
Formal Veri�cation of Statecharts withInstantaneous Chain Reactions ?Jan Philipps and Peter Scholzfphilipps,scholzpg@informatik.tu-muenchen.deTechnische Universit�at M�unchen, Institut f�ur InformatikD-80290 M�unchen, GermanyAbstract. We present a method for symbolic model checking of �-Charts, a Statecharts dialect with instantaneous broadcast communi-cation. Due to this communication concept, �-Charts satisfy the perfectsynchrony hypothesis. The well-known causality conicts that arise un-der instantaneous feedback from negative trigger conditions are resolvedsemantically through oracle signals. We have implemented a prototypi-cal tool that translates �-Charts speci�cations into �-calculus formulae.These formulae are checked against temporal speci�cations using a �-calculus veri�er.1 IntroductionStatecharts [4] are a visual speci�cation language for reactive systems. Theyextend conventional state transition diagrams with structuring and communica-tion mechanisms. Since there is also tool support through several providers liker-active or i-Logix (Statemate [7]), Statecharts have become quite successful inindustry.However, the semantics of Statecharts as used in Statemate is based on adelayed broadcast, which leads to a very operational, implementation-level spec-i�cation style. For a modeling language for abstract requirements speci�cationsmore abstract approaches are desirable. These concepts are introduced in [12],where we present a dialect of Statecharts called �-Charts. This dialect features aformal semantics for nondeterministic Statecharts with instantaneous feedback.It is an extension of Mini-Statecharts as presented in [11, 17]. Speci�cation withinstantaneous feedback ful�ll the perfect synchrony hypothesis [1]. As noted inprevious works on the semantics of Statecharts [5, 14], or Statechart-like lan-guages like Argos [9, 10], instantaneous feedback can lead to causality conictswhen trigger events with negation are allowed.Nevertheless, we prefer this kind of broadcasting, since delayed broadcastas used in Statemate is not a suitable communication concept for behavioralre�nement. When re�ning a subchart to a set of more concrete subcharts, addi-tional delays are introduced. Thus, the I/O-behavior of the Statechart changes.? This work is partially funded by the German Federal Ministry of Education andResearch (BMBF) as part of the compound project \KorSys".

Re�nement rules would have to be more complex to compensate the additionaldelays. As observed in [6], this is not the case for instantaneous feedback.If conicts because of negated trigger conditions occur, they are handledsemantically through oracle signals [12]. This is in contrast to Argos, whichrequires a static analysis to reject those Statecharts where a conict might occur.In this contribution, we demonstrate how to use the semantic model intro-duced in [12] as starting point for e�cient formal veri�cation, based on symbolicmodel checking techniques. We model chain reactions caused by instantaneousfeedback as the least �xpoint of a transition relation. This chain of transitions isembedded in the outer transition relation that describes the observable behavior.As far as we know, this is apart from [13] the only work that deals with modelchecking of a speci�cation formalism based on instantaneous broadcasting. Thesemantics presented in this paper is implemented in a prototypical tool thatgenerates a set of �-calculus formulae from a given speci�cation. These relationscan immediately be used as input for the model checking tool �-cke [3].This paper is organized as follows. In the sequel, we present our runningexample, a central locking system for cars. In Section 2 we introduce the Stat-echarts dialect used throughout this paper and give an abstract syntax for it.Section 3 shows how the formal semantics of �-Charts can be described using�-calculus formulae. In Section 4 we show some results of symbolic veri�cation.Section 5 summarizes some experiences gained in this work.Example: A Central Locking SystemAs running example we use a simpli�ed speci�cation of the central locking systemfor cars. This example was inspired by a case study from the local car indus-try. The corresponding �-Chart is pictured in Figure 1; it speci�es the lockingsystem of a two-door car. Table 1 shows the signals used for the speci�cation.We distinguish between signals that are input from the environment, so-calledexternal signals, and signals that are generated by the system itself (internalsignals). Notice that ellipses denote basic states of sequential automata whileboxes denote states that are decomposed by other �-Charts. Double framesdenote default states.Our central locking system consists essentially of three main parts: theControl and the two door motors. These parts are composed in parallel.Locking and unlocking the doors leads to complex signal interactions. The de-fault con�guration of the system is that all doors are unlocked (Unld) and bothmotors are Off. Now the driver can lock the car either from outside by turningthe key or from inside by pressing a button. Both actions generate the externalsignal c. The Control generates the internal signals ldn and rdn and entersits locking state Lockg, which is decomposed by the automaton in Figure 2.Instantaneously, inuenced by ldn and rdn, respectively, both motors beginto lock the doors by entering theirDown states. Those states are decomposed bythe sequential automata pictured in Figure 3. Thus, the motors are additionallyin their Start states. As the speed of the motors depend on external inuenceslike their temperature, each motor either needs one or two time units to �nish

