
Linear Quantifier Elimination

Tobias Nipkow

Institut für Informatik, Technische Universität München

Abstract. This paper presents verified quantifier elimination proce-
dures for dense linear orders (DLO), for real and for integer linear arith-
metic. The DLO procedures are new. All procedures are defined and
verified in the theorem prover Isabelle/HOL, are executable and can be
applied to HOL formulae themselves (by reflection).

1 Introduction

This paper is about the concise implementation of quantifier elimination (QE)
procedures (QEPs) for linear arithmetics. QE is a venerable logical technique
which yields decision procedures if ground atoms are decidable. The focus of our
work is the compact implementation of QEPs (for linear arithmetics) inside a the-
orem prover. All our QEPs have been defined and verified in Isabelle/HOL [16].
We do not discuss these formal proofs here. They are detailed, mostly structured
and available online at afp.sf.net, together with the QEPs themselves. Because
the informal proofs of these QEPs can be found in the literature, they need not
be discussed either. The exception are our two new QEPs for which informal
correctness proofs are given.

The main contributions of this paper are:

– Two new QEPs for dense linear orders (DLO) inspired by QEPs for linear
real arithmetic.

– Presentation of 5 verified implementations of QEPs: two for DLO, two for
linear real arithmetic and one for Presburger arithmetic (Cooper). We show
everything but the most trivial details, providing reference implementations
and convincing the reader that nothing has been swept under the carpet.

– Extremely compact formalizations due to the almost excessive use of lists
and list comprehensions.

– A common reusable QE framework using Isabelle’s structuring facility of
locales, thus factoring out the common parts of the different QEPs.

Why this obsession with executable and verified QEPs? The context of this
research is the question of how to implement trustworthy and efficient decision
procedures in foundational theorem provers, i.e. without having to trust an ex-
ternal oracle. Reflection, originally proposed by Boyer and Moore [2] and used
to great effect in systems like Coq (e.g. [7]) and Isabelle (e.g. [4]) has become a
standard approach. Suffice it to say that we follow this approach, too, and that
all the algorithms in this paper can be used directly on formulae in Isabelle —
details can be found elsewhere (e.g. [15]).

afp.sf.net

This paper is a contribution to the growing body of verified theorem proving
algorithms. In spirit it is close to Harrison’s forthcoming book [9] which presents
all algorithms in OCaml. Only that our code is verified.

It should be emphasized that the presentation is streamlined for succinctness.
In particular, we always restrict attention to two of the four relations =, <, ≤,
6=. For example, in DLOs it suffices to consider = and < because x ≤ y is
equivalent with x < y ∨ x = y and x 6= y is equivalent with x < y ∨ y < x. For
QEPs based on DNF this is a disaster because it leads to further case splits. The
algorithms in this paper avoid DNF. Nevertheless, an efficient implementation
would always work with all four relations. The corresponding generalization of
our code is straightforward.

The paper is structured as follows. In §3 we describe a HOL model of logical
formulae parameterized by a language of atoms and present a generic QEP
parameterized by a QEP for a single quantifier. The remaining sections present
a succession of 5 single-quantifier QEPs for different linear theories.

2 Basic Notation

HOL conforms largely to everyday mathematical notation. This section intro-
duces further non-standard notation and in particular a few basic data types
with their primitive operations.

The types of truth values, natural numbers, integers and reals are called bool,
nat, int and real. The space of total functions is denoted by ⇒. Type variables
are denoted by α, β, etc. The notation t::τ means that term t has type τ .

Sets over type α, type α set, follow the usual mathematical convention.
Lists over type α, type α list, come with the empty list [], the infix constructor

· , the infix @ that appends two lists, and the conversion function set from lists
to sets. Variable names ending in s usually stand for lists. In addition to the
standard functions map and filter, Isabelle/HOL also supports Haskell-style list
comprehension notation, with minor differences: instead of [e | x <- xs, ...]
we write [e. x ← xs, . . .], and [x←xs. . . .] is short for [x . x←xs, . . .].

Finally note that = on type bool means “iff”.
During informal explanations we often switch to everyday mathematical no-

tation where (a, b) can be a pair or an open interval.

3 Logic

Formulae are defined as a recursive datatype with a parameter type α of atoms:

datatype α fm = > | ⊥ | A α
| (α fm) ∧ (α fm) | (α fm) ∨ (α fm) | ¬ (α fm) | ∃ (α fm)

The boldface symbols ∧, ∨, ¬ and ∃ are ordinary constructors chosen to resem-
ble the logical operators they represent. Constructor A encloses atoms. The type
of atoms is left open by making it a parameter α. Variables are represented by de

2

Bruijn indices: quantifiers do not explicitly mention the name of the variable be-
ing bound because that is implicit. For example, ∃ (∃ . . . 0 . . . 1 . . .) represents
a formula ∃x1.∃x0. . . . x0 . . . x1 Note that the only place where variables can
appear is inside atoms. The only distinction between free and bound variables is
that the index of a free variable is larger than the number of enclosing binders.

