A.

2.2 State Transition View

A state transition system (STS) is a tuple S = (I ,O ,A, I, T), where I ,O ,A are
sets of variables. A state of our system is described by a valuation that assigns
values to these variables. The variables in I and O represent input and output
channel histories, respectively. They range over finite message streams. The set
A contains variables to store local state attributes as e.g. the control state. It is
assumed that for every i ∈ I we have i◦ in A describing the part of the input that
is already consumed. I is an assertion that characterizes the initial states of the
state transition system. T is a finite set of transitions; each transition τ ∈ T is an
assertion that relates a current state with its successor states. The free variables
of I range over V = I ∪ O ∪ A. The free variables of each transition assertion
τ belong to V ∪ V ′, where V ′ = { v ′ | v ∈ V } results from V by priming
each variable. Intuitively, the unprimed variables in a transition assertion will
refer to the current state, the primed variables to the subsequent state. Each
transition τ can only extend the channel histories I and O . In addition, there is
an environment transition τε that leaves all variables unchanged except those of
I — the input histories I may be extended.

Priming is extended to assertions and to variable valuations: Φ′ is the asser-
tion obtained from Φ by priming each free variable; from a valuation σ we get

σ′ via σ′(v ′)
df

= σ(v).

3

Since states are variable valuations for the system variables, we can talk about
the validity of assertions in a state or in a pair of states. Given two assertions Φ
and Ψ with free variables from V and V ∪V ′, respectively, we write

σ |= Φ and σ, ρ′ |= Ψ

if Φ is true when all free variables are replaced by their values from σ, and Ψ is
true when all unprimed free variables are replaced by the values from σ and all
primed free variables are replaced by their values from ρ′.
An STS can be graphically represented by a state transition diagram. STDs

are directed graphs where the vertices represent (control) states and the edges
represent transitions between states. One vertex is a designated initial state;
graphically we mark this vertex by an opaque circle in its left half. Edges are la-
beled; each label consists of four parts: A precondition, a set of input statements,
a set of output statements and a postcondition. In STDs, transition labels are
represented with the following schema:

{Precondition} Inputs B Outputs {Postcondition}

where Inputs and Outputs denote lists of expressions of the form i?x and o!exp,
respectively, with i ∈ I , o ∈ O , x a constant value or a (transition-local) variable
of the type of i , and exp is an expression of the type of o. The Precondition is a
boolean formula containing data state variables and transition-local variables as
free variables, while Postcondition and exp may additionally contain primed state
variables. The distinction between pre- and postconditions does not increase
the expressiveness, but improves readability. If the pre- or postconditions are
tautologies, they can be omitted.
The informal meaning of a transition is as follows: If the available messages

in the input channels can be matched with Inputs, the precondition holds, and
the postcondition can be made true by assigning proper values to the primed
variables, the transition is enabled. If it is chosen, the inputs are read, the outputs
are written and the postcondition is made true.
As a rather simple example, we specify a buffer by the STD in Fig. 2. Its

initial state is Empty. If some data is received on i , it is stored in q , and the
control moves to the state Store (according transition τ1). In this state, receiving
a request messager, the first element of q is sent. Depending on the length of q ,
the buffer leaves the control state unchanged or moves back to Empty (τ2 or τ4).
Receiving further data in the state Store, they are appended in q (τ3). If there
are no stored messages (in the state Empty), but a request arrives, this open
request has to be remembered by incrementing c (τ5 and τ7). If c > 0, the buffer
is in the state Count. If some data arrives now, it is immediately forwarded on o,
decrementing c, until there are no more pending requests and the buffer returns
to the state Empty (τ6 resp. τ8)
The state transition defines the abstract syntax of state machines; their se-

mantics is a set of executions. An execution ξ is an infinite stream of valuations
for the system variables that satisfies the following three requirements:

