
Determining Potential Errors in Tool Chains

Strategies to Reach Tool Confidence According to ISO 26262

Martin Wildmoser, Jan Philipps and Oscar Slotosch

Validas AG, Munich, Germany

{wildmoser,philipps,slotosch}@validas.de

Abstract. Due to failures of software tools faults compromising the safety of

the developed items may either be injected or not detected. Thus the safety

norm for road vehicles, ISO 26262, requires to evaluate all software tools by

identifying potential tool failures and measures to detect or avoid them. The re-

sult is a tool confidence level for each tool, which determines if and how a tool

needs to be qualified. This paper focuses on tool failure identification and pro-

poses two strategies for this task. The function-based strategy derives potential

tool failures from a functional decomposition of the tool. The artifact-based

strategy analyzes artifacts only. We introduce an analysis tool to support these

strategies and discuss their ability to produce lists of failures that are compre-

hensive, uniform and adequately abstract. This discussion is based on our expe-

rience with these strategies in a large scale industrial project.

Keywords: ISO 26262, Tool Chain Analysis, Tool Qualification, HAZOP, po-

tential tool failure, potential tool error

1 Introduction

The use of software to control technical systems – machinery, aircraft, cars - carries

risks in that software defects may endanger life and property. Safety standards, such

as the recent ISO 26262 [1] for the automotive domain aim to mitigate these risks

through a combination of demands on organization, structure and development meth-

ods. These standards and the practices they encode can also be seen as a sign of ma-

turity, a shift from an anything-goes attitude of programming to a more disciplined

engineering approach to software development.

As in any discipline, with growing maturity more emphasis is put not only on the

way of working, but also on the tools used. In safety standards, we can observe a

similar development. Earlier standards put only little emphasis on tool use, perhaps

roughly demanding an argument that each tool be "fit for use", mainly for tools used

in generating or transforming code or in testing software or systems. Recent stand-

ards, such as the ISO 26262 take a more holistic viewpoint. Not only tools, but also

their use in the development process must be analyzed, risks identified and counter-

measures employed. In this line of thinking, also requirement management tools,

version control systems, an

must be considered. Establishing confidence in tools according to

step process.

In the first step, tools are evaluated

based on the possibility of

and on the likelihood of detecting

In the second step, depending on the TCL

velopment object, further qualification measures are demanded, such as for instance

extensive tests (tool valid

Fig

While there is a certain body

work on specific tool use patterns to reduce t

far little work that considers the holistic approach of

according to ISO 26262. A notable exception is

tion is explained in detail. The contribution of this paper is a strengthening of

follow a similar approach, but in this paper we concentrate on

tool failures as a basis for

In practice the determination of the TCLs of a real development tool chain has to

deal with dozens of tools and hundreds of

ter-measures for these. Rigorous bookkeepin

consistent results. In addi

potential tool failures will largely depend on the

approach of the person carrying out the analysis.

This paper proposes

and judges their comprehensiveness, uniform

ity. This judgment is not merely the

gained by the authors

where the entire development tool chain

er has been evaluated.

that has been built to suppo

This paper is structured as fo

we give an overview o

tribution: we propose and discuss two

Section 4 briefly introduces a tool to sup

version control systems, and the plethora of little helper tools to integrate work flows

Establishing confidence in tools according to ISO 26262 is a two

In the first step, tools are evaluated to determine a tool confidence level

ity of tool failures leading to a violation of a safety requirement,

and on the likelihood of detecting or preventing such tool failures (see Fig. 1

step, depending on the TCL and the safety integrity level of the d

velopment object, further qualification measures are demanded, such as for instance

extensive tests (tool validation).

Fig. 1. Tool evaluation according to ISO 26262:2011-8

While there is a certain body of work on tool validation issues [2, 3]

work on specific tool use patterns to reduce the need of tool validation [4], there is so

far little work that considers the holistic approach of establishing tool confidence

according to ISO 26262. A notable exception is [5], where the process of tool evalu

tail. The contribution of this paper is a strengthening of

proach, but in this paper we concentrate on determining potential

basis for obtaining correct tool confidence levels.