3.1 Auxiliary Functions

The constructors ∨, ∧ and ¬ have optimized (“short-circuit”) versions or, and
and neg : or > ϕ = >, or ϕ > = >, or ⊥ ϕ = ϕ, or ϕ ⊥ = ϕ and or ϕ1 ϕ2 =
(ϕ1 ∨ ϕ2) otherwise; and > ϕ = ϕ, and ϕ > = ϕ, and ⊥ ϕ = ⊥, and ϕ ⊥ =
⊥ and and ϕ1 ϕ2 = (ϕ1 ∧ ϕ2) otherwise; neg > = ⊥, neg ⊥ = > and neg ϕ =
¬ ϕ otherwise.

Disjunction of a lists of formulae is easily defined:

list-disj [ϕ1,. . .,ϕn] = or ϕ1 (or . . . ϕn)

Most of our work will be concerned with quantifier-free formulae where all
negations have not just been pushed right in front of atoms but actually into
them. This is easy for linear orders because ¬(x < y) is equivalent with y ≤ x.
This conversion will be described later on because it depends on the type of
atoms. The (trivial to define) predicates

qfree, nqfree :: α fm ⇒ bool

check whether their argument is free of quantifiers (qfree), and free of negations
and quantifiers (nqfree).

There are also two mapping functionals

mapfm :: (α ⇒ β) ⇒ α fm ⇒ β fm
amapfm :: (α ⇒ β fm) ⇒ α fm ⇒ β fm

where mapfm f is the canonical one that simply replaces A a by A (f a), whereas
amapfm may also simplify the formula via and, or and neg :

amapfm h > = > amapfm h ⊥ = ⊥ amapfm h (A a) = h a
amapfm h (ϕ1 ∧ ϕ2) = and (amapfm h ϕ1) (amapfm h ϕ2)
amapfm h (ϕ1 ∨ ϕ2) = or (amapfm h ϕ1) (amapfm h ϕ2)
amapfm h (¬ ϕ) = neg (amapfm h ϕ)

Both mapping functionals are only defined and needed for qfree formulae.
The set of atoms in a formula is computed by the (trivial to define) function

atoms :: α fm ⇒ α set.

3.2 Interpretation

The interpretation or semantics of a fm is defined via the obvious homomorphic
mapping to an HOL formula: ∧ becomes ∧, ∨ becomes ∨, etc. The interpretation

3

of atoms is a parameter of this mapping. Atoms may refer to variables and are
thus interpreted w.r.t. a valuation. Since variables are represented as natural
numbers, the valuation is naturally represented as a list: variable i refers to the
ith entry in the list (starting with 0). This leads to the following interpretation
function interpret :: (α ⇒ β list ⇒ bool) ⇒ α fm ⇒ β list ⇒ bool :

interpret h > xs = True interpret h ⊥ xs = False
interpret h (A a) xs = h a xs
interpret h (ϕ1 ∧ ϕ2) xs = (interpret h ϕ1 xs ∧ interpret h ϕ2 xs)
interpret h (ϕ1 ∨ ϕ2) xs = (interpret h ϕ1 xs ∨ interpret h ϕ2 xs)
interpret h (¬ ϕ) xs = (¬ interpret h ϕ xs)
interpret h (∃ ϕ) xs = (∃ x . interpret h ϕ (x · xs))

In the equation for ∃ the value of the bound variable x is added at the front
of the valuation. De Bruijn indexing ensures that in the body 0 refers to x and
i + 1 refers to bound variable i further up.

3.3 Atoms

Atoms are more than a type parameter α. They come with an interpretation
(their semantics), and a few other specific functions. These functions are also
parameters of the generic part of quantifier elimination. Thus the further devel-
opment will be like a module parameterized with the type of atoms and some
functions on atoms. These parameters will be instantiated later on when apply-
ing the framework to various linear arithmetics.

In Isabelle this parameterization is achieved by means of a locale [1], a named
context of types, functions and assumptions about them. We call this context
ATOM. It provides the following functions

I a :: α ⇒ β list ⇒ bool
aneg :: α ⇒ α fm
depends0 :: α ⇒ bool
decr :: α ⇒ α

with the following intended meaning:

I a a xs is the interpretation of atom a w.r.t. valuation xs, where variable i (note
i :: nat because of de Bruijn) is assigned the ith element of xs.

aneg negates an atom. It returns a formula which should be free of negations.
This is strictly for convenience: it means we can eliminate all negations from
a formula. In the worst case we would have to introduce negated versions of
all atoms, but in the case of linear orders this is not necessary because we
can turn, for example, ¬(x < y) into (y < x) ∨ (y = x).

depends0 a checks if atom a contains (depends on) variable 0 and decr a decre-
ments every variable in a by 1.

Within context ATOM we introduce the abbreviation I ≡ interpret I a. The
assumptions on the parameters of ATOM can now be stated quite succinctly:

4

I (aneg a) xs = (¬ I a a xs) nqfree (aneg a)
¬ depends0 a =⇒ I a a (x · xs) = I a (decr a) xs

Function aneg must return a quantifier and negation-free formula whose in-
terpretation is the negation of the input. And when interpreting an atom not
containing variable 0 we can drop the head of the valuation and decrement the
variables without changing the interpretation.

These assumptions must be discharged when the locale is instantiated. We
do not show this in the text because the proofs are straightforward in all cases.