1. The first valuation in ξ satisfies the initialization assertion: ξ.1 |= I

4

PSfrag replacements

Empty CountStore

τ3 :: i?d B

{q ′ = q _ 〈d〉}

τ6 :: {c > 1}
i?d B o!d{c′ = c − 1}

τ7 ::
r?r B {c′ = c + 1}

τ2 ::
{#q > 1}
r?r B o!ft .q

{q ′ = rt .q}

τ5 ::
r?r B {c′ = 1}

τ8 ::
{c = 1}
i?d B o!d

{c′ = 0}

τ4 ::
{#q = 1}
r?r B o!ft .q

{q ′ = 〈 〉}

τ1 ::
i?d B {q ′ = 〈d〉}

var q : Msg∗ = 〈 〉
var c : Nat = 0

Fig. 2. State Transition Diagram for the Buffer

2. Each pair of subsequent valuations ξ.k and ξ.(k + 1) are related either by
a system or by the environment transition: ξ.k , ξ.(k + 1)′ |= τε ∨

∨

τ∈T
τs.

It is because of the environment transitions that we have infinite executions
even for finite input histories.

3. Each transition of the STS is taken infinitely often in an execution, unless it
is disabled infinitely often (weak fairness). Of course, other fairness assump-
tions can also be used.

The set of executions of a state transition system S is denoted by 〈〈S〉〉.
On top of the executions, a simple linear temporal logic can be defined in the

usual way[12, 13]. A predicate Φ (written as 2Φ) is an invariant for a system S
iff Φ is valid in all states in all executions of S:

S |= 2Φ iff ∀ ξ ∈ 〈〈S〉〉 • ∀ k ∈ N • ξ.k |= Φ

A response property is written as Φ 7→ Ψ . It states that whenever in an
execution of the state machine S a state is reached where Φ holds, then at the
same or a later state in the execution Ψ also holds:

S |= Φ 7→ Ψ iff ∀ ξ ∈ 〈〈S〉〉 • (∀ k ∈ N • ξ.k |= Φ⇒ ∃ l ≥ k • ξ.l |= Ψ)

2.3 Black Box Specification

A history or black box specification is an abstract description in the sense that
it does not refer to the internal state of a component, but just describes the
external, visible behavior.
The behavior relation is defined by formulas Φ where the free variables range

over the component input and output stream variables. The streams fulfilling

5

these predicates describe the allowed black box behavior of our system. We can
use all the operators on streams from Section 2.1 to formulate the predicates.
As a rather simple example, the buffer component can be specified abstractly

by the following predicate:

o v i ∧ #o ≤ #r ∧ #o ≥ min(#i ,#r)

The first conjunct states that only data received on channel i may be output
on channel o. The second conjunct demands that the component never outputs
more data than has been requested on channel r . In contrast with these two
conjuncts, which are safety properties, the third conjunct is a liveness property:
It demands that output is indeed produced.
From component history specifications it is straightforward to reach the his-

tory specification of the complete system. At the black box level, composition
is just the logical conjunction of the component history specifications; internal
channels can be hidden by existential quantification.

3 System Views

The different abstraction levels in a system description can be classified as state
based views and as history based views. In this section, we relate the two views.
Within a state machine execution ξ ∈ 〈〈S〉〉, changes in the valuations for the

input and output variables I , O are restricted to the prefix order v: For each
variable v ∈ I ∪O and every k ∈ N,

(ξ.k)(v) v (ξ.(k + 1))(v)

Thus the valuations of each input and output variable within an execution form
a chain under the prefix order, and for each execution and each variable v ∈ I ∪O
there is a least upper bound

ξ.∞(v)
df

=
⊔

{ (ξ.k)(v) | k ∈ N }

Note that ξ.∞(v) is only defined for the input and output variables, not for the
attribute variables of a state machine.
Based on the least upper bounds of the channel history valuations, we can

define the black box view of a state machine S = (I ,O ,A, I, T) as a set of
valuations for the variables I ∪O . It is denoted by [[S]] and defined via the least
upper bounds of the input and output histories of the machine’s executions:

