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Abstract

Model-based development relies on the use of explicit models to de-
scribe the development process including its activities and products.
Among other things, the explicit existence of process and product
models allows for the definition and use of complex development steps
that are correct by design (refactorings), for generating proof obliga-
tions after a given transformation (run a certain automatically gen-
erated test suite), for requirements tracing, and for documenting the
process. Our understanding of model-based development in the con-
text of embedded systems is exposed. We discuss domain-specific
modeling languages, and argue for machine support in model-based
development.

1 Introduction

Intuitively, model-based development means to use diagrams instead of code:
Class or ER diagrams lend themselves to data modeling, Statecharts or
SDL process diagrams abstractly specify behavior. CASE tool vendors often
praise their tools to be model-based, by which they mean that their tools are
equipped with graphical editors and with generators for code skeletons, for
simulation code or even for production code.

However, we do not believe that model-based development should be
regarded as the mere application of “graphical domain-specific languages”.
Instead, we see model-based development as a paradigm for system develop-
ment that besides the use of domain-specific languages includes explicit and
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operational descriptions of the relevant entities that occur during develop-
ment in terms of both product and process. These descriptions are captured
in dedicated models:

Process models allow the description of design activities. Because of the
explicit description, activities are repeatable, undoable and traceable.
Activities include low-level tasks like renamings and refactorings, but
also higher-level domain-specific tasks like the deployment of abstract
controller functionalities on a concrete target platform.

Product models contain the entities that are used for the description of the
artifact under development and the necessary parts of its environment,
as well as the relations between these entities.

All activities in the process models are defined in terms of the entities
in the product models.

We believe that many important problems in industry like the coupling of
different tools for different development aspects (e.g., data aspects, behavior
aspects, scheduling and resource management aspects) are still unsolved be-
cause of a lack of an underlying coherent metaphor. We see explicit product
and process models as a remedy to this problem.

Overview. In this paper, we provide a rather abstract treatment of our un-
derstanding of model-based development. As application domain, we choose
that of embedded systems, but the general ideas apply to other domains as
well. The article’s remainder is organized as follows. We kick off with the
basic idea of explicit process and product models in Section 2. The essence of
product and process models is described in Sections 3 and 4, respectively. In
Section 3, we explain in more detail how model-based development naturally
lends itself to consistency-by-design and supports the development process.

The incorporation of this paper’s ideas in a CASE tool is sketched in
Section 6. Related work is presented in Section 7, and Section 8 concludes.
We assume some familiarity with the basic concepts of description techniques
like the UML, and the UML-RT, or ROOM, respectively, as well as some
basic knowledge of SCR, the RUP, and AOP. Knowledge of these processes
or paradigms is, however, not necessary for understanding the fundamental
ideas.

2 Models

This section gives a first overview of our understanding of model-based de-
velopment. We briefly discuss (a) restriction of the power of general purpose
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languages as a key to intellectual mastery of the artifacts under development
(Sec. 2.1), (b) separation of concerns (Sec. 2.2), (c) the necessity of explicit
process and product models (Sec. 2.3), and (d) the different layers of these
models (Sec. 2.4).

2.1 Abstraction and restriction

The shift from assembler towards higher languages like C or Ada essentially
reduces to the incorporation of abstractions for control flow (sequence, al-
ternative, repetition and—in modern languages—exceptions), data descrip-
tions (record and variant types), and program structure (modules) into these
higher languages [23, 41]. Garbage collectors or middleware like CORBA or
.NET are further examples of increasingly abstract development. We con-
sider model-based development to be a further step in this direction. It aims
at higher levels of domain-specific abstractions as seen, at a low level, in the
abstraction step that was performed in lex. In the field of embedded con-
trollers, the concepts of capsules, ports, and connectors of, for instance, the
UML-RT are used as well as state machines for the description of compo-
nent behavior. That these abstractions have intuitive graphical descriptions
is helpful for acceptance, but not essential for the model concept. Further-
more, in model-based development there is no need to exclusively rely on one
particular description technique, or rather the underlying concept.

What are the advantages of model-based development? One advantage is
independence of a target language: Models can be translated into different
languages like C or Ada for implementation. For graphical simulation, other
languages (Java or dedicated multimedia languages) are likely better suited.
Again, this is in analogy with the abstraction step, or, inversely, compila-
tion of programming languages: C code can be translated into a number of
different assembler languages.

The key advantage, however, is that the product model, i.e., for now
roughly the abstract syntax of a modeling language, restricts the “degrees
of freedom” of design in comparison with programming languages. This is
akin to modern programming languages that restrict the design freedom of
assembler languages by enforcing standard schemes for procedure calls, pro-
cedure parameters and control flow. In a similar sense, Java restricts C++ by
disallowing, among other things, explicit pointers and multiple inheritance.
Ada subsets like Ravenscar or SPARK [1] explicitly restrict the power of the
language, e.g., in terms of tasks. The reason is that these concepts have
proved to yield artifacts that are difficult to master.

Model-based development incorporates the aspects of abstraction and
restriction in high level languages. This happens not only at the level of the
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product but also at the level of the process.

2.2 Separation of concerns

The essence of model-based development is an integrated development with
models, i.e., abstractions. Working with possibly executable models not only
aims at understanding requirements and better documentation of require-
ments, functionality, and design decisions. Models may also be used for
generating simulation and production code as well as test cases. We consider
the integration of different models at possibly different levels of abstraction
as the key to higher quality and efficiency of the process we propose. Inte-
gration is concerned with both products and processes, on a horizontal as
well as a vertical level.

