
Generic Proof Synthesis for Presburger Arithmetic

Draft

Amine Chaieb and Tobias Nipkow

Institut für Informatik

Technische Universität München

Abstract

We develop in complete detail an extension of Cooper’s decision
procedure for Presburger arithmetic that returns a proof of the equiv-
alence of the input formula to a quantifier-free formula. For closed
input formulae this is a proof of their validity or unsatisfiability. The
algorithm is formulated as a functional program that makes only very
minimal assumptions w.r.t. the underlying logical system and is there-
fore easily adaptable to specific theorem provers.

1 Presburger arithmetic

Presburger arithmetic is first-order logic over the integers with + and <.
Presburger [3] first showed its decidability. We extend Cooper’s decision
procedure [1] such that a successful run returns a proof of the input formula.

The atomic PA-formulae are defined by Atom:

• Atom ::= T R T | L dvd T

• T ::= L | V | T + T | T − T | −T | L ∗ T

• R ::= < | > | ≤ | ≥ | =

• V ::= x | y | z | . . .

• L ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .

We allow the use of >, ≤, ≥ and = in the input language since they can
be expressed with formulae based on <. We also allow the use of constants
and the multiplication with constants since these simulate simply a finite
summation. Because ‘|’ is overloaded, we write d dvd t to express that d

divides t. Throughout the paper a, b, c, d and l denote integer numerals.

1

2 Notation

2.1 Logic

Terms and formulae follow the usual syntax of predicate calculus. However,
there are two levels that we must distinguish. On the programming language
level, i.e. the implementation level, the type of formulae is an ordinary first-
order recursive datatype. In particular, the formula ∃x.A can be decomposed
(e.g. by pattern matching) into the bound variable x and the formula A,
which may contain x. On the logic level, we assume that our language
allows predicate variables, as is the case in all higher-order systems. On
this level ∃x.A is a formula where A does not depend on x, whereas P in
∃x.P (x) is a predicate variable, i.e. a function from terms to formulae, which
is applied to x, thus expressing the dependence on x. One advantage of the
higher-order notation is that substituting x by t is expressed by moving from
P (x) to P (t).

In addition to theorems we also have inference rules of the form

[[A1; . . . ;An]] =⇒ A

where the Ai are the premises and A is the conclusion. Logically this is
equivalent to A1 → · · · → An → A. The inference rule notation merely
increases readability. We assume the following basic functions for manipu-
lating theorems.

If th is the inference rule above, and th1, . . . , thn are theorems that
match the premises A1,. . . ,An, then fwd th [th1, . . . , thn] is the corresponding
instance of A. That is, if B1, . . . , Bn are the formulae proved by the theorems
th1, . . . , thn, and if θ is a most-general unifier of the set of equations A1 =
B1, . . . , An = Bn, then fwd th [th1, . . . , thn] yields the theorem θ(A).

The free variables in a theorem th can be instantiated from left to right
with terms t1, . . . , tn by writing th[t1, . . . , tn]. For example, if th is the
theorem m ≤ m + n·n then th[1, 2] is the theorem 1 ≤ 1 + 2·2.

Function gen performs ∀-introduction: it takes a variable x and a theo-
rem P (x) and returns the theorem ∀x.P (x).

We assume that the underlying theorem prover provides a function prove

from formulae to theorems which must be able to prove theorems of the
following form: 0 6= d for any non-zero integer numeral d; 0 < d for any
positive integer numeral d; d ∈ B for any integer numeral d and any finite
set of B of integer numerals; d dvd D where d and D are integer numerals.

2.2 Programming language

All algorithms are expressed in generic functional programming notation.
We assume the following special features. Lambda-abstraction uses a bold
λ (in contrast to the ordinary λ on the logic level) and permits pattern-
matching (where most uses are of the form λ[].t, where [] is the empty list).

