
Compositional Speci�cation of EmbeddedSystems with Statecharts ?Jan Philipps and Peter Scholzfphilipps,scholzpg@informatik.tu-muenchen.deTechnische Universit�at M�unchen, Institut f�ur InformatikD-80290 M�unchen, GermanyAbstract. During the last years, Statecharts have gained wide accep-tance for the speci�cation of reactive, embedded systems. However, mostsemantics suggested so far are either informal or hard to grasp. In thiscontribution, we present a Statecharts dialect that permits nondeter-ministic speci�cations, o�ers zero-delay broadcast communication, andhandles negation in trigger expressions in a new way. We give a com-positional formal semantics for this dialect, which is abstract enough forformal reasoning and yet easy to operationalize for simulators, modelchecking tools and code generation.1 IntroductionStatecharts [6] are a visual speci�cation language proposed for specifying reactivesystems. They extend conventional state transition diagrams with structuringand communication mechanisms. Since there is also tool support through State-mate [11], Statecharts have become quite successful in industry.However, the semantics of Statecharts used in Statemate [7] is based on adelayed broadcast (cause and action are separated in time), which leads to a veryoperational, implementation-level speci�cation style. For a modeling languagefor abstract requirements speci�cations more abstract approaches are needed.Such approaches should contain the following concepts:{ Nondeterminism is needed to express underspeci�cation of systems. Withnondeterminism, detailed speci�cations can be abstracted to allow modelchecking; in the other direction, there is a natural concept of behavioralre�nement through reduction of nondeterminism [3].{ For re�nement, delayed broadcast as used in Statemate is not a suitablecommunication concept. When re�ning a subchart to a set of more concretesubcharts, additional delays are introduced. Thus, the I/O-behavior of theStatechart changes. Re�nement rules would have to be more complex tocompensate the additional delays. As observed in [10], this is not the casefor instantaneous feedback.? This work is partially funded by the German Federal Ministry of Education andResearch (BMBF) as part of the compound project \KorSys".

Instantaneous feedback enjoys other nice properties for reactive systems; see[2] for a discussion. In this contribution, we introduce a dialect of Statechartscalled �-Charts; it features a formal semantics for nondeterministic Statechartswith instantaneous feedback. It is an extension of the Mini-Statecharts dialectpresented in [15, 22]. As noted in previous works on the semantics of Statecharts[9, 19], or Statechart-like languages like Argos [13, 14], or imperative synchronouslanguages like Esterel [2], instantaneous feedback can lead to causality conictswhen trigger events with negation are allowed. Argos and Esterel require a staticanalysis to reject those programs where a conict might occur. Both languagesprovide very elaborated but expensive analysis techniques. We handle theseconicts semantically through oracle variables and therefore do not have to applysuch algorithms.This paper is structured as follows. In Section 2 we introduce our State-charts dialect and give an abstract syntax and a compositional step semanticsfor it. Section 3 shows how to extend the step semantics to a stream semantics,modeling the complete input/output behavior of a system. Finally, in Section 4we give a brief conclusion and discuss future extensions.ExampleAs running example we use a simpli�ed speci�cation of the central locking sys-tem for cars. The corresponding Statechart is pictured in Figure 1; it speci�esthe locking system of a two-door car. Table 1 shows the signals used for thespeci�cation.The doors can be either unlocked, locked, or protected. Protected doors canonly be opened with a key from outside the car, while locked doors can onlybe opened from inside the car by pushing a button. Locking and unlocking isspeci�ed in the subchart Normal. Most of the time, the controller is in stateReady. (Actually, this state has to be further decomposed. However, thisis not important to understand our contribution and is therefore omitted forreasons of brevity.) When the driver locks the doors, the controller moves tostate Lock, and signals the low-level controllers for the doors to lower the lock.When the doors are locked, the controller returns to Ready. The behavior forunlocking and protecting the doors is similar. The subcharts MotorLeft andMotorRight specify the behavior of the door locks themselves: they eitherraise or lower the lock buttons on the driver and passenger door. The stateCrash is entered from either of the states in Normal, when the car's crashsensor is activated. Then the doors are automatically unlocked.The speci�cation need not store the current state of the doors; the lockingmechanism is not damaged when it tries to lock an already locked door.2 Abstract Syntax and SemanticsIn this section, we formally de�ne syntax and semantics of our �-Charts. Theyare based on Mini-Statecharts, as �rst presented in [15] and later re�ned in [20,