Horizontally, different aspects have to be integrated. These aspects re-
flect a separation of concerns by means of abstractions. They deal
with concepts like structure, functionality, communication, data types,
time, and scheduling. Structural abstractions concern logical as well
as technical (deployment) architectures, and their relationship. Func-
tional abstractions may discard details of the actually desired behav-
ior of the system. Communication abstractions allow the developer to
postpone decisions for synchronous and asynchronous, or hand-shaking
and fire-and-forget communications. Data abstractions allow the en-
gineer to work with data types at a level of granularity that increases
over time and that helps in building functional, communication, and
structural abstractions. Finally, timing and scheduling abstractions en-
able the developer to neglect the actual scheduling of components—or
even abstract away from timing by relying solely on causality—in early
development phases. Other aspects like security, fault tolerance, or
quality-of-service must, in certain applications, be considered as well.
We are aware that these aspects are not entirely orthogonal one from
another. However, thinking in these terms allows for better structuring
systems. We will get back to this issue in Section 5.1 with an example.

Vertically, different levels of abstraction1 for each of the above aspects have
to be brought together in a consistent manner. This applies to both
integrating different structural abstractions and integrating structure

1Note that the term abstraction is used in an ambiguous manner: abstractions in
the mathematical sense (i.e., formally, implications) and abstractions on a conceptual
level where constructs for describing one view of a system are considered (i.e., ontological
entities).
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Figure 1: Model-based development

with functionality and communication. Furthermore, different levels of
abstractions in all areas have to be interrelated: Refinements of the
black box structure have to be documented and validated, and the
same is obviously true for functional and data refinements. Since in
a sense, possibly informal requirements also constitute abstractions,
tool supported requirements tracing is a must for such a model-based
process.

In an incremental development process, increments (or parts of a product)
have to be integrated over time (Figure 1). While this figure suggests that the
concepts of level of abstraction and increments are orthogonal, one might well
argue that a refinement step does constitute an increment. The reason for
the distinction is that abstractions and refinements form special increments
the correctness of which might, in a few cases, be proved or automatically
tested.

2.3 Process and product models

In the UML, the notion of a model is used to describe the elements and con-
cepts used during the development process, e.g. class, state, or event. Since,
however, this distinction is too coarse for the description of the model-based
approach, here more fine-grained notions of models will be used: process,
product, conceptual, and system models. In the following, these models are
explained in more detail and related to each other. We use the domain of
embedded systems development and the CASE tool AutoFocus [16] with
its UML-RT-like description techniques for illustration. Figure 2 gives an
overview of the models under consideration and their relation.
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Figure 2: Models in the CASE development process

The first two models are used to describe the development process from
the engineer’s and thus the domain model point of view:

Process model: The process model consists of the description of activ-
ities of a development process and their relations. In the domain of
embedded reactive systems, for instance, the process model typically
contains modeling activities (e.g., “define system interface”, “define be-
havior”, “refine behavior”) as well as activities like “generate scenarios
or test cases”, “check refinement relation”, or “compute upper bound
for worst case execution time”. The activities can be related using a
dependency relation between activities and thus a possible course of
activities throughout the development process. By relating them to
a product model, process patterns can be formalized as activities and
thus integrated in the process model.

Product model: The product model consists of the description of those
aspects of a system under development explicitly dealt with during the
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development process and handled by the development tool. For em-
bedded systems, a product model typically contains domain concepts
like “component”, “state”, “variable”, or “message”, as well as rela-
tions between these concepts like “is a port of a component”, etc. In
addition to these more conceptual elements, used for the description
of the product, more semantically oriented concepts like “assignment
of variables” or “execution trace” are defined to support, for example,
the simulation of specifications during the development process. Fi-
nally, it contains process oriented product concepts like “scenario” or
“test case”, supporting the definition of process activities.

Process and product models together form the domain model. Figure 3
shows the relationship between the different kinds of models.

2.4 Model levels

As mentioned above, models are used in a model-based development

• to structure and restrict the development process and the products
under development,

• and to support the generation of the instances of models (the products
of the process).

To decide what models (and instances) are needed in a model-based approach,
two different points of views an be taken: the methodical, and the CASE-
oriented points of view. As mentioned above, from a methodical point of
view, models are useful at three levels:

Process level: The entities and relations on the process level describe ac-
tivities of the development process and their relations. They are used
to guide the process. Their definition is done on top of the elements of
the conceptual model. Section 4 describes the process model in more
detail.
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Conceptual level: The entities and relations on the conceptual level de-
scribe the elements used to construct products. They are used to de-
scribe the product, and they are visualized by means of description
techniques. Section 3 contains examples of these entities and relations.

System level: The entities and relations on the system level describe the
meaning of the conceptual model. The system model is used to define
process activities or to describe and validate their properties. Section
3 treats this in more detail.

From a CASE-oriented point of view, models (and instances) span the
following three categories:

Meta level: The meta model is defined at (or before) ‘build time’ of a
CASE tool to describe how domain specific models can be built. It is
needed for a generic approach, i.e., if different domain-specific instances
of the CASE tool are built. Models of the meta model level are gener-
ally domain-independent. For the process as used in the AutoFocus
approach, a process meta model is shown in Figure 7.

Domain level: The domain level is defined at ‘build time’ of a CASE tool
to describe the process activities supported by the tool, its modeling
concepts, and their meaning. To support a reasonable development
process, domain-specific restrictions are necessary. Thus, all models
of this level are—more or less—domain-specific. The models of the
domain level (i.e., domain process model, domain concept model, and
domain system model) are instances of corresponding meta models.
A simplified version of a conceptual model as used in AutoFocus is
shown in Figure 5.

Instance level: The instance level is defined at ‘run time’ of a CASE tool
to describe the actual activities that are are performed as well as the
products that are built. From the point of the engineer who uses the
CASE tool, it is the level of the product under development. The
instances at this level (a specific development, a product description,
and the semantics of this description) are instances of models of the
domain level. Figure 6 illustrates how instances of the conceptual model
are related to the conceptual model.

