A Machine-Checked Model for a Java-Like Language, Virtual Machine and Compiler

GERWIN KLEIN
National ICT Australia, Sydney
and
TOBIAS NIPKOW
Technische Universität München

Abstract

We introduce Jinja, a Java-like programming language with a formal semantics designed to exhibit core features of the Java language architecture. Jinja is a compromise between realism of the language and tractability and clarity of the formal semantics. The following aspects are formalised: a big and a small step operational semantics for Jinja and a proof of their equivalence; a type system and a definite initialisation analysis; a type safety proof of the small step semantics; a virtual machine (JVM), its operational semantics and its type system; a type safety proof for the JVM; a bytecode verifier, i.e. data flow analyser for the JVM; a correctness proof of the bytecode verifier w.r.t. the type system; a compiler and a proof that it preserves semantics and well-typedness.

The emphasis of this work is not on particular language features but on providing a unified model of the source language, the virtual machine and the compiler. The whole development has been carried out in the theorem prover Isabelle/HOL.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory—Semantics; D.3.4 [Programming Languages]: Processors—Compilers; F. 3.3 [Logics and Meanings of Programs]: Studies of Program Constructs-Object-oriented constructs General Terms: Languages, Verification Additional Key Words and Phrases: Java, operational semantics, theorem proving

1. INTRODUCTION

There is a large body of literature on formal models of Java-like languages, the virtual machine and bytecode verification, and compilation. However, each of these models is designed to treat certain features of Java in depth, while ignoring other features completely (see below for one exception). The main result of our work is the first unified model of a Java-like source language, virtual machine, and compiler, with the following salient features: it is based on operational semantics, it is executable, it fits into the confines of a journal article, and all proofs are machinechecked (in Isabelle/HOL [Nipkow et al. 2002]). This is considerably more than the sum of its parts. A tractable formal model is the result of a careful balance of

This work was done while Nipkow was on sabbatical at NICTA where he was supported by the NICTA Formal Methods program and the DFG.
Authors' addresses: Gerwin Klein, National ICT Australia, University of New South Wales, Sydney NSW 2052, Australia. www.cse.unsw.edu.au/ ${ }^{\sim} k l e i n g . ~ T o b i a s ~ N i p k o w, ~ I n s t i t u t ~ f u ̈ r ~$ Informatik, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany, www.in.tum.de/~nipkow.
features on each level and of the interaction between the different levels (here: the source and target language). That is, integrating different formal models is just as much of a challenge as designing the individual models.

In addition to the unified model, there are also a number of specific advances of the state of the art: a big and small step semantics together with an equivalence proof (previously only one or the other had been used), a formalisation of the "definite assignment" analysis of local variables, and a compiler correctness proof covering exceptions. We discuss these issues in detail in the respective sections.

It must be emphasised that our work is complementary to the detailed analysis of particular language features. In the end, a synthesis of our unified (but in many places simplified) model and the more detailed (but specialised) models should emerge. And because of the unavoidable size of the resulting model, we believe that some machine-checked analysis, ideally with a theorem prover, is necessary to guarantee the overall consistency of the model - in particular when faced with changes. With each change to a model of that size, a purely textual definition becomes less and less reliable: in the absence of mechanical consistency checks, changes in one part of the model will sooner or later have unexpected side effects in other parts. This is where formal verification and the ability to re-run proofs really pays off. But even without formal proofs, mere type checking is already tremendously beneficial. Hence this paper should also be viewed as an attempt to combine the rigour of a formal machine-checked meta-language with standard (largely mathematical) notation. More on this issue in §1.2.

The paper is subdivided into 4 parts: the source language ($\S 2$), the virtual machine ($\S 3$), the bytecode verifier ($\S 4$), and the compiler ($\S 5$).

We discuss related work separately at the end of each section because most papers deal with a specific language layer. The exception is the book by Stärk et al. [2001], who treat almost all of Java and the virtual machine. This is a very impressive piece of work, but quite different from ours: it is based on Abstract State Machines rather than standard operational semantics, and the proofs are not machine-checked. It should be noted that the literature on formal models of Java and the JVM is already so large that it gave rise to three survey-like publications [Alves-Foss 1999; Hartel and Moreau 2001; Nipkow 2003a]. Hence our discussion of related work is necessarily restricted to those papers with a very direct connection to ours.

As a final word of warning we must emphasize that the core of the paper is intentionally detailed and technical: its very aim is to demonstrate the state of the art in machine-checked language definitions.

1.1 Basic Notation - The Meta-Language

Our meta-language HOL conforms largely to everyday mathematical notation. This section introduces further non-standard notation and in particular a few basic data types with their primitive operations.

Types The basic types of truth values, natural numbers and integers are called bool, nat, and int. The space of total functions is denoted by \Rightarrow. Type variables are written ' a, ' b, etc. The notation $t:: \tau$ means that HOL term t has HOL type τ.

Pairs come with the two projection functions $f s t::{ }^{\prime} a \times{ }^{\prime} b{ }^{\prime} a$ and snd $::{ }^{\prime} a$ $\times{ }^{\prime} b \Rightarrow^{\prime} b$. We identify tuples with pairs nested to the right: (a, b, c) is identical to $(a,(b, c))$ and ' $a \times{ }^{\prime} b \times{ }^{\prime} c$ is identical to ${ }^{\prime} a \times\left({ }^{\prime} b \times{ }^{\prime} c\right)$.

Sets (type 'a set) follow the usual mathematical convention. Intervals are written as follows: $\{m . .<n\}$ means $\{i \mid m \leq i<n\}$ and $\{m . . n\}$ means $\{i \mid m \leq i \leq n\}$. If m is 0 , it can be dropped.

Lists (type 'a list) come with the empty list [], the infix constructor • , the infix @ that appends two lists, and the conversion function set from lists to sets. Variable names ending in " s " usually stand for lists, $|x s|$ is the length of $x s$, and $x s_{[n]}$, where $n:: n a t$, is the nth-element of $x s$ (starting with 0). The notation $[i . .<j]$ with $i:: n a t$ and $j:: n a t$ stands for the list $[i, \ldots, j-1]$. distinct $x s$ means that the elements of $x s$ are all distinct. The standard functions map and filter are also available.

$$
\text { datatype ' } a \text { option }=\text { None } \mid \text { Some }^{\prime} a
$$

adjoins a new element None to a type ' a. For succinctness we write $\lfloor a\rfloor$ instead of Some a. The underspecified inverse the of Some satisfies the $\lfloor x\rfloor=x$.

Function update is written $f(x:=y)$ where $f::{ }^{\prime} a \Rightarrow^{\prime} b, x::{ }^{\prime} a$ and $y::{ }^{\prime} b$.
Partial functions are modelled as functions of type ' $a \Rightarrow{ }^{\prime} b$ option, where None represents undefinedness and $f x=\lfloor y\rfloor$ means x is mapped to y. We define dom m $\equiv\{a \mid m a \neq$ None $\}$. Instead of ' $a \Rightarrow$ ' b option we write ' $a \rightharpoonup^{\prime} b$, call such functions maps, and abbreviate $f(x:=\lfloor y\rfloor)$ to $f(x \mapsto y)$. The latter notation extends to lists: $f\left(\left[x_{1}, \ldots, x_{m}\right][\mapsto]\left[y_{1}, \ldots, y_{n}\right]\right)$ means $f\left(x_{1} \mapsto y_{1}\right) \ldots\left(x_{i} \mapsto y_{i}\right)$, where i is the minimum of m and n. The notation works for arbitrary list expressions on both sides of $[\mapsto]$, not just enumerations. Multiple updates like $f(x \mapsto y)(x s[\mapsto] y s)$ can be written as $f(x \mapsto y, x s[\mapsto] y s)$. The map λx. None is written empty, and empty (\ldots), where \ldots are updates, abbreviates to [...]. For example, empty $(x \mapsto y, x s[\mapsto] y s)$ becomes $[x \mapsto y, x s[\mapsto] y s]$.

Overwriting map m_{1} with m_{2} is written $m_{1}++m_{2}$ and means λx. case $m_{2} x$ of None $\Rightarrow m_{1} x \mid\lfloor y\rfloor \Rightarrow\lfloor y\rfloor$.

Function map-of turns an association list, i.e. list of pairs, into a map:
map-of [] = empty
map-of $(p \cdot p s)=$ map-of $p s($ fst $p \mapsto s n d p)$
Note that $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ abbreviates $A_{1} \Longrightarrow\left(\ldots \Longrightarrow\left(A_{n} \Longrightarrow A\right) \ldots\right)$. In lemmas we often write "If A_{1} and \ldots and A_{n} then A " instead. Displayed implications are frequently printed as inference rules:

1.2 Presentation Issues

How are the formulae you see related to the formal Isabelle text? Our motto is

> What you see is what we proved!

