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Abstract

System specification by state machines together with property
specification and verification by temporal logics are by now standard
techniques to reason about the control flow of hardware components
and embedded systems. The techniques to reason about the dataflow
within loosely coupled systems, however, are less well developed.

In this contribution, we propose a formalism for the verification of
systems with asynchronously communicating components. The com-
ponents themselves are specified as state machines, while the dataflow
between components is described as a relation over the input and out-
put histories of a system. Communication history properties are de-
rived from temporal logic properties of the component state machines.
The history properties can then be used to deduce global properties
of a complete system.

To demonstrate our approach, we model the NetBill protocol for
micro-payments in the Internet and prove some correctness properties.

1 Introduction

State machines have become a popular technique to specify software and
hardware systems. They are often described by various incarnations of state
transition diagrams, which are a suggestive notation for component design

∗This work is supported by the Sonderforschungsbereich 342 “Werkzeuge und Methoden
für die Nutzung paralleler Rechnerarchitekturen”.



or implementation documents. Both in their graphical and in their non-
graphical —such as B, VDM or Z— variants, state-based specification tech-
niques have a precise semantics and clear operational models. Effects of
state transitions can be analyzed by Hoare-like triples with pre- and post-
conditions.

More abstract properties of state machines can be formulated with tem-
poral logics to express invariance or liveness properties. Proofs in temporal
logic often follow the operational intuition behind state machines: Invariance
properties, for example, are typically shown using induction over the machine
transitions.

Temporal logics are less well suited, however, to express properties of
the data flow between loosely coupled components that communicate asyn-
chronously via buffered communication channels. For such systems, black
box views relating input and output communication histories of data flow
components and systems are better suited. Such relations can be concisely
formulated in the style of Focus [9, 10, 1]; they are inherently modular and
allow easy reasoning about the global system behavior. In [2, 3, 5], we intro-
duced a formalism for the verification of black box properties of systems with
asynchronously communicating state machine components. The formalism
builds on work by Manfred Broy [8]. In [6] tool support on the basis of
Isabelle/HOL [12] is described.

In this paper, we demonstrate our approach with a model of the NetBill
protocol. We specify the protocol in an operational way that is easy to
implement but nevertheless abstract enough for verification purposes. We
formulate essential properties at different abstraction levels, and sketch their
formal proofs.

Section 2 contains a brief summary of black box and state machine spec-
ification techniques. Section 3 contains a state machine specification of the
NetBill protocol for electronic payments in the Internet. In Section 4 we
formalize corrrectness properties of the protocol as history relations, and
show that the state machine specification indeed satisfies these properties.
Section 5 contains a short discussion of our specification and verification ap-
proach. The conclusion in Section 6 summarizes the results and contains an
outlook on future work.

2 Component and System Specifications

Our system model is a variant of the system model of Focus [9, 10, 1]. It is
described in detail in [2]. We model a system by describing its components,
its interface with respect to the system’s environment, and its behavior. The
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components are connected via directed channels. The system’s interface is
described by the communication channels with the types of the message that
are sent on them. The communication along all channels is modeled by finite
or infinite message streams. The behavior of a system is characterized by a
relation between the input and output streams, that we described in either of
two different abstraction levels: black-box specifications and state machines.

2.1 Streams

The communication history between components is modeled by streams. A
stream is a finite or infinite sequences of messages. Finite streams can be
enumerated, for example: 〈1, 2, 3, . . .10〉; the empty stream is denoted by 〈 〉.
For a set of messages Msg, the set of finite streams over Msg is denoted by
Msg∗, that of infinite streams by Msg∞. By Msgω we denote Msg∗ ∪Msg∞.

Given two streams s, t and j ∈ N, #s denotes the length of s. If s is
finite, #s is the number of elements in s; if s is infinite, #s = ∞. We write
s _ t for the concatenation of s and t . If s is infinite, s _ t = s. We write
s v t , if s is a prefix of t , i.e. if ∃ u ∈ Msgω • s _ u = t . The j -th element of
s is denoted by s.j , if 1 ≤ j ≤ #s; it is undefined otherwise. ft.s denotes the
first element of a stream, i.e. ft.s = s.1, if s 6= 〈 〉. For A ⊆ Msg we denote
by Ass the subsequence that results from s by removing all elements not in
A. For singleton sets we often just write ass instead of {a}ss.

2.2 Black-Box Specifications

A black-box specification is an abstract description in the sense that it does
not relate to any internals of the system, but just describes the external,
visible behavior.

The behavior relation is defined by formulas Φ where the free variables
range over the input and output streams. The streams fulfilling these predi-
cates describe the allowed black-box-behavior of our system. We can use all
the operators on streams to formulate the predicates.

As a very simple example, consider a component Identity that just copies
messages from one input channel i to one output channel o. Its black-box
behavior specification is defined by the formula o = i .