Figure 4 shows examples of models and instances according to these two
different dimensions.
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Figure 4: Models and instances

3 Product

The product model describes the aspects, concepts and their relations needed
to construct a product during the development process. Thus, it supplies the
‘language’ to describe a product. Usually, this language is represented using
view based description techniques like structural, state oriented, interaction
oriented, or data-oriented notations. The concrete product itself is an in-
stance of the product model, for example represented by system structure
diagrams, state transition diagrams, or MSC-like event traces.

Since process activities are defined as changes of instances of the product
model, a process model can only be defined on top of a product model.
The granularity of a product model also defines the expressiveness and thus
the quality of the process model. Using both models, detailed development
processes can be described, accessible to CASE support.

3.1 Structure of the product model

While the ‘abstract syntax’ is sufficient to describe conceptual relations of
abstract views or the functionality of modeling activities during the process,
a semantical relation is needed to define or verify more complex semantical
dependencies of views as well as properties of activities (like refining activities
or activities not changing the behavior as, e.g., refactoring).
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Figure 5: Simplified version of a conceptual product model

Since the semantical and the conceptual part of the product model are
used differently in the model-based approach, the product model is broken
up into two sub models:

Conceptual model: The conceptual model consists of the modeling con-
cepts and their relations used by the engineer during the development
process. The instances of the conceptual model are the descriptions
of the system under development constructed by the engineer. Thus,
from a CASE-oriented point of view, the conceptual model is the ‘data
model’ of products explicitly handled by the tool. Therefore, the con-
ceptual model can be described as a class diagram (see 5 for a simplified
version) extended with conceptual consistency conditions as described
below.
The conceptual model is independent of its concrete syntactic represen-
tation used during the development process. Typical domain elements
of a conceptual model for embedded systems are concepts like ‘com-
ponent’, ‘port’, ‘channel’, ‘state’, ‘transition’, etc. Typical relations
between concepts are ‘is port of’, ‘is behavior of’, ‘is substate of’, etc.
Figure 5 shows a simplified part of the AutoFocus conceptual model.
Besides these low-level concepts, concepts like ‘requirement’ or ‘test
case’ including relations like ‘discharged by’ or ‘is test case of’ as well
as counterparts of semantical relations like ‘is refinement of’ are in-
cluded.
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Figure 6: Models and Views

System model: The system, or semantical, model consists of semantical
concepts needed to describe the system under development. These se-
mantical concepts are given in form of a theory, e.g. an extension of
Higher Order Logic. By mapping instances of the conceptual model
(i.e., system descriptions) to instances of the system model (i.e., terms
of the theory), a semantics of the descriptions is defined. The system
model is outside of the CASE tool and used either at ‘build time’ or at
‘run-time’ through atomic operations (like in Subsection 5.2).
Typical elements expressed in this theory are ‘variable assignment’ or
‘execution sequence’. Typical relations are ‘behavioral refinement’ or
‘temporal refinement’.

As shown in Figure 6, the notion of the conceptual model is closely related
to the notion of views and description techniques. Views of a product corre-
spond to abstractions of an instance of the conceptual model (e.g., horizon-
tally: structure, communication; vertically: component, subcomponent) and
are represented using description techniques.

3.2 Application of models

The purpose of the product model is to support a more efficient and sound
development process by providing a domain-specific level of development.
For the engineering process, the model is used transparently through views
of the model in form of description techniques as described above and inter-
action mechanisms supporting the development process. Two mechanisms
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can be used: consistency conditions and the definition of process activities.
Consistency conditions exist at three different levels:

Invariant conceptual consistency conditions: These conditions are ex-
pressible within the conceptual model. They hold invariantly through-
out the development process. Therefore, they are enforced by con-
struction of instances of the conceptual model. Since generally only
simple consistency conditions are enforced as invariant consistency con-
ditions, they can be defined as multiplicities of relations of the concep-
tual model. Examples are syntactic consistency conditions as used in
AutoFocus like ‘a port used during the interaction of a component is
part of the interface of the component’ or ‘a channel and its adjacent
ports have the same types’.

Variant conceptual consistency conditions: Like the invariant concep-
tual conditions, these conditions can be expressed completely within
the conceptual model. However, unlike those, they may be relaxed
during certain steps of the development process and are enforced dur-
ing others. Examples are methodical consistency conditions like ‘the
dependency graphs of variable assignments are non-circular’ in SCR,
or ‘all transitions leaving a state have disjoint patterns thus ensuring
deterministic behavior’ in AutoFocus.

Semantic consistency conditions: These conditions are not expressible
in the conceptual model. Since, generally, they cannot simply be en-
forced, the validity of these conditions is not guaranteed throughout
the development process but must be checked at defined steps of the
process. Examples are semantic conditions as in AutoFocus: ‘the be-
havior of an event trace of a component is a refinement of the behavior
of the component’, or ‘the timing behavior of a component respects its
worst case time bounds’.

In general, the distinction between invariant and variant conceptual consis-
tency conditions is a matter of flexibility and rigorousness of the development
process supported by the underlying model. In the AutoFocus approach
we use CCL (Consistency Constraint Language, [31]) to define conceptual
consistency conditions. Similar to the OCL, it corresponds to a first order
typed predicate calculus with the types (classes) and relations (associations)
of the conceptual model; expressions are evaluated using an instance of the
conceptual model as universe. AutoFocus offers an evaluation mechanism
for CCL expressions returning all counterexamples of the current instance of
the conceptual model.
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Variant conceptual consistency conditions as well as generic primitive
operations of the conceptual model (introducing and removing instances of
elements and relations) provide the base operations needed to access the
conceptual model from the process point of view. Together with the seman-
tic operations like checking of semantical consistency conditions they form
the basic activities of a development process as explained in more detail in
Section 4.

Variant conceptual consistency conditions as well as generic primitive op-
erations of the conceptual model (introducing/removing instances of elements
and relations) provide the base operations needed to access the conceptual
model from the process point of view. Together with the semantic opera-
tions like checking of semantical consistency conditions they form the basic
activities of a development process as explained in section 4.