In many papers this is not the case. For example, the main definition by Nipkow [1991] and the main theorem, Theorem 1, by Flatt et al. [1999] are blatantly wrong (the latter misses the case that e might diverge). In order to avoid this problem, Isabelle theories can be augmented with $\mathrm{HA}_{\mathrm{E}} \mathrm{X}$ text which may contain references to Isabelle theorems (by name - see chapter 4 of the book by Nipkow et al. [2002]). When this $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ text is processed by Isabelle, it expands these references into the $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ text for the proposition of the theorem. Using this mechanism, the text for
most of the definitions and theorems in this paper is automatically generated. We emphasize that the $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ presentation is quite close to the original Isabelle theories viewed with the help of the Proof General interface [Aspinall 2000] because the latter supports mathematical symbols. Only a few niceties like inference rules are ${ }^{\mathrm{LAT}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ specific.

It is conceivable to go one step further and even generate proof text automatically from the theories. However, although most of our proofs are in a quasi-readable form of structured stylized mathematics [Wenzel 2002; Nipkow 2003b], it appears beyond the state of the art to turn these into concise journal-style proofs automatically.

2. JINJA

Our dialect of Java is called Jinja (because Jinja is not Java). Although Jinja is a typed language, we begin its description with the operational semantics which is independent of the type system. First we introduce a big step or evaluation semantics (§2.2), then a small step or reduction semantics (§2.3). The big step semantics will be used in the compiler proof, the small step semantics in the type safety proof. Both semantics are defensive: rules only apply if everything "fits together". For example, variable lookup requires that the variable has been initialised. This is a prerequisite for the type safety proof, which shows that reduction of well-typed expressions does not get stuck. In $\S 2.4$ certain minimal well-formedness conditions for programs are defined. They imply ((2.5) that the two semantics are equivalent for terminating executions. Then we introduce a type system (§2.6) and a "definite assignment" analysis (§2.7) for expressions and complete the set of well-formedness conditions for Jinja programs (§2.8). Finally we show type safety (§2.9).

2.1 Abstract Syntax

2.1.1 Names. In the sequel we use the following (HOL) variable conventions: V is a (Jinja) variable name, F a field name, M a method name, C a class name, e an expression, v a value, T a type, and P a program.

For readability only we have introduced three (HOL) types for Jinja identifiers: cname (class names), vname (variable names), and mname (method names). All three are merely synonyms for type string.

2.1.2 Values and Expressions. A Jinja value can be

-a boolean Bool b, where $b::$ bool, or
—an integer Intg i, where $i::$ int, or
—a reference $A d d r$, where $a:: a d d r$, or
-the null reference Null, or
-the dummy value Unit.
Jinja is an imperative but an expression-based language where statements are expressions that evaluate to Unit. To make things executable, type $a d d r$ is actually a synonym for type nat (as opposed to leaving it unspecified).

The following expressions (of HOL type expr) are supported by Jinja:
-creation of new object: new C
-casting: Cast $C e$
-literal value: Val v
-binary operation: $e_{1}<b o p \gg e_{2}$ (where $b o p$ is one of + or $=$)
-variable access Var V and variable assignment $V:=e$
-field access e.F\{D\} and field assignment $e_{1} \cdot F\{D\}:=e_{2}$ (where D is the class where F is declared)
—method call: e.M(es)
—block with locally declared variable: $\{V: T ; e\}$
-sequential composition: e_{1}; e_{2}
—conditional: if (e) e_{1} else e_{2} (do not confuse with HOL's if b then x else y)
-while loop: while (e) e^{\prime}
-exception throwing throw e and catching try e_{1} catch $(C V) e_{2}$
The constructors Val and Var are needed in our meta-language to disambiguate the syntax. There is no return statement because everything is an expression and returns a value.

Note that the annotation $\{D\}$ in field access and assignment is not part of the input language but is something that a preprocessor, e.g. the type checking phase of a compiler, must add. We come back to this point in §2.6.

To ease notation we introduce some abbreviations:

$$
\begin{array}{lllll}
\text { true } & \equiv & \operatorname{Val}(\text { Bool True }) & \text { false } & \equiv \\
\text { Val(Bool False) } \\
\text { addr } a & \equiv \operatorname{Val}(\text { Addr a) } & \text { null } & \equiv & \text { Val Null } \\
\text { unit } & \equiv & \text { Val Unit } & & \\
\end{array}
$$

Jinja supports only the two binary operators = and + to keep things simple. Their evaluation is defined via a function binop that takes an operator and two values and returns an optional value (to deal with type mismatches):

$$
\begin{array}{ll}
\text { binop }\left(=, v_{1}, v_{2}\right) & =\left\lfloor\operatorname{Bool}\left(v_{1}=v_{2}\right)\right\rfloor \\
\text { binop }\left(+, \text { Intg } i_{1}, \text { Intg } i_{2}\right) & =\left\lfloor\text { Intg }\left(i_{1}+i_{2}\right)\right\rfloor \\
\text { binop }\left(\text { bop }, v_{1}, v_{2}\right) & =\text { None }
\end{array}
$$

Addition only yields a value if both arguments are integers. We could also insist on similar compatibility checks for the equality test, but that leads to excessive case distinctions that we want to avoid for reasons of presentation.
2.1.3 Programs. The abstract syntax of programs is given by the type definitions in Fig. 1, where $t y$ is the HOL type of Jinja types. A program is a list of class declarations. A class declaration consists of the name of the class and the class itself. A class consists of the name of its direct superclass, a list of field declarations and a list of method declarations. A field declaration is a pair of a field name and its type. A method declaration consists of the method name, the parameter types, the result type, and the method body.

The only unusual thing here is the parameterisation of these types by ' m, the type of the method body. The reason is that we want to use the program structure not just for Jinja but also for virtual machine programs. All we need to do is to slot

$$
\text { types } \begin{aligned}
\text { 'm prog } & =\text { 'm cdecl list } \\
\text { 'm cdecl } & =\text { cname } \times \text { 'm class } \\
\text { 'm class } & =\text { cname } \times \text { fdecl list } \times \text { 'm mdecl list } \\
\text { fdecl } & =\text { vname } \times \text { ty } \\
\text { 'm mdecl } & =\text { mname } \times \text { ty list } \times \text { ty } \times{ }^{\prime} m \\
\text { J-mb } & =\text { vname list } \times \text { expr } \\
\text { J-prog } & =\text { J-mb prog }
\end{aligned}
$$

Fig. 1. Abstract program syntax
in the right kind of method body: a Jinja method body $J-m b$ is a pair of the formal parameter names and the expression, a Jinja program J-prog a program with Jinja method bodies. Note that parameter names cannot be part of the generic syntax because there are no parameter names on the virtual machine level.

This generic program syntax is an important abstraction that will also come in handy during compilation. More concrete representations, e.g. concrete source language syntax or Java's class file format, are orthogonal to our work and can be added separately.
2.1.4 Extracting Declaration Information. Most of the time the exact representation of programs is irrelevant because we work in terms of a few functions and predicates for analysing and accessing the declarations in a program:

- class $\boldsymbol{P} \boldsymbol{C}$ is the class associated with C in P.
-is-class $\boldsymbol{P} \boldsymbol{C}$ means class C is defined in P.
$-\boldsymbol{P} \vdash \boldsymbol{D} \preceq^{*} \boldsymbol{C}$ means D is a subclass of C. The relation is transitive and reflexive.
$-\boldsymbol{P} \vdash \boldsymbol{C}$ sees $\boldsymbol{M}: \boldsymbol{T} \boldsymbol{s} \rightarrow \boldsymbol{T}=\boldsymbol{m b}$ in \boldsymbol{D} means that in P, scanning the class hierarchy upwards starting from C, a method M is visible in class D (taking overriding into account). Its argument types are $T s$ (a type list), result type is T, and body is $m b$. If P is a Jinja program, $m b$ is a pair $(p n s, e)$ of formal parameter list $p n s$ and expression e.
$-\boldsymbol{P} \vdash \boldsymbol{C}$ sees $\boldsymbol{F}: \boldsymbol{T}$ in \boldsymbol{D} means that in P from class C a field F of type T is visible in class D.
$-\boldsymbol{P} \vdash \boldsymbol{C}$ has $\boldsymbol{F}: \boldsymbol{T}$ in \boldsymbol{D} means that in P a (not necessarily proper) superclass D of C has a field F of type T.

Before we show the definition of these predicates we give an example (in an imaginary concrete syntax) that should clarify the concepts:

```
class B extends A {field F:TB
    method M:TBs->T1 = mB}
class C extends B {field F:TC
    method M:TCs->T2 = mC}
```

We have $P \vdash C$ sees F :TC in C but not $P \vdash C$ sees F :TB in B because the declaration in C hides the one in B. In contrast, we have both $P \vdash C$ has $F: T C$ in C and $P \vdash C$ has $F: T B$ in B because has is independent of visibility.

Analogously we have $P \vdash B$ sees $M: T B s \rightarrow T_{1}=m B$ in B and $P \vdash C$ sees M : $T C s \rightarrow T_{2}=m C$ in C, but not $P \vdash C$ sees $M: T B s \rightarrow T_{1}=m B$ in B. The second
declaration of M overrides the first, no matter what the type of M in the two declarations is.