2.3 State Machines

The behavior of a system can also be specified by a state transition system
(STS), formalized by the tuple S = (I ,O ,A, I, T ). The names of the input
and output channels are contained in I and O , respectively. The set A
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contains for each i ∈ I a variable i ◦ (a prefix of i) denoting the sequence of
messages already consumed by S. Additionally, A may contain variables to
represent local data, as e.g. a variable σ for the control state. A state of the
system consists of a variable valuation that assigns values of the appropriate
type to all variables. Channel variables are evaluated to streams containing
the history of messages sent. The system starts in a state fulfilling the
predicate I, and T is the set of transitions.

State transition systems can be described in various ways, for example
by state transition diagrams [2], by tables [10], or by the notation as used in
this paper. All techniques have a common technique to describe a transition
by four parts: A precondition, a set of input statements, a set of output
statements and a postcondition. The informal meaning of a transition is
as follows: If the available messages in the input channels can be matched
with Inputs, the precondition is and the postcondition can be made true by
assigning proper values to the primed variables, the transition is enabled. If it
is chosen, the inputs are read, the outputs are written and the postcondition
is made true.

PSfrag replacements

Identi o

(a) Component

PSfrag replacements

Id transmit

(b) State Machine

transmit
pre true
input i?x
output o!x
post true

(c) Transition transmit

Figure 1: Identity Component

The component Identity (Figure 1) just needs one transition, called trans-
mit , that is always enabled, reads some value x from i , and immediately sends
it on o, without causing other changes in the components state.

Transitions can be schematically translated into logical formulas; see [2]
for details.

2.4 Composition

Systems can be composed of several components by identifying channels with
the same names. The composition can be graphically illustrated by struc-
ture diagrams, as used in Figure 4. The behavior of a composite system is
completely defined by the behaviors of its components. Two components S1
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and S2 can only be composed to S = S1 ⊗ S2 if they are compatible (defined
in [2]), meaning essentially that they do not control the same variables.

Using black-box specifications, the behavior of the composed system is
defined as the conjunction of the component behavior predicates. For state
machines, a transition of the composed system consist of a transition of one
component together with an environment transition of the others.

2.5 From State Machines to Black-Box Views

While the state machines represent an operational view on system’s behav-
ior, the black-box specifications can be seen as properties of the system.
Therefore, it is crucial to be able to make a formal connection between both
abstraction layers, since this allows us to prove that a (implemented) system
has certain black-box properties, e.g. show that the component Identity
with one transition transmit indeed fulfills the property o = i .

In [2], we used temporal logic to establish the connection between both
abstraction levels. Properties can be split into a safety and progress part,
that read in our simple example as

2o = i◦

2((#o = k ∧ #o < #i) ⇒ 3#o ≥ #i)

The properties express that the output is correct in all reachable states
(i.e. equal to the consumed messages on i) and that the output will be even-
tually extended as long as there is still buffered input left. Invariance is
proved as usual by showing that the invariant is valid initially, and stays
valid for all transitions. Output extension can be shown be finding helpful
transitions that extend the output, and that are enabled, and therefore will
be taken due to some fairness properties that are assumed in the execution
model of the state machines. In [6] we suggest how verification diagrams and
mechanized proof support assist the verification of properties of the above
format.

Invariance properties form the basis of safety properties on the black box
level. Invariants are also black box safety properties, if their free variables
refer only to history variables (I ∪ I ◦ ∪ O) and if they are admissible [16]
with respect to these variables.

Progress properties are derived from schemata similar to the property
above; in general, the output channel length is compared with an arbitrary
continous expression over the length of the input channels. More details can
be found in [2].
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Env. Customer c Merchant m Bank

Request(m, g)

Order(t , g)

Invoice(t ,G , p)

Cheque(t , (c,m, g , p))
KeyCheque(t , k ,

(c,m, g , p))

Receipt(t , k)

Receipt(t , k)

Delivery(m,G)

Figure 2: NetBill Transaction

3 NetBill Specification

The NetBill protocol [11, 19] supports low-cost transactions of electronic
goods in the internet. Transactions occur between a customer process, a
merchant process, and a centralized bank server. All money-related activities
occur at the bank server.

Figure 2 show a sample transaction of the NetBill protocol. The customer
process receives an order for electronic goods g at a merchant m from the
environment. It generates a unique transaction number t which is used to
identify the transaction in the subsequent message exchanges, and forwards
the order to the merchant m. The merchant returns an invoice, which consists
of a price statement and the encrypted goods. The customer process then
issues a cheque to the merchant, which states that it is willing to pay the
price for the goods. This cheque is digitally clearsigned: Every participant
in the protocol can read it, but it is impossible for anyone to change the
information in it. This cheque, together with the key for decrypting the
goods, is forwarded to the bank. The bank returns a receipt and the key to
the merchant, which forwards it to the customer. With this key, the customer
process decrypts the goods received earlier and delivers them to the user.

Figures 3(a) and 3(b) show a transaction from the point of view of the
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Idle

Ordered

Confirmed

Done

order

pay

accept

(a) Customer view

PSfrag replacements

Idle

Delivered

Cashing

Done

deliverGoods

cashCheque

deliverKey

(b) Merchant view

Figure 3: Customer and Merchant View of a Transaction

customer and merchant, respectively. The state structures are explained in
more detail in Sections 3.2 and 3.3.

