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Abstract. Due to failures of software tools faults compromising the safety of 

the developed items may either be injected or not detected. Thus the safety 

norm for road vehicles, ISO 26262, requires to evaluate all software tools by 

identifying potential tool failures and measures to detect or avoid them. The re-

sult is a tool confidence level for each tool, which determines if and how a tool 

needs to be qualified. This paper focuses on tool failure identification and pro-

poses two strategies for this task. The function-based strategy derives potential 

tool failures from a functional decomposition of the tool. The artifact-based 

strategy analyzes artifacts only. We introduce an analysis tool to support these 

strategies and discuss their ability to produce lists of failures that are compre-

hensive, uniform and adequately abstract. This discussion is based on our expe-

rience with these strategies in a large scale industrial project. 
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1 Introduction 

The use of software to control technical systems – machinery, aircraft, cars - carries 

risks in that software defects may endanger life and property. Safety standards, such 

as the recent ISO 26262 [1] for the automotive domain aim to mitigate these risks 

through a combination of demands on organization, structure and development meth-

ods. These standards and the practices they encode can also be seen as a sign of ma-

turity, a shift from an anything-goes attitude of programming to a more disciplined 

engineering approach to software development.  

As in any discipline, with growing maturity more emphasis is put not only on the 

way of working, but also on the tools used. In safety standards, we can observe a 

similar development. Earlier standards put only little emphasis on tool use, perhaps 

roughly demanding an argument that each tool be "fit for use", mainly for tools used 

in generating or transforming code or in testing software or systems. Recent stand-

ards, such as the ISO 26262 take a more holistic viewpoint. Not only tools, but also 

their use in the development process must be analyzed, risks identified and counter-

measures employed. In this line of thinking, also requirement management tools, 
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2 Tool Evaluation Process 

Tool evaluation is about determining the TCL for all tools used in the development 

process of a safety related product. The ISO 26262 defines what a tool evaluation 

report must contain, but leaves the process for tool evaluation largely open. The pro-

cess we currently follow for tool evaluation consists of the following steps: 

1. Define list of tools 

2. Identify use cases 

3. Determine tool impact 

4. Identify potential tool failures 

5. Identify and assign measures for tool failure detection and -prevention 

6. Compute tool confidence level for each use case and tool 

First, we create a list of all tools used in the development process. Then by studying 

the development process and by interviewing tool users we identify and write down 

the use cases for each tool (why? who? when? what? how?). For each use case we 

then determine the tool impact (TI1, TI2) by answering two questions: 

1. Can a tool failure inject a safety-related fault into the product?  

2. Can a tool failure lead to the non-detection of a safety-related fault in the product?  

Only if both questions can be answered with “No” the tool has no impact (TI1). For 

every use case with impact (TI2) the potential tool failures need to be identified. For 

each potential tool failure we look for existing measures for detection or –prevention 

in the development process. If such measures are found we assign them to the corre-

sponding potential tool failure together with an estimated tool error detection level 

(TD1-TD3). From the TI and TD the we finally determine the TCL  according to 

tables in ISO 26262 (see Fig. 1). 

  To give a short example (see Fig. 2) assume a tool chain consisting of the tools Zip, 

Diff and Ls, which are used for release packaging.  

 

Fig. 2. Release Packaging Tool Chain 



In this tool chain we have four use cases Zip / contract, Zip / extract, Diff / compare, 

and Ls / compare. Each use case has its own set of inputs and outputs, e.g. Zip / con-

tract takes a “File Tree” as input and delivers an “Archive” as output. Since the “Ar-

chive” contains product files the use cases Zip / contract and Zip / extract have tool 

impact (TI2) as they might inject faults into the product.  

These use cases need to be analyzed for potential tool failures, e.g. “File Content 

Corrupted” in use-case Zip / contract  and appropriate checks for these failures need 

to be assigned if possible, e.g. “Diff File Trees” in use-case Diff / compare. Note that 

in this tool chain the tools are not only sources for tool failures but can also act as 

sinks for tool failures by providing measures for failure detection or prevention. The 

effectiveness of these measures is expressed by the assigned TD level, which is omit-

ted in the figure above.  