This is method overriding in its purest form but differs from Java, where methods can also be overloaded, which means that multiple declarations of M can be visible simultaneously, provided they are distinguished by their argument types. We have formalised overloading elsewhere [Oheimb and Nipkow 1999] but have not included it in Jinja. It complicates matters without adding a significant new aspect: one has to annotate method calls with the static type of the actual parameter list, just as in field access. This mixture of static type (for the parameter list) and dynamic type (of the object at run time) can make programs with overloading hard to understand.

We will now show how the above functions are defined. The first two are trivial: class \equiv map-of and is-class $P C \equiv$ class $P C \neq$ None.

For the remaining functions it is important to note that we do not differentiate between user defined classes and system classes. That is, any proper program will need to contain a class Object. Since any class has a superclass entry, so has Object. Therefore class Object is treated specially: traversal of the class hierarchy stops there and the dummy superclass entry is ignored.

The subclass relation \preceq^{*} is defined as the reflexive transitive closure of the direct subclass relation \prec^{1} defined by

$$
\frac{\text { class } P C=\lfloor(D, f s, m s)\rfloor \quad C \neq \text { Object }}{P \vdash C \prec^{1} D}
$$

The information about fields in a class hierarchy is collected by a predicate $P \vdash C$ has-fields FDTs where FDTs :: ((vname \times cname $) \times$ ty $)$ list. That is, each tuple $((F, D), T)$ in $F D T s$ represents a field declaration $F: T$ in a superclass D of C, and the list follows the class hierarchy, i.e. the fields of C itself come first in the list. The predicate is defined inductively:

$$
\begin{gathered}
\text { class } P C=\lfloor(D, f s, m s)\rfloor C \neq \text { Object } \quad P \vdash D \text { has-fields FDTs } \\
\hline P \vdash C \text { has-fields map }(\lambda(F, T) .((F, C), T)) f s @ F D T s \\
\frac{\text { class } P \text { Object }=\lfloor(D, f s, m s)\rfloor}{P \vdash \text { Object has-fields } \operatorname{map}(\lambda(F, T) .((F, \text { Object }), T)) f s}
\end{gathered}
$$

At the moment we do not rule out class Object having fields. In our example above, assuming that A is in fact Object, and assuming that Object does not have fields, we obtain $P \vdash C$ has-fields $[((F, C), T C),((F, B), T B)]$.

From the has-fields relation we can define has and sees directly:

$$
\begin{aligned}
& P \vdash C \text { has } F: T \text { in } D \equiv \exists F D T s . P \vdash C \text { has-fields } F D T s \wedge \operatorname{map} \text {-of } F D T s(F, D)=\lfloor T\rfloor \\
& P \vdash C \text { sees } F: T \text { in } D \equiv \\
& \exists F D T s . P \vdash C \text { has-fields } F D T s \wedge \\
& \quad \operatorname{map}-o f(\operatorname{map}(\lambda((F, D), T) .(F, D, T)) F D T s) F=\lfloor(D, T)\rfloor
\end{aligned}
$$

The relation sees for methods can be defined analogously via a relation that traverses the class hierarchy and collects all method declaration information. We omit the details.

2.2 Big Step Semantics

2.2.1 State. The type of states during expression evaluation is defined in Fig. 2. A state is a pair of a heap and a store (locals). A store is a map from variable

$$
\text { types } \begin{array}{llll}
\text { state } & =\text { heap } \times \text { locals } & \text { obj } & =\text { cname } \times \text { fields } \\
\text { locals } & =\text { vname } \rightharpoonup \text { val } & \text { fields } & =\text { vname } \times \text { cname } \rightharpoonup \text { val } \\
\text { heap } & =\text { addr } \rightharpoonup \text { obj }
\end{array}
$$

Fig. 2. The type of Jinja program states
names to values. A heap is a map from addresses to objects. An object is a pair of a class name and a field table, and a field table is a map from pairs (F, D) (where D is the class where F is declared) to values. It is essential to include D because an object may have multiple fields of the same name, all of them visible.

The naming convention is that h is a heap, l is a store (the local variables), and s a state. The projection functions $h p$ and $l c l$ are synonyms for $f s t$ and snd.

When a new object is allocated on the heap, its fields are initialised with the default value determined by their type:

```
init-fields :: ((vname }\times\mathrm{ cname ) }\times\mathrm{ ty) list }=>\mathrm{ fields
init-fields \equivmap-of ○ map ( }\lambda(F,T).(F,\mathrm{ default-val T))
```

The definition of the default value is irrelevant for our purposes. It suffices to know that the default value is of the right type and that for references (types Class and $N T)$ it is Null.
2.2.2 Evaluation. The evaluation judgement is of the form $P \vdash\langle e, s\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$, where e and s are the initial expression and state, and e^{\prime} and s^{\prime} the final expression and state. We then say that evaluates to e^{\prime}.

The rules will be such that final expressions are always values (Val) or exceptions (throw), i.e. final expressions are completely evaluated.

We will discuss the evaluation rules in an incremental fashion: first normal evaluation only, exceptional behaviour afterwards.
2.2.3 Normal Evaluation. Normal evaluation means that we are defining an exception-free language. In particular, all final expressions will be values. The complete set of rules is shown in Fig. 3 and we discuss them in turn.
new C first allocates a new address: function new- $A d d r$ (we omit its definition) returns a "new" address, i.e. new- $A d d r h=\lfloor a\rfloor$ implies $h a=$ None. Then predicate has-fields ($\S 2.1 .4$) computes the list of all field declarations in and above C, and init-fields (§2.2.1) creates the default field table.

There are two rules for Cast $C e$: if e evaluates to the address of an object of a subclass of C or to null, the cast succeeds, in the latter case because the null reference is in every class.

The rules for Val, Var and assignment are self-explanatory.
Field access e.F\{D\} evaluates e to an address, looks up the object at the address, indexes its field table with (F, D), and evaluates to the value found in the field table. Note that field lookup follows a static binding discipline: the dynamic class C is ignored and the annotation D is used instead. Later on, well-typedness will require D to be the first class where F is declared when we start looking from the static class of e up the class hierarchy.