In this section, we give a formal specification of a simplified NetBill sys-
tem. In Section 3.1 we define the state and message types used in the trans-
action protocol; Sections 3.2 to 3.4 contain component specifications for the
customers, merchants and the bank.

3.1 General Definitions

Basic types. Figure 4 shows the architecture of a NetBill system. It con-
sists of an arbitrary number of customers, an arbitrary number of merchants
and the centralized bank server. Customers are identified by elements from a
set CID of customer identifiers; similarly, we assume a set MID of merchant
identifiers.

In contrast to other NetBill formalizations, we allow an arbitrary number
of overlapping transactions between each customer and each merchant, i.e. a
customer may order goods even if another transaction is not yet finished..
To identify the various transactions, we assume a set TID of transaction IDs
that consist of a pair of the concerned customer and a unique serial number,
i.e. TID ⊆ CID× N.

The electronic goods handled by the protocol are taken from a set GOODS;
for each good there is a unique identifier in the set GID. We use a bijective
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Customer Merchant

Bank

c·m

m·c

e·c

c·e

b·m m·b

Figure 4: NetBill architecture

function

shelf : GID → GOODS

to map IDs to the corresponding goods. Monetary values for prices are
modeled by elements from a set M. The prices of the goods are yielded by
the function

price : GID → M

Encryption. An essential part of any e-commerce protocol is encryption of
messages. The NetBill transaction protocol uses both symmetric and public
key cryptography. We abstract from the underlying algorithms, and just
assume that for each message set M there exists a set of encrypted messages
M and two functions

Encrypt : Key → M → M and Decrypt : Key → M → M

For symmetric encryption, we demand that

Decrypt k (Encrypt k m) = m

For public key encryption, we demand that the public keys of the customers
are freely accessible by a function

Pubkey : CID → Key

and a message that is signed by customer c (with private key kc) can be
decrypted with the public key:

Decrypt Pubkey.c (Encrypt kc m) = m

This latter requirement is satisfied, for example, by the well known RSA
algorithm.
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Message types. We define a number of complex data types to be used for
messages on the communication channels.

• Environment/Customer: The only messages from the environment to
the customer process are goods requests parameterized by the ID of
the goods ordered, and the ID of the merchant from which the good is
ordered:

Tec ::= Request(MID×GID)

The only messages returned to the environment are the goods:

Tce ::= Delivery(MID×GOODS)

• Customer/Merchant: The customer sends two kinds of messages to
the merchant: Orders of a certain good, and signed cheques which the
merchant then forwards to the bank for further processing.

Tcm ::= Order(TID×GID)

| Cheque(TID× (CID×MID×GID×M))

The merchant sends two kinds of messages to the customer:

Tmc ::= Invoice(TID×GOODS×M)

| Receipt(TID×KEY)

• Merchant/Bank: The merchant forwards the cheques to the bank to-
gether with the key to decrypt the involved goods.

Tmb ::= KeyCheque(TID×KEY× (CID×MID×GID×M))

The bank sends a receipt to the merchant (to be forwarded to the
customer) as a signal that the money transfer has succeeded.

Tbm ::= Receipt(TID×KEY)

We sometimes form message sets by replacing parameters of a message con-
structor with the placeholder “·”. For example, we write

Receipt(t , ·) for
⋃

k∈KEY
{Receipt(t , k)}
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3.2 Customer

A customer is identified by its ID. The state space of each customer consists
of its private key, and a mapping from transaction IDs to a CustTrans record.
This record holds the control state of the transition according to Figure 3(a)
as well as the goods ID, the merchant ID, the encrypted goods, the price of
the goods, and the decryption key:

CustTrans ::= record

phase : {Idle,Ordered,Confirmed,Done}
gid : GID

mid : MID

goods : GOODS

price : M

key : KEY

end

Transactions IDs are determined by the customer; our specification uses
a rather simple allocation scheme based on a variable nexttid , which holds
the next free ID.

Thus, a customer c ∈ CID is specified in Figure 5. Initially, all transac-
tions are idle. Each transaction is processed on the customer side as shown
in Figure 3(a). A transaction gets activated by the transition order that is
always enabled. The customer process receives an order consisting of a goods
ID and a merchant ID to describe what should be bought from which mer-
chant. A new transaction number is generated, all required data are stored
in st .t , and the order is forwarded to the merchant.

The transition pay accepts the encrypted goods, and generates a signed
cheque that is sent to the merchant. This transition is only enabled if the
price the merchant offers is less than the price the customer expects. Note
that the customer cannot be sure if he got the correct goods, since they are
encrypted.

Finally, the customer process gets the decryption key from the merchant
(transition accept). If the goods are the goods it expected, they are sent to
the system environment, and the transaction status is set to Done.