In the context of ATOM we define two auxiliary functions: atoms0 ϕ com-
putes the list of all atoms in ϕ that depend on variable 0. The negation normal
form (NNF) of a qfree formula is defined in the customary manner by pushing
negations inwards. We show only a few representative equations:

nnf (¬ (A a)) = aneg a
nnf (ϕ1 ∨ ϕ2) = (nnf ϕ1 ∨ nnf ϕ2)
nnf (¬ (ϕ1 ∨ ϕ2)) = (nnf (¬ ϕ1) ∧ nnf (¬ ϕ2))
nnf (¬ (ϕ1 ∧ ϕ2)) = (nnf (¬ ϕ1) ∨ nnf (¬ ϕ2))

The first equation differs from the usual definition and gets rid of negations
altogether — see the explanation of aneg above.

3.4 Quantifier Elimination

The elimination of all quantifiers from a formula is achieved by eliminating them
one by one in a bottom-up fashion. Thus each step needs to deal merely with the
elimination of a single quantifier in front of a quantifier-free formula. This step is
theory-dependent and hard. The lifting to arbitrary formulae is simple and can
be done once and for all. We assume we are given a function qe :: α fm ⇒ α fm
for the elimination of a single ∃, i.e. I (qe ϕ) = I (∃ ϕ) if qfree ϕ. Note that qe is
not applied to ∃ ϕ but just to ϕ, ∃ remains implicit. Lifting qe is straightforward:

lift-nnf-qe :: (α fm ⇒ α fm) ⇒ α fm ⇒ α fm

lift-nnf-qe qe (ϕ1 ∧ ϕ2) = and (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (ϕ1 ∨ ϕ2) = or (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (¬ ϕ) = neg (lift-nnf-qe qe ϕ)
lift-nnf-qe qe (∃ ϕ) = qe (nnf (lift-nnf-qe qe ϕ))
lift-nnf-qe qe ϕ = ϕ

Note that qe is called with an argument already in NNF. We can go even further
and put the argument of qe into DNF. This is detailed elsewhere [15] but avoided
here because it can lead to non-elementary complexity.

3.5 Correctness

Correctness lift-nnf-qe is roughly expressed as follows: if qe eliminates one ex-
istential while preserving the interpretation, then lift-nnf-qe qe eliminates all
quantifiers while preserving the interpretation.

5

For compactness we employ a set theoretic language for expressing properties
of functions: A → B is the set of functions from A to B and |P | ≡ {x | P x}.

Elimination of all quantifiers is easy:

Lemma 1. If qe ∈ |nqfree| → |qfree| then qfree (lift-nnf-qe qe ϕ).

Preservation of the interpretation is slightly more involved:

Lemma 2. If qe ∈ |nqfree| → |qfree| and for all ϕ and xs: (nqfree ϕ =⇒
I (qe ϕ) xs = (∃ x . I ϕ (x · xs))), then I (lift-nnf-qe qe ϕ) xs = I ϕ xs.

In the following sections we define a number of quantifier elimination func-
tions called f 1 (for different names f) that eliminate a single ∃. In each case we
have proved that f 1 satisfies the assumptions of the above two lemmas (with
f 1 for qe), define f = lift-nnf-qe f 1 and thus obtain qfree (f ϕ) and I (f ϕ) xs
= I ϕ xs as corollaries. Because of this uniformity and because the correctness
proofs are either discussed informally beforehand or are well-known from the
literature, we suppress all of this in the presentation. Thus it may look as if we
merely present code, but the proofs are all there!

4 Dense Linear Orders

The theory of dense linear orders (without endpoints) is an extension of the
theory of linear orders with the axioms

x < z =⇒ ∃ y . x < y ∧ y < z ∃ u. x < u ∃ l . l < x

It is the canonical example of quantifier elimination [11]. The equivalence (∃ y .
x < y ∧ y < z) = (x < z) is an easy consequence of the axioms and the essence
of Fourier’s elimination method, which requires conversion to DNF and is thus
non-elementary.

In contrast we develop two new NNF-based algorithms based on the test
point method (originally due to Cooper [5] and Ferrante and Rackoff [6] and
later generalized by Weispfenning [19]). The idea is to find a finite set of test
points T (depending on ϕ) such that (∃x. ϕ(x)) = (

∨
t∈T ϕ(t)). The complication

is that (conceptually) T may contain values like infinity, infinitesimals or inter-
mediate points, values that are not representable in the given term language.
The challenge is to define special versions of substitution for these values.

4.1 Atoms

There are just the two relations < and = and no function symbols. Thus atomic
formulae can be represented by the following datatype:

datatype atom = nat < nat | nat = nat

Note the bold infix constructors < and =. Because there are no function sym-
bols, the arguments of the relations must be variables. For example, i < j rep-
resents the atom xi < xj in de Bruijn notation.

6

Now we can instantiate locale ATOM. Type parameter α becomes type atom.
The interpretation function I a becomes I dlo where

I dlo (i = j) xs = (xs[i] = xs[j]) I dlo (i < j) xs = (xs[i] < xs[j])

The notation xs[i] means selection of the ith element of xs. The type of I dlo is
explicitly restricted such that xs must be a list of elements over a dense linear
order, where the latter is formalized as a type class [8] with the axioms shown at
the start of this section. Thus all valuations in this section are over dense linear
orders. Parameter aneg becomes negdlo:

negdlo (i < j) = (A (j < i) ∨ A (i = j))
negdlo (i = j) = (A (i < j) ∨ A (j < i))

The parameters adepends and adecr are instantiated with dependsdlo and decrdlo:

dependsdlo (i = j) = (i = 0 ∨ j = 0)
dependsdlo (i < j) = (i = 0 ∨ j = 0)

decrdlo (i < j) = (i − 1 < j − 1) decrdlo (i = j) = (i − 1 = j − 1)

This instantiation satisfies all the axioms of ATOM.

