
Step by Step to Histories?

Max Breitling and Jan Philipps

Institut für Informatik
Technische Universität München

80290 München
Germany

{max.breitling|jan.philipps}@in.tum.de

FOCUS

Abstract. The behavior of reactive systems is typically specified by
state machines. This results in an operational description of how a system
produces its output. An alternative and more abstract approach is to just
specify the relation between the input and output histories of a system.
In this work, we propose a way to combine state-based and history-based
specifications: Abstract communication history properties of system com-
ponents can be derived from temporal logic properties of state machines.
The history properties can then be used to deduce global properties of a
complete system.

1 Introduction

To allow precise reasoning about a hard- or software system, a mathematical
foundation for both systems and properties is a prerequisite. For some classes
of systems —in particular, clocked hardware— temporal logics have been used
successfully to formalize and to reason about their properties.

Temporal logic and model checking are less successful, however, when the
dataflow between loosely coupled components that communicate asynchronously
via communication channels is examined. For such systems, a black box view
which just relates input and output is more useful than the state-based glass
box view of a component. Black box properties of dataflow components and
systems can be concisely formulated as relations over the communication his-
tory of components [7, 8]; such properties are inherently modular and allow easy
reasoning about the global system behavior.

For individual data flow components, however, a state-based glass box view
is helpful. State machines are good design documents for a component’s im-
plementation. Moreover, they provide an operational intuition that can aid in
structuring proofs: Safety properties, for example, are typically shown using in-
duction over the machine transitions.

In this paper we show —based on the ideas of Broy’s verification of the
Alternating Bit Protocol [6]— how specifications of the black box view of a

? This work is supported by the DFG within the Sonderforschungsbereich 342.

system or system component can be systematically derived from state machine
specifications of the components. Thus we bridge the gap between techniques for
easy verification of dataflow properties and more operational descriptions that
are close to efficient implementations of a system.

The paper is structured as follows: In the next section we introduce some
mathematical concepts and notations. § 2 and § 3 describe history specifications
for the black box view, and state machines for the glass box view of a component,
respectively. In § 4 we present verification rules for temporal logic properties that
are used in § 5 to relate the black box and glass box views of a component. In
§ 6 we demonstrate how the black box views support compositional reasoning
about a system. The conclusion in § 7 gives an outlook on future work.

2 History Relations

A dataflow system is a network of components. Each component has input and
output ports. Ports of different components are connected by directed chan-
nels. Communication over these channels is asynchronous, message buffers are
assumed to be unbounded. The black box view of a dataflow system regards
only the communication between components and abstracts from the internal
workings inside the components.

Systems in the black box view are modeled as relations over communication
histories. The relations are expressed using formulas in predicate logic where
the formula’s free variables range over streams. Each free variable represents the
communication history over one of the component’s input or output ports.

There is a rich mathematical basis for this system model [7, 8]; this section
contains only a short overview over the concepts used in the rest of the paper.

2.1 Streams.

The communication history between components is modeled by streams. A stream
is a finite or infinite sequences of messages. Finite streams can be enumerated,
for example: 〈1, 2, 3, . . . 10〉; the empty stream is denoted by 〈 〉. For a set of
messages Msg, the set of finite streams over Msg is denoted by Msg∗, that of
infinite streams by Msg∞. By Msgω we denote Msg∗∪Msg∞. Given two streams
s , t and j ∈ N, #s denotes the length of s . If s is finite, #s is the number of
elements in s ; if s is infinite, #s = ∞. We write s _ t for the concatenation of
s and t . If s is infinite, s _ t = s . We write s v t , if s is a prefix of t , i.e. if
∃ u ∈ Msgω • s _ u = t . The j -th element of s is denoted by s .j , if 1 ≤ j ≤ #s ;
it is undefined otherwise. ft.s denotes the first element of a stream, i.e. ft.s = s .1,
if s 6= 〈 〉.