$$
\begin{aligned}
& \frac{\text { new-Addr } h=\lfloor a\rfloor \quad P \vdash C \text { has-fields FDTs } \quad h^{\prime}=h(a \mapsto(C, \text { init-fields FDTs }))}{P \vdash\langle\text { new } C,(h, l)\rangle \Rightarrow\left\langle a d d r a,\left(h^{\prime}, l\right)\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\langle a d d r a,(h, l)\rangle \quad h a=\lfloor(D, f s)\rfloor \quad P \vdash D \preceq \preceq^{*} C}{P \vdash\left\langle\text { Cast } C e, s_{0}\right\rangle \Rightarrow\langle a d d r a,(h, l)\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle n u l l, s_{1}\right\rangle}{P \vdash\left\langle\text { Cast } C e, s_{0}\right\rangle \Rightarrow\left\langle n u l l, s_{1}\right\rangle} \\
& P \vdash\langle\operatorname{Val} v, s\rangle \Rightarrow\langle\operatorname{Val} v, s\rangle \\
& l V=\lfloor v\rfloor \\
& \overline{P \vdash\langle\operatorname{Var} V,(h, l)\rangle \Rightarrow\langle\operatorname{Val} v,(h, l)\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\langle\mathrm{Val} v,(h, l)\rangle \quad l^{\prime}=l(V \mapsto v)}{P \vdash\left\langle V:=e, s_{0}\right\rangle \Rightarrow\left\langle\text { unit },\left(h, l^{\prime}\right)\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\langle a d d r a,(h, l)\rangle \quad h a=\left\lfloor\left(C, f_{s}\right)\right\rfloor \quad f s(F, D)=\lfloor v\rfloor}{P \vdash\left\langle e . F\{D\}, s_{0}\right\rangle \Rightarrow\langle\operatorname{Val} v,(h, l)\rangle} \\
& P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle a d d r a, s_{1}\right\rangle \quad P \vdash\left\langle e_{2}, s_{1}\right\rangle \Rightarrow\left\langle\mathrm{Val} v,\left(h_{2}, l_{2}\right)\right\rangle \\
& h_{2} a=\lfloor(C, f s)\rfloor \quad f s^{\prime}=f s((F, D) \mapsto v) \quad h_{2}^{\prime}=h_{2}\left(a \mapsto\left(C, f s^{\prime}\right)\right) \\
& P \vdash\left\langle e_{1} \cdot F\{D\}:=e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { unit },\left(h_{2}{ }^{\prime}, l_{2}\right)\right\rangle \\
& \frac{P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\operatorname{Val} v_{1}, s_{1}\right\rangle \quad P \vdash\left\langle e_{2}, s_{1}\right\rangle \Rightarrow\left\langle\mathrm{Val} v_{2}, s_{2}\right\rangle \quad \text { binop }\left(\text { bop }, v_{1}, v_{2}\right)=\lfloor v\rfloor}{P \vdash\left\langle e_{1} \ll b o p \gg e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\mathrm{Val} v, s_{2}\right\rangle} \\
& P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle a d d r a, s_{1}\right\rangle \quad P \vdash\left\langle p s, s_{1}\right\rangle[\Rightarrow]\left\langle\text { map Val vs, }\left(h_{2}, l_{2}\right)\right\rangle \\
& h_{2} a=\lfloor(C, f s)\rfloor \quad P \vdash C \text { sees } M: T s \rightarrow T=(p n s, b o d y) \text { in } D \\
& \frac{|v s|=|p n s| \quad l_{2}^{\prime}=[t h i s \mapsto A d d r a, p n s[\mapsto] v s] \quad P \vdash\left\langle\text { body },\left(h_{2}, l_{2}\right)\right\rangle \Rightarrow\left\langle e^{\prime},\left(h_{3}, l_{3}\right)\right\rangle}{P \vdash\left\langle e . M(p s), s_{0}\right\rangle \Rightarrow\left\langle e^{\prime},\left(h_{3}, l_{2}\right)\right\rangle} \\
& \frac{P \vdash\left\langle e_{0},\left(h_{0}, l_{0}(V:=N o n e)\right)\right\rangle \Rightarrow\left\langle e_{1},\left(h_{1}, l_{1}\right)\right\rangle}{P \vdash\left\langle\left\{V: T ; e_{0}\right\},\left(h_{0}, l_{0}\right)\right\rangle \Rightarrow\left\langle e_{1},\left(h_{1}, l_{1}\left(V:=l_{0} V\right)\right)\right\rangle} \\
& \frac{P \vdash\left\langle e_{0}, s_{0}\right\rangle \Rightarrow\left\langle\mathrm{Val} v, s_{1}\right\rangle \quad P \vdash\left\langle e_{1}, s_{1}\right\rangle \Rightarrow\left\langle e_{2}, s_{2}\right\rangle}{P \vdash\left\langle e_{0} ; e_{1}, s_{0}\right\rangle \Rightarrow\left\langle e_{2}, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { true }, s_{1}\right\rangle \quad P \vdash\left\langle e_{1}, s_{1}\right\rangle \Rightarrow\left\langle e^{\prime}, s_{2}\right\rangle}{P \vdash\left\langle\text { if }(e) e_{1} \text { else } e_{2}, s_{0}\right\rangle \Rightarrow\left\langle e^{\prime}, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { false }, s_{1}\right\rangle \quad P \vdash\left\langle e_{2}, s_{1}\right\rangle \Rightarrow\left\langle e^{\prime}, s_{2}\right\rangle}{P \vdash\left\langle\text { if }(e) e_{1} \text { else } e_{2}, s_{0}\right\rangle \Rightarrow\left\langle e^{\prime}, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { false }, s_{1}\right\rangle}{P \vdash\left\langle\text { while }(e) c, s_{0}\right\rangle \Rightarrow\left\langle\text { unit }, s_{1}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { true }, s_{1}\right\rangle \quad P \vdash\left\langle c, s_{1}\right\rangle \Rightarrow\left\langle\text { Val } v_{1}, s_{2}\right\rangle \quad P \vdash\left\langle\text { while }(e) c, s_{2}\right\rangle \Rightarrow\left\langle e_{3}, s_{3}\right\rangle}{P \vdash\left\langle\text { while }(e) c, s_{0}\right\rangle \Rightarrow\left\langle e_{3}, s_{3}\right\rangle} \\
& P \vdash\langle[], s\rangle[\Rightarrow]\langle[], s\rangle \quad \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\mathrm{Val} v, s_{1}\right\rangle \quad P \vdash\left\langle e s, s_{1}\right\rangle[\Rightarrow]\left\langle e s^{\prime}, s_{2}\right\rangle}{P \vdash\left\langle e \cdot e s, s_{0}\right\rangle[\Rightarrow]\left\langle\mathrm{Val} v \cdot e s^{\prime}, s_{2}\right\rangle}
\end{aligned}
$$

Fig. 3. Normal evaluation of expressions

Field assignment $e_{1} \cdot F\{D\}:=e_{2}$ evaluates e_{1} to an address and e_{2} to a value, updates the object at the address with the value (using the index (F, D)), and evaluates to unit (just like assignment to local variables).

Why does assignment not evaluate to the value of the rhs, like in Java? Because then the conditional if $(e) V_{1}:=e_{1}$ else $V_{2}:=e_{2}$ would not evaluate to unit but to the value of e_{1} or e_{2}. Thus the type system (to be definend later) would require e_{1} and e_{2} to have compatible types, which in many cases they wouldn't, thus forcing the programmer to write something like if $(e)\left(V_{1}:=e_{1}\right.$; unit) else ($V_{2}:=e_{2}$; unit).

Binary operations are evaluated from left to right (for binop see §2.1.2).
The lengthiest rule is the one for method call. Its reading is easy: evaluate e to an address a and the parameter list $p s$ to a list of values $v s^{1}$, look up the class C of the object in the heap at a, look up the parameter names pns and body body of the method M visible from C, and evaluate the body in a store that maps this to $A d d r$ a and the formal parameter names to the actual parameter values (having made sure that $v s$ and pns have the same length). The final store is the one obtained from the evaluation of the parameters - the one obtained from the evaluation of body is discarded. This rule reflects a well-formedness condition imposed later on: there are no global variables in Jinja (just as in Java, but contrary to, say, C ++), i.e. a method body should only refer to this and its parameters.

In Jinja, blocks with local variables, sequential composition, conditional and while-loop are expressions too, in contrast to Java, where they are commands and do not return a value. In a block, the expression is evaluated in the context of a store where the local variable has been removed, i.e. set to None. Afterwards the original value of the variable in the initial store is restored. Sequential composition discards the value of the first expression. Similarly, while-loops discard the value of their body and, upon termination, return unit.

The rules for $[\Rightarrow]$, the evaluation of expression lists (needed for method call), define that lists are evaluated from left to right. This concludes the complete semantics of the exception-free fragment of Jinja.
2.2.4 Exceptions. The rules above assume that during evaluation everything fits together. If it does not, the semantics gets stuck, i.e. there is no final value. For example, evaluation of $\langle\operatorname{Var} V,(h, l)\rangle$ only succeeds if $V \in \operatorname{dom} l$. Later on (§2.7), a static analysis ("definite assignment") will identify expressions where $V \in d o m l$ always holds. Thus we do not need a rule for the situation where $V \notin d o m l$. In contrast, many exceptional situations arise because of null references which we deal with by raising an exception. That is, the expression does not evaluate to a normal value but to an exception $\operatorname{throw}(a d d r a)$ where a is the address of some object, the exception object.

There are both system and user exceptions. User exceptions can refer to arbitrary objects. System exceptions refer to an object in one of the system exception classes:

$$
\text { sys-xcpts } \equiv\{\text { NullPointer, ClassCast, OutOfMemory }\}
$$

${ }^{1}[\Rightarrow]$ is evaluation extended to lists of expressions. Saying that the result is of the form map Val vs is a declarative way of ensuring that it is a list of values and of obtaining the actual value list vs (as opposed to an expression list).

$$
\begin{aligned}
& \frac{n e w-A d d r h=\text { None }}{P \vdash\langle\text { new } C,(h, l)\rangle \Rightarrow\langle\text { THROW OutOfMemory, }(h, l)\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\langle a d d r a,(h, l)\rangle \quad h a=\lfloor(D, f s)\rfloor \quad \neg P \vdash D \preceq^{*} C}{P \vdash\left\langle\text { Cast } C e, s_{0}\right\rangle \Rightarrow\langle\text { THROW ClassCast, }(h, l)\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { null }, s_{1}\right\rangle}{P \vdash\left\langle e . F\{D\}, s_{0}\right\rangle \Rightarrow\left\langle\text { THROW NullPointer }, s_{1}\right\rangle} \\
& \frac{P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { null }, s_{1}\right\rangle \quad P \vdash\left\langle e_{2}, s_{1}\right\rangle \Rightarrow\left\langle\mathrm{Val} v, s_{2}\right\rangle}{P \vdash\left\langle e_{1} \cdot F\{D\}:=e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { THROW NullPointer }, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle n u l l, s_{1}\right\rangle \quad P \vdash\left\langle p s, s_{1}\right\rangle[\Rightarrow]\left\langle\text { map Val } v s, s_{2}\right\rangle}{P \vdash\left\langle e . M(p s), s_{0}\right\rangle \Rightarrow\left\langle\text { THROW NullPointer }, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle a d d r a, s_{1}\right\rangle}{P \vdash\left\langle\text { throw } e, s_{0}\right\rangle \Rightarrow\left\langle\text { Throw } a, s_{1}\right\rangle} \quad \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { null }, s_{1}\right\rangle}{P \vdash\left\langle\text { throw } e, s_{0}\right\rangle \Rightarrow\left\langle\text { THROW NullPointer }, s_{1}\right\rangle} \\
& P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { Val } v_{1}, s_{1}\right\rangle \\
& \overline{P \vdash\left\langle\text { try } e_{1} \operatorname{catch}(C V) e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { Val } v_{1}, s_{1}\right\rangle} \\
& P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { Throw } a,\left(h_{1}, l_{1}\right)\right\rangle \\
& \frac{h_{1} a=\lfloor(D, f s)\rfloor \quad P \vdash D \preceq^{*} C \quad P \vdash\left\langle e_{2},\left(h_{1}, l_{1}(V \mapsto A d d r a)\right)\right\rangle \Rightarrow\left\langle e_{2}{ }^{\prime},\left(h_{2}, l_{2}\right)\right\rangle}{P \vdash\left\langle\operatorname{try} e_{1} \operatorname{catch}(C V) e_{2}, s_{0}\right\rangle \Rightarrow\left\langle e_{2}{ }^{\prime},\left(h_{2}, l_{2}\left(V:=l_{1} V\right)\right)\right\rangle} \\
& \frac{P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { Throw } a,\left(h_{1}, l_{1}\right)\right\rangle \quad h_{1} a=\lfloor(D, f s)\rfloor \quad \neg P \vdash D \preceq^{*} C}{P \vdash\left\langle\operatorname{try} e_{1} \operatorname{catch}(C V) e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { Throw } a,\left(h_{1}, l_{1}\right)\right\rangle}
\end{aligned}
$$