3.3 Merchant

On the merchant side, each transaction is processed as shown in Figure 3(b).
Each merchant must store for each transition the control state from Fig-
ure 3(b) as well as goods ID, customer ID, price and the decryption key:
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Customer [c]

inputs

e·c : Tec

m·c : Tmc for all m ∈ MID

outputs

c·e : Tce

c·m : Tcm for all m ∈ MID

state

pk : KEY

nexttid : N

st : TID → CustTrans

initialization

nexttid = 0 ∧

∀ t ∈ TID • st .t .phase = Idle

transition relation

order [c,m, t , g ], pay [c,m, t ],

accept [c,m, t , k ]

order [c,m, t , g ]

pre

t = (c,nexttid)

input

e·c?Request(m, g)

output

c·m!Order(t , g)

post

st .t .phase := Ordered

st .t .gid := g

st .t .price := price(g)
nexttid := nexttid + 1

pay [c,m, y ]

pre

st .t .phase = Ordered

∧ p ≤ price(st .t .gid)

input

m·c?Invoice(t , g , p)

output

c·m!Cheque(t ,Encrypt pk

(c,m, st .t .gid , p))

post

st .t .phase := Confirmed

st .t .goods := g

st .t .price := p

accept [c,m, t , k ]

pre

st .t .phase = Confirmed

∧ shelf .st .t .gid =

Decrypt k st .t .goods

input

m·c?Receipt(t , k)

output

c·e!Delivery(m,

Decrypt k st .t .goods)

post

st .t .phase := Done

st .t .key := k

Figure 5: Customer Specification
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Merchant [m]

inputs

c·m : Tcm for all c ∈ CID

b·m : Tbm

outputs

m·c : Tmc for all c ∈ CID

m·b : Tmb

state

st : TID → MerchTrans

initialization

∀ t ∈ TID • st .t .phase = Idle

transition relation

deliverGoods[c,m, t ],

cashCheque[c,m, t ],

deliverKey [c,m, t ]

deliverGoods[c,m, t ]

pre

st .t .phase = Idle

input

c·m?Order(t , g)

output

m·c!Invoice(t ,

Encrypt(k , shelf .g),

price.g)

post

st .t .phase := Delivered

st .t .gid := g

st .t .price := price.g

st .t .key := k

cashCheque[c,m, t ]

pre

st .t .phase = Delivered ∧
let (cid ,mid , gid , pr) =

Decrypt(Pubkey.c, ch)
in

cid = c ∧ mid = m

gid = st .t .gid ∧ pr = st .t .price

end

input

c·m?Cheque(t , ch)

output

m·b!KeyCheque(t , st .t .key , ch)

post

st .t .phase := Cashing

deliverKey [c,m, t ]

pre

st .t .phase = Cashing

input

b·m?Receipt(t , k)

output

m·c!Receipt(t , k)

post

st .t .phase := Done

Figure 6: Merchant Specification
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MerchTrans ::= record

phase : {Idle,Delivered,Cashing,Done}
gid : GID

cid : CID

price : M

key : KEY

end

A merchant can recognize a new order since the corresponding transaction
t is in the phase Idle. We do not model malicious behaviors, so we do
not check if the transaction number really corresponds to the customer who
sent the order, encoded by the name of the channel on which the order
was received. The transition deliverGoods immediately sends the encrypted
goods to the customer, and remembers relevant information in st .t . The
transition cashCheque examines the cheque of the customer, and forwards it
to the bank. If the bank confirms the receipt, the key will be sent to the
customer and the transaction is completed. Merchants are specified formally
in Figure 6.

3.4 Bank

The bank state consists of an account for each customer and each merchant,
and a store of transaction descriptions that is modeled as a partial function
from transaction IDs to description tuples.

The bank, specified in Figure 7, has only one transition that is enabled
if a received cheque is correctly signed from the customer. The bank then
transfers the money from the customers account to the merchants account,
and sends a receipt to the merchant. It stores the information for eventual
later requests.

4 NetBill Verification

In this section we show that our NetBill specification satisfies the following
properties:

• Guaranteed Delivery: All goods ordered by the customer are delivered.
Conversely, goods are only delivered if they were ordered. This is a typ-
ical black box property of the system; we use the verification techniques
of [2, 5] to derive it.
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Bank

inputs

m·b : Tmb for all m ∈ MID

outputs

b·m : Tbm for all m ∈ MID

state

Maccount : MID → M

Caccount : CID → M

keystore : TID 7→ (KEY×CID×MID

×GID×M)

initialization

keystore = ∅

transition relation

transfer [m, t ]

transfer [m, t ]

pre

let (cid ,mid , gid , pr) = Decrypt(Pubkey.fst .t , ch)
in cid = fst .t

end

input

m·b?KeyCheque(t , k , ch)

output

b·m!Receipt(t , k)

post

let (cid ,mid , gid , pr) = Decrypt(Pubkey.fst .t , ch)
in Maccount.mid := Maccount.mid + pr

Caccount.cid := Caccount.cid − pr

end

keystore := keystore ∪ {t 7→ (k , cid ,mid , gid , pr)}

Figure 7: Bank Specification
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• Guaranteed Payment: For all goods ordered by a customer, the money
amount corresponding to the good’s price is subtracted from the cus-
tomer account.