3 Strategies for Potential Tool Failure Determination 

This section defines terminology, goals and strategies for determining potential tool 

failures. In analogy to Laprie’s fault/error/failure concept [6] and the ISO 26262 [1] 

vocabulary, we define the terms tool fault, tool error and tool failure as follows: 

 

• tool fault: defect in tool code or design 

• tool error: unexpected internal tool state at runtime, caused by tool fault or abnor-

mal operating condition 

• tool failure: unexpected tool output/result 

 

We also distinguish between concrete and potential tool errors and -failures: 

• Concrete tool error/failure: Specific tool error/failure, e.g. Zip v7.3 corrupts file 

contents with more than 4gb size in compression method “Ultra”. 

• Potential tool error/failure: Abstract tool error/failure, e.g. File Content Corrup-

tion. 

The aim of tool evaluation and -qualification is to counter Murphy’s law: that any-

thing that can go wrong will go wrong. Tool evaluation requires the determination of 

the potential tool failures. 

3.1 Goals for Potential Tool Failure Determination  

The determination of potential tool failures should achieve various goals, which we 

introduce next. A desirable goal would be completeness in the following sense. 

• Completeness: All concrete tool failures are subsumed by the determined potential 

tool failures. 

Completeness is a very attractive goal, but it has the drawback that in practice it is 

hardly measurable as the number of concrete tool failures is usually unknown. Hence, 

if one does not use extreme abstractions for potential tool failures like the term “Tool 

Failure”, which resembles the logical predicate “true” and covers the whole plane of 

possibilities, one can usually not be sure if all known and currently unknown concrete 



tool failures are covered. What is measurable in practice is relative completeness of 

different strategies. One can apply various strategies and then compares the obtained 

potential tool failures with a previously disclosed list of concrete tool failures. One 

can count how many of these concrete tool failures are subsumed by the determined 

potential tool failures and use these ratios to compare the considered strategies.   

 A little less ambitious but still attractive are the following goals, which we will later 

use to judge the strategies introduced below: 

 

• Comprehensiveness: No blind spots. All potential tool failures can be determined. 

• Uniformity: All use cases are analyzed with the same method and same intensity. 

• Appropriate Abstraction: The error descriptions are neither too vague nor too de-

tailed. 

• Scalability: The effort is acceptable even for large tool chains. 

A determination strategy for potential tool failures is comprehensive if for every con-

crete tool failure it is able to determine a subsuming potential tool failure. In other 

words it is able to reach all concrete tool failures. If a strategy is not comprehensive 

the TCL might be inadequate.  

A potential tool failure determination is uniform if the same methods and the same 

levels of rigor are applied to all use cases of all tools. Using unbalanced methods and 

levels of rigor is a typical sign for poor process quality.  

The determined potential tool failures should also have an appropriate level of ab-

straction. If this level is too high no counter measures can be found and if it is too low 

unnecessary effort is introduced.  

Finally the strategy should be scalable in the sense that the effort spent on tool 

evaluation should be acceptable and not grow drastically with the complexity of the 

analyzed tool chain determined by the number of tools, use cases, artifacts and data 

flow dependencies. 

3.2 Different Views on Tool Failures 

From an abstract point of view (see Fig. 3) the purpose for using a tool is to map input 

data, e.g. files, streams, etc., to output data. A tool failure leads to wrong outputs for 

valid inputs. An output is wrong if some parts of it do not map correctly to certain 

parts of the input.  

 

Fig. 3. Tool errors in functions affect artifacts 



One the other hand tool failures are caused by errors in tool functions. For example an 

error occurring in a function f3 might lead to a wrong mapping of input part D to 

output part d. In order to describe a tool failure one can take two angles of view: 

• describe what goes wrong inside the tool, e.g. error in function f3. 

• describe what is wrong in the produced outputs, e.g. wrong part d in output file. 

In the first description technique one refers to the internals of the tool, that is func-

tions needed to accomplish the use case, whereas in the second one refers to proper-

ties or structure of the output data. Both descriptions may in addition refer to the 

properties of tool inputs that trigger the error. Note that both descriptions refer to the 

same tool failure. They mainly characterize this tool failure from different views. 

 These two views give rise for two tool failure determination strategies: Analyze 

what can go wrong in a tool or analyze what can be wrong with the artifacts.  