4 Process

As mentioned above, the justification of the product model is its application
in the definition of a process model. By the use of a detailed product model
we can

• give a detailed definition of the notions of phase and activity in terms
of how they interact with the conceptual model,

• increase the soundness of the development process by introducing se-
mantical consistency conditions or sound activities with respect to the
system model, and

• most importantly, add CASE support to the process to increase effi-
ciency of development.

4.1 Structure of the process model

As shown in Figure 7, a simplified process model consists of

Phases: Phases define a coarse structure of a process. They can be associ-
ated to conditions that must be satisfied before or after the phase. Each
phase has an associated set of activities that can be performed during
this phase. Typical examples are phases like “requirements analysis”
or “module implementation”. Simplified examples for corresponding
conditions are “each requirement must be mapped to an element of the
domain model” to hold at the end of requirements analysis or “each
component has an implementable time-triggered behavior” to hold at
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Figure 7: AutoFocus meta process model

the end of the implementation phase. Using the consistency mech-
anism, development is guided by checking which conditions must be
satisfied to move on in the process.

Activities: In contrast to the unstructured character of a phase, an ac-
tivity is an operationally defined interaction with an instance of the
conceptual model and thus executable. An activity can be extended
with a condition stating its applicability at the current stage for user
guidance. An activity is either a generic operation generated from the
conceptual model, an atomic operation supplied by the system model,
for example checking semantic consistency, or a complex operation con-
structed from the basic operations.

In more complex processes, phases and activities usually consist of sub-phases
and sub-activities, respectively. Since phases and activities are defined in
terms of the product model, their dependencies can be expressed in terms
of the product rather than in generally unspecific ways as found in general
process description languages [10].

Examples for basic operations include simple construction steps like “gen-
eration of a new state of a component” or “introduction of a new transi-
tion into the state-description of a component”. Complex operations include
refactoring steps like “pull up a subcomponent out of its super-component
to become a component of the same level (involving a change in the subcom-
ponent relation and a relocation of ports and channels)” or application of
pattern or specification modules as described by Huber and Schätz [32].

Process activities generally consist of a collection of simple and complex
operations to be applied during an activity. Complex operations can be
defined in the form of extended pre/post-conditions, describing a transfor-
mation of instances of the conceptual model. In the AutoFocus approach
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those operations can be defined in ODL (Operation Definition Language,
[31]), an extension to the OCL-like CCL introduced above. ODL allows to
precisely define the pre- and postconditions (including user interaction) of an
operation in terms of the instance of a conceptual model. ODL definitions
are executable but come in a logical form that supports the verification of
conceptual properties of the operation like stability w.r.t. consistency condi-
tions or semantical properties like behavioral refinement. Examples of how
the process, conceptual, and system levels interact are provided in Section 5.

Since an activity as the atom of a process describes how a product is
changed, an activity can be understood as a process pattern in the small.
Additionally, each activity is described in an operational matter. Further-
more, by the use of the system model, properties like “soundness considering
behavioral equivalence” or “executability of the specification” can be estab-
lished for activities or products. This combination of user guidance by consis-
tency conditions, executable activities, and the possibility for both arbitrary
as well as sound process activities and states of a product (i.e., activities and
states with guaranteed properties), is directed at improving the efficiency of
the CASE based development process.

5 Process examples

In this chapter, we illustrate the use of explicit process descriptions. This
includes two of the aspects of Sec. 2, namely communication and structure.
In Sec. 5.1, we substitute perfect communication by a simple protocol that
deals with lossy channels. The operation in question is a refinement step. We
then give a second example in Sec. 5.2 that deals with structure. It is shown
how a behavior preserving refactoring step may be defined on the grounds of
an explicit conceptual model.

5.1 Communication refinement

Much of the complexity in the design of distributed systems lies in the com-
munication mechanisms between components. Communication paths are of-
ten lossy (i.e., not all messages sent do indeed appear at the receiver) or
insecure (malicious parties can listen to the communication or even change
it); moreover, there is usually a certain time delay between sending and
reading of messages.

It is methodologically desirable to abstract from these matters in the
early system design phases. The logical functionality of a system can be de-
rived first using a simplified communication model (for instance, synchronous
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communication based on shared variables as in the current AutoFocus se-
mantics, or directed asynchronous message transfer over buffered channels).
Imperfections in the communication media and the means to work around
these imperfections are then added in later design steps.

As an example, Figure 8 shows part of a distributed systems with a worker
component and a supervisor component. Whenever the worker finishes a
subtask, it transmits a report to the supervisor over the (asynchronous and
buffered) channel.

(a) System Structure

(b) Fragment of Worker Behavior

Figure 8: Simple Communication System

Is the abstraction of reliable communication justified? From the point
of view of the system functionality, yes. All reports from the worker should
arrive at the supervisor, no reports may be lost. Is this abstraction justified
for the implementation? This depends on the infrastructure of the target
platform of the system. For example, the report communication may be
mapped to operating systems that employ the popular TCP/IP protocols; in
this case, the assumption of guaranteed delivery is justified.
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On other platforms, the reports may need to be transmitted over less
reliable mechanisms, for instance using infrared communication without the
benefit of an elaborate protocol stack that guarantees message delivery. In
this case, reliable communication must be ensured by the system itself. A
simple and popular protocol that ensures reliable delivery is the alternating
bit protocol (ABP). Figure 9 shows the system extended by sender and re-
ceiver components for the ABP. Note that the channels between the worker
and sender and between the receiver and supervisor components are modeled
as reliable channels, while the channels between sender and receiver are lossy.
Obviously, later deployment steps have to ensure that the boundary between
processing nodes is between sender and receiver, and not between the other
components.