• Money Atomicity: The sum of the customer and merchant accounts
remains invariant. Because of the centralized NetBill bank server, this
property is quite obvious, it follows immediately from a simple formula
in predicate logic.

In Section 4.1, we state and prove some invariants of the NetBill protocol.
They are used in Section 4.2 to prove a number of basic safety and progress
properties of the system components. In Sections 4.3 and 4.4 we show the
correctness statements mentioned above.

4.1 Invariants

For the property proofs, we make use of two invariants. One invariant de-
scribes the NetBill behavior from the point of view of a single transaction,
the other describes it from the point of view of a given customer.

In this section, we frequently refer to a given customer c and merchant
m. For readability, we sometimes abbreviate Customer [c] and Merchant [m]
by C and M, respectively.

4.1.1 Transaction View

The transaction view describes the system state for all eight phases of a single
NetBill transaction t between a customer c and a merchant m (see Figure 2).
It is visualized in Figure 8. For example, the first row represents the state
in which the transaction is still inactive: Customer and merchant are still
idle, and no messages have been sent along the channels. Two subsequent
rows describe a transition of either the customer, merchant or bank. For
example, the second state reflects the system state after an order transition
of the customer: The control state of the customer changes to Ordered,
and a new message Order is produced on channel c·m. The other channels
remain unchanged. In the table, newly generated messages are highlighted
by boxes. A difference of the number of messages on a channel x and x ◦

means that there are unread messages available on that channel. Note that
the changes in the control state directly follow the state machine structures
in Figures 3(a) and 3(b).

In addition to the control state and data flow information of Figure 8, the
system accumulates information about the ordered goods, keys, and price in
the customer and merchant data state variables. For each of the eight phases
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∆1

df

= true

∆2

df

= ∆1 ∧ #Order(t , g)sc·m = 1 ∧ C.st .t .gid = g

∆3

df

= ∆2 ∧ #Invoice(t ,Encrypt(k , shelf .g), price.g)sm·c = 1
∧ M.st .t .gid = g ∧ M.st .t .key = k

∆4

df

= ∆3 ∧ #Cheque(t ,Encrypt C.pk (c,m, C.st .t .gid , price.g))sc·m
= 1 ∧ C.st .t .goods = Encrypt(k , shelf .g)

∆5

df

= ∆4 ∧ #KeyCheque(t ,M.st .t .key ,

Encrypt C.pk (c,m, C.st .t .gid , price.g))sm·b = 1

∆6

df

= ∆5 ∧ #Receipt(t ,M.st .t .key)sb·m = 1

∆7

df

= ∆6 ∧ #Receipt(t ,M.st .t .key)sm·c = 1

∆8

df

= ∆7

Figure 9: Transaction View: Data Invariant

in the protocol, we formulate a property ∆i that relates the components’ data
state and message contents. The data invariant is shown in Figure 9. Note
that in our example, the set of properties becomes stronger in every phase,
since all transitions just set internal values that were undefined before. We
only state a subset of the valid properties that is sufficient for the correctness
proofs later; it is straightforward to extend them with pricing information.

Together, Figures 8 and 9 illustrate the following invariant for the NetBill
system:

∀ c,m, t • ∃ g , k •
8∨

i=1

(Γi ∧ ∆i)

The proof of the invariant proceeds along the typical inductive proof
structure for invariants: It holds initially, and is not violated by any system
transition.

4.1.2 Customer View

While the transaction invariant describes the system states for a given cus-
tomer c, merchant m and transaction t , we now formalize an invariant that
hides the transactions and just refers to the goods a customer ordered.

The customer issues orders to the NetBill system and accepts the deliv-
ered goods. Each order is handled by a single transaction. Transactions that
did not yet lead to delivery of a good are called pending. The set of pending
transactions for an order of a good g by the customer c at the merchant m

17



is denoted by Pc,m,g and defined as follows:

Pc,m,g
df

= { t ∈ TID | Customer [c].st .t .phase 6∈ {Idle,Done} ∧
Customer [c].st .t .gid = g }

From the customer point of view, the number of orders for a good g
should equal the number of deliveries of this good plus the number of pending
transactions for g . This invariant is formally expressed as

∀ c,m, g • #Delivery(m, shelf .g)sc·e + |Pc,m,g | = #Request(m, g)se·c◦

It is easy, though tedious, to prove this invariant. The proof structure is
visualized by the verification diagram in Figure 10, which splits the invariant
into the two cases |Pc,m,g | = 0 and |Pc,m,g | > 0. Each of the diagram nodes
represents one case. The free variables c,m, g are fixed by skolemizing the
quantifiers of the invariant above.

The opaque dot in the upper diagram node means that initially the upper
case of the invariant holds; this is easy to see from the customer specification.
The arrows show the verification obligations for the inductive step: Each
new order increases |Pc,m,g | and the number of processed Request messages;
each delivery of a good identified by g decreases |Pc,m,g |, but increases the
number of Delivery messages at the same time. Orders and deliveries of
a different good ĝ as well as the customer payment transitions leave the
invariant unchanged. Moreover, although not represented in the diagram, it
is easy to see that the invariant is also left unchanged by transitions of other
customers, other merchants or the bank.