Down Off Upldnready readylupDown Off Uprdnready readyrup

Unld Locked CrashNormalControl
crash ^ ignition=flup; rupg

flup; ldn; lmr; rup; rdn; rmr; readyg
MotorLeftMotorRight

=flup; rupgLockg Unlgc=fldn; rdngreadyo=flup; rupg
ready

Figure 1. Central locking systemthe lowering process. Only when both have sent their ready messages lmr andrmr, the Control enters the Both state and produces the signal ready. Thee�ect of this signal is twofold: one the one hand the Control terminates itselfimmediately and enters the Locked state. On the other hand also both motorsare triggered by this signal and are switched Off.In our syntax communication is expressed by an explicit feedback operator.It is graphically indicated by the box sticked on the bottom of Figure 1.Whenever the crash signal occurs and the ignition is on, the Controlchanges from the Normal mode in the Crash mode and generates the sig-nals lup and rup. In Section 4 we will show that the crash signal indeed causesthe doors to open.2 SyntaxIn this section, we formally de�ne a textual syntax for �-Charts. It correspondsto the graphical syntax used in the example. �-Charts are based on Mini-Statecharts, as �rst presented in [11] and later re�ned in [15, 16, 17]. We onlyrepeat those concepts that are a prerequisite for the extension to nondetermin-

None BothLeftRightlmr ^ :rmrrmr ^ :lmrlmr ^ rmr=freadygrmr=freadyglmr=freadygFigure 2. Decomposition of Lockg and UnlgStart Stop=; =fxmrg =fxmrgTwo
Figure 3. Decomposition of Down and Up, x 2 fl; rgism and assume the reader to be familiar with the principles of hierarchical,interacting state machines.Throughout this paper, M denotes a set of signal names, States a set of statenames, and Ident a set of identi�er names for sequential automata. For anychart, only a �nite number of signal, state, and automata names can be used;}(X) denotes the set of �nite subsets of some set X .In our dialect, the set of �-Charts S is de�ned inductively. A �-Chart iseither a sequential automaton, a parallel composition of two �-Charts, the de-composition of a sequential automaton's state by another �-Chart, or the resultof a feedback construction for broadcasting. The inductive steps are motivatedand de�ned in Sections 2.1 to 2.4.2.1 Sequential AutomataSequential automata Seq (N;�; �d; �) are the basic elements of our Statechartsdialect. They consist of:1. N 2 Ident is the unique identi�er of the automaton.2. � 2 }(States) is a nonempty �nite set of all states of the automaton.3. �d 2 � represents the default state.4. � : � � }(M) ! }(� � }(M)) is the �nite, total state transition functionthat takes a state and a �nite set of signals and yields a set of next statespaired with a �nite set of output signals. If this set contains more than onepair, the automaton is nondeterministic; if the set is empty, the automatoncannot react to the current input when it is in state �.In our concrete syntax (see the example), we use a Boolean term t instead of aset of signals x 2 }(M) as trigger. It is straightforward to translate a partial