4.2 The Interior Point Method

Ferrante and Rackoff [6] realized (for linear real arithmetic) that when eliminat-
ing x from φ it (essentially) suffices to collect all lower bounds l of x (i.e. l < x
occurs in φ) and all upper bounds u of x (i.e. x < u occurs in φ) and try all such
(l + u)/2 as test points. This method is implemented in §5.2.

Now we present a novel quantifier elimination method for DLO based on
Ferrante and Rackoff’s idea. The problem with DLO is that one cannot name
any point between two variables x and y. Hence a special form of substitution
must be defined that behaves as if some intermediate point was substituted
without requiring such a point. We use the symbolic notation x↓y to denote
some arbitrary but fixed point in the interval (x, y). The key cases in defining
substitution with x↓y are: (x↓y < z) = (y ≤ z), (z < x↓y) = (z ≤ x), (x↓y <
x↓y) = False, (x↓y = x↓y) = True and (x↓y = z) = False. The last equation
is motivated because we can always choose x↓y to be different from z. Note also
that these definitions only work as expected if x < y.

We also need the fictitious values −∞ and ∞ first used by Cooper. Then we
can formulate the interior point method as a logical equivalence in test point
form, where φ must be quantifier-free and in NNF:

(∃x. φ(x)) = (φ(−∞) ∨ φ(∞) ∨
∨

y∈E

φ(y) ∨
∨

y∈L,z∈U

(y < z ∧ φ(y↓z))) (1)

E is the set of y such that x = y or y = x occur in φ(x), L is the set of y such
that y < x occurs in φ(x), U is the set of y such that x < y occurs in φ(x),
where x is the bound variable and y is different from x.

7

We sketch a proof of (1), details can be found in the Isabelle proof. The
if-direction is easy as in each case a witness is given. Except that −∞, ∞ and
y↓z are not proper values. But by induction on φ one can show that φ(−∞) etc
imply φ(x) for suitable x:

∃x.∀y ≤ x. φ(−∞) = φ(y) ∃x.∀y ≥ x. φ(∞) = φ(y)
y < z ∧ φ(y↓z) =⇒ ∀x ∈ (y, z). φ(x)

For the only-if-direction assume φ(x) and not φ(−∞) ∨ φ(∞) ∨
∨

y∈E φ(y). We
have to show that φ(y↓z) for some y ∈ L and z ∈ U . From the assumptions it
follows by induction on φ that there must be y0 ∈ L and z0 ∈ U such that x ∈
(y0, z0). Now we show (by induction on φ) the lemma that innermost intervals
(y, z) completely satisfy φ:

Lemma 3. If x ∈ (y, z), x /∈ E, (y, x) ∩ L = ∅ and (x, z) ∩ U = ∅, then φ(x)
implies ∀u ∈ (y, z). φ(u).

Given x ∈ (y0, z0) we define y = max{y ∈ L | y < x} and z = min{z ∈ U |
x < z}. It is easy to see that this satisfies the premises of the lemma and hence
∀u ∈ (y, z). φ(u). Again by induction on φ one can show that this actually
implies φ(y↓z):

Lemma 4. If x ∈ (y, z), x /∈ E, (y, x) ∩ L = ∅ and (x, z) ∩ U = ∅, then
(∀x ∈ (y, z). φ(x)) implies φ(y↓z).

4.3 A Verified Implementation of the Interior Point Method

The executable version of (1) is short but requires some auxiliary functions.

interior1 ϕ =
(let as = atoms0 ϕ; lbs = lbounds as; ubs = ubounds as; ebs = ebounds as;

intrs = [A(l < u) ∧ (subst2 l u ϕ). l←lbs, u←ubs]
in list-disj (inf − ϕ · inf + ϕ · intrs @ map (subst ϕ) ebs))

We will now explain the ingredients.
The implementation of substituting l↓u in atoms is given below. Please note

that substitution must not just substitute for variable 0 but must also decrement
the other variables.

asubst2 l u (0 < 0) = ⊥ asubst2 l u (Suc i < Suc j) = A (i < j)
asubst2 l u (0 < Suc j) = (A (u < j) ∨ A (u = j))
asubst2 l u (Suc i < 0) = (A (i < l) ∨ A (i = l))
asubst2 l u (0 = 0) = > asubst2 l u (Suc i = Suc j) = A (i = j)
asubst2 l u (0 = Suc v) = ⊥ asubst2 l u (Suc v = 0) = ⊥

From atoms to formulae is a short step: subst2 l u ϕ ≡ amapfm (asubst2 l u) ϕ
Plain old substitution of one variable for 0 is defined first on variables, then

on atoms and finally on formulae:

isubst k 0 = k isubst k (Suc i) = i

8

asubst k (i < j) = (isubst k i < isubst k j)
asubst k (i = j) = (isubst k i = isubst k j)

subst ϕ k ≡ mapfm (asubst k) ϕ

Substituting −∞ for 0 is implemented as follows:

amin-inf (i < 0) = ⊥ amin-inf (0 < Suc j) = >
amin-inf (Suc i < Suc j) = A (i < j)
amin-inf (0 = 0) = > amin-inf (Suc i = Suc j) = A (i = j)
amin-inf (0 = Suc v) = ⊥ amin-inf (Suc v = 0) = ⊥
inf − ϕ ≡ amapfm amin-inf ϕ