The prefix relation v is a partial order. The set of streams Msgω together
with v forms a complete partial order (CPO); the empty stream 〈 〉 is the least
element in this CPO. This means that for every chain { si | i ∈ N } of streams,
where for each i : si v si+1, there is a unique least upper bound

⊔

{ si | i ∈ N}.
A predicate Φ where the free variables range over streams M ω is admissible, if

it holds for the limit of a chain of valuations for its variables, provided that it
holds for each element of the chain. We then write adm Φ. Syntactical criteria
for admissibility can be found in [12].

Stream concatenation and the prefix order can be extended pointwise to
tuples of streams; continuity of functions and admissibility of prefix can also be
defined for stream tuples.

2.2 Component Specification

Figure 1 shows the system structure of a bounded transmission system with
three components: a sender, a receiver, and a buffer with a capacity for N ≥ 2
data messages. For now, we just examine the sender.

PSfrag replacements

Sender Queue Receiver
i : Msg o : Msg

x : Msg y : Msg

ack : Signal req : Signal

Fig. 1. Bounded Buffer

The black box view of the sender is specified by giving a set of input channel
identifiers I and a set of output channel identifiers O (where I ∩ O = ∅) to
define its interface. The behavior is specified by a predicate with free variables
from I and O . Each channel identifier has an assigned type that describes the
set of messages allowed on that channel. Typically, we write the specification in
the following style:

Sender

in i : Msg, ack : Signal
out x : Msg

x v i

#x = min(#i , 1 + #ack)

Intuitively, the sender behaves as follows: On channel x it forwards the mes-
sages it receives on channel i , in the same order, but possibly not all of them.
This safety property is denoted by the first assertion. The second assertion con-
tains both a safety and liveness part: For liveness, it demands the sender to send
at least the number of messages it receives on i ; but only as long as each message
is acknowledged; the safety part asserts that at most this number is received.

The specification pattern of the sender is typical for history specifications:
The specification is a conjunction of prefix expressions which restrict the data
values on the output channels, and (in-)equalities, which specify the length of
the output histories in terms of the length of the input histories.

2.3 Component Composition

The history relation of a composed system can be derived from the history rela-
tions of its components. Components may share input channels, but each output
channel must be controlled by only one single component. This is captured in
the definition of compatibility: Two components S1 and S2 are compatible if they
do not share output channels: OS1

∩OS2
= ∅.

The result of the composition, noted as S1 ⊗S2, is again a system specifica-
tion. Channels with identical names are connected, the output of the composi-
tion is the union of the two component’s output channels, and the input of the
composition consists of those input channels that remain unconnected.

IS1⊗S2

df

= (IS1
∪ IS2

) \ (OS1
∪OS2

), OS1⊗S2

df

= OS1
∪OS2

The behavior of the composed system is defined as the conjunction of the com-
ponent behavior predicates.

3 State Machines

State machines are a more operational way to specify dataflow components than
history relations. We use the term state machine both for the abstract syntax
(state transition systems, § 3.2) and for the concrete graphical representation
(state transition diagrams, § 3.4). The executions of state transition systems are
defined in § 3.3.

First we give a formal definition of variable valuations for an assertion. Vari-
able valuations allow us to talk about the validity of assertions in the different
states of a state machine execution.

3.1 Variable Valuations

We assume an (infinite) set Var of variable names. A valuation α is a function
that assigns to each variable in Var a value from the variable’s type. By free(Φ) we
denote the set of free variables in a logical formula Φ. If an assertion Φ evaluates
to true when each variable v ∈ free(Φ) is replaced by α(v), we write α |= Φ.

Variable names can be primed : For example, v ′ is a new variable name that

results from putting a prime behind v . We extend priming to sets V ′ df

= { v ′ | v ∈
V } and to valuations: Given a valuation α of variables in Var, α′ is a valuation of
variables in V ′ with α′(v ′) = α(v) for all variables v ∈ Var. Priming can also
be extended to predicates, functions and other expressions: If Ψ is an assertion
with free(Ψ) ⊆ V , then Ψ ′ is the assertion that results from priming all free
variables.