Signal Meaning Sourcecrash Crash sensor Externalo Opened with external key Externalc Closed with external key Externalignition Ignition on Externallmr Left motor ready Internalrmr Right motor ready Internallup Left motor up Internalldn Left motor down Internalrup Right motor up Internalrdn Right motor down Internalready Un-/Locking process ready InternalTable 1. Signals used in the locking systemtransition function that deals with arbitrary Boolean terms as trigger conditioninto a set-valued total function (see for example [17]).A transition takes place in exactly one time unit. In a speci�cation with severalautomata working in parallel, more than one automaton can make a transition;all transitions taken in parallel automata are assumed to occur in the same timeunit. Notice however that every single sequential automaton only is allowed tomake one transition in one instant. The set of all system actions in one timeunit is called a step.2.2 Parallel CompositionIf S1 and S2 are elements of the set S then their parallel composition denotedby the syntax And (S1; S2) is in S, too. There are no syntactic restrictions onthis composition. In the graphic notation parallel components are separated bysplitting a box into components using dashed lines [4].In our framework, parallel composition does not imply broadcast communi-cation between the subcharts. Both subcharts operate independently; commu-nication is introduced by an explicit feedback operator (see Section 2.4).Informally, the parallel composition of �-Charts behaves as S1 and S2 syn-chronously together. Generated signals of the parallel components are joined.The parallel composition is commutative and associative. We therefore writeAnd (S1; : : : ; Sn) to denote n 2 IN nested parallel �-Charts.2.3 Hierarchical DecompositionThe concept of hierarchically structuring the state space is essential for State-charts. In our Statecharts dialect, hierarchy is introduced by replacing states ofa sequential automaton (the master) with arbitrary charts (the slaves). Thisreplacement is expressed by a �nite, partial function %, which is de�ned for those

states � of the master that are further decomposed. The decomposition function% yields the re�ning slave-chart. Suppose that Seq (N;�; �d; �) is a sequentialautomaton, then hierarchical decomposition is denoted byDec (N;�; �d; �) by %where % : � ! S. Like other formal Statechart semantics [5, 9, 10], the approachpresented here has no history states. It is possible to extend our semanticsalong the lines of [11]. Due to space limitations we omit this extension here.Throughout this paper, we assume that the slave is always re-initialized whenleaving it.Example 2.1 (Hierarchical Decomposition). As current system con�guration, weassume that Control is in the Lockg state and that both motors are noti-fying the Control that they have locked the doors. Thus, the current set ofinternal signals is flmr; rmrg. Instantaneously, the ready signal is generated.We furthermore presume that exactly while all this happens, an external crashsignal occurs. The overall signal set is then denoted by flmr; rmr; ready; crashg.Hence, Normal changes its current state from Lockg to Locked. In addition,the system moves from the Normal state to the Crash state while generatingthe signal set flup; rupg if the ignition is on. Note that all actions come aboutinstantaneously. Altogether, in the next instant, the Control is in its Crashmode and both motors are in their Off states. The automaton Normal is\frozen" until it is re-entered. Thus, we say that it has been interrupted. How-ever, Normal still was able to change its current state from Lockg to Locked,i.e. has not been immediately interrupted: we say that the crash signal has in-duced a non-preemptive interrupt. Notice however that though the Normalstate still changed to Locked, �nally both motors will open the doors. Thisproperty could be proven to be a theorem using the model checker. By strength-ening the transitions in the slave chart with tests for the absence of signals,preemptive interrupts can be modeled as well.2.4 Broadcast CommunicationParallel composition is used to construct independent, concurrent components.To allow interaction of such components, our language provides a broadcast com-munication mechanism. In [4], for example, this mechanism already is integratedin the parallel composition of Statecharts. Broadcasting is achieved by feedingback all generated signals to all components. This means that there exists animplicit feedback mechanism at the outermost level of a Statechart. Unfortu-nately, this implicit signal broadcasting leads to a non-compositional semantics.We avoid this problem by adding an explicit feedback operator.In the literature di�erent semantic views of the feedback mechanism can befound [18]. For the deterministic version of our language [11, 15, 17], we provideddi�erent syntactic constructs with di�erent communication timings. We believethat for nondeterministic, abstract speci�cations instantaneous feedback is the