In addition to the new channels and communication ports, a new message
type has to be introduced; it holds the reports by the worker as well as the
message bit for the protocol; bits are assumed to be synonymous with the
Boolean type defined by the two constants True and False:

data BitReport = BR(Report, Bit)

Figure 9: Communication system with ABP components

Explicit sender and receiver components clutter up the system descrip-
tion. A better approach might be to directly change the behavior of worker
and supervisor so that they implement the protocol themselves, as shown in
Figure 10.

Note that while these transformations might seem simple (partly because
of the simplicity of the ABP), they are not trivial since the model transfor-
mations are nonlocal. To obtain the system shown in Figure 10, the system
structure has to be modified (replacing one report channel by a message and
an acknowledgment channel; new communication ports have to be added, the
old report ports have to be deleted), a new data type has to be introduced
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(a) System Structure

(b) Fragment of Worker Behavior

Figure 10: Communication system with internal ABP
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for the pairing of report and the message bit, the state transition diagrams of
the worker and supervisor components have to be modified, and both worker
and supervisor components have to be augmented with new state attributes
for the current bit. All these transformations have to be done consistently.

Based on simple operations on the conceptual model it is rather straight-
forward to define a compound process activity as an ODL expression that
replaces single asynchronous communication channels by lossy channels and
the corresponding ABP functionality.

Interestingly, in spite of its simplicity, it is not obvious that this system
transformation is correct. A suitable mathematical system model for asyn-
chronous communication is Focus [8]; in this model, we expect that the
set of possible communication histories over the channels that connect the
system to its environment remains unchanged by the transformation. Based
on this model, the correctness can be proved, but the proof requires certain
assumptions about the properties of lossy channels: In particular, they must
be fair (when infinitely many messages are transmitted, then infinitely many
messages must arrive at the other end), and they must not reorder message
elements (sliding window protocols can be used if a bounded number of mes-
sage reorderings must be tolerated). Proof techniques for these and similar
problems on data flow in distributed systems are presented by Breitling and
Philipps [6, 5] as well as by Broy [7].

Other transformation patterns can be imagined that encapsulate crypto-
graphic protocols to replace secure channels by insecure ones. Wimmel and
Wißpeintner [40] present some security patterns that are based on such an
approach.

Both for guaranteed and for secure message delivery, the separation of
functionality and communication aspects helps to keep models concise and
leads to a natural notion of incremental system design.

5.2 Refactoring

By a refactoring [11] we mean model transformations that leave the behavior
of the model essentially unchanged (execution times, for example, might be
changed). One example for a refactoring is a change in the hierarchy of the
model: While hierarchical descriptions are obviously desirable for complexity
reasons, in any incremental design process this hierarchy may need adaption.
A process activity should, for example, allow components to be “pulled up”
from within somewhere within the hierarchy and to be “pushed down” else-
where. This activity must ensure that all relevant communication channels
to and from this component are also moved; new ports and channels may
need to be introduced, named (nontrivial, if done reasonably!) and typed.
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Refactoring 1: pull-up component. To illustrate the different levels
of models, a very simple form of refactoring is used. This transformation
does not change the behavior of the system. We describe how the ‘Pull-Up’-
refactoring step is treated in our framework. During such a refactoring step
a sub-component is removed from a component and adjacently placed on the
same level in the structural hierarchy as the component. Note that according
to the AutoFocus semantics this transformation leads to no change of the
behavior of system.

Facility

D

KeySignal:Bool

TrafSig:CarColor

PedSig:PedColor

AIndSig:Signal

ASensSig:Signal

BIndSig:Signal

BSensSig:Signal

System

Controller

Timer

ManualSwitch

Merge
Ind:Signal

Ind:Signal

KS:Bool

key:KeyMode

CS:CarColor

PS:PedColor

set:Int
timeout:Signal

ASS:Signal

BSS:Signal

Req:Signal

Facility

Figure 11: System structure before refactoring

Figure 11 shows a system before the refactoring step. Component Man-
ualSwitch is part of component Facility. During the refactoring it is moved
out of Facility and placed next to it. On the instance level of the conceptual
model, this requires

• a change of the component-subcomponent relation of ManualSwitch (from
Facility to System),

• the deletion of a Boolean port in Facility and the channels to and from
ManualSwitch as well as the KeySignal-channel in System, and

• the creation of a new KeyMode port in Facility as well as new channels
to and from ManualSwitch.

The outcome of the transformation is shown in Figure 12.
Using this example, we will illustrate the differences between the domain

and the instance levels as introduced in Subsection 2.4. Since we do not focus
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System

Facility

D

ManualSwitch

TrafSig:CarColor

PedSig:PedColor

AIndSig:Signal

ASensSig:Signal

BIndSig:Signal

BSensSig:Signal

key:KeyMode

KeySignal:Bool

Facility

Controller

Timer

Merge
Ind:Signal

Ind:Signal

CS:CarColor

PS:PedColor

set:Int
timeout:Signal

ASS:Signal

BSS:Signal

Req:Signal

key:KeyMode

Figure 12: System structure after refactoring

on the definition of a product or a process, the meta level will not be treated
here:

Domain level: On the domain level, we have all the informations about
process and product that is common for the application domain, i.e.,
is independent of the run of the corresponding CASE tool . This infor-
mation is used at construction time of the tool:

Process: A domain-specific process model supporting ‘Pull-Up’-re-
factoring offers an appropriate activity for this step. This activity
is, e.g., defined in form of an ODL-operation. It can be applied to
arbitrary component/sub-component instances by assigning them
to the operation’s parameters.

Concept: Since the refactoring activity transforms structural hierar-
chies, the domain-specific concept model contains the correspond-
ing concepts. In case of AutoFocus, these are the elements
and relations of the System Structure Diagrams, i.e., components,
ports, and channels as well as the sub-component relation.