4.2 Black Box Properties

From the invariance and enabledness properties of the previous two sections,
we now derive black box safety and liveness properties. The liveness prop-
erties are of a special form, which we call progress: They express that all
external input to a component is processed.

4.2.1 Safety Properties

From the transition view invariant, we can derive a number of black box
safety properties for a fixed transaction t , customer c, merchant m and the
bank:
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#Delivery(m, shelf .g)sc·e + |Pc,m,g |
= #Request(m, g)se·c◦

∧ |Pc,m,g | = 0

#Delivery(m, shelf .g)sc·e + |Pc,m,g |
= #Request(m, g)se·c◦

∧ |Pc,m,g | > 0

order [c,m, g ]

{ accept [c,m, t , k ] | t ∈ TID ∧ |Pc,m,g | = 1
∧ Decrypt(k , c.st .t .goods) = shelf .g }

order [c,m, g ]

{ accept [c,m, t , k ] | t ∈ TID ∧ |Pc,m,g | > 1
∧ Decrypt(k , c.st .t .goods) = shelf .g }

{ pay [c,m, t ] | t ∈ TID } ∪
{ order [c,m, ĝ ] | ĝ 6= g } ∪
{ accept [c,m, t , k ] | t ∈ TID

∧ Decrypt(k , c.st .t .goods)
6= shelf .g }

{ pay [c,m, t ] | t ∈ TID } ∪
{ order [c,m, ĝ ] | ĝ 6= g } ∪
{ accept [c,m, t , k ] | t ∈ TID

∧ Decrypt(k , c.st .t .goods)
6= shelf .g }

Figure 10: Customer View Invariant

Customer: #Cheque(t , ·)sc·m = #Invoice(t , ·)sm·c◦

Merchant: #Invoice(t , ·)sm·c = #Order(t , ·)sc·m◦

#KeyCheque(t , ·, ·)sm·b = #Cheque(t , ·)sc·m◦

#Receipt(t , ·)sm·c = #Receipt(t , ·)sb·m◦

Bank: #Receipt(t , ·)sb·m = #KeyCheque(t , ·, ·)sm·b◦

To see that each of these properties indeed holds for the systems black
box view, note that each property is an equality of continuous functions
on streams. Moreover, each property is a state machine invariant of the Net-
Bill system, which can be seen by comparing the entries for the left and right
hand side of each equation in the transition view invariant table shown in
Figure 8. For example, the third and the sixth column have the same entries,
which means the the number of Cheque- and Invoive−messages on c ·m and
m · c◦ are equal in all phases of a transaction. This proves the customer
property.

In addition to the property above, the customer satisfies two other black
box safety properties:

#Order(·, ·)sc·m = #Request(m, ·)se·c◦

#Delivery(m, ·)sc·m = #Receipt(·, ·)sm·c◦
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These properties do not refer to given goods or transactions. They are based
on invariants which again are easy to show using standard invariant verifica-
tion techniques.

4.2.2 Progress Properties

The black box properties above relate the consumed input and the produced
output of each component; they are pure safety properties, derived from
state machine invariants like the transition invariant of Figure 8. The NetBill
system enjoys also black box properties that relate the external input and
the consumed input for each component:

Customer: #Request(·, ·)se·c◦ = #Request(·, ·)se·c

#Invoice(t , ·)sm·c◦ = #Invoice(t , ·)sm·c

#Receipt(t , ·)sm·c◦ = #Receipt(t , ·)sm·c

Merchant: #Order(t , ·)sc·m◦ = #Order(t , ·)sc·m

#Cheque(t , ·, ·)sc·m◦ = #Cheque(t , ·)sc·m

#Receipt(t , ·)sb·m◦ = #Receipt(t , ·)sb·m

Bank: #KeyCheque(t , ·, ·)sm·b◦ = #KeyCheque(t , ·, ·)sm·b

These properties are immediate consequences of the five black box properties
e·c◦ = e·c, m·c◦ = m·c, c·m◦ = c·m, b·m◦ = b·m and m·b◦ = m·b.

For the customer property m ·c◦ = m ·c, it is sufficient to show that
#m·c◦ ≥ #m·c, since m·c◦ v m·c is by construction an invariant. This length
property can be reduced to the following temporal logic property:

2(#m·c◦ = k ∧ #m·c > k ⇒ 3(#m·c◦ > k))

This is an example of an output extension property. To prove is, it is sufficient
to find a helpful transition τ such that:

#m·c◦ = k ∧ #m·c > k ⇒ En(τ) and

#m·c◦ = k ∧ #m·c > k ∧ τ ⇒ #(m·c◦)′ > k

Assume now that the system is in a state where #m·c◦ = k ∧ #m·c > k .
Then we know that there is at least one unprocessed message in m ·c. In
other words, there exists a message x such that

m·c◦ _ 〈x 〉 v m·c

According to the type definition of Tmc in Section 3.1, the message x is either
an invoice, or a receipt with a key; in any case, it refers to a transaction t :
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1. x ∈ Invoice(t , ·): Then #Invoice(t , ·)sm · c◦ < #Invoice(t , ·)sm·c.
From Figure 8, we now that the system must then be in a state char-
acterized by Γ3, and thus by Γ3 ∧ ∆3.