proper concept, since it is better suited for behavioral re�nement. Hence, wepresent only this operator here.Suppose that S 2 S is in an arbitrary �-Chart and L 2 }(M) is the set ofsignals which should be fed back, then the construct Feedback (S;L) is also in S.Graphically, the feedback construction is denoted with a box below the �-ChartS. This box contains the signals L that are fed back.Example 2.2 (Feedback). When the chart is in the state Unld, and the driverlocks the door with the car key, then Normal moves to state Lockg and emitsthe signals ldn and rdn. Without feedback, these signals would not be sent tothe motor control subcharts. But since both signals are fed back, they are addedto the input of the speci�cation. Thus, both motors move to their Down states.This feedback is instantaneous, i.e. upon input of the signal c three transitionsare taken, and at the same time the signals ldn and rdn are output.Instantaneous feedback follows the perfect synchrony hypothesis of Berry [1]; itdemands that an action and the event causing this action occur at the sameinstant of time. Therefore, the signals in z generated by chart S are instanta-neously intersected with the signals L to be fed back and then joined with theexternal signals x. This signal set x[(z \L) is passed to S at the same instant.3 SemanticsIn this section we indroduce the transition relation for a �-Chart. It is de�nedinductively following the syntactical structure of the language. The transitionrelations presented here are based on the semantics as presented in [12]. �-Chartsare synchronized by a global, discrete clock. Each transition relation formallydenotes the relationship between two system con�gurations, i.e. the set of allcurrently valid control states of all sequential automata between two subsequentinstants.3.1 PreliminariesAvoiding Multiple Transitions in one Step. As we deal with instantaneous feed-back, more than one transition of di�erent sequential automata can �re simul-taneously. However, every single automaton only can make one step in oneinstant, i.e. no two consecutive transitions in a sequential automaton are takenin a step. This informal requirement has to be formalized in the automaton'stransition relation. Furthermore, we have to ensure that only one branch of anondeterministic choice in an automaton is taken in a step.Both restrictions can be ensured using additional signals. For each sequentialautomaton Seq (N;�; �d; �) we introduce a signal cN . Informally, this is acopyright on transitions of the automaton signaling that N already made astep. When the signal is not present, the automaton may yet make a transition,whereupon it will generate cN . If it is already present, the automaton has to

stay in its current state. The need for this signal will become clearer when welater introduce broadcast communication. The copyright signals are introducedin the following way. Each transition c=y of N is modi�ed such that:{ The trigger condition c is strengthened by conjoining : cN to it.{ The action set y is extended by cN .We assume all signals cN to be disjoint from signals in M and de�ne M c byM [f cN jN 2 Identg.Negation in Trigger Expressions. Negation in trigger expressions can lead tosome tricky causality problems. For example, what would be the semantics of atransition labeled :a=a? Some Statecharts semantics simply disallow Statechartswith causality problems. They require a static analysis of the chart, which mightreject charts that do not really have causality conicts. This is for instance theapproach taken by Argos [9] or the reactive programming language Esterel [2].We handle these conicts semantically. In case of a causal conict, the transi-tion is simply not taken. We accomplish this through oracle signals that predictthe presence or absence of a given signal in a step. For each signal a that occursnegatively in the trigger of a transition, we introduce a new signal ea that replacesa in the trigger part of a transition label. We de�ne fM to be M [fea j a 2 Mg.However, oracle signals can cause the following two inconsistencies:{ A signal a is generated by the system or input from the environment, al-though the oracle forecasts its absence. In other words, a is in the signal set,but not ea.{ A signal a that is predicted to be present, is neither input nor generated bythe system. In other words, ea is in the signal set, but not a.The requirement to avoid these inconsistencies is formally expressed by:Consistence(x; y; o) � (Vs2x[y s 2 o) ^ (Vs2o s 2 x [y)where x, y, and o denote the sets of input, output, and oracle signals respec-tively. This technique is similar to that used in the bottom-up evaluation oflogic programs with negation as presented in [8]. For a detailed discussion ofthis topic the interested reader is referred to [12].3.2 Con�gurationsCon�gurations c 2 C are de�ned inductively. The con�guration of a sequentialautomaton is simply its current state. To denote an And-chart's And (S1; S2)con�guration we use a tuple (c1; c2), where c1 and c2 are the con�gurations of theparallel components S1 and S2, respectively. The con�guration of Feedback (S;L)is simply the con�guration of S.For hierarchical decomposition we need a slightly more subtle notation. Themaster is decomposed in n =def j dom %j slaves, where dom % denotes the domain