Ready
Unlock

Protect Lockcbut=fldn; rdnglmr ^ rmrlmr ^ rmrckey=fldn; rdng okey _ obut=flup; rupglmr ^ rmr Crashcrash=flup; rupg
MotorLeftMotorRight

NormalControl

flup; ldn; lmr; rup; rdn; rmrg
=flmrglupldn=flmrgDown Off Up=frmrgruprdn=frmrg UpOffDown

Figure 1. Central locking system21, 22]. We only repeat those concepts that are a prerequisite for the extensionto nondeterminism.Throughout this paper, M denotes a set of signal names, States a set of statenames, and Ident a set of identi�er names for sequential automata. For anyStatechart, only a �nite number of signal, state, and automata names can beused; }(X) denotes the set of �nite subsets of some set X .In our dialect, the set of �-Charts S is de�ned inductively. A �-Chart iseither a sequential automaton, a parallel composition of two �-Charts, the de-composition of a sequential automaton's state by another �-Chart, or the resultof a feedback construction. The inductive steps are motivated and de�ned inSections 2.1 to 2.4. The semantics of a �-Chart S 2 S has the typeJSK : }(M)! }(}(M)� S)For each input signal set, the semantics determines a set of possible reactions.

Signal Meaning Sourcecrash Crash sensor Externalokey Opened with external key Externalckey Closed with external key Externalobut Opened with internal locking button Externalcbut Closed with internal locking button Externallmr Left motor ready Internalrmr Right motor ready Internallup Left motor up Internalldn Left motor down Internalrup Right motor up Internalrdn Right motor down InternalTable 1. Signals used in the locking systemEach reaction is a pair consisting of an output signal set and the �-Chart result-ing from S after taking a step. The reaction set can be empty, if a chart cannotreact to a given input. When we de�ne the possible executions of a �-Chartin Section 3, empty reaction sets are handled by letting the chart remain in itscurrent con�guration; the output will be empty.2.1 Sequential AutomataSequential automata are the basic elements of our Statecharts dialect. Theconstruct Seq (N;�; �d; �; �)is an element of S i� the following constraints hold:1. N 2 Ident is the unique identi�er of the automaton.2. � 2 }(States) is a nonempty �nite set of all states of the automaton.3. �d; � 2 � represent the default state and the current state, respectively.4. � : � � }(M) ! }(� � }(M)) is the �nite, total state transition functionthat takes a state and a �nite set of signals and yields a set of next statespaired with a �nite set of output signals. If this set contains more than onepair, the automaton is nondeterministic; if the set is empty, the automatoncannot react to the current input when it is in state �.In our concrete syntax (see the example), we use a Boolean term t instead ofa set of signals x 2 }(M) as trigger. It is straightforward to translate a partialtransition function that deals with arbitrary Boolean terms as trigger conditioninto a set-valued total function (see for example [22]).Example 2.1 (Sequential Automaton). Our running example contains four se-quential automata: MotorLeft, MotorRight, Control, and the automa-ton Normal, which re�nes one of Control's states.