2

P A(P) B(P) P−∞ P+∞

A ∧ B A(A) ∪ A(B) B(A) ∪ B(B) A−∞ ∧ B−∞ A+∞ ∧ B+∞

A ∨ B A(A) ∪ A(B) B(A) ∪ B(B) A−∞ ∨ B−∞ A+∞ ∨ B+∞

0 < x + a ∅ {−a} ⊥ >
0 < −x + a {a} ∅ > ⊥
0 = x + a {1 − a} {−1 − a} ⊥ >

¬(0 = x + a) {−a} {−a} ¬⊥ ¬>
∅ ∅ P P

Figure 1: Definition of A(P), B(P), P−∞ and P+∞

Because formulae (a concrete recursive type) and theorems (some abstract
type) are quite distinct, we need a way to refer to the formula proved by
some theorem. This is done by pattern matching: a theorem can be matched
against the pattern th as ‘f ’, where th is a theorem variable and f a formula
pattern, thus binding the formula variables in f . For example, matching the
theorem 0 = 0 ∧ 1 = 1 against the pattern th as ‘A ∧ B’ binds th to the
given theorem, A to the term 0 = 0 and B to the term 1 = 1.

3 Cooper’s algorithm

The input to Cooper’s algorithm is a formula ∃x.P , where P is a quantifier-
free PA-formula. The algorithm consists in the following steps.

Normalization N: Put the formula in negation normal form (NNF).

L: Replace negated inequalities ¬(s < t) by 0 < s − t + 1 and then
transform each atomic formulae A to have the form

d R l1·x1 + · · · + ln·xn + c

where

– xi = xj iff i = j

– x1 = x iff x occurs in A

– d = 0 if R 6= dvd

– d > 0 if R = dvd

U: After calculating l = lcm{c | c·x occurs in an atomic formula}
generate an equivalent formula where all atoms have been multi-
plied by an appropriate constant such that the coefficient of the
bound variable x is l or −l everywhere. Using (4) these coeffi-
cients can be replaced by −1 or 1. Furthermore, the coefficients
of x inside atomic formulae involving dvd and = can be set to 1
since following theorems hold:

0 = −1·x + t ↔ 0 = 1·x + (−1·t)

d dvd −1·x + t ↔ d dvd 1·x + (−1·t)

3

Calculation From the normalized formula P calculate

δ = lcm{d | d dvd t occurs in P ∧ x occurs in t} (1)

and A(P), B(P), P−∞ and P+∞ as defined in Fig. 1. Note that the
definition implicitly depends on the bound variable x: the final line
applies in case the subformula under consideration contains dvd or
does not contain x.

Result Apply either (2) or (3) in Cooper’s Theorem. The right-hand side
is quantifier-free. The choice of which of the two equivalences to apply
is normally determined by the relative size of A and B.

Theorem 1 (Cooper [1]) If P is a normalized Presburger formula then

(∃x.P (x)) ↔
δ∨

j=1

P−∞(j) ∨
δ∨

j=1

∨

b∈B(P (x))

P (b + j) (2)

(∃x.P (x)) ↔
δ∨

j=1

P+∞(j) ∨
δ∨

j=1

∨

a∈A(P (x))

P (a − j) (3)

4 Theorem extraction model

Many of our proofs are performed by the following generic function:

thm decomp t =
let

(ts,recomb) = decomp t

in recomb (map (thm decomp) ts)

It takes a problem decomposition function of type α → α list× (β list → β)
and a problem t of type α, decomposes t into a list of subproblems ts and
a recombination function recomb, solves the subproblems recursively, and
combines their solution into an overall solution.

In our applications, problems are formulae to be proved, solutions are
theorems, and termination will be guaranteed because all decompositions
yield syntactically smaller terms.