of the partial function %. The con�gurations of these slaves are denoted byc1; : : : ; cn, whereas the con�guration of the master is denoted by cm. The overallcon�guration of Dec (N;�; �d; �) by % is then the (n+ 1)-tuple (cm; c1; : : : ; cn).In the sequel, we will formulate the transition relations for every single syn-tactic construct of the �-Charts language. We have two di�erent categories ofpredicates: one for initialization and one for the transition step from one con�g-uration to the following. These predicates have the type:InitS : C ! BoolT ransS : C � }(M c)� C � }(M c)� fM ! Boolfor every �-Chart S. A predicate TransS(c; x; c0; y; o) is true whenever thecurrent con�guration of S is c and S can, stimulated by the set of input signal setx, reach the subsequent con�guration c0 in exactly one instant while producingthe output signal set y. The set o includes those oracles that are needed for thetreatment of negative signals in S.3.3 Sequential AutomataInitially, a sequential automaton S =def Seq (N;�; �d; �) is in its default state�d. For a set of input signals x coming from the environment, S generates a setof output signals y and changes its con�guration, i.e. its current state from c toc0: InitS(c) � (c = �d)TransS(c; x; c0; y; o) � (c0; y) 2 �(c; x [o)3.4 Parallel CompositionThe tuple (c1; c2) is the initial con�guration of chart S =def And (S1; S2) when-ever c1, c2 are the initial con�gurations of charts S1, S2, respectively:InitS((c1; c2)) � InitS1(c1) ^ InitS2(c2)The formal semantics is de�ned by the following case distinction, which yieldsthree mutually exclusive cases. An And-chart can perform a step when at leastone of the subcharts makes a step (notice that in our setting also a self-loop isa step); one or even both may not react at all.TransS((c1; c2); x; (c01; c02); y; o) �(9y1; y2:T ransS1(c1; x; c01; y1; o) ^ TransS2(c2; x; c02; y2; o) ^ y = y1 [y2)_((6 9y2; c:T ransS2(c2; x; c; y2; o)) ^ TransS1(c1; x; c01; y; o) ^ c02 = c2)_((6 9y1; c:T ransS1(c1; x; c; y1; o)) ^ TransS2(c2; x; c02; y; o) ^ c01 = c1)The �rst conjunction represents the case when both charts S1 and S2 can reactin their current con�gurations c1 and c2 on the current signals x. In this case the

overall reaction is simply denoted by the logical conjunction of both transitionpredicates TransS1 and TransS2 . The other two conjunctions are true wheneveronly one of S1 or S2 can react on the current stimuli in its current con�guration.Should none of the three terms be true, the overall transition predicate TransSis false, i.e. S cannot react at all.3.5 Hierarchical DecompositionA decomposed chart S =def Dec (N;�; �d; �) by % is in its initial con�gurationi� the master A =def Seq (N;�; �d; �) and all existing slaves fS1; : : : ; Sng =defdom % are in their initial con�gurations:InitS((cm; c1; : : : ; cn)) � InitA(cm) ^Vni=1 InitSi(ci)To de�ne the step relation for the decomposition, we distinguish four mutuallyexclusive cases. The �rst case occurs whenever the current state cm of themaster is re�ned by a slave Si (in this case %(cm) is de�ned, i.e. cm 2 dom %and %(cm) = Si), and both A and Si can react. All other, currently not activeslaves keep their current con�guration Vj 6=i cj = c0j . Generated signals of bothmaster and active slave are collected: y = ys [ym. Notice that whenever thetransition predicate TransA of the master is true, the slave is initialized throughthe predicate InitSi(c0i). This �rst case is formally denoted by:Trans1S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o) �9ym; ys; c:T ransA(cm; x; c0m; ym; o) ^cm 2 dom % ^ Si = %(cm) ^ TransSi(ci; x; c; y2; o) ^y = ys [ym ^ InitSi(c0i) ^Vj 6=i cj = c0jHere both master and slave can react on the current set of input stimuli. Inthis case, the master interrupts the slave's reaction. Remember that our seman-tics deals with non-preemptive interruption: so the slave still can terminate itscurrent action, i.e. generate all output signals ys. However, even then it will bere-initialized.Whenever the master's current state cm is not decomposed (cm 62 dom %),all slaves stay in their current con�gurations (Vni=1 ci = c0i) and only the masteritself reacts:Trans2S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o) �TransA(cm; x; c0m; y; o) ^ cm =2 dom % ^Vni=1 ci = c0iIf however a slave exists but is not able to make a step, again only the masterreacts but now the current slave Si is initialized and all other slaves do notchange their con�guration:Trans3S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o) �TransA(cm; x; c0m; y; o) ^ cm 2 dom % ^ Si = %(cm) ^6 9ys; c0s:T ransSi(ci; x; c0s; ys; o) ^ InitSi(c0i) ^Vj 6=i cj = c0j