Fig. 4. Throwing and catching exceptions
Their names speak for themselves. Since system exception objects do not carry any information in addition to their class name, we can simplify their treatment by pre-allocating one object for each system exception class. Thus a few addresses are reserved for pre-allocated system exception objects. This is modelled by a function $a d d r$-of-sys-xcpt :: cname $\Rightarrow a d d r$ whose precise definition is not important. To ease notation we introduce some abbreviations:

```
Throw a \equiv throw(addr a)
THROW C 
```

2.2.5 Exceptional Evaluation. The basic rules for throwing and catching exceptions are shown in Fig. 4. In the following situations system exceptions are thrown: if there is no more free storage, if a cast fails, or if the object reference in a field access, field update, or method call is null. The throw construct may throw any expression of class type, which is a simplification of Java's exceptions. Throwing null leads to a NullPointer exception.
Note that we have maintained Java's eager evaluation scheme of evaluating all subterms before throwing any system exception. This permits the simple compilation strategy where the values of the subterms are first put on the stack unchecked and the check is performed at the end by the machine instruction, e.g. field access, accessing the object reference in question.

Thrown exceptions can be caught using the construct try e_{1} catch ($\left.C V\right) e_{2}$. If e_{1} evaluates to a value, the whole expression evaluates to that value. If e_{1} evaluates to an exception Throw a such that a refers to an object of a subclass of C, V is set

$$
\begin{aligned}
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle\text { Cast } C e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \quad \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle V:=e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle e . F\{D\}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \quad \frac{P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle e_{1} . F\{D\}:=e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \\
& \frac{P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { Val } v, s_{1}\right\rangle \quad P \vdash\left\langle e_{2}, s_{1}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{2}\right\rangle}{P \vdash\left\langle e_{1} . F\{D\}:=e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e, s_{1}\right\rangle}{P \vdash\left\langle e_{1} \ll b o p \gg e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e, s_{1}\right\rangle} \\
& \frac{P \vdash\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { Val } v_{1}, s_{1}\right\rangle \quad P \vdash\left\langle e_{2}, s_{1}\right\rangle \Rightarrow\left\langle\text { throw } e, s_{2}\right\rangle}{P \vdash\left\langle e_{1} \ll b o p \gg e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle e \cdot M(p s), s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \\
& \frac{\left.P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\mathrm{Val} v, s_{1}\right\rangle \quad P \vdash\left\langle e s, s_{1}\right\rangle[\Rightarrow]\left\langle\text { map Val vs @ (throw ex } \cdot e s^{\prime}\right), s_{2}\right\rangle}{P \vdash\left\langle e . M(e s), s_{0}\right\rangle \Rightarrow\left\langle\text { throw ex, } s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e_{0}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e, s_{1}\right\rangle}{P \vdash\left\langle e_{0} ; e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e, s_{1}\right\rangle} \quad \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle\text { if }(e) e_{1} \text { else } e_{2}, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle\text { while }(e) c, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { true }, s_{1}\right\rangle \quad P \vdash\left\langle c, s_{1}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{2}\right\rangle}{P \vdash\left\langle\text { while }(e) c, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{2}\right\rangle} \\
& \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle\text { throw } e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle} \quad \frac{P \vdash\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s_{1}\right\rangle}{P \vdash\left\langle e \cdot e s, s_{0}\right\rangle[\Rightarrow]\left\langle\text { throw } e^{\prime} \cdot e s, s_{1}\right\rangle}
\end{aligned}
$$

Fig. 5. Exception propagation
to $A d d r a$ and e_{2} is evaluated; otherwise Throw a is the result of the evaluation.
Finally, exceptions must be propagated. That is, if the evaluation of a certain subexpression throws an exception, the evaluation of the whole expression has to throw that exception. The exception propagation rules are straightforward and shown in Fig. 5. This concludes the exposition of the evaluation rules.

A compact representation of the exception propagation rules can be achieved by introducing the notion of a context C_{x} (essentially a grammar for positions in expressions where exceptions propagate to the top) and by giving one rule

$$
\frac{P \vdash\langle e, s\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s^{\prime}\right\rangle}{P \vdash\left\langle C_{x}[e], s\right\rangle \Rightarrow\left\langle\text { throw } e^{\prime}, s^{\prime}\right\rangle}
$$

We prefer not to formalize these additional notions and stay within a fixed basic framework of ordinary expressions.
2.2.6 Final Expressions. Now that we have the complete set of rules we can show that evaluation always produces a final expression:

$$
\text { final } e \equiv(\exists v . e=\operatorname{Val} v) \vee(\exists a . e=\operatorname{Throw} a)
$$

Lemma 2.1. If $P \vdash\langle e, s\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$ then final e^{\prime}.
The proof is by induction on the evaluation relation \Rightarrow. Since the latter is defined simultaneously with the evaluation relation $[\Rightarrow]$ for expression lists, we need to prove a proposition about $[\Rightarrow]$ simultaneously with Lemma 2.1. This will also be
the common proof pattern in all other inductive proofs about \Rightarrow. In most cases the statement about $[\Rightarrow$] is a lifted version of the one about \Rightarrow. In the above case one might expect something like $P \vdash\langle e s, s\rangle[\Rightarrow]\left\langle e s^{\prime}, s^{\prime}\right\rangle \Longrightarrow \forall e^{\prime} \in$ set $e s^{\prime}$. final e^{\prime}. However, this is wrong: due to exceptions, evaluation may stop before the end of the list. A final expression list is a list of values, possibly followed by a throw and some further expressions:
finals es $\equiv(\exists v s . e s=m a p \mathrm{Val} v s) \vee\left(\exists v s a e s^{\prime} . e s=m a p \mathrm{Val} v s @\left(\right.\right.$ Throw $\left.\left.a \cdot e s^{\prime}\right)\right)$
and Lemma 2.1 for lists is simply "If $P \vdash\langle e s, s\rangle[\Rightarrow]\left\langle e s^{\prime}, s^{\prime}\right\rangle$ then finals $e s^{\prime}$."
It is equally straightforward to prove that final expressions evaluate to themselves:
Lemma 2.2. If final e then $P \vdash\langle e, s\rangle \Rightarrow\langle e, s\rangle$.
Of course an analogous lemma holds for expression lists, but we have chosen not to show it. We will follow this practice whenever the list version of a theorem is obvious. In fact, one could dispose of expressions lists altogether by restricting Jinja methods to a single parameter. However, this is precisely the kind of simplification we do not want to make, because it would give the wrong impression that including expression lists could be a significant burden.

2.3 Small Step Semantics

Because of its simplicity, a big step semantics has several drawbacks. For example, it cannot accommodate parallelism, a potentially desirable extension of Jinja. The reason is that \Rightarrow cannot talk about the intermediate states during evaluation. For the same reason the type safety proof in $\S 2.9$ needs a finer grained semantics. Otherwise we cannot prove that type-correct expressions do not get stuck during evaluation because the big step semantics does not distinguish between divergence (of nonterminating expressions) and deadlock (of ill-typed expressions). Thus we now move over to an equivalent small step semantics.

The judgement for the small step semantics is $P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s\right\rangle$ and describes a single micro-step in the reduction of e towards its final value. We say that e reduces to e^{\prime} (in one step). Below we will compose sequences of such single steps $\left\langle e_{1}, s_{1}\right\rangle \rightarrow\left\langle e_{2}, s_{2}\right\rangle \ldots \rightarrow\left\langle e_{n}, s_{n}\right\rangle$ to reduce an expression completely.