Each transition is annotated with a label such as \t=y", where t is a Booleantrigger condition and y the set of signals that are generated when the transitionis taken. If y is empty, we simply write the transition label as \t"; if t equalstrue we omit it and just write \=y". Note that the two motor control automataallow nondeterministic behavior in the state Off. For example, the left motorcontrollerMotorLeft can follow any of the two transitions originating in Offwhen both signals ldn and lup are present.A transition takes place in exactly one time unit. In a speci�cation with severalautomata working in parallel, more than one automaton can make a transition;all transitions taken in parallel automata are assumed to occur in the same timeunit. The set of all system actions in one time unit is called a step.We expect of sequential automata that:{ No two consecutive transitions in a sequential automaton are taken in a step.{ Only one branch of a nondeterministic choice is taken in a step.To ensure these restrictions, we introduce additional signals. For each sequentialautomaton Seq (N;�; �d; �; �) we introduce a signal cN . Informally, this is acopyright on transitions of the automaton. When the signal is not present, theautomaton may make a transition, whereupon it will generate cN . If it isalready present, the automaton has to stay in its current state.The copyright signals are introduced in the following way. Each transitiont=y of N is modi�ed such that:{ The trigger condition c is strengthened by conjoining : cN to it.{ The action set y is extended by cN .

UpOffDown : cLM=flmr; cLMg: cLM=flmr; cLMglup ^ : cLM=f cLMg
ldn ^ : cLM=f cLMg
Figure 2. Motor control with copyrights

Example 2.2 (Sequential Automaton). Figure 2 shows the modi�ed chart Left-Motor, where we abbreviated its name by LM.Let C be the set of all possible copyright signals, C := f cN j N 2 Identg. Wewrite MC to abbreviate M [C. The step semantics for a chart S then has thefunctionality: JSK : }(MC)! }(}(MC)� S)Informally, a sequential, nondeterministic automaton Seq (N;�; �d; �; �) takesa set of input signals, say x, produces a set of signals as output, say y, and thenbehaves like an automaton with modi�ed actual state. This is formally denotedby: JSeq (N;�; �d; �; �)Kx = f(y; Seq (N;�; �d; �0; �)) j (�0; y) 2 �(�; x)gNote that the reaction set may contain more than one pair. This reects thatthe behavior of the automaton may be nondeterministic. Moreover, the reactionset may be empty, when the trigger condition of no transition from the currentstate is ful�lled. In this case, the automaton should remain in its current statewithout emitting any output signals. In Section 3, when the complete reactivebehavior of a chart over time is introduced, empty reaction sets will indeed causethe chart to remain in its current state.2.2 Parallel CompositionIf S1 and S2 are elements of the set S then their parallel composition denotedby the syntax And (S1; S2)is in S, too. There are no syntactic restrictions on this composition. In thegraphic notation parallel components are separated by splitting a box into com-ponents using dashed lines [6].In our framework, parallel composition does not imply broadcast communi-cation between the subcharts. Both subcharts operate independently; commu-nication is introduced by an explicit feedback operator (see Section 2.4).Example 2.3 (Parallel Composition). To specify the central locking system, weused three parallel composed charts: the controller and the two motors. Onepossible con�guration of the overall system is that both motors are o� and thecontroller is in its normal mode, while waiting for new input of the environmentin its Ready state. If no communication is speci�ed, all parallel charts operatewithout any mutual interaction.Informally, the parallel composition of �-Charts behaves as S1 and S2 syn-chronously together. Generated signals of the parallel components are joined.