Dually there is inf + for substituting∞. Lower bounds, upper bounds and equal-
ities are conveniently collected from a list of atoms by list comprehension:

lbounds as = [i . (Suc i < 0) ← as] ubounds as = [i . (0 < Suc i) ← as]
ebounds as = [i . (Suc i = 0) ← as] @ [i . (0 = Suc i) ← as]

4.4 The Method of Infinitesimals

Loos and Weispfenning [12] proposed a quantifier elimination procedure for linear
real arithmetic (see §5.3) where test points are x + ε (for x a lower bound) or
y− ε (for y an upper bound) where ε is an infinitesimal. That is, the test points
are arbitrarily close to the lower or upper bounds of the eliminated variable.
In particular, it is not necessary to pair all lower and upper bounds but one
can choose either set, typically the smaller one. For succinctness we ignore this
duality and concentrate on the lower bounds only.

In this section we adapt the idea of infinitesimals to derive a new quantifier
elimination procedure for DLO. We merely need to explain what substitution of
x+ε means: (x+ε < y) = (x < y), (y < x+ε) = (y ≤ x), (x+ε < x+ε) = False,
(x+ε = x+ε) = True, (x+ε = y) = False, where x and y are different variables.

The test point method with infinitesimals is justified by the following equiv-
alence, where, as usual, φ is quantifier free and in NNF:

(∃x. φ(x)) = (φ(−∞) ∨
∨

y∈E

φ(y) ∨
∨
y∈L

φ(y + ε)) (2)

where E and L are defined as in (1). The proof is also similar. The main differ-
ences are: For the if-direction we need to show (by induction on φ) that y + ε
represents a proper witness:

φ(y + ε) =⇒ ∃y′ > y.∀x ∈ (y, y′). φ(x)

The two lemmas for the only-if-direction become

Lemma 5. If y < x, x /∈ E, (y, x) ∩ L = ∅ and φ(x), then ∀u ∈ (y, x]. φ(u).

Lemma 6. If y < x, x /∈ E, (y, x)∩L = ∅ and ∀u ∈ (y, x]. φ(u), then φ(y + ε).

9

Our verified implementation of (2)

eps1 ϕ = (let as = atoms0 ϕ; lbs = lbounds as; ebs = ebounds as
in list-disj (inf − ϕ · map (subst+ ϕ) lbs @ map (subst ϕ) ebs))

requires only one new concept, subst+ ϕ y, the substitution φ(y + ε):

asubst+ k (0 < 0) = ⊥ asubst+ k (Suc i < Suc j) = A (i < j)
asubst+ k (0 < Suc j) = A (k < j)
asubst+ k (Suc i < 0) = (if i = k then > else A (i < k) ∨ A (i = k))
asubst+ k (0 = 0) = > asubst+ k (Suc i = Suc j) = A (i = j)
asubst+ k (0 = Suc v) = ⊥ asubst+ k (Suc v = 0) = ⊥
subst+ ϕ k ≡ amapfm (asubst+ k) ϕ

4.5 Complexity

A formula of size n can contain at most n variables. The set of variables decreases
by one in each step. In the worst case all of them are bound and need to be
eliminated. In each step of the quantifier elimination processes (1) and (2) the
sets E, L and U are at most as large as k, the current number of variables.

The interior point method makes at most (k−1)2 copies of the formula in each
step. Hence the size of the output formula and also the amount of working space
required is O(n · (n− 1)2 · · · 12) = O(n · (n− 1)!2). The method of infinitesimals,
however, only makes at most k−1 copies, thus requiring only O(n·(n−1) · · · 1) =
O(n!) space. The time complexity of both algorithms is linear in their space
complexity, i.e. time and space coincide.

5 Linear Real Arithmetic

Linear real arithmetic is concerned with terms built up from variables, constants,
addition, and multiplication with constants. Relations between such terms can
be put into a normal form r ./ c0 ∗ x0 + · · · cn ∗ xn with ./ ∈ {=, <} and
r, c0, . . . , cn ∈ R. It is this normal form we work with in this section.

Note that although we phrase everything in terms of the real numbers, the
rational numbers work just as well. In fact, any ordered, divisible, torsion free,
Abelian group will do.

We present verified implementations of two quantifier elimination procedures:
one due to Ferrante and Rackoff [6] and one due to Loos and Weispfenning [12].

5.1 Atoms

Type atom formalizes the normal forms explained above:

datatype atom = real < (real list) | real = (real list)

The second constructor argument is the list of coefficients [c0,. . .,cn] of the vari-
ables 0 to n — remember de Bruijn! Coefficient lists should be viewed as vectors
and we define the usual vector operations on them:

10

x ∗s xs is the componentwise multiplication of a scalar x with a vector xs.
xs + ys and xs − ys are componentwise addition and subtraction of vectors.
〈xs,ys〉 = (

∑
(x ,y) ← zip xs ys. x∗y) is the inner product of two vectors, i.e.

the sum over the componentwise products.

If the two vectors involved in an operation are of different length, the shorter
one is padded with 0s (as in Obua’s treatment of matrices [18]). We can prove
all the algebraic properties we need, like 〈xs + ys,zs〉 = 〈xs,zs〉 + 〈ys,zs〉.