As an example we look at a generic function for quantifier elimination.
More precisely, we present a function qelim which eliminates all quantifiers
from a first-order formula provided it is given a function qe which can elimi-
nate a single existential quantifier. That is, if qe applied to a formula ∃x.P ,
where P is quantifier free, yields a theorem (∃x.P) ↔ Q, where Q is quan-
tifier free, then qelim applied to any first-order formula A yields a theorem
A ↔ B, where B is quantifier free.

decomp qe qe P =

4

case P of
A ∧ B ⇒ ([A,B], fwd cong∧)
A ∨ B ⇒ ([A,B], fwd cong∨)
A → B ⇒ ([A,B], fwd cong→)
A ↔ B ⇒ ([A,B], fwd cong↔)
¬A ⇒ ([A], fwd cong¬)
∃x.A ⇒ ([A],λ[th as ‘ ↔ B’]. let lift = fwd cong∃ [gen x th]

in fwd trans [lift, qe(∃x.B)])
∀x.A ⇒ ([∃x.¬A], fwd qe∀)
⇒ ([],λ[]. refl[P])

qelim qe = thm (decomp qe qe)

Elimination proceeds from the innersmost quantifier to the outermost one.
The function is theory independent. It uses a number of predicate calcu-
lus tautologies which can be found in the appendix. Note that decomp qe

qe terminates altough ∃x.¬A is not syntactically smaller than ∀x.A : sim-
ply unfold the definition of decomp qe qe twice in that branch to reach a
syntactically smaller term.

5 Proof synthesis for Presburger arithmetic

Presburger arithmetic can be implemented by quantifier elimination applied
to Cooper’s algorithm:

presburger = qelim cooper

We will now implement Cooper’s algorithm as in §3.

cooper x P =
let

nlthm as ‘ ↔ N ’ = nlstep x P {P (x) ↔ N(x)}
enlthm = fwd cong∃ (gen x nlthm) {(∃x.P (x)) ↔ (∃x.N(x))}
uthm as ‘ ↔ (∃x.U)’ = ustep x N {(∃x.N(x)) ↔ (∃x.U(x))}
normthm = fwd trans [enlthm, uthm] {(∃x.P (x)) ↔ (∃x.U(x))}
cpthm = cooper thm x U {(∃x.U(x)) ↔ Q}

in fwd trans [normthm, cpth] {(∃x.P (x)) ↔ Q}

The intermediate theorems are annotated with comments that show the
formula that they prove. This is in contrast to the pattern-matching (as)
notation in the programming language where P etc are first-order variables.
In the following subsections we discuss the implementations of the individual
steps.

Note that the Q in the equivalence (∃x.P (x)) ↔ Q may but need not
be True or False. If Q is closed, cooper thm below will ensure that it is in
fact True or False. Otherwise the truth value of Q may depend on its free
variables.

5

5.1 Proving the N and L-step

We obtain NNF via our workhorse thm; alternative implementation tech-
niques include rewriting with DeMorgan rules.

decomp nnf lf P =
case P of

A ∧ B ⇒ ([A,B], fwd cong∧)
A ∨ B ⇒ ([A,B], fwd cong∨)
A → B ⇒ ([A,B], fwd nnf→)
A ↔ B ⇒ ([A,B], fwd nnf↔)
¬¬p ⇒ ([p], fwd nnf¬¬)
¬(A ∧ B) ⇒ ([A,B], fwd nnf¬∧)
¬(A ∨ B) ⇒ ([A,B], fwd nnf¬∨)
¬(A → B) ⇒ ([A,B], fwd nnf¬→)
¬(A ↔ B) ⇒ ([A,B], fwd nnf¬↔)
⇒ ([],λ[]. lf P)

nlstep x P = thm (decomp nnf (proveL x)) P

Atomic formulae are immediately transformed via function proveL which
takes a variable x and an atomic formula A and returns the theorem A ↔
A′ where A′ is the result of performing the L-step (see §3) on A. This
requires the manipulation of individual (in)equalities between linear terms,
essentially just permuting subterms. How this is best handled depends on
the infrastructure of the underlying theorem prover: rewriting or quantifier-
free linear arithmetic are possible implementation tools. Hence we refrain
from giving a generic solution for the L-step prover.

5.2 Proving the U-step

The U-step takes a variable x and a formula P and first proves P ↔ P ′,
where P ′ is the formula obtained from P by multiplying each atomic formula
with some constant such that the coefficient of x becomes l = lcm{c |
c·x occurs in P} or −l.