The formal semantics is de�ned by three cases. An And-chart can perform astep when at least one of the subcharts makes a step (notice that in our settingalso a self-loop is a step); one or more of the charts may not react at all. Thisis the case, when the reaction set of such a chart returns an empty set. Thereaction set of a parallel composition is the union of these cases:JAnd (S1; S2)Kx = f(y1 [y2;And(S01; S02)) j (y1; S01) 2 JS1Kx ^ (y2; S02) 2 JS2Kxg[f(y1;And(S01; S2)) j (y1; S01) 2 JS1Kx ^ JS2Kx = ;g[f(y2;And(S1; S02)) j JS1Kx = ; ^ (y2; S02) 2 JS2KxgThus, when neither Statechart makes a transition, the semantics of the parallelcomposition yields an empty reaction set, too.Obviously, And (S1; S2) is commutative and associative. We therefore writeAnd (S1; : : : ; Sn) to denote n 2 IN nested parallel �-Charts.2.3 Hierarchical DecompositionThe concept of hierarchically structuring the state space is essential for State-charts. In our Statecharts dialect, hierarchy is introduced by replacing states ofa sequential automaton (the master) with arbitrary charts (the slaves). Thisreplacement is expressed by a �nite function %, which for any state � of themaster yields either the corresponding slave-Statechart, or NoDec, if the state isnot replaced by a slave.Suppose that Seq (N;�; �d; �; �) is a sequential automaton, then hierarchicaldecomposition is denoted byDec (N;�; �d; �; �) by %where % : � ! S [fNoDecg.Like other formal Statechart semantics [9, 13, 14], the semantics presentedhere has no history states. It is possible to extend our semantics along the linesof [15]. Due to space limitations we omit this extension here. Throughout thispaper, we assume that the slave is always re-initialized when leaving it.Example 2.4 (Hierarchical Decomposition). In our example, the Normal stateof the Control is replaced by another sequential automaton, also called Nor-mal, which describes the current action of the locking system. Here Controland Normal represent master and slave, respectively. As current system con-�guration, we assume that Control is in the Lock state and both motorsare notifying the Control that they have �nished the lowering process. Thus,the current set of internal signals is flmr; rmrg. We furthermore presume thatexactly while the motors are sending lmr and rmr, respectively, an externalcrash signal occurs. The overall signal set is then denoted by flmr; rmr; crashg.Hence, Normal changes its current state from Lock to Ready. In addition,the system moves from the Normal state to the Crash state while generat-ing the signal set flup; rupg. Note that all actions come about instantaneously.

Altogether, in the next instant of time, Normal is in its Ready state, theControl in the Crash mode and both motors are in their Off states. Theautomaton Normal is \frozen" until it is re-entered. Thus, we say that it hasbeen interrupted. However, Normal still was able to change its current statefrom Lock to Ready, i.e., has not been immediately interrupted: we say thatthe crash signal has induced a non-preemptive interrupt. By strengthening thetransitions in the slave chart with tests for the absence of signals, preemptiveinterrupt can be modeled as well.To de�ne the formal semantics for the decomposition, we distinguish fourmutually exclusive cases. The �rst case occurs whenever the current state � ofthe master A =def Seq (N;�; �d; �; �) is re�ned by a slave (%(�) 6= NoDec), andboth master and slave produce a non-empty reaction set: JAKx 6= ; 6= J%(�)Kx.The reaction set of the hierarchical decomposition is thenJDec A by %Kx = f(ym [ys;Dec A0 by %0) j 9S0 2 S :(ym; A0) 2 JAKx ^ (ys; S0) 2 J%(�)Kx ^ %0 = %[init(S0)=�]gHere init(S0) initializes all sequential automata contained in S0 according totheir default states.If the master is not further decomposed in the current state � (%(�) =NoDec), but by itself may react (JAKx 6= ;), we getJDec A by %Kx = f(y;Dec A0 by %) j (y;A0) 2 JAKxgWhenever the master can react and the current state � is decomposed by a slavewhich however cannot react in its current state:JDec A by %Kx = f(y;Dec A0 by %0) j (y;A0) 2 JAKx ^ %0 = %[init(%(�))=�]gAlthough the slave cannot react it is re-initialized because we follow theconvention that whenever the master makes a step the slave has to be initialized.The next case occurs if, although the master cannot react in the current step,the slave can react:JDec A by %Kx = f(y;Dec A by %0) j 9S0 2 S : (y; S0) 2 J%(�)Kx ^ %0 = %[S0=�]gIn this case, the function % is changed to %0 to reect the slave's change.Finally, if none of the above-mentioned cases is true, the overall reaction ofthe hierarchical decomposition is simply the empty set.2.4 Broadcast CommunicationParallel composition is used to construct independent, concurrent components.To allow interaction of such components, our language provides a broadcast com-munication mechanism. In [6], for example, this mechanism already is integratedin the parallel composition of Statecharts. Broadcasting is achieved by feeding