In practice the determination of the TCLs of a real development tool chain has to

deal with dozens of tools and hundreds of use cases, potential tool failures and cou

measures for these. Rigorous bookkeeping is needed to obtain comprehensi

results. In addition, if not done in a systematic way, the determination

ures will largely depend on the experience, biased view and chosen

approach of the person carrying out the analysis.

es strategies for systematic determination of potential tool errors

and judges their comprehensiveness, uniformity, adequateness of results and scalabi

is not merely theoretical but backed up by the practical experience

by the authors from applying the proposed strategies in a large scale

where the entire development tool chain for a product family of an automotive suppl

has been evaluated. The paper also introduces a tool called Tool Chain A

that has been built to support tool chain evaluation.

This paper is structured as follows. In the next section, based on a simple example,

we give an overview on the tool evaluation process. Section 3 contains the main co

tribution: we propose and discuss two strategies for identifying potential tool

briefly introduces a tool to support these strategies. Section 5 concludes.

d the plethora of little helper tools to integrate work flows

ISO 26262 is a two-

to determine a tool confidence level (TCL),

leading to a violation of a safety requirement,

1).

ety integrity level of the de-

velopment object, further qualification measures are demanded, such as for instance

 and some

, there is so

confidence

cess of tool evalua-

tail. The contribution of this paper is a strengthening of [5]: We

determining potential

In practice the determination of the TCLs of a real development tool chain has to

tool failures and coun-

is needed to obtain comprehensible and

mination of

and chosen

potential tool errors

and scalabil-

experience

large scale project

for a product family of an automotive suppli-

a tool called Tool Chain Analyzer

lows. In the next section, based on a simple example,

contains the main con-

tool failures.

cludes.

2 Tool Evaluation Process

Tool evaluation is about determining the TCL for all tools used in the development

process of a safety related product. The ISO 26262 defines what a tool evaluation

report must contain, but leaves the process for tool evaluation largely open. The pro-

cess we currently follow for tool evaluation consists of the following steps:

1. Define list of tools

2. Identify use cases

3. Determine tool impact

4. Identify potential tool failures

5. Identify and assign measures for tool failure detection and -prevention

6. Compute tool confidence level for each use case and tool

First, we create a list of all tools used in the development process. Then by studying

the development process and by interviewing tool users we identify and write down

the use cases for each tool (why? who? when? what? how?). For each use case we

then determine the tool impact (TI1, TI2) by answering two questions:

1. Can a tool failure inject a safety-related fault into the product?

2. Can a tool failure lead to the non-detection of a safety-related fault in the product?

Only if both questions can be answered with “No” the tool has no impact (TI1). For

every use case with impact (TI2) the potential tool failures need to be identified. For

each potential tool failure we look for existing measures for detection or –prevention

in the development process. If such measures are found we assign them to the corre-

sponding potential tool failure together with an estimated tool error detection level

(TD1-TD3). From the TI and TD the we finally determine the TCL according to

tables in ISO 26262 (see Fig. 1).

 To give a short example (see Fig. 2) assume a tool chain consisting of the tools Zip,

Diff and Ls, which are used for release packaging.

Fig. 2. Release Packaging Tool Chain

In this tool chain we have four use cases Zip / contract, Zip / extract, Diff / compare,

and Ls / compare. Each use case has its own set of inputs and outputs, e.g. Zip / con-

tract takes a “File Tree” as input and delivers an “Archive” as output. Since the “Ar-

chive” contains product files the use cases Zip / contract and Zip / extract have tool

impact (TI2) as they might inject faults into the product.

These use cases need to be analyzed for potential tool failures, e.g. “File Content

Corrupted” in use-case Zip / contract and appropriate checks for these failures need

to be assigned if possible, e.g. “Diff File Trees” in use-case Diff / compare. Note that

in this tool chain the tools are not only sources for tool failures but can also act as

sinks for tool failures by providing measures for failure detection or prevention. The

effectiveness of these measures is expressed by the assigned TD level, which is omit-

ted in the figure above.