Then we instantiate the generic theorem unitycoeff

(∃x. A(l·x)) ↔ (∃x. l dvd x ∧ A(x)) (4)

Now we give a function that returns the proof of adjusting the coefficient
of x in P to l or −l.

decomp ac x l P =
case P of

a R c·x + t ⇒
let

m = b l
c
c

k = if R = ‘<’ then |m| else m

6

x′ = (bm
k
c·l)·x

in
case R of

‘<’ ⇒
let

pre = prove(0 < k)
th as ‘A ↔ B’ = fwd (ac<[k, a, c, x, t]) pre

in ([],λ[].fwd trans [th, proveL x B])
‘=’ ⇒
let

pre = prove(0 6= k)
th as ‘A ↔ B’ = fwd (ac=[k, a, c, x, t]) pre

in ([],λ[].fwd trans [th, proveL x B])
‘dvd’ ⇒
let

pre = prove(0 6= k)
th as ‘A ↔ B’ = fwd (acdvd[k, a, c, x, t]) pre

in ([],λ[].fwd trans [th, proveL x B])
¬A ⇒ ([A], fwd cong¬)
A ∧ B ⇒ ([A,B], fwd cong∧)
A ∨ B ⇒ ([A,B], fwd cong∨)
⇒ ([],λ[]. refl[P])

ustep x P =
let

l = termlcm x P

acth as ‘ ↔ Q(l·x)’ = thm (decomp ac x l) P

in fwd trans [fwd cong∃ [gen x acth], unitycoeff [Q, l]]

Note that the right-hand sides of ac<, ac= and acdvd are not of the normal
form established by the L-step, which is why their use is followed by an
application of proveL to re-establish that normal form.

In the penultimate line of ustep we cheat a bit to avoid excessive tech-
nicalities. For a start, we assume that on the right-hand side of the ‘↔’
all occurrences of the quantified variable are either l·x or −1·(l·x) — the
negative form needs to be created explicitly from (−l)·x. As a result, x is
indeed multiplied by l everywhere. The second cheat is that we have taken
the liberty to employ a simple form of higher-order matching: matching the
pattern Q(l·x), where x is considered bound, against a formula f succeeds
iff all occurrences of x in f are of the form l·x, in which case function Q is
the result of λ-abstracting over all the occurrences of l·x. Although on the
programming language level formulae are a first-order data type and do not
directly support higher-order matching, this simple instance of it is readily
implemented.

7

The auxiliary function termlcm computes the lcm of all coefficients of x

in P . Its implementation is trivial and thus not shown.

5.3 Cooper’s Theorem

The main complication in the proof synthesis for Cooper’s algorithm is the
proof of Cooper’s theorem itself. Based on the work Michael Norrish[2], the
task can be simplified by generalizing the theorem from the specific δ, P−∞

and B(P) to arbitrary ones subject to certain assumptions:

cooper−∞ : [[0 < δ;
∃z.∀x.x < z → P (x) ↔ P−∞(x);
∀x.¬(∃j ∈ [δ].∃b ∈ B.P (b + j)) → P (x) → P (x − δ);
∀x, k.P−∞(x) ↔ P−∞(x − k·δ)]]

=⇒ (∃x.P (x)) ↔ (∃j ∈ [δ].P−∞(j) ∨ ∃j ∈ [δ].∃b ∈ B.P (b + j))

Note that we have replaced the indexed disjunctions by existential quanti-
fiers. The notation [δ] is short for the set {1, . . . , δ}. Function bset imple-
ments B in Fig. 1 and function delta computes δ as in (1). Their implemen-
tation is trival because deduction-free. Hence it is not shown.

We present only the −∞ variant of the theorem and the algorithm since
the +∞ one is analogous.