back all generated signals to all components. This means that there exists animplicit feedback mechanism at the outermost level of a Statechart. Unfortu-nately, this implicit signal broadcasting leads to a non-compositional semantics.We avoid this problem by adding an explicit feedback operator.In the literature di�erent semantic views of the feedback mechanism can befound [23]. For the deterministic version of our language [15, 20, 22], we provideddi�erent syntactic constructs with di�erent communication timings. We believethat for nondeterministic, abstract speci�cations, instantaneous feedback is theproper concept, and present here only this operator.Suppose that S 2 S is in an arbitrary �-Chart and L 2 }(M) is the set ofsignals which should be fed back, then the constructFeedback (S;L)is also in S. Graphically, the feedback construction is denoted with a box belowthe �-Chart S. The box contains the signals L that are fed back.Example 2.5 (Feedback). When the chart is in the state Ready, and the driverlocks the door with the car key, then Normal moves to state Protect, andemits the signals ldn and rdn. Without feedback, these signals would not besent to the motor control subcharts. But since both signals are fed back, theyare added to the input of the speci�cation. Thus, both motors move to theirDown states. This feedback is instantaneous, i.e. upon input of the signal ckeythe three state changes and the output of ldn and rdn occur at the same time.Instantaneous feedback follows the perfect synchrony hypothesis of Berry [1]; itdemands that an action and the event causing this action occur at the sameinstant of time. Therefore, the signals in z generated by chart S are instanta-neously intersected with the signals L to be fed back and then joined with theexternal signals x. This signal set is passed to S at the same instant of time.We �rst de�ne the semantics of Feedback (S;L) for the case that no transitiontrigger refers negatively to signals. In Section 2.5 we extend the semantics tohandle negation as well.In the unnegated case we have to �nd a solution for the following equation:Z = fz [y j z 2 Z ^ y 2 �1(JSK(x [(z \ L)))gwhere �1 �lters the �rst component of the output set:�1(f(y; S) j y 2 }(MC) ^ S 2 Sg) =def fy j y 2 }(MC)gThis solution can be found by computing the least �xpoint for the �rst projectionof the subsequent function:fSx;L(Z) =def f(z [y; S0) j z 2 Z ^ (y; S0) 2 JSK(x [(z \ L)))gwith respect to the following reexive and transitive standard ordering on }(}(MC)).For all X;Y 2 }(}(MC)) we de�ne:X v Y =def 8x 2 X 9y 2 Y : x � y

Formally, the semantics of the instantaneous feedback is de�ned by:JFeedback (S;L)Kx = f(y;Feedback(S0; L)) j (y; S0) 2 lfp(fSx;L; f;g)glfp computes the least �xed point for the �rst projection of the above functionwith respect to the subset ordering. The computation starts with an emptyset of signal sets, since at the beginning of the communication no signals aregenerated yet. lfp is de�ned as follows:lfp(fSx;L; Y) = if �1(fSx;L(Y)) = Y then fSx;L(Y) else lfp(fSx;L; �1(fSx;L(Y))):Notice that in general the �rst projection of fSx;L is not monotonic w.r.t. v. Butsince for each set of signal sets Z it holds that Z v �1(fSx;L(Z)), and since thereare only �nitely many signals | hence, �nitely many sets of signal sets | theexistence of least �xpoints is ensured.Unfortunately, this property does not hold when trigger expression with nega-tion are handled in the standard way. Instead, we make use of oracle variables.2.5 Negation in Trigger ExpressionsSo far we only considered �-Charts where each event expression occurs positivelyin a transition trigger. It is desirable, however, to be able to test for the absenceof signals as well as for their presence. For example, negative signal expressionsallow us to introduce priorities between transitions. As an example, we examineour locking system again. The two motor control charts in Figure 1 su�er fromthe following problem: when a crash occurs in the same instant the driver wantsto lock the door, pressing the locking button, the motor controllers can choosenondeterministically between raising or lowering the locks. This is a safety-critical problem that must be avoided. We therefore modify the charts as inFigure 3 by conjoining the trigger condition on the transition originating fromOff and ending in Down with :crash. Now the controller can only lock thedoor, when there is no signal from the crash sensor.Negation in trigger expressions can lead to some tricky causality problems.For example, what would be the semantics of a transition labeled :a=a? SomeStatecharts semantics simply disallow Statecharts with causality problems. Theyrequire either a static analysis of the chart, which might reject charts that do notreally have causality conicts, or a thorough state exploration, which even withtoday's advanced model checking techniques is untractable for larger charts. Thisis for instance the approach taken by Argos [13] or the reactive programminglanguage Esterel [2].We handle these conicts semantically. In case of a causal conict, the transi-tion is simply not taken. We accomplish this through oracles that predict whichsignals will be input from the environment or generated by the system in eachstep.For each signal a that occurs negatively in the trigger of a transition, weintroduce a new oracle signal ea that replaces a in the trigger part of a transition