Now we instantiate locale ATOM just like for DLO in §4.1. The main function
is the interpretation I R of atoms, which is straightforward:

I R (r < cs) xs = (r < 〈cs,xs〉) I R (r = cs) xs = (r = 〈cs,xs〉)

5.2 Ferrante and Rackoff

Ferrante and Rackoff [6], inspired by Cooper [5], avoided DNF conversions by
the test point method explained in §4. We have already explained the key idea
of Ferrante and Rackoff in §4.2. If you replace y↓z in (1) by (y+z)/2 you almost
obtain their algorithm. In principle any point between y and z works but (y+z)/2
also takes care of equalities: they lump E, L and U together (to be avoided in an
implementation) but because (y + y)/2 = y this recovers E. As their algorithm
is well-known, we present its optimized and verified implementation right away:

FR1 ϕ =
(let as = atoms0 ϕ; lbs = lbounds as; ubs = ubounds as; ebs = ebounds ϕ;

intrs = [subst ϕ (between l u) . l ← lbs, u ← ubs];
in list-disj (inf − ϕ · inf + ϕ · intrs @ map (subst ϕ) ebs))

Except for the definition of intrs this looks identical to the definition of interior1

in §4.3. However, all auxiliary functions are different: they operate on pairs (r ,
cs) which, under a valuation xs, represent the value r + 〈cs,xs〉. First the various
bounds are extracted:

lbounds as = [(r/c, (−1/c) ∗s cs). (r < (c · cs)) ← as, c>0]
ubounds as = [(r/c, (−1/c) ∗s cs). (r < (c · cs)) ← as, c<0]
ebounds as = [(r/c, (−1/c) ∗s cs). (r = (c · cs)) ← as, c 6=0]

The intermediate point between two such points is easy:

between (r , cs) (s, ds) = ((r + s) / 2 , (1 / 2) ∗s (cs + ds))

We need both ordinary substitution of (r , cs) pairs

asubst (r , cs) (s < d · ds) = (s − d ∗ r < d ∗s cs + ds)
asubst (r , cs) (s = d · ds) = (s − d ∗ r = d ∗s cs + ds)
asubst rcs a = a

subst ϕ rcs ≡ mapfm (asubst rcs) ϕ

and substitution inf − of −∞ (and the analogous version inf + for ∞):

11

inf − (ϕ1 ∧ ϕ2) = and (inf − ϕ1) (inf − ϕ2)
inf − (ϕ1 ∨ ϕ2) = or (inf − ϕ1) (inf − ϕ2)
inf − (A (r < c · cs)) = (if c < 0 then > else if 0 < c then ⊥ else A (r < cs))
inf − (A (r = c · cs)) = (if c = 0 then A (r = cs) else ⊥)

The remaining cases are the identity. This concludes the auxiliary functions.

5.3 Loos and Weispfenning

The method of infinitesimals described in §4.4 was inspired by the analogous
method for linear real arithmetic proposed by Loos and Weispfenning [12] who
also showed practical examples where it outperforms Ferrante and Rackoff. Yet
this method seems relatively unknown in the literature. Its implementation eps1

is textually identical to the one for DLO in §4.4. But the auxiliary functions
differ. Luckily we have seen all of them already, except subst+:

asubst+ (r , cs) (s < d · ds) =
(if d = 0 then A (s < ds)
else let u = s − d ∗ r ; v = d ∗s cs + ds; lessa = A (u < v)

in if d < 0 then lessa else lessa ∨ A (u = v))
asubst+ rcs (r = d · ds) = (if d = 0 then A (r = ds) else ⊥)
asubst+ rcs a = A a

subst+ ϕ rcs ≡ amapfm (asubst+ rcs) ϕ

6 Presburger Arithmetic

Presburger arithmetic needs a divisibility (or congruence) predicate “|” to allow
quantifier elimination. On the other hand we restrict our attention to ≤ because
i < j is equivalent with i + 1 ≤ j. Thus all atoms are of the form i ≤ k0 ∗ x0 +
· · ·+kn ∗xn or d ‖ i+k0 ∗x0 + · · · kn ∗xn, where ‖ is | or -, and d, i, k0, . . . , kn ∈ Z
and d > 0. This becomes the datatype

atom = Le int (int list) | Dvd int int (int list) | NDvd int int (int list)

We have avoided infix constructors because they work less well for ternary op-
erations. Atoms are interpreted w.r.t. a list of variables as usual:

I Z (Le i ks) xs = (i ≤ 〈ks,xs〉)
I Z (Dvd d i ks) xs = d | (i + 〈ks,xs〉)
I Z (NDvd d i ks) xs = (¬ d | (i + 〈ks,xs〉))

Note that we reuse the polymorphic vector, i.e. list operations like 〈.,.〉 introduced
for linear real arithmetic: they are defined for arbitrary types with 0, + and ∗.