3 Strategies for Potential Tool Failure Determination

This section defines terminology, goals and strategies for determining potential tool

failures. In analogy to Laprie’s fault/error/failure concept [6] and the ISO 26262 [1]

vocabulary, we define the terms tool fault, tool error and tool failure as follows:

• tool fault: defect in tool code or design

• tool error: unexpected internal tool state at runtime, caused by tool fault or abnor-

mal operating condition

• tool failure: unexpected tool output/result

We also distinguish between concrete and potential tool errors and -failures:

• Concrete tool error/failure: Specific tool error/failure, e.g. Zip v7.3 corrupts file

contents with more than 4gb size in compression method “Ultra”.

• Potential tool error/failure: Abstract tool error/failure, e.g. File Content Corrup-

tion.

The aim of tool evaluation and -qualification is to counter Murphy’s law: that any-

thing that can go wrong will go wrong. Tool evaluation requires the determination of

the potential tool failures.

3.1 Goals for Potential Tool Failure Determination

The determination of potential tool failures should achieve various goals, which we

introduce next. A desirable goal would be completeness in the following sense.

• Completeness: All concrete tool failures are subsumed by the determined potential

tool failures.

Completeness is a very attractive goal, but it has the drawback that in practice it is

hardly measurable as the number of concrete tool failures is usually unknown. Hence,

if one does not use extreme abstractions for potential tool failures like the term “Tool

Failure”, which resembles the logical predicate “true” and covers the whole plane of

possibilities, one can usually not be sure if all known and currently unknown concrete

tool failures are covered. What is measurable in practice is relative completeness of

different strategies. One can apply various strategies and then compares the obtained

potential tool failures with a previously disclosed list of concrete tool failures. One

can count how many of these concrete tool failures are subsumed by the determined

potential tool failures and use these ratios to compare the considered strategies.

 A little less ambitious but still attractive are the following goals, which we will later

use to judge the strategies introduced below:

• Comprehensiveness: No blind spots. All potential tool failures can be determined.

• Uniformity: All use cases are analyzed with the same method and same intensity.

• Appropriate Abstraction: The error descriptions are neither too vague nor too de-

tailed.

• Scalability: The effort is acceptable even for large tool chains.

A determination strategy for potential tool failures is comprehensive if for every con-

crete tool failure it is able to determine a subsuming potential tool failure. In other

words it is able to reach all concrete tool failures. If a strategy is not comprehensive

the TCL might be inadequate.

A potential tool failure determination is uniform if the same methods and the same

levels of rigor are applied to all use cases of all tools. Using unbalanced methods and

levels of rigor is a typical sign for poor process quality.

The determined potential tool failures should also have an appropriate level of ab-

straction. If this level is too high no counter measures can be found and if it is too low

unnecessary effort is introduced.

Finally the strategy should be scalable in the sense that the effort spent on tool

evaluation should be acceptable and not grow drastically with the complexity of the

analyzed tool chain determined by the number of tools, use cases, artifacts and data

flow dependencies.

3.2 Different Views on Tool Failures

From an abstract point of view (see Fig. 3) the purpose for using a tool is to map input

data, e.g. files, streams, etc., to output data. A tool failure leads to wrong outputs for

valid inputs. An output is wrong if some parts of it do not map correctly to certain

parts of the input.

Fig. 3. Tool errors in functions affect artifacts

One the other hand tool failures are caused by errors in tool functions. For example an

error occurring in a function f3 might lead to a wrong mapping of input part D to

output part d. In order to describe a tool failure one can take two angles of view:

• describe what goes wrong inside the tool, e.g. error in function f3.

• describe what is wrong in the produced outputs, e.g. wrong part d in output file.

In the first description technique one refers to the internals of the tool, that is func-

tions needed to accomplish the use case, whereas in the second one refers to proper-

ties or structure of the output data. Both descriptions may in addition refer to the

properties of tool inputs that trigger the error. Note that both descriptions refer to the

same tool failure. They mainly characterize this tool failure from different views.

 These two views give rise for two tool failure determination strategies: Analyze

what can go wrong in a tool or analyze what can be wrong with the artifacts.