The first strategy systematically refines the abstract error “Tool Failure” by analyz-

ing the functions in the tool. We call this strategy Function-based failure determina-

tion. The second strategy only looks at the output data of tools and we call it thus 

Artifact-based failure determination. By going along the structure of output data one 

can systematically refine the abstract error “Artifact broken” into more concrete po-

tential tool failures, e.g. output part d broken. 

3.3 Function-based Strategy for Potential Tool Failure Determination 

The function-based strategy analyses what can go wrong inside a tool and does this by 

decomposing the tool functionally. In this case functions can either be conceptual, e.g. 

sorting in a database, or in case the architecture or code of the tool are known also 

modeled from the internal structure of the tool.  

Note that the same functions may take part in different use cases. There are also 

functions that are used by many tools for standard activities, e.g. “Iterating Files”, and 

we call these standard functions. Standard functions characterize the tools and cause 

typical sets of potential tool errors. For examples in tools with the standard function 

“Iterating Files”, typical tool errors are “File Lost” or “Unwanted File Added”. 

For each function or standard function we can associate a set of potential tool er-

rors that may occur in tools having this function.  

Once the sets of potential tool errors for functions and standard functions are de-

fined, the function-based strategy essentially becomes a matter of selecting the appro-

priate functions or standard functions for each use case (see Fig. 4). 

The potential tool errors for a use case are simply the union of the sets of potential 

tool errors of the functions selected for this use case. Sometimes similar tool errors 

are introduced from different functions.  

Hence, after this selection phase the set of potential tool errors for a use case needs 

to be consolidated by subsuming similar tool errors. By now the function-based strat-

egy has produced sets of potential tool errors, but the aim of tool evaluation is to 

determine potential tool failures. Only the externally observable effects of tool errors 

in terms of wrong artifacts being produced matter. To transform the set of potential 



tool errors into a set of resulting tool failures one can apply an FMEA like inductive 

thinking. What can happen if this function produces this tool error? If one traces this 

question along the dependencies of functions one can derive corresponding potential 

tool failures.  

 

Fig. 4. Assigning standard functions to use cases 

In the Zip example from the previous section we can decompose the use-case Zip / 

contract into the following functions: Iterating Files, Loading Files, Transforming 

Files, Writing Files. Each of these functions brings along its own set of typical poten-

tial tool errors, which can be consolidated (see Fig. 4) and then transformed to tool 

failures. 

3.4 Artifact-based Strategy for Potential Tool Failure determination 

The artifact-based strategy identifies potential tool errors by decomposing the struc-

ture of the artifacts and looking for things that may break or get flawed. To do this 

systematically we can employ the guide word confrontation technique known from 

the HAZOP analysis.  

In this technique one creates a matrix where the columns are labeled with the 

things that may be faulty, that is the artifacts or their parts/properties, and the lines are 

labeled with guide words that describe certain kinds of faults, e.g. “Too many”, “Too 

few” or “Wrong” (correct amount, but wrong content).  

For every guide word - artifact pair one starts thinking if this combination is mean-

ingful and if so what typical potential tool failures might be associated with this com-

bination. The resulting potential tool failures are then written into the corresponding 

cell of the matrix (see Fig. 5).  

 

Fig. 5. guide word – artifact confrontation 



Sometimes the potential tool failures that come out of such an analysis are too 

coarse. A way out is often to further decompose the artifacts by their structure or 

some other properties and then to confront each part/property with the guide words 

again.  

In our case we can decompose the artifact “Archive” into the parts “File Content” 

and “File Properties”. By doing this we do not end up with the potential tool failure 

“File Corrupted”, but with two finer potential tool failures “File Content Corrupted” 

and “File Properties Corrupted”, which can now be detected by different measures, 

e.g. “Diff File Trees” and “Compare ls -l” (see Fig. 2). 

3.5 Do these Strategies Achieve the Goals? 

Above we have stated comprehensiveness, uniformity, adequate error abstractions 

and scalability as  goals for potential tool failure determination. As every tool failure 

that is of interest must have a cause inside the tool and an effect on some artifact out-

side the tool, both strategies can principally identify every potential tool failure. 

Hence, both strategies are comprehensive.  

Since both strategies use systematic confrontation techniques (standard function to 

use-cases, guide word to artifact) they can also be regarded as uniform. 