Finally, if the master cannot react, but the current slave Si can, we have:Trans4S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o) �6 9ym; c0m:T ransA(cm; x; c0m; ym; o) ^cm 2 dom % ^ Si = %(cm) ^Vj 6=i cj = c0j ^ TransSi(ci; x; c0i; y; o)Overall, the complete transition relation is the disjunction of these cases:TransS((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o) �Trans1S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o)_Trans2S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o)_Trans3S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o)_Trans4S((cm; c1; : : : ; cn); x; (c0m; c01; : : : ; c0n); y; o)The predicate TransS is false i� neither master nor slave can react to the currentinput.3.6 Broadcast CommunicationThe initialization predicate for S = Feedback(R;L) is de�ned as:InitS(c) � InitR(c)The transition relation TransS is built up from a number of auxiliary predicates.As we deal with a chain reaction when de�ning the semantics of the instantaneousfeedback, we �rst have to �x the termination of this reaction. It terminates whenin the current con�guration c the chart S cannot react any more on the currentinput stimuli x: TermS(c; x; o) �6 9y; c0:T ransR(c; x; c0; y; o)The predicate ConeS constructs the set of all intermediate points in the chainreaction by the �-calculus formula:ConeS(c; x; c0; y; o) ��	:(TransR(c; x; c0; y; o) _9x0; y0; y00; c00:	(c; x; c00; y00; o) ^ TransR(c00; x0; c0; y0; o) ^x0 = x [(y00 \ L) ^ y = y0 [y00)In order to verify whether ConeS(c; x; c0; y; o) yields true we have to verifywhether either of the two following possibilities is true. The �rst alternativeis that c and c0 represent two subsequent con�gurations, i.e. are reachable inone step: TransR(c; x; c0; y; o). Otherwise, it has to be veri�ed whether c andc0 can be reached via an intermediate con�guration c00. All reachable con�gura-tions from c are computed by applying the least �xpoint operator � on predicate	 . Notice that the external stimuli x are available during the whole chain re-action and that only those internal signals which occur in L can be fed back:x0 = x [(y \ L). The overall transition relation of S is then de�ned as:TransS(c; x; c0; y; o) �ConeS(c; x; c0; y; o) ^ TermS(c0; x [(y00 \ L); o)