[[S]] = { α ∈ (I ∪O)→ M ω |

∃ ξ ∈ 〈〈S〉〉 •
∧

i∈I

α(i) = ξ.∞(i) ∧
∧

o∈O

α(o) = ξ.∞(o) }

The definition shows that the “missing link” between the state machine view
and the black box view of a component is the set of executions of the state
machine. This motivates an additional view of components, the execution view.
As shown in Fig. 3, for each of the three levels there is a corresponding

property specification language. These are, with rising abstraction level:

6

PSfrag replacements

var q ;

var q ; o : Msg

o : Msg

o : Msg

r : Sig

r : Sig

r : Sig

i : Msg

i : Msg

i : Msg
o v i

2 (o _ q) = i◦

Φ1 ∧ τ1 ⇒ Φ′
2

Fig. 3. Black Box, Execution and State Transition Views

– The state transition view describes the component with the abstract syntax
of state transition systems. Properties at this level are expressed in predicate
logic. Typical properties are consequence properties, which describe the effect
a given transition has (e.g., Φ ∧ τ ⇒ Ψ ′), or enabledness properties, which
state that under certain conditions a given transition is enabled (e.g., Φ ⇒
En(τ), where σ |= En(τ) iff there is a state ρ such that σ, ρ′ |= τ).

– The execution view describes the component by the set of its executions.
Properties at this level can only refer to states that are reachable in an exe-
cution, or to the causal relation between states in an execution. The property
language here is linear temporal logic. Typical properties are invariance and
response formulas as defined in Section 2.2.

Note that in the execution view, the transitions are hidden: Properties can
only refer to the component state space, including the input and output
channel variable valuations.

– The black box view describes the component by its the relation of its input
and output communication histories. Properties at this level are expressed as
formulas over streams (Section 2.1). Typical properties state that a stream
is a substream or a prefix of another stream, or relate the length of two or
more streams.

In the black box view, both transitions and the state space of the component
are hidden. Properties can only refer to channel variable valuations.

Unfortunately, the above definition of the black box semantics of a state
transition system is difficult to use in practice. In the rest of this section, we
introduce proof rules to derive execution view properties from state transition
properties, and black box properties from execution view properties.

7

3.1 From Transitions to Executions

Temporal logical properties of the executions of a state machine can be derived
by the usual proof rules. As examples, we state the following two:

I ⇒ Φ

∀ τ • Φ ∧ τ ⇒ Φ′

S |= 2Φ

∀ τ • Φ ∧ τ ⇒ Φ′ ∨ Ψ ′

∃ τ • Φ⇒ En(τ)

Φ ∧ τ ⇒ Ψ ′

S |= 2(Φ⇒ 3Ψ)

A state property Φ is an invariant if it is valid initially and stays valid for all
executed transitions. The response property can be shown by proving that there
is a helpful transition that – once Φ is valid in a state – is enabled and leads to
a successor state with Ψ valid. Due to the assumed fairness this transition will
be selected eventually in an execution.
System properties formulated by temporal logic no longer contain any ref-

erence to the transitions, they just make a statement about the properties of
exections being sequences of states of a system.

3.2 From Executions to Histories

The black box view of a system focuses on the external behaviour, while the
execution view also contains references to internal values of the system. To derive
a black box view of a system from its properties of its executions we extract the
value of the input and output streams of a system in the virtual “last” state of
an execution.
A system invariant Ψ stays valid in all states during an execution. If it is

also admissible [16], Ψ is valid for an infinite execution, as it is expressed in the
following rule, suitable to show safety history properties of a system.

adm Φ

S |= 2Φ

[[S]]⇒ Φ

S |= #o = ν ∧ ν < ` 7→ #o > ν

[[S]]⇒ #o ≥ `

The second rule allows the derivation of a specific liveness property that we
call output extension. If we can prove that a system eventually extends an output
stream as long as a certain value ` is not reached, we can conclude that the black
box behavior of the system assures that the length of the output will reach at
least the length `. The free variables of the N-valued expression ` must belong
to I ∪O .
With these two rules a major class of black box properties can be derived

from the execution view of a system. While invariance is suitable to express the
functional behavior, output extension enables the derivation of liveness proper-
ties. Proofs of both rules can be found in [1].