UpOffDown : cLM=flmr; cLMg: cLM=flmr; cLMglup ^ : cLM=f cLMg
:crash ^ ldn ^ : cLM=f cLMg

Figure 3. Motor control with prioritieslabel. For example, the transition label:crash ^ ldnis transformed into :ĉrash ^ ldnOracle signals are never generated by transitions. At the beginning of eachstep in the execution of a chart, the system makes a guess about the input orgeneration of signals, and thus determines the value of the oracle signals. Thisguess introduces additional nondeterminism; for n oracle signals, there are 2npossible oracle guesses. For those signals a that are predicted to become present,the oracle signal ea is added to the input from the environment. Then, the stepconstruction is similar to the unnegated case. In particular, the existence of�xpoints is guaranteed: since all negatively occurring signals are converted tooracles, and oracle signals can never be generated by the system, a choice madeby the system can never be invalidated. Whereas in the unnegated case therealways is a least �xpoint, we now get a set of minimal �xpoints. As we will seelater, this introduces additional nondeterminism into a speci�cation.However, some �xpoints may be inconsistent in the following sense:{ A signal a is generated by the system, although the oracle forecasts itsabsence. In other words, a is in the event set, but not ea.{ A signal a that is predicted to be present, is neither input nor generated bythe system. In other words, ea is in the event set, but not a.Thus, we must ensure that neither of these cases holds. The �rst condition canbe checked locally when a transition is taken. We only have to extend the stepfunction f from the unnegated case to:gSx;L(Z) =def fz 2 fSx;L(Z)j 8a 2 �1(z) : ~a 2 �1(z)g

The second consistency condition, however, can only be checked once a �x-point is reached. We therefore de�ne the self-ful�lling �xpoints as those signalsets SF �M where es 2 SF =) s 2 SFNote that while there are always �xpoints, the existence of consistent �xpointsis not guaranteed. An example is a �-Chart with two states connected by thesingle transition :a=a. The modi�ed transition label reads:ea=aAssume now that a is not input by the environment. When the oracle guessesa to become generated, i.e. ea is added to the input set, a will not be generated,hence the �xpoint reached is not self-ful�lling. If, otherwise, the oracle guesses ato not be generated, then ea is not added to the input set, and a will be generated,violating the local consistency condition. Since there is no consistent �xpoint,the system must remain in its current state. When a is input by the environment,the system will also remain in its current state. This time, however, there is aconsistent �xpoint fa;eag. In other words, the transition will never be taken.A BC D:a=b:b=a
fa; bg

Oracles Signal set:ea;:eb a; bea;:eb a:ea;eb bea;eb |Figure 4. Pathological caseFigure 4 shows another example. When no external input is provided, whatshould be the reaction of this chart? Our construction introduces two oraclesignals, ea and eb. The transition labels are then translated to :ea=b and :eb=a, re-spectively. When neither a nor b is provided from the environment, the �xpointconstruction results in the output signal sets shown to the right of the speci�-cation. For each possible oracle guess there is one solution. The solution in the�rst row violates local consistency, and must therefore be rejected. The solutionin the last row is not self-ful�lling, and must be rejected, too. Thus, there areonly two solutions: either only the upper transition is taken, resulting in theoutput signal set fbg, or only the lower transition is taken, resulting in outputsignal set fag. Intuitively, there is a race between the two transitions; whichevertransition is taken �rst, determines the reaction of the composed chart.