Note that an unprimed valuation α assigns values to all unprimed variables,
while a primed valuation β

′
only assigns values to all primed variables. If an

assertion Φ contains both primed and unprimed variables, we need two valuations
to determine its truth. If Φ evaluates to true when each unprimed variable v ∈
free(Φ) is replaced by α(v) and each primed variable v ′ ∈ free(Φ) is replaced

by β
′
(v), we write α,β

′
|= Φ. Two valuations coincide on a subset V ⊆ Var if

∀ v ∈ V • α(v) = β(v). We then write α
V

= β.

3.2 State Transition Systems

A state transition system is a tuple S = (I ,O ,A, I, T), where I ,O ,A are sets
of variables. A state of our system is described by a valuation α, that assigns

values to all variables in V
df

= I ∪O ∪A. I is an assertion with free(I) ⊆ V that
characterizes the initial states of the state transition system. T is a finite set of
transitions; each transition τ ∈ T is an assertion with free(I) ⊆ V ∪ V ′. The
tuple elements have to obey the following restrictions.

The sets I and O , with I ∩ O = ∅, contain the input and output channel
variables. The variables range over finite streams which represent the commu-
nication history to and from the component. The set A contains local state
attributes, as e.g. a variable σ for a control state and variables for data states.
Additionally, A contains for every i ∈ I a variable i◦. These variables hold the
part of the external input stream i that has already been processed by S. The
restrictions on the initialization and transition assertions defined below ensure
that i◦ v i always holds. We can therefore define i+ as the part of the message
history that has not yet been processed by i = i◦ _ i+.

The assertion I characterizes the initial states of the system. We require I
to be satisfiable for arbitrary input streams

∃α • α |= I ∧
(

∀β • β
O∪A

= α ⇒ β |= I
)

and to assert that initially no input has been processed and no output has yet
been produced:

I ⇒
∧

i∈I

i◦ = 〈 〉 ∧
∧

o∈O

o = 〈 〉

The set T contains the allowed transitions of S. Every transition τ ∈ T is an
assertion over V ∪ V ′ and relates states with their successor states. Unprimed
variables in τ are valuated in the current state, while primed variables are valu-
ated in the successor state. All transitions must guarantee that the system does
not take back messages it already sent, that it can not undo the processing of
input messages, that it can only read messages that have been sent to the com-
ponent and that it does not change the variables for input streams, since these
are controlled by the environment:

τ ⇒
∧

o∈O

o v o′ ∧
∧

i∈I

i◦ v i◦′ ∧
∧

i∈I

i◦′ v i ∧
∧

i∈I

i = i ′

In addition to the transitions in T , there is an implicit environment transition τε.
This transition is defined to allow the environment to extend the input, while it
leaves the controlled variables v ∈ O ∪ A unchanged:

τε ⇔
∧

v∈O∪A

v = v ′ ∧
∧

i∈I

i v i ′

A transition is enabled in a state α, written as α |= En(τ), iff there is a state β
such that α,β

′
|= τ .

3.3 Executions

An execution of a STS S is an infinite stream ξ of valuations that satisfies the
following three requirements:

1. The first valuation in ξ satisfies the initialization assertion:

ξ.1 |= I

2. Each pair of subsequent valuations ξ.k and ξ.(k + 1) in ξ are related either
by a transition in T or by the environment transition τε:

ξ.k , ξ′.(k + 1) |= τε ∨
∨

τ∈T

τ

3. Each transition τ ∈ T of the STS is taken infinitely often in an execution,
unless it is disabled infinitely often (weak fairness):

(∀ k • ∃ l ≥ k • ξ.l |= ¬ En(τ)) ∨ (∀ k • ∃ l ≥ k • ξ.l , ξ ′.(l + 1) |= τ)

By 〈〈S〉〉 we denote the set of all executions of a system S.