The parameters of locale ATOM are instantiated as follows. The interpreta-
tion of atoms is given by function I Z above, their negation by

negZ (Le i ks) = A (Le (1 − i) (− ks))
negZ (Dvd d i ks) = A (NDvd d i ks) negZ (NDvd d i ks) = A (Dvd d i ks)

12

and their decrementation by

decrZ (Le i ks) = Le i (tl ks)
decrZ (Dvd d i ks) = Dvd d i (tl ks) decrZ (NDvd d i ks) = NDvd d i (tl ks)

Parameter depends0 becomes λa. hd-coeff a 6= 0 where

hd-coeff (Le i ks) = (case ks of [] ⇒ 0 | k · x ⇒ k)
hd-coeff (Dvd d i ks) = (case ks of [] ⇒ 0 | k · x ⇒ k)
hd-coeff (NDvd d i ks) = (case ks of [] ⇒ 0 | k · x ⇒ k)

6.1 Cooper’s Algorithm

Cooper’s algorithm relies on Cooper’s theorem [5] which holds provided all co-
efficients of x in φ(x) are 1 or -1 (or 0):

(∃x. φ(x)) = (
∨

j∈(0,δ−1)

φ−∞(j) ∨
∨
y∈L

∨
j∈(0,δ−1)

φ(y + j))

where δ is the lcm of all d such that d | t or d - t occurs in φ(x) and t contains
x, L is the set of lower bounds for x in φ(x), and φ−∞(j) is φ(x) where x has
been replaced by −∞ in all inequations and by j in all other atoms.

We start by setting all (non-zero) head coefficients to 1 or -1. This is achieved
by multiplying each atom a (with non-zero head coefficient) with m/k, where m
is the lcm of all (non-zero) head coefficients and k is a’s head coefficient (assume
k > 0 for simplicity). Now all (non-zero) head coefficients are m, we replace
them by 1 and conjoin the atom m | x0. This is what hd-coeff1 does for an atom
and hd-coeff1 for a formula:

hd-coeff1 m (Le i (k · ks)) =
(if k = 0 then Le i (k · ks)
else let m ′ = m div |k | in Le (m ′ ∗ i) (sgn k ·m ′ ∗s ks))

hd-coeff1 m (Dvd d i (k · ks)) =
(if k = 0 then Dvd d i (k · ks)
else let m ′ = m div k in Dvd (m ′ ∗ d) (m ′ ∗ i) (1 ·m ′ ∗s ks))

hd-coeff1 m (NDvd d i (k · ks)) =
(if k = 0 then NDvd d i (k · ks)
else let m ′ = m div k in NDvd (m ′ ∗ d) (m ′ ∗ i) (1 ·m ′ ∗s ks))

hd-coeff1 m a = a

hd-coeffs1 ϕ =
(let m = zlcms (map hd-coeff (atoms0 ϕ))
in A (Dvd m 0 [1]) ∧ mapfm (hd-coeff1 m) ϕ)

The sign function sgn returns -1, 0, and 1 for negative, zero and positive argu-
ments. Functions zlcms computes the positive lcm of a list of integers.

Now we start to implement Cooper’s theorem. The substitution φ−∞(j) is
implemented by the composition of

13

inf − (ϕ1 ∧ ϕ2) = and (inf − ϕ1) (inf − ϕ2)
inf − (ϕ1 ∨ ϕ2) = or (inf − ϕ1) (inf − ϕ2)
inf − (A (Le i (k · ks))) =
(if k < 0 then > else if 0 < k then ⊥ else A (Le i (0 · ks)))
inf − ϕ = ϕ

and ordinary substitution:

asubst i ′ ks ′ (Le i (k · ks)) = Le (i − k ∗ i ′) (k ∗s ks ′ + ks)
asubst i ′ ks ′ (Dvd d i (k · ks)) = Dvd d (i + k ∗ i ′) (k ∗s ks ′ + ks)
asubst i ′ ks ′ (NDvd d i (k · ks)) = NDvd d (i + k ∗ i ′) (k ∗s ks ′ + ks)

asubst i ′ ks ′ a = a

subst i ks ϕ ≡ mapfm (asubst i ks) ϕ

The right-hand side of Cooper’s theorem now becomes executable:

cooper1 ϕ =
(let as = atoms0 ϕ; d = zlcms(map divisor as);

lbs = [(i ,ks). Le i (k · ks) ← as, k>0]
in or (Disj [0 ..d − 1] (λn. subst n [] (inf − ϕ)))

(Disj lbs (λ(i ,ks). Disj [0 ..d − 1] (λn. subst (i + n) (−ks) ϕ))))

where divisor (Dvd d) = divisor(NDvd d) = d, divisor (Le) = 1 and
Disj us f ≡ list-disj (map f us). The lower bounds lbs are computed directly
rather than by an auxiliary function.

The two phases of Cooper’s algorithm are simply composed and lifted:

cooper = lift-nnf-qe (cooper1 ◦ hd-coeffs1)

6.2 Correctness

There is a slight complication we have glossed over so far. We want to exclude
the atoms Dvd 0 i ks and NDvd 0 i ks because they behave anomalously and the
algorithm does not generate them either. Catering for them would complicate
the algorithm with case distinctions. In order to restrict attention to a subset of
normal atoms, locale ATOM in fact has another parameter not mentioned so
far: anormal :: α ⇒ bool with the axioms

anormal a =⇒ ∀ b∈atoms (aneg a). anormal b
¬ depends0 a =⇒ anormal a =⇒ anormal (decr a)

In words: negation and decrementation do not lead outside the normal atoms.
These axioms allow to show the following refined version of Lemma 2 (inside
ATOM), where normal ϕ = (∀ a∈atoms ϕ. anormal a):

Lemma 7. If qe ∈ |nqfree| → |qfree| and qe ∈ |nqfree| ∩ |normal | → |normal |
and for all ϕ and xs: normal ϕ ∧ nqfree ϕ =⇒ I (qe ϕ) xs = (∃ x . I ϕ (x · xs)),
then normal ϕ implies I (lift-nnf-qe qe ϕ) xs = I ϕ xs.