The first strategy systematically refines the abstract error “Tool Failure” by analyz-

ing the functions in the tool. We call this strategy Function-based failure determina-

tion. The second strategy only looks at the output data of tools and we call it thus

Artifact-based failure determination. By going along the structure of output data one

can systematically refine the abstract error “Artifact broken” into more concrete po-

tential tool failures, e.g. output part d broken.

3.3 Function-based Strategy for Potential Tool Failure Determination

The function-based strategy analyses what can go wrong inside a tool and does this by

decomposing the tool functionally. In this case functions can either be conceptual, e.g.

sorting in a database, or in case the architecture or code of the tool are known also

modeled from the internal structure of the tool.

Note that the same functions may take part in different use cases. There are also

functions that are used by many tools for standard activities, e.g. “Iterating Files”, and

we call these standard functions. Standard functions characterize the tools and cause

typical sets of potential tool errors. For examples in tools with the standard function

“Iterating Files”, typical tool errors are “File Lost” or “Unwanted File Added”.

For each function or standard function we can associate a set of potential tool er-

rors that may occur in tools having this function.

Once the sets of potential tool errors for functions and standard functions are de-

fined, the function-based strategy essentially becomes a matter of selecting the appro-

priate functions or standard functions for each use case (see Fig. 4).

The potential tool errors for a use case are simply the union of the sets of potential

tool errors of the functions selected for this use case. Sometimes similar tool errors

are introduced from different functions.

Hence, after this selection phase the set of potential tool errors for a use case needs

to be consolidated by subsuming similar tool errors. By now the function-based strat-

egy has produced sets of potential tool errors, but the aim of tool evaluation is to

determine potential tool failures. Only the externally observable effects of tool errors

in terms of wrong artifacts being produced matter. To transform the set of potential

tool errors into a set of resulting tool failures one can apply an FMEA like inductive

thinking. What can happen if this function produces this tool error? If one traces this

question along the dependencies of functions one can derive corresponding potential

tool failures.

Fig. 4. Assigning standard functions to use cases

In the Zip example from the previous section we can decompose the use-case Zip /

contract into the following functions: Iterating Files, Loading Files, Transforming

Files, Writing Files. Each of these functions brings along its own set of typical poten-

tial tool errors, which can be consolidated (see Fig. 4) and then transformed to tool

failures.

3.4 Artifact-based Strategy for Potential Tool Failure determination

The artifact-based strategy identifies potential tool errors by decomposing the struc-

ture of the artifacts and looking for things that may break or get flawed. To do this

systematically we can employ the guide word confrontation technique known from

the HAZOP analysis.

In this technique one creates a matrix where the columns are labeled with the

things that may be faulty, that is the artifacts or their parts/properties, and the lines are

labeled with guide words that describe certain kinds of faults, e.g. “Too many”, “Too

few” or “Wrong” (correct amount, but wrong content).

For every guide word - artifact pair one starts thinking if this combination is mean-

ingful and if so what typical potential tool failures might be associated with this com-

bination. The resulting potential tool failures are then written into the corresponding

cell of the matrix (see Fig. 5).

Fig. 5. guide word – artifact confrontation

Sometimes the potential tool failures that come out of such an analysis are too

coarse. A way out is often to further decompose the artifacts by their structure or

some other properties and then to confront each part/property with the guide words

again.

In our case we can decompose the artifact “Archive” into the parts “File Content”

and “File Properties”. By doing this we do not end up with the potential tool failure

“File Corrupted”, but with two finer potential tool failures “File Content Corrupted”

and “File Properties Corrupted”, which can now be detected by different measures,

e.g. “Diff File Trees” and “Compare ls -l” (see Fig. 2).

3.5 Do these Strategies Achieve the Goals?

Above we have stated comprehensiveness, uniformity, adequate error abstractions

and scalability as goals for potential tool failure determination. As every tool failure

that is of interest must have a cause inside the tool and an effect on some artifact out-

side the tool, both strategies can principally identify every potential tool failure.

Hence, both strategies are comprehensive.

Since both strategies use systematic confrontation techniques (standard function to

use-cases, guide word to artifact) they can also be regarded as uniform.