8

PSfrag replacements

Φ2 :
σ = Store
c = 0
#q > 0

Φ1 :
σ = Empty
c = 0
#q = 0

Φ3 :
σ = Count
c > 0
#q = 0τ1

τ4 τ5

τ8

i◦ = o _ q ∧ #r◦ = c +#o ∧ #r◦ +#q = #i◦ + c

Fig. 4. Invariance Diagram for the Buffer

4 Proof Support

For practical proving we describe how verification diagrams can be used in our
setting. Finally, we sketch how the vast number of proof obligations can be shown
almost automatically by using tool support.

4.1 Verification Diagrams

Since invariance and response properties link the state machines and black box
views of a system, proofs can be reduced to proofs of temporal logic properties.
The usual linear presentation of such proofs, however, does not reflect the oper-
ational intuition behind the proof and can be confusing and hard to understand.
Verification diagrams [14] visualize the proof structure of temporal logic

proofs and reduce temporal reasoning to proofs of verification conditions in
first-order predicate logic. Verification diagrams can be tailored to the invari-
ance and response properties used in the derivation of black box properties for
state machines.
A verification diagram is a directed graph without unreachable nodes. The

diagram’s nodes are labeled by assertions Φ0, . . . , Φn . Nodes marked by opaque
circles in the left half are called initial nodes. A node marked by an opaque
circle in the right half is called the terminal node. Initial and terminal nodes are
optional, and there must be at most one terminal node. We tacitly assume that
all node assertions are syntactically different and logically exclusive, and refer
to the nodes by just their assertions. The edges in a verification diagram are
labeled by transitions τ ∈ T .
Verification diagrams can be hierarchical: A node can contain a sub-diagram.

Hierarchical diagrams are equivalent to flattened diagrams, where assertions
from a node higher in the hierarchy are conjoined with the assertion of the
nodes below it and arrows entering or exiting higher-level nodes are connected
to all lower-level nodes.

Invariance Diagrams. An invariance diagram is a verification diagram without
a terminal node. Figure 4 shows an invariance diagram for the buffer. It is used

9

to prove that the following formula is an invariant of the buffer, i.e.

Buffer |= 2 (i◦ = o _ q ∧ #r◦ = c +#o ∧ #r◦ +#q = #i◦ + c)

To find such an invariant, an understanding of the operation of the STS is
necessary. For our example, the intended meaning of the variables q and c must
be encoded in the formulas: Messages read from i are either already output on o,
or are still stored in q . Received requests are either still pending (counted in c)
or are already answered (by sending a message on o). The difference #r ◦ − c of
the number of received requests and the number of open requests is the number
of answered requests, and therefore equal to the number of received messages
(#i◦) minus the number of messages still buffered (#q). Thus, the Buffer can
have messages in q , or it can have pending requests, or can be in a balanced
state where q is empty and there are no pending requests. These three case are
reflected in the three nodes Ψ1, Ψ2 and Ψ3 of our diagram.
All in all, there are 27 proof obligations associated with the diagram that

need to be proved to show that the diagram is valid. For each node and each of
the nine transitions τj (including the environment transition) we have to show

Ψi ∧ τj ⇒ Ψ ′
k

with Ψi denoting the source node and Ψk describing the target node. If τj main-
tains Ψi , i.e. i = k , we do not represent the associated loop in the diagram. If
a transition τj is not enabled in a node Ψi , the left-hand side conjunct includes
a contradiction and the implication is trivially true. In our example, only 11
obligations are non-trivial: Three obligations for the environment transitions,
four obligations for the arrows in Fig. 4 and four obligations corresponding to
transitions τ2, τ3, τ6, τ7 in Fig. 2.