Thus, negation can introduce nondeterminism into a �-Chart. In the olderdeterministic version of our dialect, [22], this chart would have to be rejected.The same holds for other deterministic dialects, like for instance Argos. Sincepathological cases such as this one can be handled semantically in our dialect, wedo not need to perform a static analysis of speci�cations to determine whetherthey must be rejected.3 Reactive BehaviorIn the previous section we have introduced a formal step semantics, which ex-presses the behavior of �-Charts in one single instant of time. Reactive systemshowever have continuously to interact with the environment. Hence, their com-plete input/output behavior has to be described by the aid of communicationhistories.We model the communication history of �-Charts by streams carrying setsof signals. Mathematically, we describe the behavior of �-Charts by streamprocessing functions. Hence, we briey discuss the notion of streams and streamprocessing functions. For a detailed description we refer for example to [3].Given a set X of signals a stream over X , denoted by X!, is an in�nitesequence of elements from X . Our notation for the concatenation operator is &.Given an element x of type X and a stream s over X , the term x&s denotes thestream that starts with the element x followed by the stream s. In our setting,a stream processing function is a function with type X! ! X!.To describe the complete input/output behavior, the semantic model asso-ciates with every chart S a set of stream processing functions:JSKio : }(}(M)! ! }(M)!):A function f : }(M)! ! }(M)! is in JSKio; i�:f(x&s) = y&g(s)where ((y; S0) 2 JSKx _ y = ; ^ S0 = S ^ JSKx = ;) ^ g 2 JS0KioNote that at this point empty reactions of �-Charts are resolved: the chartsthen remains in the current con�guration, and the set of output signals is empty.4 Conclusion and Future WorkThe Statecharts dialect presented in this paper o�ers instantaneous feedback andnondeterminism. Both concepts are under discussion: [23] for example, arguesthat speci�cations with instantaneous feedback are unintuitive and di�cult tounderstand. While this is certainly true for Statecharts with causality conicts,where as default behavior the Statechart remains in its current state, it remains

to be seen how often these cases occur in practice. Also, the delayed step se-mantics, as implemented for instance in Statemate, forces the designer to usea low-level, operative speci�cation style with variable assignments and arti�cialsequentializations of component behaviors.Leveson [8] rejects nondeterminism on the ground that the behavior of safety-critical systems should not allow arbitrary choices. While this may be true forspeci�cations that are close to an implementation, we believe that in the earlydesign phases nondeterminism is essential to avoid overspeci�cation. Nondeter-minism can also be used to model the system's environment.Our language, while o�ering the main concepts of Statechart, does not yetcover the whole spectrum of practical applications. Current work is focused onextending the language to deal with integer-valued signals in the style of [20, 21],and with constructs for the abstract speci�cation of real-time properties.Further research is also necessary in the areas of code generation, compilationinto hardware, and model checking techniques. In [17] we outline how determin-istic �-Chart speci�cations can be implemented in hardware. First steps towardsmodel checking of our language are described in [16].The obvious problem for these operational applications of our semantics isthe handling of the oracle variables, since �xpoints can be reached that arenot self-ful�lling. Simple interpreters would need backtracking to implement afull step semantics; a more sophisticated approach would be to use symbolictechniques like BDDs [5] and a �-calculus formalization similar to the one in[18]. For interpreters without BDDs the combinatorial explosion resulting fromthe oracle variables can be reduced through lazy oracle guesses, as introducedin [12].Nevertheless, for time critical industrial applications it will be necessary toreduce the nondeterminism caused by the oracle guesses. A medium-term goalis therefore the development of a re�nement rule system in the tradition of theFocus rule system [4], where a re�nement step reduces nondeterminism.AcknowledgmentsWe would like to thank Herbert Ehler, Christian Prehofer, and the anonymousreviewers for many constructive remarks.References1. G. Berry. Real Time Programming: Special Purpose or General Purpose Lan-guages. Information Processing 89, 1989.2. G. Berry and G. Gonthier. The Esterel Synchronous Programming Language:Design, Semantics, Implementation. scp, 19(2):87{152, nov 1992.3. M. Broy. Interaction Re�nement - The Easy Way. In Program Design Calculi,volume 118 of NATO ASI Series F: Computer and System Sciences. Springer,1993.