Function cooper thm is essentially an application of cooper−∞:

cooper thm x U =
let

B = bset x U

D = delta x U

prem1 = prove(0 < D)
prem2 = iff minf x U {∃z.∀x. x < z → (U(x) ↔ U−∞(x))}
prem3 = iff modd x D U {∀x, k. U−∞(x) ↔ U−∞(x − k · D)}
prem4 = notB x D B U

{¬(∃j ∈ [D], b ∈ B.U(b + j)) → U(x) → U(x − D)}
cpthm = fwd cooper−∞ [prem1,prem2,prem3,prem4]

in expand∃ cpthm

At the end we apply a function expand ∃ which takes some theorem and
returns an equivalent one where all occurrences of ∃x ∈ I, where I is some
finite set, have been expanded into finite disjunctions. Typically this is
performed by rewriting and we do not discuss the details. We assume that
at the same time rewriting also evaluates all ground arithmetic and logical
expressions. This means that if U(x) is closed (except for x), then the whole
right-hand side of cpthm is ground and can be rewritten to either True or
False.

Premise 0 < δ is proved directly by prove. The other premises can once
again be proved via thm, as we will see now.

8

5.4 Proving the premises of Cooper’s Theorem

∃z.∀x.x < z → (P (x) ↔ P−∞(x))

is synthesized by

decomp iff minf x F =
case F of

A ∧ B ⇒ ([A,B], fwd iff −∞∧)
A ∨ B ⇒ ([A,B], fwd iff −∞∨)
0 < 1·y + s | y = x ⇒ ([],λ[]. iff −∞<[s])
0 < −1·y + s | y = x ⇒ ([],λ[]. iff −∞<−[s])
0 = 1·y + s | y = x ⇒ ([],λ[]. iff −∞=[s])
¬(0 = 1·y + s) | y = x ⇒ ([],λ[]. iff −∞6=[s])
d dvd 1·y + s | y = x ⇒ ([],λ[]. iff −∞dvd[s])
¬(d dvd 1·y + s) | y = x ⇒ ([],λ[]. iff −∞¬dvd[s])
⇒ ([],λ[]. iff −∞[λx.F])

iff minf x F = thm (decomp iff minf x) F

Syntax : we employ Haskell’s guarded patterns: 0 < 1·y+s | y = x represents
the pattern 0 < 1·y + s guarded by the condition y = x.

∀x, k.P−∞(x) ↔ P−∞(x − k·δ)

is synthesized by

decomp iff modd x D F =
case F of

A ∧ B ⇒ ([A,B], fwd iff −δ∧)
A ∨ B ⇒ ([A,B], fwd iff −δ∨)
0 < 1·x + t ⇒ ([],λ[]. iff −δ[False])
0 < −1·x + t ⇒ ([],λ[]. iff −δ[True])
¬(0 = 1·x + t) ⇒ ([],λ[]. iff −δ[True])
0 = 1·x + t ⇒ ([],λ[]. iff −δ[False])
d dvd 1·x + t ⇒ ([],λ[]. iff −δdvd[d,D, t])
¬(d dvd 1·x + t) ⇒ ([],λ[]. iff −δ¬dvd[d,D, t])
⇒ ([],λ[]. iff −δ[F]);

iff modd x D F = thm (decomp iff modd x D) F

∀x.¬(∃j ∈ [δ].∃b ∈ B.P (b + j)) → P (x) → P (x − δ)

is synthesized by

decomp notB x D B P F =
case F of

A ∧ B ⇒ ([A,B], fwd notB∧)
A ∨ B ⇒ ([A,B], fwd notB∨)

9

0 < 1 · y + s | y = x ⇒ ([],λ[]. fwd (notB>[s,B, P,D]) [prove(−s ∈ B)])
0 < −1 ·y + s | y = x ⇒ ([],λ[]. fwd (notB<[D,P,B, s]) [prove(0 < D)])
0 = 1 · y + s | y = x ⇒

([],λ[]. fwd (notB=[D, s,B, P]) [prove(0 < D), prove(−s − 1 ∈ B)])
¬(0 = 1 · y + s) | y = x ⇒