In this case, the helpful transition is the customer transition pay . It is
enabled because according to ∆3 the customer control state of t is OR-

DERED, and according to the assumption the next unread message
is an invoice for t . Moreover, since pay indeed consumes the invoice
message, the length of the processed input m·c◦ is extended.

2. x ∈ Receipt(t , ·): This case is similar to the one above; instead of the
third phase, however, the system must be in phase 7: The system state
is characterized by Γ7 ∧ ∆7, and the helpful transition is the customer
transition accept .

The proof for the other internal channels is analogous. The proof that e·c◦ =
e · c is a bit different: Instead of appealing to the transition invariant table,
we make use of the fact that there is always a free transaction ID (nextid),
so that transition order is enabled whenever there is unprocessed input on
channel e·c.

4.3 Guaranteed Delivery

The black box correctness property states that all ordered goods are deliv-
ered, and that all delivered goods have been ordered:

∀ c,m, g • #Delivery(m, shelf .g)sc·e = #Request(m, g)se·c

This property can be split into a safety and a liveness part:

∀ c,m, g • #Delivery(m, shelf .g)sc·e ≤ #Request(m, g)se·c

∀ c,m • #Delivery(m, ·)sc·e ≥ #Request(m, ·)se·c

The liveness part need not to refer to a goods ID. Since the correctness of
the output follows already from the safety part, it is sufficient to show that
enough output is produced.

4.3.1 Safety

For the safety part, we observe that

#Delivery(m, shelf .g)sc·e

≤ #Delivery(m, shelf .g)sc·e + |Pc,m,g | since |Pc,m,g ≥ 0|

≤ #Request(m, , ·)se·c◦ by customer view invariant

≤ #Request(m, g)se·c since e·c◦ v e·c
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Thus, the safety formula is by itself an invariant of the NetBill system. It is
also admissible, and is thus also valid at the black box level, where all free
variables range over the limits of a system execution.

4.3.2 Liveness

For the liveness part we show the following equality sequence for all c and
m:

#Delivery(m, ·)}sc·e

= #Receipt(·, ·)sm·c◦ by customer safety

= #Order(·, ·)sc·m see below

= #Request(m, ·)se·c◦ by customer safety

= #Request(m, ·)se·c by customer progress

To show the second equality, we observe that for all c, m and t :

#Receipt(t , ·)sm·c◦

= #Receipt(t , ·)sm·c by customer progress

= #Receipt(t , ·)sb·m◦ by merchant safety

= #Receipt(t , ·)sb·m by merchant progress

= #KeyCheque(t , ·, ·)sm·b◦ by bank safety

= #KeyCheque(t , ·, ·)sm·b by bank progress

= #Cheque(t , ·)sc·m◦ by merchant safety

= #Cheque(t , ·)sc·m by merchant progress

= #Invoice(t , ·, ·)sm·c◦ by customer safety

= #Invoice(t , ·, ·)sm·c by customer progress

= #Order(t , ·)sc·m◦ by merchant safety

= #Order(t , ·)sc·m by merchant progress

Each of the safety and progress steps in this sequence is immediate from the
black box properties of Section 4.2.

4.4 Guaranteed Payment and Money Atomicity

The previous section showed the correctness of a black box property, which
only refers to the channel communication histories. The correctness proof
made use of both temporal logic properties (the invariance and response
properties), and of predicate logic properties (for example, to show the en-
abledness of a transition).
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However, temporal and predicate logic are useful not only for the deriva-
tion of black box properties. There are some properties, which are best
expressed by temporal logic because they refer to the internal state of a com-
ponent, and properties best expressed by predicate logic, because they also
refer to a given transition.

4.4.1 Temporal Logic

This level is useful when properties about the internal states of a component
are formalized. In the NetBill example, we can specify that if the customer
orders a good, at a later state the price of the good will have been subtracted
from the customer account.

∀ x ∈ M, c ∈ CID,m ∈ MID, t ∈ TID •

2(Bank .Caccount.c = x ∧

Customer [c].st .t .phase ∈ {Ordered,Confirmed}

⇒ 3(Bank .Caccount.c ≤ x − price.(Customer [c].st .t .gid)))

Note that it would be quite difficult to precisely characterize the amount of
money on the customer account, because there can be any number of active
transaction being processed at any time.

4.4.2 Predicate Logic

The predicate logic level is useful when properties of single transitions are
formalized. In the NetBill example, all money related activities occur at a
centralized bank server, which is specified by a single transition. The prop-
erty that within the NetBill system money is neither destroyed nor created
can be expressed as the following formula in first-order logic:

∀ x ∈ M, c ∈ CID,m ∈ MID •
(Bank .Caccount.c + Bank .Maccount.m = x ) ∧ transfer

⇒ (Bank .Caccount
′
.c + Bank .Maccount.m ′ = x )

5 Discussion

In this contribution, we used a simplified formalization of the NetBill pro-
tocol, which differs from the description in [11] in various respects. In this
section, we discuss possible extensions of our model and briefly summarize
the proof methodology from Section 4.
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5.1 NetBill Model

In the original description of the NetBill protocol, the customer process can
query the bank for the receipt and decryption key for a given transaction.
This ensures that the customer can decrypt the goods even if the network
connection between bank, merchant and customer can lose messages.