4 Symbolic Veri�cationThe transition relations de�ned in the previous section are partial. When a chartcannot react to its current input, the relation is unde�ned. Intuitively, in thiscase however the chart should stay in its current con�guration. The executionof a chart S is therefore de�ned over the following, total, step relation:StepS(c; x; c0; y) �(9o:T ransS(c; x; c0; y; o)) _(8c00; y00; o::TransS(c; x; c00; y00; o) ^ c = c0 ^ y = ; ^Consistence(x; y; o))The oracle signals in o nondeterministically predict the absence or presence ofsignals in a step. This prediction is needed for the proper treatment of negativetrigger expression in sequential automata. Of course, such a guess might lead toinconsistencies, if in fact a signal predicted to be present is neither input from theenvironment, nor generated by the system, or vice versa. Such inconsistenciesare detected with the predicate Consistence de�ned in Section 3.1. They canonly occur with instantaneous feedback of a signal that can be generated inone subchart, and whose absence is checked in another subchart. If there is noconsistent oracle guess, the chart will remain in its current con�guration.Experimental ResultsSince all sets occurring in the formulae of the previous section are �nite, it isstraightforward to translate them into propositional �-calculus. We have devel-oped a prototypical compiler that translates a given textual �-Charts speci�ca-tion into a set of �-calculus formulae following the above mentioned semanticalde�nitions. This �rst version of the compiler has been written in the languagePerl 5.0 [19].The �-calculus formulae generated by the compiler are the input for the�-calculus veri�er �-cke [3].We have tried to prove that whenever the central locking system is not yet inits Crash mode and a crash signal occurs while the ignition is on, both motorswill open their doors:AG(:in(Crash) ^ crash ^ ignition ^ �)AF(in(MotorLeft.Up)) ^ AF(in(MotorRight.Up)))where � is a predicate that is true whenever all internal signals (see Table 1) areabsent.However, this property turned out to be false for the speci�cation in Figure 1.The reason is the following: Remember that each motor can nondeterministicallyneed either one or two steps to terminate whenever it is in its Down or Up state.Assume that Control is in its Lockg state, both motors are in theirDown,Start con�guration, and the crash signal occurs. If for instance the right motorneeds two steps to lock the door and the left motor one step, the Lockg changes

from None to Left. The overall signal set (including internal communication)now is fcrash; ignition; lmrg. Although we allow non-preemptive interrupt,ready was not generated yet. The Control changes to its Crash mode andready cannot be produced anymore. As a consequence, both motors will \starve"in their Down states and never will be triggered by lup or rup.This problem can be avoided by substituting ready by xmr and xmr (withx 2 fl; rg), respectively (see Figure 4). In this case the termination of themotors' lowering process does not any longer depend on the existence of thesignal ready but the motors can terminate themselves.Down Off Upxdn xmrxupxmrFigure 4. Motor version 2, x 2 fl; rgIn case of an accident, unlocking the doors is a time critical task. However,notice that though the motor version in Figure 4 eventually allows to open thecentral locking, it still may need four steps to do that. This time is caused byis the nondeterministic behavior of the motors. When in Off the left motor forinstance can follow either edge because, if the current signal set is flup; ldng,both trigger conditions are valid. Hence, before following the opening commandlup it �rst can decide to act upon the command ldn. In order to avoid this delay,we must give the signals lup and rup a higher priority than the signals ldn andrdn by additional negative triggers as shown in Figure 5.Down Off Upxdn ^ :xup xmrxupxmrFigure 5. Motor version 3, x 2 fl; rgIn this case, each motor needs at most three steps to enter its Up state if itis in its Down state and exactly one step, if it is Off. It may be interestingfor the reader that we started to prove at �rst the above mentioned propertywith the system speci�cation as pictured in Figure 1 and only discovered laterapplying the model checking techniques presented in this paper that our originalspeci�cation could not keep this restriction.The step relation StepS for the overall speci�cation requires 3877 BDD nodes;the initialization predicate requires another 21 nodes. We expect that the num-ber of nodes can be further reduced with a di�erent encoding of the con�gura-tions. For hierarchically decomposed charts, the con�guration is the algebraicproduct of the con�gurations of the master and all slaves. This is redundant,