System: The domain-specific system model defines a semantical model
tailored towards the specific needs of the domain. The Auto-
Focus system model defines how the (infinite) set of (infinite)
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execution traces describing the interface behavior is associated
with each component. More formally, execution traces are ex-
pressed in terms of (infinite) sequences of assignments of values to
ports of components formalized using a base theory. Examples for
base theories include the Temporal Logic of Actions (TLA, [22])
or Higher Order Logic of Computable Functions (HOLCF, [29]).
According to the AutoFocus semantics the behavior of a compo-
nent is defined compositionally, i.e., associative w.r.t. subcomponent-
clustering. This implies that the correctness of the ODL-operation
can be proved statically (i.e., at ‘build time’ of the CASE tool).
Such a static proof is, for instance, carried out using a theorem
prover like Isabelle with the AutoFocus semantics as extension
of the HOLCF-theory introduced by Schätz and Spies [34].

Instance level: On the instance level, we have all the information about
process and product that is used applying the CASE-tool constructing
a product, and thus occurs at run-time of the CASE tool:

Process: On the instance level, a process instance consists of a se-
quence of applied activities. One of these activities is the appli-
cation of the ‘Pull-Up’-refactoring step to an instance of the con-
ceptual model. Application of this step leads to another instance.
Basically, this corresponds to binding elements of the instance
of the conceptual model to the argument variables of the ODL-
operation. Here, e.g., it corresponds to instantiating the operation
with ManualSwitch as the component to be pulled up out of the
Facility component, or KeySignal as a channel to be redirected.

Concept: The instances of the conceptual model are the products
that are constructed during the development process. Consider-
ing the refactoring step, the relevant instances are the products
immediately before and after the refactoring. They contain the
system structures shown in Figures 11 and 12. The instance prior
to the refactoring step contains the sub component to be pulled
up (ManualSwitch) and its super component (Facility) including
the explicit representation of their component-subcomponent re-
lation. Its counterpart after the application contains both the
components and their modified relations. It includes necessary
changes like introducing a key-port and key-channel connected to
Facility, or deleting the keySignal-port and channel connected to
it.

System: Instances of the system model, e.g. HOLCF-terms describ-
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ing the behavior of Facility, ManualSwitch, etc., are not needed
directly here. This is because the proof of the correctness of the
refactoring can be performed statically for the ODL-operation, in-
dependently of the actual instance of the conceptual model. Thus,
in other words, the proof is given for all possible instances of sys-
tem models related to the conceptual models before and after the
operation.

Refactoring 2: eliminate dead states. To illustrate how process, con-
ceptual, and system models interact when the system model is used at ‘run
time’ of the CASE tool, we use the example of the ‘elimination of dead states’-
refactoring step reducing code size. In this example, a state (i.e. a control
state as well as all posssible data states associated with it) of a state-based
behavioral description together with all its adjacent transitions is removed
from an automaton if this state is marked as unreachable. Besides changes
at the domain level for process and conceptual model, the system model is
used at instance level in form of an explicit representation of the semantics
of components:

Process: With the domain specific process model, an activity “Show un-
reachability of state” must be introduced. This step may either be a
single atomic operation (and can be carried out, e.g. by some form of
model checking algorithm), or a more complex operation requiring user
interaction. These operations have counterparts in dedicated relations
of the system model. Furthermore, the activity “Remove dead state”
removes all transition leading to a state that is marked as unreach-
able as well as the state itself. This operation can be expressed at the
conceptual level, e.g., by using ODL.

Conceptual: On the level of the conceptual model, the concept of ‘un-
reachability’ of a state, e.g., as a state annotation, must be introduced.
If no user interaction is required for the proof of unreachability, this
extension is sufficient. Otherwise, conceptual elements of proof steps
must be added, as well as additional concepts like state/assignment of
a variable, or the precondition of a transition.

System: On the level of the system model, in contrast to the ‘pull-Up’-
refactoring step the semantics have a direct effect. To check the un-
reachability of a state of a component, the semantics of this component
(e.g., in form of a temporal logic term) have to be constructed. In case
of an atomic operation, there is an operationalized notion of the seman-
tical predicate ‘unreachability’, for example in form of a model-checking
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algorithm. This operation, applied at the instance level, can add the
conceptual annotation ‘unreachable’ to a state that is unreachable ac-
cording to the semantics of the system model. In case of a more complex
operation requiring user interaction, the system model is accessible via
atomic operations corresponding to operational relations of the system
model. Examples include combining parts of a proof, applying a modus
ponens, etc. Besides this application of the system model ‘at run-time
of the CASE tool’, the system model is also applied ‘at build-time of
the CASE tool’ to prove the correctness of this refactoring step.

6 Towards a model-based CASE tool

AutoFocus 2 [17] is a tool for developing graphical specifications of em-
bedded systems based on a simple, formally defined semantics. Embedded
systems in AutoFocus are networks of components that communicate via
directed channels. AutoFocus supports four different views on the system
model to describe different system aspects: structure, behavior, interaction,
and data and function definitions. A simplified version of the conceptual
product model of AutoFocus is shown in Figure 5.

Early versions of AutoFocus were mainly used for graphical specifica-
tions. Supported by the Bundesamt für Sicherheit in der Informationstech-
nik, a number of verification and validation tools were connected to Auto-
Focus [38, 37]. Moreover, the tool was extended with code generators for
C, Java and Ada and by a test case generator that takes as input an Au-
toFocus model and a (structural or functional) test case specification, and
automatically produces a set of test cases (I/O sequences) [27, 26].

Currently, AutoFocus is a rather generic tool and is mainly used as a
high-level design language. We have successfully modeled various embedded
controllers, smart cards, and security applications with it, and used to models
for code generation, test case generation or formal verification with model
checkers.