([],λ[]. fwd (notB 6=[D, s,B, P]) [prove(0 < D), prove(−s ∈ B)])
d|1·y+s | y = x ⇒ ([],λ[]. fwd (notB dvd[d,D, P,B, s]) [prove(d dvd D)])
¬(d dvd 1 · y + s) | y = x ⇒

([],λ[]. fwd (notB¬dvd[d,D, P,B, s]) [prove(d dvd D)])
⇒ ([],λ[]. notBid[P,D,B, F])

notB x D B P = fwd notBE [thm (decomp notB x D B (λx.P)) P]

References

[1] D.C. Cooper. Theorem proving in arithmetic without multiplication. In
B. Meltzer and D. Michie, editors, Machine Intelligence, volume 7, pages
91–100. Edinburgh University Press, 1972.

[2] Michael Norrish. Complete integer decision procedures as derived rules
in HOL. In D.A. Basin and B. Wolff, editors, Theorem Proving in Higher

Order Logics, TPHOLs 2003, volume 2758 of Lect. Notes in Comp. Sci.,
pages 71–86. Springer-Verlag, 2003.

[3] Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. In Comptes Rendus du I Congrès de Mathématiciens des

Pays Slaves, pages 92–101, 1929.

A Some Theorems

refl : P ↔ P

trans: [[P ↔ Q;Q ↔ R]] =⇒ P ↔ R

notB∧:
[[∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → P1(x) → P1(x − δ);
∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → P2(x) → P2(x − δ)]]
=⇒ ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → (P1(x) ∧ P2(x))
→ (P1(x − δ) ∧ P2(x − δ))

notB∨:
[[∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → P1(x) → P1(x − δ);
∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → P2(x) → P2(x − δ)]]

10

=⇒ (∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → (P1(x) ∨ P2(x))
→ (P1(x − δ) ∨ P2(x − δ)))

notBE :
∀x.P (x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.P (b + j)) → P (x) → P (x − δ)
=⇒ ∀x.¬(∃j ∈ [δ].∃b ∈ B.P (b + j)) → P (x) → P (x − δ)

iff −∞∧:
[[∃z1.∀x.x < z1 → (P1(x) ↔ P2(x));
∃z2.∀x.x < z2 → (Q1(x) ↔ Q2(x))]]
=⇒ ∃z.∀x.x < z → ((P1(x) ∧ Q1(x)) ↔ (P2(x) ∧ Q2(x)))

iff −∞∨:
[[∃z1.∀x.x < z1 → (P1(x) ↔ P2(x));
∃z2.∀x.x < z2 → (Q1(x) ↔ Q2(x))]]
=⇒ ∃z.∀x.x < z → ((P1(x) ∨ Q1(x)) ↔ (P2(x) ∨ Q2(x)))

iff −∞: ∃z.∀x.x < z → (P (x) ↔ P (x))

iff −∞=: ∃z.∀x.x < z → ((0 = x + t ↔ False)

iff −∞6=: ∃z.∀x.x < z → (¬(0 = x + t) ↔ True)

iff −∞<: ∃z.∀x.x < z → (0 < 1·x + t ↔ False)

iff −∞<−: ∃z.∀x.x < z → (0 < −1·x + t ↔ True)

iff −∞dvd: ∃z.∀x.x < z → ((d dvd x + t) ↔ (d dvd x + t))

iff −∞¬dvd: ∃z.∀x.x < z → (¬(d dvd x + t) ↔ ¬(d dvd x + t))

acdvd: 0 6= k =⇒ (m dvd c·n + t) ↔ (k·m dvd (k·c)·n + k·t)

ac<: 0 < k =⇒ (m < c·n + t) ↔ (k·m < (k·c)·n + k·t)

ac=: 0 6= k =⇒ (m = c·n + t) ↔ (k·m = (k·c)·n + k·t)

iff −δ∧: [[∀x, k.P (x) ↔ P (x − k·δ); ∀x, k.Q(x) ↔ Q(x − k·δ)]]
=⇒ ∀x, k.(P (x) ∧ Q(x)) ↔ (P (x − k·δ) ∧ Q(x − k·δ))