3.4 State Transition Diagrams

Typically, state transition systems are specified by state transition diagrams

(STDs). We use a subset of the STD syntax from the CASE tool AutoFocus

[9]. STDs are directed graphs where the vertices represent (control) states and
the edges represent transitions between states. One vertex is designated as initial

state; graphically this vertex is marked by an opaque circle in its left half. Edges
are labeled; each label consists of four parts, represented by the following schema:

{Precondition} Inputs B Outputs {Postcondition}

Inputs and Outputs stand for lists of expressions of the form i?x and o!exp (i ∈
I , o ∈ O) respectively, where x is a constant value or a (transition-local) variable
of the type of i , and exp is an expression of the type of o. The Precondition is a
boolean formula containing data state variables and transition-local variables as
free variables, while Postcondition and exp may also contain primed variables.
The distinction between pre- and postconditions does not increase the expres-
siveness, but improves readability. If the pre- or postconditions are equivalent to
true, they can be omitted.

The informal meaning of a transition is as follows: If the available messages
on the input channels can be matched with Inputs , the precondition is true and
the postcondition can be made true by assigning proper values to the primed

SenderPSfrag replacements

Transmit WaitAck

i?d
�

x !d

ack?b
�

ReceiverPSfrag replacements y?d
�

o!d , req ! �

ReceiveInit
�

req ! �

Queue

PSfrag replacements

Empty Nonempty

Full

x?d � ack ! � {q ′ = q _ 〈d〉}

{#q = 1} req?b � y !ft.q {q ′ = rt.q}

{#q > 1} req?b � y !ft.q {q ′ = rt.q}

{#q < N − 1} x?d �
ack ! � {q ′ = q _ 〈d〉}

{#q = N − 1} x?d �
{q ′ = q _ 〈d〉}

req?b � ack ! � , y !ft.q {q ′ = rt.q}

var q : Msg∗ = 〈 〉

Fig. 2. Sender, Receiver and Queue STDs

variables, then the transition is enabled. If the transition is executed, the inputs
are read, the outputs are written and the postcondition is made true.

Figure 2 shows the STDs of sender, queue and receiver of the transmission
system (see Fig. 1). Again, we focus on the sender component: If the sender
receives some data d on channel i , this message is immediately forwarded on x ,
and the system starts waiting for an acknowledgment message on channel ack .
When the acknowledgment is received, the sender is ready to receive the next
message from i .

State transition diagrams can be encoded schematically as state transition
systems. For the sender component, the variable sets are defined as follows:
I = {i , ack}, O = {x} (see Fig. 1), A = {i◦, ack◦, σ}. The state attributes
consist of the processed message stream for each of the two input channels, and
a variable σ to hold the current control state.

The initial assertion I of the sender is defined as:

σ = Transmit ∧ i◦ = 〈 〉 ∧ ack◦ = 〈 〉 ∧ x = 〈 〉

The transition τ1 from the state Transmit to the state WaitAck in the sender
STD is encoded as the following assertion:

∃ d . σ = Transmit We move from the source state

∧ σ′ = WaitAck to the target state.

∧ #i◦ < #i There are unread messages in channel i .

∧ ft .i+ = d Let d be the first of them,

∧ i◦′ = i◦ _ 〈d〉 which we consume

∧ x ′ = x _ 〈d〉 and send on channel x ,

∧ ack◦′ = ack◦ whereas we don’t read from channel ack ,

∧ i = i ′ ∧ ack = ack ′ and leave the input channels unchanged.

The second transition τ2 of the sender can be encoded similarly. Note that the
initialization and transition assertion obey the restrictions from § 3.2.

The queue and receiver components lead to similar transition assertions. In
case of the queue component, there is an additional variable q in A. Initially,
q = 〈 〉; the transitions change q according to the queue STD. A more detailed
explanation of the translation of STDs to STS assertions can be found in [2].