As for the big step semantics we can define normal and exceptional reductions separately. We begin with normal reductions. The rules come in two flavours: those that reduce a subexpression of an expression and those that reduce the whole expression. The former have no counterpart in the big step semantics as they are handled implicitly in the premises of the big step rules.
2.3.1 Subexpression Reduction. These rules essentially describe in which order subexpressions are evaluated. Therefore most of them follow a common pattern:

$$
\begin{aligned}
P \vdash\langle e, s\rangle & \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle \\
P \vdash\langle c \ldots e \ldots, s\rangle & \rightarrow\left\langle c \ldots e^{\prime} \ldots, s^{\prime}\right\rangle
\end{aligned}
$$

where c is a constructor and e and e^{\prime} are meta-variables. The other subexpressions of c may be more complex to indicate, for example, which of them must be values already, thus expressing the order of reduction. The rules for Jinja subexpression reduction are shown in Fig. 6. The initial ones follow the pattern above exactly. For

$$
\begin{aligned}
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle\text { Cast } C e, s\rangle \rightarrow\left\langle\text { Cast } C e^{\prime}, s^{\prime}\right\rangle} \quad \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle V:=e, s\rangle \rightarrow\left\langle V:=e^{\prime}, s^{\prime}\right\rangle} \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle e . F\{D\}, s\rangle \rightarrow\left\langle e^{\prime} . F\{D\}, s^{\prime}\right\rangle} \quad \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\left\langle e . F\{D\}:=e_{2}, s\right\rangle \rightarrow\left\langle e^{\prime} . F\{D\}:=e_{2}, s^{\prime}\right\rangle} \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle\mathrm{Val} v . F\{D\}:=e, s\rangle \rightarrow\left\langle\mathrm{Val} v . F\{D\}:=e^{\prime}, s^{\prime}\right\rangle} \quad \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\left\langle e \ll b o p \gg e_{2}, s\right\rangle \rightarrow\left\langle e^{\prime} \ll b o p \gg e_{2}, s^{\prime}\right\rangle} \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\left\langle\text { Val } v_{1} \ll b o p \gg e, s\right\rangle \rightarrow\left\langle\text { Val } v_{1} \ll b o p \gg e^{\prime}, s^{\prime}\right\rangle} \\
& \frac{P \vdash\langle e,(h, l(V:=N o n e))\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle \quad l^{\prime} V=\text { None } \quad \neg \text { assigned } V e}{P \vdash\langle\{V: T ; e\},(h, l)\rangle \rightarrow\left\langle\left\{V: T ; e^{\prime}\right\},\left(h^{\prime}, l^{\prime}(V:=l V)\right)\right\rangle} \\
& \frac{P \vdash\langle e,(h, l(V:=N o n e))\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle \quad l^{\prime} V=\lfloor v\rfloor \quad \neg \text { assigned } V e}{P \vdash\langle\{V: T ; e\},(h, l)\rangle \rightarrow\left\langle\left\{V: T ; V:=\operatorname{Val} v ; e^{\prime}\right\},\left(h^{\prime}, l^{\prime}(V:=l V)\right)\right\rangle} \\
& \frac{P \vdash\langle e,(h, l(V \mapsto v))\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle \quad l^{\prime} V=\left\lfloor v^{\prime}\right\rfloor}{P \vdash\langle\{V: T ; V:=\operatorname{Val} v ; e\},(h, l)\rangle \rightarrow\left\langle\left\{V: T ; V:=\operatorname{Val} v^{\prime} ; e^{\prime}\right\},\left(h^{\prime}, l^{\prime}(V:=l V)\right)\right\rangle} \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle e . M(e s), s\rangle \rightarrow\left\langle e^{\prime} \cdot M(e s), s^{\prime}\right\rangle} \quad \frac{P \vdash\langle e s, s\rangle[\rightarrow]\left\langle e s^{\prime}, s^{\prime}\right\rangle}{\left.P \vdash\left\langle\mathrm{Val} \mathrm{v.M(es),s} \mathrm{\rangle} \mathrm{\rightarrow} \mathrm{\langle Valv} \mathrm{\cdot M(es}^{\prime}\right), s^{\prime}\right\rangle} \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\left\langle e ; e_{2}, s\right\rangle \rightarrow\left\langle e^{\prime} ; e_{2}, s^{\prime}\right\rangle} \quad \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\left\langle\text { if }(e) e_{1} \text { else } e_{2}, s\right\rangle \rightarrow\left\langle\text { if }\left(e^{\prime}\right) e_{1} \text { else } e_{2}, s^{\prime}\right\rangle} \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle e \cdot e s, s\rangle[\rightarrow]\left\langle e^{\prime} \cdot e s, s^{\prime}\right\rangle} \quad \frac{P \vdash\langle e s, s\rangle[\rightarrow]\left\langle e s^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle\mathrm{Val} v \cdot e s, s\rangle[\rightarrow]\left\langle\mathrm{Val} v \cdot e s^{\prime}, s^{\prime}\right\rangle}
\end{aligned}
$$

Fig. 6. Subexpression reduction
example, the rules for field assignment express that the left-hand side is evaluated before the right-hand side.

The rules for blocks are more complicated. In a block $\{V: T ; e\}$ we keep reducing e in a store where V is undefined (None), restoring the original binding of V after each step. Once the store after the reduction step binds V to a value v, this binding is remembered by adding an assignment in front of the reduced expression, yielding $\left\{V: T ; V:=\operatorname{Val} v ; e^{\prime}\right\}$. The final rule reduces such blocks. This additional rule is necessary because $\{V: T ; V:=\mathrm{Val} v ; e\}$ must not be reduced as before, by reducing all of $V:=\mathrm{Val} v$; e to e (thus losing the binding for V), but by reducing e directly. To this end we have introduced the predicate

$$
\text { assigned } V e \equiv \exists v e^{\prime} . e=V:=\mathrm{Val} v ; e^{\prime}
$$

and added its negation as a precondition to the initial two reduction rules.
Note that we cannot treat local variables simply by creating "new" variables because we do not know which other variables exist in the context: dom l does not contain all of them because variables need not be initialized upon creation.

To reduce a method call, the object expression is reduced until it has become an address, and then the parameters are reduced. The relation $[\rightarrow]$ is the extension of \rightarrow to expression lists, which are reduced from left to right, and each element is reduced until it has become a value.

$$
\begin{aligned}
& \frac{\text { new-Addr } h=\lfloor a\rfloor \quad P \vdash C \text { has-fields FDTs }}{P \vdash\langle\text { new } C,(h, l)\rangle \rightarrow\langle a d d r a,(h(a \mapsto(C, \text { init-fields FDTs })), l)\rangle} \\
& \frac{h p \text { s } a=\lfloor(D, f s)\rfloor \quad P \vdash D \preceq^{*} C}{P \vdash\langle\text { Cast } C(\text { addr } a), s\rangle \rightarrow\langle\text { addr } a, s\rangle} \quad P \vdash\langle\text { Cast } C \text { null }, s\rangle \rightarrow\langle n u l l, s\rangle \\
& \frac{l c l s V=\lfloor v\rfloor}{P \vdash\langle\operatorname{Var} V, s\rangle \rightarrow\langle\mathrm{Val} v, s\rangle} \quad P \vdash\langle V:=\operatorname{Val} v,(h, l)\rangle \rightarrow\langle u n i t,(h, l(V \mapsto v))\rangle \\
& \frac{\text { binop (bop, } \left.v_{1}, v_{2}\right)=\lfloor v\rfloor}{P \vdash\left\langle\text { Val } v_{1} \ll b o p \gg \text { Val } v_{2}, s\right\rangle \rightarrow\langle\text { Val } v, s\rangle} \quad \frac{h p s a=\lfloor(C, f s)\rfloor \quad f s(F, D)=\lfloor v\rfloor}{P \vdash\langle a d d r a . F\{D\}, s\rangle \rightarrow\langle\text { Val } v, s\rangle} \\
& \frac{h a}{h \vdash\langle(C, f s)\rfloor} \\
& h p \text { s } a=\lfloor(C, f s)\rfloor \\
& \frac{P \vdash C \text { sees } M: T s \rightarrow T=(\text { pns, body }) \text { in } D \quad|v s|=|p n s| \quad|T s|=|p n s|}{P \vdash\langle\text { addr a.M (map Val vs),s } \rightarrow\langle\text { blocks (this •pns, Class D Ts, Addr a } \cdot v s, \text { body }), s\rangle} \\
& P \vdash\langle\{V: T ; V:=\operatorname{Val} v \text {; Val } u\}, s\rangle \rightarrow\langle\operatorname{Val} u, s\rangle \quad P \vdash\langle\{V: T \text {; Val } u\}, s\rangle \rightarrow\langle\operatorname{Val} u, s\rangle \\
& P \vdash\left\langle\text { Val } v ; e_{2}, s\right\rangle \rightarrow\left\langle e_{2}, s\right\rangle \\
& P \vdash\left\langle\text { if }(\text { true }) e_{1} \text { else } e_{2}, s\right\rangle \rightarrow\left\langle e_{1}, s\right\rangle \quad P \vdash\left\langle\text { if }(f a l s e) e_{1} \text { else } e_{2}, s\right\rangle \rightarrow\left\langle e_{2}, s\right\rangle \\
& P \vdash\langle\text { while }(b) c, s\rangle \rightarrow\langle\text { if }(b)(c \text {; while (b) } c) \text { else unit }, s\rangle
\end{aligned}
$$