According to our practical experience the abstractions of the identified potential

tool failures are often inadequate in both strategies. Sometimes the descriptions are

too coarse, e.g. “File Fault”, and one cannot assign an appropriate detection or pre-

vention measure. Sometimes the descriptions are unnecessarily detailed and one ends

up with many slightly different tool failure descriptions that all can be handled by the

same detection or prevention measure. In our tool chain example the function-based

strategy in practice tends to give us many versions of the failure “File Content Cor-

rupted” depending on the function that has failed, e.g. “File Content Corrupted due to

false reading”. In the end it does not matter if the corruption happens while reading,

transforming, or writing files as all these corruptions can be detected by the same

check (Diff File Trees).

Nevertheless there is a way to deal with inadequate abstractions. If appropriate

measures for detection or prevention are in sight, but the current failure descriptions

are too coarse for them one can refine the decomposition of functions or artifacts and

re-apply the identification strategy for potential tool failures.

If the tool failure descriptions are too detailed one can subsume a multitude of de-

tailed descriptions with one more abstract tool failure description. If we include the

decomposition refinement and the failure consolidation as a post processing step for

both strategies, we can achieve the goal of having failure descriptions with an ade-

quate level of abstraction.

What about scalability? In theory both strategies should scale well for large tool

chains as they only analyze isolated pieces of a tool chain, one tool/use-case or one

artifact at a time. In practice we observed the function-based strategy to cause signifi-

cantly more effort. One reason was tool error consolidation. We typically had to as-

sign many standard functions to use cases and ended up with large sets of similar

potential errors that had to be subsumed. A second reason was the difficulty to trans-

form tool errors to tool failures. The internal dependencies betwee

often not known to the public

every tool error will co

a chance to detect tool errors might be affec

often requires an analy

right away. On the other hand

rigorous function-based strategy pays off when it turns out that a tool has TCL2 or

TCL3 and requires qualification. Knowing the hardly detectable internal tool errors

and critical functions is very valuable for writing a tailored qualification plan

ing a qualification kit.

4 Tool Suppor

ISO 26262 requires all tools

dustrial practice are rather large and

Assigning detection or prevention measures

maintaining their relation to

task, which needs tool

built such a tool called

Fig. 6. Tool Chain Analyzer with generated figures and tables (MS Word)

The TCA (see Fig. 6

tools having use cases which are reading or writing artifacts. The TCA also allows to

model the confidence in a tool chain in terms

as shown above (see Fig

confidence model the TCA

following way: First, the TCA obtains the TD for each pote

TD with the lowest number (

assigned counter measure

form tool errors to tool failures. The internal dependencies between functions are

to the public. If so, we have to think pessimistically and as

ry tool error will corrupt all output artifacts. Even the log files which often provide

tool errors might be affected. Finding effective counter measures

ysis of the artifacts as it is done in the artifact-based strategy

On the other hand, if sufficient details on a tools internals are availa

based strategy pays off when it turns out that a tool has TCL2 or

TCL3 and requires qualification. Knowing the hardly detectable internal tool errors

and critical functions is very valuable for writing a tailored qualification plan

fication kit.

Support for Tool Evaluation: Tool Chain Analyzer

all tools used in development to be analyzed. Tool chain

dustrial practice are rather large and may lead to many potential errors to m

Assigning detection or prevention measures to all these errors, subsuming errors and

taining their relation to use cases, standard functions and artifacts is a complex

tool support. Within the research project RECOMP Validas ha

 Tool Chain Analyzer (TCA).

Tool Chain Analyzer with generated figures and tables (MS Word)

6 and Fig. 7) allows to model a tool chain structure in terms of

tools having use cases which are reading or writing artifacts. The TCA also allows to

model the confidence in a tool chain in terms of tool failures, checks and restrictions

Fig. 2) together with their TD. From the tool chain model

the TCA can automatically computes the TCL of all tools

First, the TCA obtains the TD for each potential failure by taking t

TD with the lowest number (highest probability) the user has assigned for one of the

counter measures.

n functions are

ssume that

which often provide

ter measures

based strategy

s internals are available, a

based strategy pays off when it turns out that a tool has TCL2 or

TCL3 and requires qualification. Knowing the hardly detectable internal tool errors

and critical functions is very valuable for writing a tailored qualification plan or build-