4 Verification Rules

A common technique for formalizing and verifying properties of state transition
system executions is temporal logic [11]. For the state machines of § 3 we are
not interested in general temporal logic properties, but only in two special cases:
invariants for safety properties and leadsto properties for liveness. This section
introduces verification rules for these two property classes. Soundness proofs of
these and other rules —expressed in a UNITY-like formalism— can be found in
[2].

Note that both invariance and leadsto properties relate single states in an
STS execution; in § 5 these properties are used to express properties about the
complete communication history of executions.

4.1 Invariance Properties

To show that a STS S fulfills a safety property, we use invariants. For a system
S = (I ,O ,A, I, T), an assertion Φ with free(Φ) ⊆ I ∪ O ∪ A is an invariant,
written as S |= 2Φ, if Φ evaluates to true for each state in all executions of S:

S |= 2Φ ⇔ ∀ ξ ∈ 〈〈S〉〉 • ∀ k • ξ.k |= Φ

To prove Φ to be an invariant, we have to show that Φ holds initially, and
remains true under each transition τ ∈ T as well as under the environment
transition τε:

I ⇒ Φ

Φ ∧ τ ⇒ Φ′ for all τ ∈ T
Φ ∧ τε ⇒ Φ′

S |= 2Φ

Example. For the sender, the output on channel x is always equal to the sequence
of messages from i that have already been consumed:

Sender |= 2 x = i◦

The first condition of the invariant rule is fulfilled, since for the sender initially
both x and i◦ are empty (see § 3.4). The other two premises are fulfilled since the
sender transition τ1 appends a single message to both x and i◦; for transitions
τ2 and τε we observe that both x and i◦ remain unchanged.

4.2 Leadsto Properties

Progress of a system can be expressed using the leadsto operator Φ ; Ψ , which
states that whenever Φ is true for a state in an execution, then Ψ will be true in
the same or in a subsequent state in the execution. Usually, the leadsto operator
is defined in temporal logic as 2(Φ ⇒ 3Ψ), but for our purposes the following
semantic definition of S |= Φ ; Ψ is sufficient:

S |= Φ ; Ψ ⇔ ∀ k • (ξ.k |= Φ) ⇒ (∃ l ≥ k • ξ.l |= Ψ)

For the leadsto operator, too, there are verification rules:

For all transitions τ ∈ T ∪ {τε}:
Φ ∧ ¬ Ψ ∧ τ ⇒ Φ′ ∨ Ψ ′

For a transition τ ∈ T :
Φ ∧ ¬ Ψ ⇒ En(τ)

and
Φ ∧ ¬ Ψ ∧ τ ⇒ Ψ ′

S |= Φ ; Ψ

For a transition τ ∈ T :
#o = k ∧ k < L ⇒ En(τ)

and
#o = k ∧ k < L ∧ τ ⇒ #o′ > k

S |= #o = k ∧ k < L ; #o > k

The first rule is a standard verification rule for liveness under weak fairness
[10, 11]: There is a helpful transition τ ∈ T which is enabled in all states where
Φ holds, and which leads into a state where Ψ holds (second premise). The other
transitions are not harmful in that they leave Φ invariant. Thus, the helpful
transition remains enabled until it is, by weak fairness, executed. The second
rule, the output extension rule, is a specialization of the first rule. It is used to
prove that an output stream exceeds a certain length k provided that sufficient
input is available. This can be described by an N-valued length expression L with

free(L) ⊆ I which is monotonic in its free variables. The main difference to the
first rule is that it is not necessary to show the safety premises of the first rule:
For this special case they hold trivially, since channel valuations are monotonic
with respect to v, and due to its monotonicity the length expression L can be
proven to be nondecreasing [2]. The left hand side of the output extension’s
conclusion rule can be strengthened by an arbitrary predicate Ψ , if the left hand
sides of the premises are also strengthended by Ψ .