iff −δ∨: [[∀x, k.P (x) ↔ P (x − k·δ); ∀x, k.Q(x) ↔ Q(x − k·δ)]]
=⇒ ∀x, k.(P (x) ∨ Q(x)) ↔ (P (x − k·δ) ∨ Q(x − k·δ))

iff −δ: ∀x, k. P ↔ P

iff −δdvd: d dvd δ =⇒ ∀x, k. (d dvd x + t) ↔ (d dvd x − k·δ + t)

iff −δ¬dvd: d dvd δ =⇒ ∀x, k. ¬(d dvd x + t) ↔ ¬(d dvd x − k·δ + t)

notBid: ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → F → F

11

notB<: 0 < δ =⇒ ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) →
(0 < −x + a) → (0 < −(x − δ) + a)

notB>: −a ∈ B =⇒ ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j))
→ (0 < x + a) → (0 < (x − δ) + a)

notB=: [[0 < δ;−a − 1 ∈ B]] =⇒ ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) →
(0 = x + a) → (0 = (x − δ) + a)

notB 6=: [[0 < δ;−a ∈ B]] =⇒ ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) →
¬(0 = x + a) → ¬(0 = (x − δ) + a)

notBdvd: d dvd δ =⇒ ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → d dvd

x + a → d dvd (x − δ) + a

notB¬dvd: d dvd δ =⇒ ∀x.Q(x) ∧ ¬(∃j ∈ [δ].∃b ∈ B.Q(b + j)) → ¬(d dvd

x + a) → ¬(d dvd (x − δ) + a)

cong∧: [[P1 ↔ P2;Q1 ↔ Q2]] =⇒ (P1 ∧ Q1) ↔ (P2 ∧ Q2)

cong∨: [[P1 ↔ P2;Q1 ↔ Q2]] =⇒ (P1 ∨ Q1) ↔ (P2 ∨ Q2)

cong→: [[P1 ↔ P2;Q1 ↔ Q2]] =⇒ (P1 → Q1) ↔ (P2 → Q2)

cong↔: [[P1 ↔ P2;Q1 ↔ Q2]] =⇒ (P1 ↔ Q1) ↔ (P2 ↔ Q2)

cong¬: P ↔ Q =⇒ ¬P ↔ ¬Q

cong∃: ∀x. P (x) ↔ Q(x) =⇒ (∃x.P (x)) ↔ (∃x.Q(x))

qe∀: (∃x.¬P (x)) ↔ R =⇒ (∀x.P (x)) ↔ ¬R

nnf →: [[¬P ↔ P1;Q ↔ Q1]] =⇒ ((P → Q) ↔ (P1 ∨ Q1))

nnf ↔: [[(P ∧ Q) ↔ (P1 ∧ Q1); (¬P ∧ ¬Q) ↔ (P2 ∧ Q2)]]
=⇒ (P ↔ Q) ↔ (P1 ∧ Q1) ∨ (P2 ∧ Q2)

nnf ¬¬: P ↔ Q =⇒ ¬¬P ↔ Q

nnf ¬∧: [[¬P ↔ P1;¬Q ↔ Q1]] =⇒ ¬(P ∧ Q) ↔ (P1 ∨ Q1)

nnf ¬∨: [[¬P ↔ P1;¬Q ↔ Q1]] =⇒ ¬(P ∨ Q) ↔ (P1 ∧ Q1)

nnf ¬→: [[P ↔ P1;¬Q ↔ Q1]] =⇒ ¬(P → Q) ↔ (P1 ∧ Q1)

nnf ¬↔: [[(P ∧ ¬Q) ↔ (P1 ∧ Q1); (¬P ∧ Q) ↔ (P2 ∧ Q2)]]
=⇒ ¬(P ↔ Q) ↔ ((P1 ∧ Q1) ∨ (P2 ∧ Q2))

12