According to our practical experience the abstractions of the identified potential 

tool failures are often inadequate in both strategies. Sometimes the descriptions are 

too coarse, e.g. “File Fault”, and one cannot assign an appropriate detection or pre-

vention measure. Sometimes the descriptions are unnecessarily detailed and one ends 

up with many slightly different tool failure descriptions that all  can be handled by the 

same detection or prevention measure. In our tool chain example the function-based 

strategy in practice tends to give us many versions of the failure “File Content Cor-

rupted” depending on the function that has failed, e.g. “File Content Corrupted due to 

false reading”. In the end it does not matter if the corruption happens while reading, 

transforming, or writing files as all these corruptions can be detected by the same 

check (Diff File Trees).  

Nevertheless there is a way to deal with inadequate abstractions. If appropriate 

measures for detection or prevention are in sight, but the current failure descriptions 

are too coarse for them one can refine the decomposition of functions or artifacts and 

re-apply the  identification strategy for potential tool failures.  

If the tool failure descriptions are too detailed one can subsume a multitude of de-

tailed descriptions with one more abstract tool failure description. If we include the 

decomposition refinement and the failure consolidation as a post processing step for 

both strategies, we can achieve the goal of having failure descriptions with an ade-

quate level of abstraction. 

What about scalability? In theory both strategies should scale well for large tool 

chains as they only analyze isolated pieces of a tool chain, one tool/use-case or one 

artifact at a time. In practice we observed the function-based strategy to cause signifi-

cantly more effort. One reason was tool error consolidation. We typically had to as-

sign many standard functions to use cases and ended up with large sets of similar 

potential errors that had to be subsumed. A second reason was the difficulty to trans-
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Second, the TCA computes the TD for a use case by taking the worst TD for any 

potential failure identified for this use case. Third, by combining the TD for a use case 

with the TI of this use case according to the ISO 26262 table the TCA derives a TCL 

for this use case. Finally, the TCL of a tool is the worst TCL for any use case.  

 

 

 

Fig. 7. Inputs and outputs of the TCS 

The TCA also offers lots of plausibility checks for the tool chain and confidence 

model. For example if an detection measure from Tool B is assigned to a potential 

failure of tool A then there must be a data flow in terms of input/output artifacts from 

tool A to tool B, otherwise the assignment of this detection measure is invalid. 

The TCA can also generate a MS Word report, which contains detailed tables and 

figures for each identified potential tool failure, such that the computed TCL becomes 

plausible, comprehensible and checkable by review. The structure of this word report 

is designed such that it can be directly used as a part for the tool criteria evaluation 

report required by ISO 26262. 

5      Conclusion 

Tool evaluation is a critical step that comes before tool qualification. Besides deter-

mining the TCL the tool evaluation often identifies ways to rearrange or extend the 

existing work flow such that tool qualification becomes obsolete. 

We have applied both the function-based and the artifact-based  identification 

strategies for potential tool failures in a large scale industrial project using the TCA. 

Our experience is that the function-based strategy tends to yield failure descrip-

tions that are too detailed or overlapping. While having very detailed tool failure de-

scriptions is useful for tool qualification, it is unnecessary for tool evaluation, which 



is only concerned with TCL determination. We experienced the artifact-based strategy 

to produce failure descriptions with more adequate levels of abstractions right away. 

In contrast to a tools internals the structure of artifacts is often known and allows to 

refine failure descriptions on demand.  

Our experience with the tool TCA is that it greatly helps to improve the quality of 

the obtained evaluation report. In particular the support it offers in form of plausibility 

checks, review assistance and refactoring helps to iteratively develop a comprehen-

sive and consistent model of the tool chain. 

However, both the strategies and the tool have potential for further research and 

improvements. For the strategies further experience is required, e.g. measuring rela-

tive completeness and the reproducibility of results by letting multiple people with 

different backgrounds apply the strategies.  

Also the TCA could be improved, e.g. by establishing reusable catalogues for 

standard functions, patterns for functional decompositions for various kinds of tools 

or appropriate structural decompositions for various kinds of artifacts, e.g. source 

code files or object code files. Nevertheless the current TCA forms a good platform 

for analyzing tool chains and confidence models and to try out various approaches. 
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