Besides the two rules above, there are a number of additional rules for the
leadsto operator: transitivity, weakening of the right hand side, strengthening
of the left hand side. The disjunction rule combines two leadsto properties: If
S |= Φ1 ; Ψ and S |= Φ2 ; Ψ , then also S |= (Φ1 ∨ Φ2) ; Ψ . Moreover,
invariants can be introduced and eliminated on both sides of the operator.

Example. Again regarding the sender, we want to show

Sender |= #x = k ∧ k < min(#i , 1 + #ack) ; #x > k

which expresses that the output on x is extended, provided there is sufficient
input on i and ack expressing that the length of the output on x is reaching at
least the limit min(#i , 1 + #ack).

For σ = Transmit , we use the output extension rule with τ1 as the helpful
transition, since it produces output on x . The last condition of the rule is easy
to prove, since τ1 implies the extension of x by x ′ = x _ 〈d〉, so that #x =
k ∧ τ1 ; #x ′ > k is trivial. For the second condition we have to prove that τ1

is enabled. If we assume σ = Transmit , it is enabled iff there is some message
on the channel i , i.e. iff i is longer than its consumed part i◦. Using the safety
invariant from above, this can be derived as follows:

#i ≥ min(#i , 1 + #ack) > k = #x = #i◦

For σ = WaitAck , transition τ1 is not enabled. Instead, we use the standard
weak fairness rule to show that by transition τ2 state WaitAck is entered. The
two results can be combined with the transitivity and disjunction rules to derive
the property

Sender |= ((σ = WaitAck ∨ σ = Transmit)

∧ #x = k ∧ k < min(#i , 1 + #ack)) ; #x > k

It can be shown that σ = WaitAck ∨ σ = Transmit is an invariant; its elimina-
tion results in the property above [2].

5 History Properties

We introduced two ways to specify reactive systems: history relations and state
machines. The two views describe quite different views on a system: Using the
black box views of history relations, we model the I/O behavior with streams;

the relations do not refer to any internals of the components and do not describe
how this behavior is achieved. Using state machines we concentrate on single
steps of the system, referring to the component internals. In this section, we
close the gap between state machines and black box views.

Within a state machine execution ξ, changes in the valuations for the input
and output variables in I ∪ O are restricted to extensions. Thus the valuations
of each input and output variable within an execution form a chain, and for each
execution and each variable v ∈ I ∪O there is a least upper bound

dξe(v)
df

=
⊔

{ (ξ.k)(v) | k ∈ N }

Note that dξe(v) is only defined for the input and output variables, not for the
attribute variables A of a state machine.

The black box view of a state machine is a set of valuations for the variables
I ∪O . It is denoted by [[S]] and defined via the least upper bounds of the input
and output histories of the machine’s executions. For each execution ξ in 〈〈S〉〉,
there is a valuation α in [[S]] which assigns to the channel variables in I ∪O the
limits of the channel variable valuations of ξ:

[[S]]
df

= { α | ∃ ξ ∈ 〈〈S〉〉 •
∧

i∈I

α(i) = dξe(i) ∧
∧

o∈O

α(o) = dξe(o) }

Since both the proper transitions τ ∈ T and the environment transition τε of
a state machine allow arbitrary extension of the input variable valuations, it is
possible to successively approximate an arbitrary input history. This means that
the black box view [[S]] is total with respect to the input variables of S: For an
arbitrary input there is always some reaction of the system. Formally, this reads
as: For each valuation α for the variables I ∪ O there exists a valuation β for
I ∪O such that

α
I

= β and β ∈ [[S]]

5.1 Safety Properties

In practice, it is difficult to directly use the black box semantics [[S]] of a state
machine. Instead, we derive properties of the black box view from properties
of the state machine. Technically, a property of the black box view [[S]] is a
predicate Φ with free(Φ) ⊆ I ∪O which is valid for each valuation in a system’s
black box view:

∀α ∈ [[S]] • α |= Φ

We then write [[S]] ⇒ Φ.