6.1 AutoFocus II

Based on the experience we gained with AutoFocus, we have started a
project to develop AutoFocus II as a true model-based CASE tool which
also offers process support. While from AutoFocus we learned—somewhat
to our surprise—that a single set of description techniques can be used in

2http://autofocus.in.tum.de
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widely varying application domains, we believe that AutoFocus II will be
more restricted in its application domain.

There are two main reasons for this restriction: Firstly, for fully seamless
development, the conceptual model must also include descriptions of the
deployment target and its environment. These descriptions are used mainly
in order to generate correct bindings to operating systems, device drivers
and hardware interfaces, but also as assumptions in quality assurance steps.
Obviously, smart cards, phone exchanges and automotive controllers are quite
different in this respect.

Secondly, while some process activities like refactoring are generic and
useful for any given conceptual model and set of description techniques, other
activities will likely depend on established engineering practices in the ap-
plication domain, or—like the conceptual model—on peculiarities of target
platforms and environment.

The application domain of AutoFocus II is not yet fixed, but it will
be in the field of distributed automotive electronics. It is easy to imagine a
number of relevant process activities, such as refinements or refactorings (see
Section 5).

Other process activities affect certain aspects in a system: In the field of
automotive electronics, an example would be the distribution of two compo-
nents onto different processing nodes. This step would, for example, require
the modification of the physical communication between the two components
and changes in the task scheduling for each node.

Note that for such process activities, their pre- and postconditions must
be defined precisely. For his refactorings, Fowler [11] takes a pragmatic view-
point and ignores semantic issues; the semantics is assumed to be common
sense, or trivial.

Given precise conceptual and system models, are higher degree of rigor
can and should be achieved. Nevertheless, because of the effort required
to check pre- and postconditions in practice, sometimes a more pragmatic
approach must be followed. For refactorings, which should not change the
essential model behavior, a test suite should be generated which checks the
preconditions of a refactoring step, or possibly the equivalence of the original
and the modified model.

6.2 Tools for model-based testing

In general, our view of model-based development aims at a seamless devel-
opment process with production code as the final product: Note that on a
fine grained level, code itself is a model.
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Besides code generation, also testing is an activity that is more and more
frequently associated with models (Binder’s book [4] is a rather recent and
comprehensive example). The traditional idea of model-based testing is to
build a model as an abstraction of existing code, an approach also sometimes
taken in software model checking [15, 9] in the context of model checking.
This model is then used to derive test cases. Most often, this is done man-
ually. If the difference of the abstraction levels of model and code allows it,
these test cases are then fed into the implementation. Not only functional
test cases can be derived: In Cleanroom [28], for example, stochastic usage
models are the core of the testing activities.

We might thus use all the ideas of model-based development in order to
get models for test case generation. There are two basic scenarios:

• In the first scenario, models are used only for test case generation, while
the actual system has been created independently of the model.

This is the case if, for organizational reasons, the quality assurance and
development departments are separated, if the system is a legacy sys-
tem that is to be tested in new environments, or if sufficiently efficient
and reliable code generators for a particular target language simply do
not exist. Clearly, test cases have to be concretized from the level of
models to the level of actual code. This concretization is in general not
a simple task: On the one hand, we want models as simplifications, but
on the other hand, the system is at the implementation level usually
much more complicated and complex than the model.

• In the second scenario, models are used both for code generation and
test case generation. This might seem to defy the whole purpose of
testing, as a system would then be tested against itself. There are,
however, a number of arguments for test case generation even if the
model is also used for code generation: For example, test cases can be
used to test environmental assumptions or part of the environment it-
self, be it legacy code, operating systems, or hardware. If the outcomes
of all test cases are checked manually, then the generated test cases
can be useful, since checking may be less labor-intensive than con-
ceiving test cases. Finally, for structural model transformations like
refactorings which do not aim at changing the behavior, test suites can
be generated automatically for regression tests. There are refactoring
steps which require knowledge of a system invariant [24, 25]; in view
of the difficulty of establishing such an invariant, a testing approach
might be more practical. This case extends to the situation where the
code generator or compiler cannot be trusted.
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The implications of using model-based testing in an iterative development
process are discussed by Pretschner et al. [27]; for model-based test case
generation within AutoFocus, see Pretschner [26].

Note that testing is but one quality assurance technique: Reviews and
inspections are obviously indispensable activities in any development; while
formal verification based on deduction and model checking has so far not been
very successful in software design, model-based development with explicit
product models offers some promise for these fields, too.

7 Related work

While now ubiquitously used and at least a decade old, we are not aware
of explicit definitions of “model-based development”. Especially, this term
is often used in a more restricted sense, e.g. domain oriented software ar-
chitectures as discussed by Withey [42]. Harel [12] is concerned with using
statecharts for behavior specification. The same idea of separating the model
from its views is also used in the model-view-controller paradigm [20].

The approach presented by Sgroi et el. [36] and Keutzer et al. [18] is sim-
ilar to ours, in terms of the incorporation of different levels of abstraction,
separation of concerns—in particular, computation and communication—,
and the emphasis on explicit system models. The especially CASE relevant
distinction of models within a layered approach as we propose it is not con-
tradictory to their line. The whole school of mathematical program specifi-
cation as advocated by Dijkstra, Bauer, Hehner, Morgan, Hoare, and others,
is clearly related to model-based development, but without the explicit con-
cepts of process and product models. In terms of CASE tools, ArgoUML
[30], for instance, does rely on the UML meta model. As far as we know,
there is no explicit process model.

In the UML approach, a fine grained, explicit model of the product is de-
fined, including different views of such a product (use case view, object/class
view, interaction view, state-based view, etc.). These views are integrated
into the UML meta model—corresponding to what we call the conceptual
model. However, the establishment of semantical relations exceeding those
structural relations of the conceptual model is missing. Since UML is fo-
cused on defining the conceptual product model, this model must be related
to development activities. While the RUP [21] defines a process on top of the
UML description techniques, it does not make use of the fine grained meta
model underlying those description techniques. Activities of the process,
their preconditions and results are not defined in terms of the UML meta
model; rather, the RUP outlines the phases to be carried out and suggests
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the description techniques that are useful for each phase.
The OMG’s model driven architecture [39] aims at the definition of platform-

independent models in a platform-independent language (UML) that are later
mapped to platform-specific models (CORBA, SOAP, etc.). It is thus con-
cerned with the aspects of communication as well as structure as described
in Section 2.