4. M. Broy and K. St�len. Speci�cation and Re�nement of Finite Dataow Networks{ a Relational Approach. volume 863 of Lecture Notes in Computer Science, pages247{267, 1994.5. R. E. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEETransactions on Computers, 8(C-35):677{691, 1986.6. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science ofComputer Programming, 8:231 { 274, 1987.7. D. Harel and A. Naamad. The Statemate Semantics of Statecharts. IEEE Trans-actions on Software Engineering Method, 1996.8. M.P.E. Heimdahl and N.G. Leveson. Completeness and Consistency Analysis ofState-Based Requirements. Proceedings on the 17th International Conference onSoftware Engineering, pages 3 { 14. IEEE Computer Society Press, 1995.9. J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Axiomatizationof Statecharts. Theoretical Computer Science, 101:289 { 335, 1992.10. C. Huizing and W.-P. de Roever. Introduction to Design Choices in the Semanticsof Statecharts. Information Processing Letters, 37, 1991.11. i-Logix Inc., 22 Third Avenue, Burlington, Mass. 01803, U.S.A. Languages ofStatemate, 1990.12. K. Inoue, M. Koshimura, and R. Hasegawa. Embedding Negation as Failure intoa Model Generation Theorem Prover. In D. Kapur, editor, CADE-11, number 607in Lecture Notes in Arti�cial Intelligence, pages 400{415, 1992.13. F. Maraninchi. Operational and Compositional Semantics of Synchronous Au-tomaton Compositions. volume 630 of Lecture Notes in Computer Science, pages550 { 564. Springer-Verlag, 1992.14. F. Maraninchi and N. Halbwachs. Compositional Semantics of Non-deterministicSynchronous Languages. ESOP'96, 1996.15. D. Nazareth, F. Regensburger, and P. Scholz. Mini-Statecharts: A Lean Versionof Statecharts. Technical Report TUM-I9610, Technische Universit�at M�unchen,D-80290 M�unchen, 1996.16. J. Philipps and P. Scholz. Formal Veri�cation of Statecharts with InstantaneousChain Reactions. 1997. TACAS'97.17. J. Philipps and P. Scholz. System-Level Hardware Design with �-Charts. 1997.CHDL'97.18. J. Philipps and T. Yoneda. Symbolic Model Checking of Statecharts. TechnicalReport FTS-95-37, IEICE, 1995.19. A. Pnueli and M. Shalev. What is in a Step: On the Semantics of Statecharts. InT. Ito and A.R. Meyer, editors, Proccedings of the \Theoretical Aspects in Com-puter Software 91", volume 526 of Lecture Notes in Computer Science, pages 244{ 264. Springer-Verlag, 1991.20. P. Scholz. An Extended Version of Mini-Statecharts. Technical Report TUM-I9628,Technische Universit�at M�unchen, D-80290 M�unchen, 1996.21. P. Scholz. A Light-Weight Formalism for the Speci�cation of Reactive Systems.1996. SOFSEM'96.22. P. Scholz, D. Nazareth, and F. Regensburger. Mini-Statecharts: A CompositionalWay to Model Parallel Systems. 1996. PDCS'96.23. M. von der Beeck. A Comparison of Statecharts Variants. volume 863 of LectureNotes in Computer Science, pages 128 { 148. Springer, 1994.