If Φ is an admissible invariance property of a state machine, it holds not only
in every state of a system run, but also for the complete communication history:

free(Φ) ⊆ I ∪O

adm Φ

S |= 2Φ

[[S]] ⇒ Φ

The validity of the rule follows from the fact that the valuations of the channel
variables I and O form a chain. Because it is invariant, Φ holds for every element
of the chain. Because of admissibility, it also holds in the limit.

Example. In § 4.1 we showed that x = i◦ is an invariant of the sender. Moreover,
x v i is also an invariant since i◦ v i . This predicate is also admissible [12], and
thus we can directly conclude

[[Sender]] ⇒ x v i

This means that the sender STD implies the first half of the sender’s history
specification in § 2.2. Similarly, we can show [[Sender]] ⇒ #x ≤ 1 + #ack .

5.2 Progress Properties

In general, progress properties expressed with the leadsto operator ; cannot be
lifted to complete executions. However, output extension properties (§ 4.2) can
be used to derive liveness properties of a state machine’s black box view. In the
following rule, L is a monotonic N-valued expression with free(L) ⊆ I , as used
in the output extension rule.

S |= #o = k ∧ k < L ; #o > k

[[S]] ⇒ #o ≥ L

To see the validity of the rule, assume that the premise holds, but not the
conclusion. Thus, there is an execution ξ of S such that the length of the limit
of the channel valuations for o is strictly less than the limit of the valuations of
L; in particular, it is equal to a natural number k . This means that there is an
earliest state ξ.n in the execution where the length of the output valuation for o

reaches k . Moreover, there is a state ξ.m where L is larger than k . Since channel
valuations cannot become shorter, and L is monotonic, this means that in all
states ξ.p, where p ≥ max (n,m) the left hand side of the premise is fulfilled, but
the right hand side never holds. This violates the assumption that the premise
is valid.

Example. In § 4.2 we showed

Sender |= #x = k ∧ k < min(#i , 1 + #ack) ; #x > k

We can now directly use the above rule to derive

[[Sender]] ⇒ #x ≥ min(#i , 1 + #ack)

Together with the safety properties shown above, this implies the second part of
the sender’s history specification.

6 Black Box Composition

We now have a closer look on the complete transmission system of Fig. 1. The
sender pushes data to the queue and waits for acknowledgments and the receiver
requests data from the queue; the queue itself stores up to N (N ≥ 2) data
messages.

The behavior of the three components is defined in Fig. 2 by STDs. Using
the techniques of this paper, we can show that the receiver and the queue imply
the following history relations:

Queue(N)
in x : Msg, req : Signal
out ack : Signal, y : Msg

y v x

#y ≥ min(#x , #req)
#ack = min(#x , #req + N − 1)

Receiver

in y : Msg
out req : Signal, o : Signal

o v y

#o ≥ #y

#req = 1 + #y

By black box composition, the history relation of the complete system is
specified as follows. The behaviour is simply described by the conjunction of the
component properties.

System(N)
in i : Msg
out o : Signal, x : Msg, ack : Signal, y : Msg, req : Signal

x v i

y v x

o v y

#x = min(#i , 1 + #ack)

#y ≥ min(#x , #req)
#ack = min(#x , #req + N − 1)

#o ≥ #y

#req = 1 + #y

From the specification of System(N) above, we can immediately see that the
output is a prefix of the input: o v y v x v i . Using the inequalities it can also

be shown by some case analysis that the length of the output equals the length
of the input. Together, this implies

o = i

for all input streams i . As expected, the system implements the identity relation.
The same result could have been obtained by first composing the three com-

ponent state machines, and then deriving o v i and #o ≥ #i ; the number
of verification conditions for the invariance and leadsto properties would have
been much higher, however. For the composition of dataflow properties, history
relations seem to be the more adequate abstraction level.

7 Conclusion

In this paper we showed how state-based and history-based specification and
verification techniques for safety and liveness properties of distributed systems
can be combined. State machine properties are expressed using a standard linear
temporal logic; history properties are expressed as relations between input and
output streams.