since only one slave can be active at a time. The �-calculus veri�er �-cke doesnot yet support the encoding of algebraic sums. In any case, however, the prod-uct encoding is necessary when slaves shall remember their con�guration insteadof being re-initialized when entered.In order to test the scalability of our approach we have recently veri�ed amore complex version of the locking system. Its speci�cation contains aboutthree times as many states and transition as the one in Figure 1. However,it turned out that this larger example is already the limit for our prototypicaltool. Since the critical factor in the veri�cation turned out to be the size of theintermediate BDDs, we believe that this is because of the very general natureof the veri�er �-cke. A dedicated, optimized implementation of the neededveri�cation algorithms could alleviate this problem.5 ConclusionThe Statecharts dialect presented in this paper o�ers instantaneous feedback andnondeterminism. We have shown how to deal with both concepts formally anddemonstrated that model checking for speci�cations with instantaneous chainreactions is possible. We demonstrated our approach by an example. Once moreit turned out that formal veri�cation is of great help in debugging speci�cationsfor time- and safety-critical reactive systems. The results presented in Section 4show that it is di�cult to trust in a formal speci�cation without proving centralsystem properties.We expect that in our framework larger speci�cations can be veri�ed than inapproaches without instantaneous feedback. The reason is that in the feedbackde�nition intermediate con�gurations that occur only during chain reactions arehidden through the �xpoint construction. With other communication mecha-nisms, these intermediate con�gurations remain visible. Moreover, we believethat speci�cations with instantaneous broadcasting are more concise than thosewritten in e.g. the Statemate dialect. Future work will focus upon the treatmentof larger case studies to examine whether these conjectures hold.Finally, it remains to be seen whether BDD-based symbolic veri�cation tech-niques are indeed the best approach for model checking �-Charts. For instance,in our example only 22 con�gurations are reachable. It is possible that non-symbolic techniques are more e�cient for �-Chart speci�cations. However, thehigh-level input language of �-cke turned out to be very helpful for rapid proto-typing of our language de�nition, semantics, and veri�cation approach.References1. G. Berry. Real Time Programming: Special Purpose or General Purpose Lan-guages. Information Processing 89, 1989.2. G Berry and G. Gonthier. The ESTEREL Synchronous Programming Language:Design, Semantics, Implementation. Technical Report 842, INRIA, 1988.

3. A. Biere. Eine Methode zur �-Kalk�ul-Modellpr�ufung. Slides for the AKFM from23.05.96, GI/ITG-Fachgespr�ach \Formale Beschreibungstechniken f�ur verteilteSysteme" (in German), 1996.4. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science ofComputer Programming, 8:231 { 274, 1987.5. J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Axiomatizationof Statecharts. Theoretical Computer Science, 101:289 { 335, 1992.6. C. Huizing and W.-P. de Roever. Introduction to Design Choices in the Semanticsof Statecharts. Information Processing Letters, 37, 1991.7. i-Logix Inc., 22 Third Avenue, Burlington, Mass. 01803, U.S.A. Languages ofStatemate, 1990.8. K. Inoue, M. Koshimura, and R. Hasegawa. Embedding Negation as Failure intoa Model Generation Theorem Prover. In D. Kapur, editor, CADE-11, number 607in Lecture Notes in Arti�cial Intelligence, pages 400{415, 1992.9. F. Maraninchi. Operational and Compositional Semantics of Synchronous Au-tomaton Compositions. volume 630 of Lecture Notes in Computer Science, pages550 { 564. Springer-Verlag, 1992.10. F. Maraninchi and N. Halbwachs. Compositional Semantics of Non-deterministicSynchronous Languages. ESOP'96, 1996.11. D. Nazareth, F. Regensburger, and P. Scholz. Mini-Statecharts: A Lean Versionof Statecharts. Technical Report TUM-I9610, Technische Universit�at M�unchen,D-80290 M�unchen, 1996.12. J. Philipps and P. Scholz. Compositional Speci�cation of Embedded Systems withStatecharts. 1997. TAPSOFT/FASE'97.13. J. Philipps and T. Yoneda. Symbolic Model Checking of Statecharts. TechnicalReport FTS-95-37, IEICE, 1995.14. A. Pnueli and M. Shalev. What is in a Step: On the Semantics of Statecharts. InT. Ito and A.R. Meyer, editors, Proccedings of the \Theoretical Aspects in Com-puter Software 91", volume 526 of Lecture Notes in Computer Science, pages 244{ 264. Springer-Verlag, 1991.15. P. Scholz. An Extended Version of Mini-Statecharts. Technical Report TUM-I9628,Technische Universit�at M�unchen, D-80290 M�unchen, 1996.16. P. Scholz. A Light-Weight Formalism for the Speci�cation of Reactive Systems.1996. SOFSEM'96.17. P. Scholz, D. Nazareth, and F. Regensburger. Mini-Statecharts: A CompositionalWay to Model Parallel Systems. 1996. PDCS'96.18. M. von der Beeck. A Comparison of Statecharts Variants. volume 863 of LectureNotes in Computer Science, pages 128 { 148. Springer, 1994.19. L. Wall and R.L. Schwartz. Programming in perl. Carl Hanser, 1993.