14

In the instantiation of ATOM for Presburger arithmetic parameter anormal
becomes λa. divisor a 6= 0. The above lemma is instantiated with cooper1 ◦
hd-coeffs1 for qe and its premises are discharged by the detailed but familiar
correctness arguments for Cooper’s algorithm. We obtain the corollary normal ϕ
=⇒ I (cooper ϕ) xs = I ϕ xs. Of course qfree (cooper ϕ) is also proved.

7 Related work

The literature on decision procedures for linear arithmetic is vast. We concentrate
on formally verified algorithms.

Nipkow [15] presents the generic framework of §3 in detail but concentrates
on non-elementary DNF-based procedures. Chaieb and Nipkow [4] present a re-
flective implementations of Cooper’s algorithm. But they lack the generic frame-
work and they use special purpose data structures for terms instead of relying on
lists as we do. As a result some of their functions are considerably more compli-
cated than ours and theorems and proofs are littered with linearity assumptions
that are implicit in our list representation. Hence they can only present part
of their implementation. Chaieb [3] presents a verified combination of Ferrante-
Rackoff and Cooper. Norrish [17] was the first to implement a proof-producing
version of Cooper’s algorithm in a theorem prover. Similar implementation of
QE for complex numbers and for real closed fields are reported by Harrison [10]
and McLaughlin [14]. The CAD QE procedure for real closed fields has been
reflected but only partly verified by Mahboubi [13] in Coq.

Acknowledgment Amine Chaieb alerted me to the infinitesimal approach [12].
Discussions with him and Jeremy Avigad were very helpful.

References

1. C. Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts. In
J. Borwein and W. Farmer, editors, Mathematical Knowledge Management, volume
4108 of LNCS, pages 31–43. Springer, 2006.

2. R. S. Boyer and J. S. Moore. Metafunctions: proving them correct and using
them efficiently as new proof procedures. In R. Boyer and J. Moore, editors, The
Correctness Problem in Computer Science, pages 103–184. Academic Press, 1981.

3. A. Chaieb. Verifying mixed real-integer quantifier elimination. In U. Furbach and
N. Shankar, editors, Automated Reasoning (IJCAR 2006), volume 4130 of LNCS,
pages 528–540. Springer, 2006.

4. A. Chaieb and T. Nipkow. Verifying and reflecting quantifier elimination for Pres-
burger arithmetic. In G. Stutcliffe and A. Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR 2005), volume 3835 of LNCS,
pages 367–380. Springer, 2005.

5. D. Cooper. Theorem proving in arithmetic without multiplication. In B. Meltzer
and D. Michie, editors, Machine Intelligence, volume 7, pages 91–100. Edinburgh
University Press, 1972.

15

6. J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real
addition with order. SIAM J. Computing, 4:69–76, 1975.

7. G. Gonthier. A computer-checked proof of the four-colour theorem. http:
//research.microsoft.com/∼gonthier/4colproof.pdf.

8. F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In T. Altenkirch
and C. McBride, editors, Types for Proofs and Programs (TYPES 2006), volume
4502 of LNCS, pages 160–174. Springer, 2007.

9. J. Harrison. Introduction to Logic and Automated Theorem Proving. Cambridge
University Press. Forthcoming.

10. J. Harrison. Complex quantifier elimination in HOL. In R. Boulton and P. Jack-
son, editors, TPHOLs 2001: Supplemental Proceedings, pages 159–174. Division of
Informatics, University of Edinburgh, 2001.

11. C. Langford. Some theorems on deducibility. Annals of Mathematics (2nd Series),
28:16–40, 1927.

12. R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Com-
puter Journal, 36:450–462, 1993.

13. A. Mahboubi. Contributions à la certification des calculs sur R : théorie, preuves,
programmation. PhD thesis, Université de Nice, 2006.

14. S. McLaughlin and J. Harrison. A proof-producing decision procedure for real
arithmetic. In R. Nieuwenhuis, editor, Automated Deduction — CADE-20, volume
3632 of LNCS, pages 295–314. Springer, 2005.

15. T. Nipkow. Reflecting quantifier elimination for linear arithmetic. In O. Grumberg,
T. Nipkow, and C. Pfaller, editors, Formal Logical Methods for System Security and
Correctness, pages 245–266. IOS Press, 2008.

16. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

17. M. Norrish. Complete integer decision procedures as derived rules in HOL. In
D. Basin and B. Wolff, editors, Theorem Proving in Higher Order Logics, TPHOLs
2003, volume 2758 of LNCS, pages 71–86. Springer, 2003.

18. S. Obua. Proving bounds for real linear programs in Isabelle/HOL. In J. Hurd,
editor, Theorem Proving in Higher Order Logics (TPHOLs 2005), volume 3603 of
LNCS, pages 227–244. Springer, 2005.

19. V. Weispfenning. The complexity of linear problems in fields. J. Symbolic Com-
putation, 5:3–27, 1988.

16

http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colproof.pdf

	Linear Quantifier Elimination
	Tobias Nipkow