Tool Chain Analyzer

ool chains in in-

errors to manage.

errors, subsuming errors and

is a complex

Within the research project RECOMP Validas has

Tool Chain Analyzer with generated figures and tables (MS Word)

structure in terms of

tools having use cases which are reading or writing artifacts. The TCA also allows to

, checks and restrictions

tool chain model and

tools in the

tial failure by taking the

the user has assigned for one of the

Second, the TCA computes the TD for a use case by taking the worst TD for any

potential failure identified for this use case. Third, by combining the TD for a use case

with the TI of this use case according to the ISO 26262 table the TCA derives a TCL

for this use case. Finally, the TCL of a tool is the worst TCL for any use case.

Fig. 7. Inputs and outputs of the TCS

The TCA also offers lots of plausibility checks for the tool chain and confidence

model. For example if an detection measure from Tool B is assigned to a potential

failure of tool A then there must be a data flow in terms of input/output artifacts from

tool A to tool B, otherwise the assignment of this detection measure is invalid.

The TCA can also generate a MS Word report, which contains detailed tables and

figures for each identified potential tool failure, such that the computed TCL becomes

plausible, comprehensible and checkable by review. The structure of this word report

is designed such that it can be directly used as a part for the tool criteria evaluation

report required by ISO 26262.

5 Conclusion

Tool evaluation is a critical step that comes before tool qualification. Besides deter-

mining the TCL the tool evaluation often identifies ways to rearrange or extend the

existing work flow such that tool qualification becomes obsolete.

We have applied both the function-based and the artifact-based identification

strategies for potential tool failures in a large scale industrial project using the TCA.

Our experience is that the function-based strategy tends to yield failure descrip-

tions that are too detailed or overlapping. While having very detailed tool failure de-

scriptions is useful for tool qualification, it is unnecessary for tool evaluation, which

is only concerned with TCL determination. We experienced the artifact-based strategy

to produce failure descriptions with more adequate levels of abstractions right away.

In contrast to a tools internals the structure of artifacts is often known and allows to

refine failure descriptions on demand.

Our experience with the tool TCA is that it greatly helps to improve the quality of

the obtained evaluation report. In particular the support it offers in form of plausibility

checks, review assistance and refactoring helps to iteratively develop a comprehen-

sive and consistent model of the tool chain.

However, both the strategies and the tool have potential for further research and

improvements. For the strategies further experience is required, e.g. measuring rela-

tive completeness and the reproducibility of results by letting multiple people with

different backgrounds apply the strategies.

Also the TCA could be improved, e.g. by establishing reusable catalogues for

standard functions, patterns for functional decompositions for various kinds of tools

or appropriate structural decompositions for various kinds of artifacts, e.g. source

code files or object code files. Nevertheless the current TCA forms a good platform

for analyzing tool chains and confidence models and to try out various approaches.

Acknowledgment

This work has been supported by ARTEMIS and the German Federal Ministry of

Research and Education (BMBF) within project RECOMP under research grant

1IS10001A.

References

1. International Organization for Standardization: ISO 26262 Road Vehicles – Functional safe-

ty–. 1st Edition, 2011-11-15

2. Stürmer I. and Conrad M.: Code Generator Certification: a Testsuite-Oriented Approach. In:

Proceedings of Automotive-Safety & Security, 2004.

3. Schneider S., Slotosch O.: A Validation Suite for Model-based Development

Tools. In: Proceedings of the 10th International Conference on Quality Engineering in Soft-

ware Technology, CONQUEST 2007.

4. Beine M.: A Model-Based Reference Workflow for the Development of Safety-Critical

Software. In: Embedded Real Time Software and Systems, 2010.

5. Hillebrand J., Reichenpfader P., Mandic I., Siegl H., and Peer C.: Establishing Confidence

in the Usage of Software Tools in Context of ISO 26262. In: Flammini F., Iologna V.,

Vittorini V. (eds.) SAFECOMP 2011. LNCS, vol. 6894. Springer, Heidelberg (2011)

6. Laprie J.C. (ed.): Dependability: Basic Concepts and Terminology. Book. Springer-Verlag,

1992. ISBN 0-387-82296-8