For customer queries, the system structure diagram must be extended by
channels that connect the customers and the bank server (Figure 11). The
transaction state transition diagrams must be extended as shown in Fig-
ure 12. It is straightforward to define the new transitions query , acceptBank
and dropKey .

PSfrag replacements

Customer Merchant

Bank

c·m

m·c

e·c

c·e

b·m m·bc·b

b·c

Figure 11: Extended NetBill Architecture

Moreover, the message types in [11] are more complex. In our model we
removed much redundancy; we also abstracted from some details of the en-
cryption algorithms. Finally, we do not examine malicious merchants and
customers or limited customer credit lines, although of course the NetBill
protocol has to be examined carefully for these cases.

5.2 Proof Methodology

Many of the proofs in Sections 4.1–4.3 are not completely formal; they cannot
be, since we did not give precise translations definitions of the component
state machine transitions into logic. Still, we hope that the reader can get
the gist of the proof style that we used:

• Based on the message sequence chart of the NetBill protocol (Figure 2)
and the transition state transition diagrams (Figure 3) the reachable
states from the perspective of a single transactions could be concisely
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(a) Customer view
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Cashing

Done

deliverGoods

cashCheque

deliverKeydropKey

(b) Merchant view

Figure 12: Customer and Merchant View of a Transaction

described in tabular form (Figure 8). Again, we did not give a com-
pletely formal translation of the table into a logical expression, we refer
to Broy’s work on tabular specification techniques [7] for details.

• From the invariant table, a number of black box safety properties that
relate input and output of each system component are immediate. Only
the communication along the two channels that connect the system to
the environent had to be treated specially.

• For black box liveness properties, we first proved component progress:
Each component consumes all its input. For progress, we made use
of temporal logic and black box verification rules from [2], which are
tailored to proving the length properties typical for progress arguments.
The premises of these rules —essentially enabledness statements for
helpful transitions— could easily be discharged by a case split on the
message types, and again a lookup in the invariant table.

• For the final black box correctness proof it is then sufficient to assemble
the component black box properties in a chain of (in)equations.

Note that in this way, the correctness of the protocol is proven composi-
tionally: History specifications in the style of Focus are a modular descrip-
tion technique that allows succinct reasoning with black box properties of
components.
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In previous examples [2, 3], we proved liveness properties directly, instead
of showing progress first. The approach here seems to be more schematic and
easier to scale to larger systems.

We did not yet attempt the correctness proofs for the extended NetBill
version with customer queries, malicious customer or merchant behavior or
limited credit lines; it remains to be seen whether and which parts of the
current proof can be reused for the new aspects.

6 Conclusion

State based and I/O history based views of the system can be linked by
temporal logical formulas for invariance and response. This technique is
documented in more detail in [2, 8, 3, 5], where simple buffer examples are
verified. In this contribution, we applied specification and proof principles
for black box properties of distributed systems to the NetBill protocol [11, 19]
for electronic payments over the Internet.

There is no single language for the formulation of mathematical correct-
ness properties of a system. Simple Hoare-like verification conditions, tem-
poral logic formulas and history relations in the style of Focus [9, 1] allow
the formulation of properties at different abstraction levels. Conversely, ver-
ification conditions for each level lead to verification conditions formulated
in the lower levels languages.

The black box correctness property of the NetBill system is assembled
from black box properties of the individual components. This shows how
the inherent modularity of Focus specifications can be used for concise
compositional proofs: Both liveness and safety arguments are reduced to
simple (in)equality reasoning.

The simple structure of the temporal logic formulas needed for the verifi-
cation of black box properties is well-suited for verification diagrams [14, 15]
in order to structure property proofs. While the verification conditions
associated with a verification diagram are simple, their sheer number re-
quires tool support. In [6], we present a formalization of our approach in
Isabelle/HOL[12]. It consists of extensions of Shankar’s PVS formalization
of state machines [18] to handle liveness properties and asynchronous com-
munication as well as verification tactics tailored to invariance and response
diagrams. The Isabelle formalization and verification diagrams are docu-
mented in a technical reports [6]. The theory files and proof scripts can be
accessed electronically [4].

Typically, when examining protocols for e-commerce applications, the
focus is on security, and less on the safety and liveness issues handled by
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our approach. Further work will combine our verification techniques with
Paulson’s inductive approach to protocol verification [17], and with formal
models of threat scenarios [13].
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über Parallelisierung von Datenbanksystemen
342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Meth-

ods
342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually

Shared Memory Scheme: Formal Specification and Analysis
342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification

and Correctness Proof of a Virtually Shared Memory Scheme
342/7/91 B W. Reisig: Concurrent Temporal Logic
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-

of-Support
Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturüberblick
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