Response Diagrams. A response diagram is a verification diagram that is acyclic:
Its nodes can be ordered such that for each pair of nodes Φi and Φj , if there
is an edge from Φi to Φj , then i > j . There is a single node with no outgoing
edges. This node is marked as the terminal node and labeled with the assertion
Φ0.
Figure 5 shows a response diagram for our buffer. It is used to show the

following property, which states that the buffer outputs a message on channel o
provided there are enough message inputs and requests:

Buffer |= #o = k ∧ k < min(#i ,#r) 7→ #o > k

This property holds immediately for states where only transitions are en-
abled that produce output (τ2, τ4, τ6 and τ8). From all other states, the system
must move closer to a state where output must be produced. In the verification
diagram, the state space is split into five partitions, Φ1 to Φ5. The terminal node
Φ0 is the target node, where output on o has been produced. Transitions that
send a message on o immediately reach the target node. Other transitions may
keep a node assertion valid, or lead to a node closer to the target. Proofs of

10

PSfrag replacements

σ = Store
c = 0

Φ2 :
#q = 1

Φ1 :
#q > 1

σ = Count
#q = 0

Φ4 :
c = 1

Φ3 :
c > 1

Φ5 :
σ = Empty
c = 0
#q = 0

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

i◦ = o _ q ∧ #r◦ +#q = #i◦ + c
#o = k ∧ k < min(#i ,#r)

Φ0 :
#o > k

Fig. 5. Response Diagram for the Buffer

the enabledness of the transitions depend on the left hand side of the property,
which implies that there is input waiting on i or r .
There are 50 proof obligations associated with our example response diagram.

Similar to invariance diagrams, we need to show that the diagram is correct for
all 5 nodes and all 9 transitions. Again, we do not represent loops or disabled
transitions. Additionally, we have to show that at least one of the outgoing tran-
sitions of each node is enabled, leading to additional 5 proof obligations in this
case. However, of the 50 obligations only 20 are non-trivial.

Using the proof rules of Section 3.2 we can derive black box properties from
our results. From the invariant we can deduce properties of the buffer’s histories.
Note that since i◦ v i and r◦ v r and due to the admissability of the invariant
we get

[[Buffer]]⇒ (o v i ∧ #o ≤ #r)

From the response property and with ` defined as min(#i ,#r) we can further
derive

[[Buffer]]⇒ #o ≥ min(#i ,#r)

This implies the expected property of the buffer:

[[Buffer]]⇒ o v i ∧ #o = min(#i ,#r)

11

4.2 Tool Support

While the verification conditions associated with a verification diagram are sim-
ple, the size of property proofs is still quite formidable: A verification diagram
with n nodes for a system with m transitions requires the verification of about
n×m verification conditions. Obviously, without tool support property verifica-
tion is not feasible. We formalized our approach in Isabelle/HOL as an extension
of Shankar’s PVS formalization of state machines [18] to handle liveness prop-
erties and asynchronous communication.
Given an Isabelle formalization of a state transition system, verification con-

ditions are proven as theorems. Verification tactics assemble sets of verification
conditions according to the structure of invariance and response diagrams to
temporal logic formulas. The derivation of the history properties from the tem-
poral logic properties is not handled within our formalization: This would require
the use of the much more complicated logic of computable functions [16].
The Isabelle formalization is documented in [5]. The theory files and proof

scripts can be accessed electronically [2]. Introductory texts to Isabelle are also
available electronically [11].

5 Examples

This section gives a short overview of two examples for our approach. The first
example is a model of the NetBill protocol [9, 19] for low-cost transactions of elec-
tronic goods in the internet. The main point of this example is to demonstrate
that for each of the three system views of Section 2 there are correctness proper-
ties that are best expressed within this view. The formalization and verification
of this example can be found in [4].
The second example is a simple communication system originally proposed

by the DFKI [10]; it demonstrates the use of black box views for compositional
verification of dataflow properties. It is treated in more detail, including a verifi-
cation using Isabelle/HOL in [1, 5]. The Isabelle proof scripts are available online
[2].