In a related technical report [2] we also allow composition at the level of state
machines; properties proven for the combined system are shown to hold also for
the black box composition of a system. That our system is compositional is due
to the dataflow nature of our systems: Components cannot disable transitions
of other components, thus the system is interference free. This is quite useful
in practice, since it is often hard to find suitable history predicates for each
component, although the complete system behavior can be succinctly specified
in this way. State machine composition also helps to circumvent the mismatch
between purely relational dataflow specifications and the operational intuition
that was discovered by Brock and Ackermann [3].

Proofs for larger systems, especially for leadsto properties, are often quite
complex. A solution might be to use verification diagrams along the lines of
[4, 11], which reduce temporal reasoning to simple first-order verification condi-
tions. Since the number of verification conditions for concrete systems can be
quite large, some kind of tool support is needed. As an experiment, the safety
properties of the communication system example have been verified using the
STeP [1] proof environment; currently, we are formalizing our approach in Is-
abelle/HOL [13].

Our specification and proof techniques are so far only suited for time in-
dependent systems. The extension of history-based specifications raises some
interesting questions [5]. A straightforward solution might be to explicitly in-
clude “time ticks” in the message streams. Such time ticks can also be used
to ensure progress of a state machine. But also without explicit time, progress
is not restricted to the weak fairness condition of § 3.3. An alternative would
be to just demand that some transition is taken whenever at least one transi-
tion is persistently enabled; some classes of components, in particular fair merge

components would then require additional oracle inputs.

Acknowledgments This report benefited from many stimulating discussions
with Manfred Broy. We thank Katharina Spies for comments on a draft version
of this report, and one anonymous referee for his very detailed remarks.

References

1. N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. B. Sipma, and
T. E. Uribe. STeP: Deductive-Algorithmic Verification of Reactive and Real-time
Systems. In CAV’96. Lecture Notes in Computer Science 1102, pages 415–418,
1996.

2. M. Breitling and J. Philipps. Black Box Views of State Machines. Technical Report
TUM-I9916, Institut für Informatik, Technische Universität München, 1999.

3. J. D. Brock and W. B. Ackermann. Scenarios: A model of nondeterministic com-
putation. In J. Diaz and I.Ramos, editors, Lecture Notes in Computer Science 107,
pages 225–259, 1981.

4. I. A. Browne, Z. Manna, and H. B. Sipma. Generalized temporal verification
diagrams. In Lecture Notes in Computer Science 1026, pages 484–498, 1995.

5. M. Broy. Functional specification of time sensitive communicating systems. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Models, Formalism,

Correctness. Lecture Notes in Computer Science 430, pages 153–179. Springer,
1990.

6. M. Broy. From states to histories. In Engineering Theories of Software Con-

struction. NATO Science Series F, Marktoberdorf Summer School, 2000. To be
published.

7. M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber.
The Design of Distributed Systems: An Introduction to Focus—Revised Version.
Technical Report TUM-I9202-2, Institut für Informatik, Technische Universität
München, 1993.

8. M. Broy, F. Huber, B. Paech, B. Rumpe, and K. Spies. Software and system mod-
eling based on a unified formal semantics. In M. Broy and B. Rumpe, editors,
Requirements Targeting Software and Systems Engineering, International Work-

shop RTSE’97. Lecture Notes in Computer Science 1526. Springer, 1998.
9. F. Huber, B. Schätz, A. Schmidt, and K. Spies. Autofocus—a tool for distributed

systems specification. In Proceedings FTRTFT’96 — Formal Techniques in Real-

Time and Fault-Tolerant Systems. Lecture Notes in Computer Science 1135, 1996.
10. L. Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages, 6(3):872–923, May 1994.
11. Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609–678,

1993.
12. L. C. Paulson. Logic and Computation. Cambridge University Press, 1987.
13. L. C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in Computer

Science 828. Springer, 1994.