Fig. 7. Expression reductions
2.3.2 Expression Reduction. Once the subexpressions are sufficiently reduced, we can reduce the whole expression. The rules are shown in Fig. 7. Most of the rules are fairly intuitive and many resemble their big step counterparts. The only one that deserves some explanation is the one for method invocation. In order to avoid explicit stacks we use local variables to hold the values of the parameters. The required nested block structure is built with the help of the auxiliary function blocks of type vname list \times ty list \times val list \times expr \Rightarrow expr:
blocks $(V \cdot V s, T \cdot T s, v \cdot v s, e)=\{V: T ; V:=\operatorname{Val} v ; b l o c k s(V s, T s, v s, e)\}$
blocks ([], [], [], e) $=e$
Note that we can only get away with this simple rule for method call because there are no global variables in Java. Otherwise one could unfold a method body that refers to some global variable into a context that declares a local variable of the same name, which would essentially amount to dynamic variable binding.
2.3.3 Exceptional Reduction. The rules for exception throwing are shown in Fig. 8. System exceptions are thrown almost exactly like in the big step semantics. Expression throw e is reduced by reducing e as long as possible and throwing NullPointer if necessary. And this is how try e catch $(C V) e_{2}$ is reduced: First we must reduce e. If it becomes a value, the whole expression evaluates to that value. If it becomes a Throw a, there are two possibilities: if a can be caught, the term reduces to a block with V set to a and body e_{2}, otherwise the exception is propagated. Exception propagation for all other constructs is shown in Fig. 9.

It should be noted that $\{V: T$; throw $e\}$ can in general not be reduced to throw e because e may refer to the local V which must not escape its scope. Hence e must

$$
\begin{aligned}
& \frac{n e w-A d d r h=\text { None }}{P \vdash\langle\text { new } C,(h, l)\rangle \rightarrow\langle\text { THROW OutOfMemory },(h, l)\rangle} \\
& \frac{h p \text { s } a=\lfloor(D, f s)\rfloor \quad \neg P \vdash D \preceq^{*} C}{P \vdash\langle\text { Cast } C(\text { addr } a), s\rangle \rightarrow\langle\text { THROW ClassCast }, s\rangle} \\
& P \vdash\langle\text { null. } F\{D\}, s\rangle \rightarrow\langle\text { THROW NullPointer }, s\rangle \\
& P \vdash\langle\text { null. } F\{D\}:=\text { Val } v, s\rangle \rightarrow\langle\text { THROW NullPointer }, s\rangle \\
& P \vdash\langle\text { null.M(map Val vs),s }\rangle\langle\text { THROW NullPointer }, s\rangle \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\langle\text { throw } e, s\rangle \rightarrow\left\langle\text { throw } e^{\prime}, s^{\prime}\right\rangle} \quad P \vdash\langle\text { throw null, } s\rangle \rightarrow\langle\text { THROW NullPointer }, s\rangle \\
& \frac{P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle}{P \vdash\left\langle\operatorname{try} e \operatorname{catch}(C V) e_{2}, s\right\rangle \rightarrow\left\langle\operatorname{try} e^{\prime} \operatorname{catch}(C V) e_{2}, s^{\prime}\right\rangle} \\
& P \vdash\left\langle\text { try Val } v \text { catch }(C V) e_{2}, s\right\rangle \rightarrow\langle\text { Val } v, s\rangle \\
& \frac{h p s a=\lfloor(D, f s)\rfloor \quad P \vdash D \preceq^{*} C}{P \vdash\left\langle\text { try Throw } a \text { catch }(C V) e_{2}, s\right\rangle \rightarrow\left\langle\left\{V: \text { Class } C ; V:=\text { addr } a ; e_{2}\right\}, s\right\rangle} \\
& \frac{h p \text { s } a=\lfloor(D, f s)\rfloor \quad \neg P \vdash D \preceq^{*} C}{P \vdash\left\langle\text { try Throw } a \text { catch }(C V) e_{2}, s\right\rangle \rightarrow\langle\text { Throw } a, s\rangle}
\end{aligned}
$$

Fig. 8. Exceptional expression reduction

```
\(P \vdash\langle\) Cast \(C\) (throw \(e\) ), \(s\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\langle V:=\) throw \(e, s\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\langle\) throw e.F\{D\},s \(\rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\left\langle\right.\) throw e. \(\left.F\{D\}:=e_{2}, s\right\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\langle\) Val \(v . F\{D\}:=\) throw \(e, s\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\left\langle\right.\) throw \(\left.e \ll b o p \gg e_{2}, s\right\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\left\langle\right.\) Val \(v_{1} \ll b o p \gg\) throw \(\left.e, s\right\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\langle\{V: T\); Throw \(a\}, s\rangle \rightarrow\langle\) Throw \(a, s\rangle\)
\(P \vdash\langle\{V: T ; V:=\) Val \(v\); Throw \(a\}, s\rangle \rightarrow\langle\) Throw \(a, s\rangle\)
\(P \vdash\langle\) throw \(e . M(e s), s\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\left\langle\right.\) Val \(v . M\left(\right.\) map Val vs @ (throw \(\left.\left.\left.e \cdot e s^{\prime}\right)\right), s\right\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\left\langle\right.\) throw \(e\); \(\left.e_{2}, s\right\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\left\langle\right.\) if (throw \(e\) ) \(e_{1}\) else \(\left.e_{2}, s\right\rangle \rightarrow\langle\) throw \(e, s\rangle\)
\(P \vdash\langle\) throw (throw \(e\) ), \(s\rangle \rightarrow\langle\) throw \(e, s\rangle\)
```

Fig. 9. Exception propagation
be reduced to an address first.
2.3.4 The Reflexive Transitive Closure. If we write $P \vdash\left\langle e_{1}, s_{1}\right\rangle \rightarrow^{*}\left\langle e_{n}, s_{n}\right\rangle$ this means that there is a sequence of reductions $P \vdash\left\langle e_{1}, s_{1}\right\rangle \rightarrow\left\langle e_{2}, s_{2}\right\rangle, P \vdash\left\langle e_{2}, s_{2}\right\rangle$ $\rightarrow\left\langle e_{3}, s_{3}\right\rangle \ldots$, and similarly for $[\rightarrow]$ and $[\rightarrow]^{*}$.

```
wf-prog :: 'm wf-mdecl-test \(\Rightarrow\) ' \(m\) prog \(\Rightarrow\) bool
wf-prog wf-md \(P \equiv\) wf-syscls \(P \wedge(\forall c \in\) set \(P\). wf-cdecl wf-md \(P c) \wedge\) distinct-fst \(P\)
wf-syscls :: 'm prog \(\Rightarrow\) bool
wf-syscls \(P \equiv\{\) Object \(\} \cup\) sys-xcpts \(\subseteq\) set (map fst \(P\) )
wf-cdecl :: 'm wf-mdecl-test \(\Rightarrow\) ' \(m\) prog \(\Rightarrow\) ' \(m\) cdecl \(\Rightarrow\) bool
wf-cdecl wf-md \(P \equiv\)
\(\lambda(C, D, f s, m s)\).
    \((\forall f \in\) set \(f\) s. wf-fdecl \(P f) \wedge\) distinct-fst \(f s \wedge(\forall m \in\) set ms. wf-mdecl wf-md \(P C m) \wedge\)
    distinct-fst ms \(\wedge\)
    ( \(C \neq\) Object \(\longrightarrow\)
    is-class \(P D \wedge \neg P \vdash D \preceq^{*} C \wedge\)
    \((\forall(M, T s, T, m) \in\) set \(m s\).
            \(\forall D^{\prime} T s^{\prime} T^{\prime} m^{\prime}\) 。
                \(P \vdash D\) sees \(M: T s^{\prime} \rightarrow T^{\prime}=m^{\prime}\) in \(\left.\left.D^{\prime} \longrightarrow P \vdash T s^{\prime}[\leq] T s \wedge P \vdash T \leq T^{\prime}\right)\right)\)
wf-fdecl :: 'm prog \(\Rightarrow\) fdecl \(\Rightarrow\) bool
wf-fdecl \(P \equiv \lambda(F, T)\). is-type \(P T\)
wf-mdecl :: 'm wf-mdecl-test \(\Rightarrow\) ' \(m\) wf-mdecl-test
wf-mdecl wf-md P C
\(\lambda(M, T s, T, m b) .(\forall T \in\) set Ts. is-type \(P T) \wedge i s\)-type \(P T \wedge w f-m d P C(M, T s, T, m b)\)
```

Fig. 10. Generic well-formedness

2.4 Well-formedness

We are now aiming to show that the big and small step semantics are closely related. For this (and many other proofs) we need to impose various well-formedness constraints on programs. Some of them are generic, like the constraint that the type in a field declaration must be a valid type. Others depend on the type of method bodies. To factor out the latter constraints, the well-formedness test on programs will be parameterized by a well-formedness test for methods:

$$
\text { types } ' m \text { wf-mdecl-test }=\text { 'm prog } \Rightarrow \text { cname } \Rightarrow \text { 'm mdecl } \Rightarrow \text { bool }
$$

Tests of this type are meant to check if a certain method declaration in a certain class within a certain program is well-formed.