5.1 NetBill Protocol

Figure 6 shows the architecture of a NetBill system. It consists of an arbitrary
number of customers, an arbitrary number of merchants and the centralized bank
server. Transactions occur between a customer process, a merchant process, and
a centralized bank server. All money-related activities occur at the bank server.
Figure 7 show a sample transaction of the NetBill protocol. The customer

process c receives an order for electronic goods at a merchant m from the en-
vironment. It generates a unique transaction number which is used to identify
the transaction in the subsequent message exchanges, and forwards the order to
the merchant process. The merchant returns an invoice, which consists of a price
statement and the encrypted goods. The customer process then issues a cheque

12

PSfrag replacements Customer Merchant

Bank

c·m

m·c

e·c

c·e

b·m m·b

Fig. 6. NetBill architecture

PSfrag replacements

Env. Customer c Merchant m Bank

Request

Order

Encr. Goods

Cheque

Cheque & Key

Receipt & Key

Receipt & Key

Goods

Fig. 7. NetBill Transaction

to the merchant, which states that it is willing to pay the price for the goods.
This cheque is digitally clearsigned: Every participant in the protocol can read
it, but it is impossible for anyone to change the information in it. This cheque,
together with the key for decrypting the goods, is forwarded to the bank. The
bank returns a receipt and the key to the merchant, which forwards it to the cus-
tomer. With this key, the customer process decrypts the goods received earlier
and delivers them to the user.

Customer, merchant and bank behavior are specified by rather simple state
machines (see [4] for details). With this formalization, the following properties
could be verified:

– Guaranteed Delivery: All goods ordered by the customer are delivered. Con-
versely, goods are only delivered if they were ordered.

13

PSfrag replacements

Sender Queue(N) Receiver
i : Msg o : Msg

x : Msg y : Msg

ack : Sig req : Sig

Fig. 8. Bounded Buffer

This property is expressed in the black box view of the system: It is a
simple equality on subsequences of the messages transmitted over the system
channels.

– Guaranteed Payment: For all goods ordered by a customer, the money amount
corresponding to the good’s price is subtracted from the customer account.
This property is best expressed as a response property in the execution
view of the system: Each state in an execution where a good is orderered
is followed by a state where the price for the good is substracted from the
customer account.

– Money Atomicity: The sum of the customer and merchant accounts remains
invariant. Because of the centralized NetBill bank server, this property is
quite obvious: It can be directly expressed as a predicate logic formula in
the state transition view of the NetBill system.

5.2 Communication Queue

Figure 8 shows the system structure of a bounded transmission system with
three components: a sender, a receiver, and a buffer with a capacity for N ≥ 2
data messages. Operationally, the sender pushes data to the queue and waits
for acknowledgments; the receiver pulls data from the queue by sending requests
first. The queue itself stores up to N (N ≥ 2) data messages.
The behavior of the three components is defined by simple state transition

diagrams (omitted here, see [1]). With the proof techniques of Section 4, we can
show that the components satisfy the following history relations:

[[Sender]] ⇒ x v i

#x = min(#i , 1 + #ack)

[[Queue(N)]] ⇒ y v x

#y ≥ min(#x ,#req)
#ack = min(#x ,#req +N − 1)

[[Receiver]] ⇒ o v y

#o ≥ #y
#req = 1 +#y

By black box composition, the history relation of the complete system is
just the conjunction of the three component history relations above. From this
conjunction is it immediate that the output is a prefix of the input: o v y v
x v i . By some case analysis on the communication history length inequalities it

14

can also be shown that the length of the output equals the length of the input.
Together, this implies

o = i

for all input streams i : As expected, the system implements the identity relation.
The same result could have been obtained by first composing the three com-

ponent state machines, and then deriving o v i and #o ≥ #i ; the number
of verification conditions for the invariance and response properties would have
been much higher, however. For the composition of dataflow properties, history
relations seem to be the more adequate abstraction level.