Software Cost Reduction [13] uses the notion of an abstract state machine
and pre/post-condition style of specification at a mathematical level. SCR
supports an explicit conceptual model including the notion of environment
variables, system interface, states, and transitions. Based on this model, it
supports consistency conditions that ensure well definedness (completeness,
non-circularity). A process model is not explicitly defined.

Schätz et al. [33] provide a discussion of model-based development in the
context of agile vs. rigorous processes.

While clearly code centered, aspect oriented programming [19]—or, more
generally, separation of concerns—is similar in its vision w.r.t. finding on-
tological entities, i.e., abstractions, for aspects like concurrency, exception
handling, etc. Differing from our approach, the idea is to incorporate these
abstractions into general purpose languages like Java or C rather than to use
dedicated domain specific languages. While there are static analysis tools
for these languages, the power of general purpose languages renders these
analyses most difficult—this is one reason why we emphasize the restriction
of existing languages. In its pure form, AOP does not require an explicit
product nor process model.

The notion of explicit product and process models is also found in the
area of Process Definition Languages [10], however, focusing on user par-
ticipation and neglecting the importance of a domain-specific, fine-grained
product model to define a process upon. The more structured approaches to
process definitions, as found in the process pattern area [35], are also missing
this detailed model as well as a tight coupling of product and process. Mod-
eling approaches like MOF (Meta Object Facility) rather focus on technical
aspects of how to implement and access models and meta models, but do not
address their application in defining domain-specific development processes.

Graphical editors in tools like Together concentrate on an explicit (UML)
meta model but do not take into account a process model. Development
platforms like Eclipse3, the latest in IDE development, define process patterns
(e.g., refactorings) but do not do this in an explicit manner. As far as we
know, there is no explicit product model, either. While we do not know how
simple the definition of new patterns in Eclipse would be, we were surprised

3http://www.eclipse.org
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how simple it is to do so with an explicit product model in AutoFocus.
Describing the transformation of replacing a set of channels by one tuple
channel, for instance, turns out to be a simple exercise.

8 Conclusion

Our vision of model-based development rests on two pillars: Explicit product
models, which for the developer appear as domain-specific languages, and
explicit process models, which define the developer’s activities that transform
early, abstract, partial products to the final, concrete and complete products
that are ready to be delivered and deployed.

The benefits of model-based development stem from the interaction of
process and product models and their realization in a CASE tool: Firstly,
complex design steps such as refactorings or the introduction of complex
communication patterns between components can be naturally defined and
performed in a tool. Secondly, the application of such design steps naturally
leads to a development history that can be recorded in the tool and used
for a kind of high-level configuration and version management. Finally, the
requirements and design rationales that influence design steps can be traced
and documented throughout the complete development process.

While these benefits do not necessarily improve the quality of the final
product, they help to improve the process that lead to the product. In par-
ticular, our hope is to increase the efficiency of the development not only of
single products but of related product families.

However, model-based development is not without risk. It is not ob-
viously clear whether a seamless development process from early design to
final target code is feasible: Some design steps might demand knowledge
of environment properties which are difficult to formalize. Design steps in
the later phases will require precise knowledge of the target platform, for
instance to access device drivers or in order to estimate the worst case ex-
ecution times which are needed as input for scheduling algorithms. Even
if this knowledge is formalized and incorporated into the product model—
as, for example, partly done in the Giotto language [14]—, more pragmatic
problems, like the integration of legacy code, tailoring to customer-specific
coding and certification standards or possibly just idiosyncrasies in compiler
or operating system technologies can hamper our ideal of a seamless process.

These problems can—with varying degrees of difficulty—be solved. The
main problem is that in contrast with, for instance, compiler construction,
they can be solved not by tool builders alone, but only in close coopera-
tion with domain experts: A model-based development will necessarily be
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domain-specific. Finding common vocabularies and notations to define the
conceptual, system and product models is a rather ambitious goal.

Still, in view of our experiences with the AutoFocus project we are
optimistic that such tools can be built. Although we do not yet have enough
experience with industrial-size projects, we obtained satisfying results with
some core aspects of such systems (deployment of systems on 4-bit and 8-bit
microprocessors, schematic introduction of security aspects, custom schedul-
ing algorithms to distribute computation effort over time). That the close
integration of domain properties into CASE tools is feasible has been demon-
strated, for example, for simultaneous engineering in process automation
[3, 2].

Goal of the AutoFocus II project is to realize a model-based CASE tool
for the application domain of distributed automotive electronics. Crucial first
steps in this project are to identify core concepts of this domain that lead
to a suitable conceptual model for such a tool. Compared to this step, the
development of the system model is quite well understood; the definition of
activities for the process model will also be comparatively straightforward if
it can be based on an adequate and stable conceptual model.

Of course, the acceptance of languages and tools depends not only on
technical or even on methodological factors. We are closely working together
with our industrial partners in automotive electronics and avionics, who pro-
vide us with valuable feedback on their application domains and development
processes.

Acknowledgments. Our understanding of model based development was
influenced by numerous discussions with P. Braun, W. Schwerin, T. Stauner,
M. von der Beeck, and B. Rumpe. W. Prenninger, A. Wißpeintner, J.
Jürjens, G. Wimmel, and J. Romberg provided valuable comments on a draft
version of this paper.

References

[1] J. Barnes. High Integrity Ada: The Spark Approach. Addison Wesley, 1997.
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