6 Conclusion

Both state based and history based views are useful in system design. Simple
Hoare-like verification conditions, temporal logic formulas and history relations
in the style of Focus [8] allow the formulation of properties at different ab-
straction levels to discuss the effects of single transitions, the structure of the
components’ reachable state space and the communication behavior within the
system and to the environment. The main advantage of our approach is that it
is straightforward to derive history based properties from simple temporal logic
invariants and response properties.
Thus, the main effort remains in temporal logic proofs of state machine prop-

erties. Indeed, our Isabelle formalization tackles only this aspect; the step to
black box properties and further reasoning about these black properties must
be done by hand. While for the buffer example we were quite satisfied with the
level of automatization that Isabelle provides, some first experiment with the
Netbill protocol showed that here much additional work would be needed simply
to reason about the data states of the components. It remains to be seen whether
proof assistants that are more specialized for software and systems verification
could offer more help in this respect.
Currently our work is based on a simple and standard state machine model

and linear temporal logic to reason about the state based view. This choice is
quite arbitrary: TLA or I/O automata together with the Temporal Logic of Steps
[15] could also be used. Especially IOAs mights be a good choice to combine state
based and history based system views for protocols.
Our specification and proof techniques are so far only suited for time indepen-

dent systems with buffered directed communication. In principle, communication
based on RPCs or transactions can be encoded in our model, but then the re-
sulting proof obligations would be too detailed and removed from the original
abstraction level. Instead, the general idea of streams as communication histories
should be extended to more complex communication patterns. The extension of
history-based specifications to time-dependent systems raises some interesting
questions [6]. A straightforward solution might be to explicitly include “time
ticks” in the message streams.

15

Acknowledgment. We thank the anonymous referees for their detailed com-
ments.

References

1. M. Breitling and J. Philipps. Black Box Views of State Machines. Technical Report
TUM-I9916, Institut für Informatik, TU München, 1999.

2. M. Breitling and J. Philipps. State machine theories and proof scripts for Is-
abelle/HOL. http://www.in.tum.de/˜philipps/BBV, 2000.

3. M. Breitling and J. Philipps. Step by step to histories. In AMAST 2000, LNCS
1816, 2000.

4. M. Breitling and J. Philipps. Transitions into black box views - the NetBill protocol
revisited. Technical Report TUM-I0013, Institut für Informatik, TU München,
2000.

5. M. Breitling and J. Philipps. Verification diagrams for dataflow properties. Tech-
nical Report TUM-I0005, Institut für Informatik, TU München, 2000.

6. M. Broy. Functional specification of time sensitive communicating systems. In
Models, Formalism, Correctness, LNCS 430, pages 153–179, 1990.

7. M. Broy. From states to histories. InMarktoberdorf Summer School on Engineering
Theories of Software Construction. Springer, NATO ASI Series F, 2000.

8. M. Broy and K. Stølen. Specification and Development of Interactive Systems -
FOCUS on Streams, Interfaces and Refinement. Springer, 2001.

9. B. Cox, J. D. Tygar, and M. Sirbu. Netbill security and transaction protocol. In
Proc. of the First USENIX Workshop in Electronic Commerce, pages 77–88, 1995.

10. D. Hutter, H. Mantel, G. Rock, and W. Stephan. Nebenläufige verteilte Systeme:
Ein Producer/Consumer Beispiel. Internal Manuscript, DFKI, 1998.

11. Isabelle home page. http://isabelle.in.tum.de.
12. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems

— Specification. Springer, 1991.
13. Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609–678,

1993.
14. Z. Manna and A. Pnueli. Temporal verification diagrams. In International Sym-

posium on Theoretical Aspects of Computer Software, LNCS 789, pages 726–765,
1994.

15. O. Müller. A Verification Environment for I/O Automata Based on Formalized
Meta-Theory. PhD thesis, Technische Universität München, 1998.

16. L. C. Paulson. Logic and Computation. Cambridge University Press, 1987.
17. L. C. Paulson. Isabelle: A Generic Theorem Prover, LNCS 828. Springer, 1994.
18. N. Shankar. A lazy approach to compositional verification. Technical Report

CSL-93-08, Computer Science Laboratory, SRI, 1993.
19. J. D. Tygar and M. Sirbu. Netbill: An internet commerce system optimized for

network delivered services. IEEE Personal Communications, 2(4):34–39, 1995.

16