Declarations are lists of pairs. In order to forbid repeated declarations of the same name, we introduce the auxiliary predicate distinct-fst which checks that in a list of pairs all first components are distinct: distinct-fst \equiv distinct \circ map fst.

The well-formedness predicates are shown in Fig. 10. They employ the following notions from Jinja's type system: is-type $P T$ checks if T is a valid Jinja type, $P \vdash T \leq T^{\prime}$ checks if T is a subtype of T^{\prime}, and $P \vdash T s[\leq] T s^{\prime}$ if, element by element, $T s$ is a subtype of $T s^{\prime}$, all in the context of P. We will only define these notions formally in $\S 2.6$ because their definition is not relevant beforehand.

Let us now look at Fig. 10. A program is ok (= well-formed) iff it contains all system classes (Object and all system exceptions), all class declarations are ok, and no class is declared twice. A declaration of a class C is ok iff all field declarations and all method declarations are ok, no field or method is declared twice, and, if $C \neq$ Object, then its superclass D exists, D is not a subclass of C (to rule out cycles), and method overriding is contravariant in the argument type and covariant
in the result type. That is, if C overrides a method declaration visible from D, then the new declaration must have more specific argument types and a more general result type. Note that overriding involves only the method name - there is no overloading.
2.4.1 Weak well-formedness. We will now instantiate wf-prog with a constraint needed for relating big and small step semantics: method bodies should not refer to global variables. This requires the notion of the free variables in an expression, collected by $f v::$ expr \Rightarrow vname set defined in Fig. 11. A Jinja method declaration is weakly well-formed iff the following conditions hold: there are as many parameter types as parameter names, the parameter names are all distinct, this is not among the parameter names, and the free variables of the body refer only to this and the parameters names. Formally:

$$
\begin{aligned}
& \text { wwf-J-mdecl }:: J-m b \text { wf-mdecl-test } \\
& \text { wwf-J-mdecl } C \equiv \\
& \lambda(M, T s, T, p n s, \text { body }) .
\end{aligned}
$$

The key requirement is $f v$ body $\subseteq\{t h i s\} \cup$ set pns: it rules out reference to global variables. This is necessary to make the big and small step semantics of method call coincide. In the big step semantics, body is evaluated in a store containing only this and the parameters. In the small step semantics, this and the parameters are (indirectly) added to the current store, which would lead to dynamic variable binding (see §2.3.2) if body contained free variables outside $\{$ this $\} \cup$ set pns.

The condition $|T s|=|p n s|$ is necessary because we have separated parameter names from their types. Normally there is a combined parameter list of pairs (V, T), just as in field declarations. However, since parameter names do not make sense on the machine level, but parameter types do, we have separated these two concepts in our generic type of programs.

A Jinja program is weakly well-formed iff all its method bodies are:

$$
w w f-J-p r o g \equiv w f-p r o g w w f-J-m d e c l
$$

2.5 Relating Big and Small Step Semantics

Our big and small step semantics are equivalent in the following sense:
Theorem 2.3. If $w w f-J$ - prog P then
$P \vdash\langle e, s\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$ iff $P \vdash\langle e, s\rangle \rightarrow^{*}\left\langle e^{\prime}, s^{\prime}\right\rangle \wedge$ final e^{\prime}.
One half of the only-if-direction of Theorem 2.3 is Lemma 2.1, the other half is
Theorem 2.4. If wwf-J-prog P and $P \vdash\langle e, s\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$ then $P \vdash\langle e, s\rangle \rightarrow^{*}\left\langle e^{\prime}, s^{\prime}\right\rangle$.

Proof. The proof is by induction on \Rightarrow. Most cases follow the simple pattern that we demonstrate for Cast. First we lift the subexpression reduction rules from \rightarrow to \rightarrow^{*}, i.e. we show $P \vdash\langle e, s\rangle \rightarrow^{*}\left\langle n u l l, s^{\prime}\right\rangle \Longrightarrow P \vdash\langle$ Cast $C e, s\rangle \rightarrow^{*}\left\langle n u l l, s^{\prime}\right\rangle$ which follows from rule $P \vdash\langle$ Cast C null, $s\rangle \rightarrow\langle$ null,$s\rangle$ with the help of the lemma $P \vdash\langle e, s\rangle \rightarrow^{*}\left\langle e^{\prime}, s\right\rangle \Longrightarrow P \vdash\langle$ Cast $C e, s\rangle \rightarrow^{*}\left\langle\right.$ Cast $\left.C e^{\prime}, s^{\prime}\right\rangle$ which is proved from rule $P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle \Longrightarrow P \vdash\langle$ Cast $C e, s\rangle \rightarrow\left\langle\right.$ Cast $\left.C e^{\prime}, s^{\prime}\right\rangle$ by induction on $\rightarrow{ }^{*}$. Now the proposition follows by induction hypothesis.

```
\(f v(\) new \(C)=\{ \}\)
\(f v(\) Cast \(C e)=f v e\)
\(f v(\) Val \(v)=\{ \}\)
\(f v\left(e_{1} \ll b o p \gg e_{2}\right)=f v e_{1} \cup f v e_{2}\)
\(f v(\operatorname{Var} V)=\{V\}\)
\(f v(V:=e)=\{V\} \cup f v e\)
fv \((e . F\{D\})=f v e\)
\(f v\left(e_{1} \cdot F\{D\}:=e_{2}\right)=f v e_{1} \cup f v e_{2}\)
\(f v(e \cdot M(e s))=f v e \cup f v s\) es
\(f v\{V: T ; e\}=f v e-\{V\}\)
\(f v\left(e_{1} ; e_{2}\right)=f v e_{1} \cup f v e_{2}\)
\(f v\left(\right.\) if \((b) e_{1}\) else \(\left.e_{2}\right)=f v b \cup f v e_{1} \cup f v e_{2}\)
\(f v(\) while (b) \(e)=f v b \cup f v e\)
\(f v\) (throw \(e)=f v e\)
\(f v\left(\right.\) try \(\left.e_{1} \operatorname{catch}(C V) e_{2}\right)=f v e_{1} \cup\left(f v e_{2}-\{V\}\right)\)
fos [] = \{\}
\(f v s(e \cdot e s)=f v e \cup f v s e s\)
```

Fig. 11. Free variables

For blocks (and similarly for try-catch), the lifting is more complicated:

```
\(\llbracket P \vdash\left\langle e_{0},\left(h_{0}, l_{0}(V:=\right.\right.\) None \(\left.\left.)\right)\right\rangle \rightarrow^{*}\left\langle e_{2},\left(h_{2}, l_{2}\right)\right\rangle ;\) final \(e_{2} \rrbracket\)
\(\Longrightarrow P \vdash\left\langle\left\{V: T ; e_{0}\right\},\left(h_{0}, l_{0}\right)\right\rangle \rightarrow^{*}\left\langle e_{2},\left(h_{2}, l_{2}\left(V:=l_{0} V\right)\right)\right\rangle\)
```

is proved by induction on \rightarrow^{*} in the premise. The induction step can be proved via

$$
\begin{aligned}
& \llbracket P \vdash\langle e,(h, l(V \mapsto v))\rangle \rightarrow^{*}\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle ; \text { final } e^{\prime} \rrbracket \\
& \Longrightarrow P \vdash\langle\{V: T ; V:=\operatorname{Val} v ; e\},(h, l)\rangle \rightarrow^{*}\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}(V:=l V)\right)\right\rangle
\end{aligned}
$$

which follows easily from

```
P}\vdash\langlee,(h,l(V\mapstov))\rangle->* \langle\mp@subsup{e}{}{\prime},(\mp@subsup{h}{}{\prime},\mp@subsup{l}{}{\prime})\rangle
P}\vdash\langle{V:T;V:= Valv;e},(h,l)\rangle ->* \langle{V:T;V:= Val (the (l'V)); e'},(\mp@subsup{h}{}{\prime},\mp@subsup{l}{}{\prime}(V:=l V ) ) 
```

which can be proved by induction on \rightarrow^{*} in the premise.
The most complex case is method call where we have to prove the small step simulation of the exception-free big step call rule, i.e.

```
\(\llbracket w w f-J-p r o g P ; P \vdash\left\langle e, s_{0}\right\rangle \rightarrow^{*}\left\langle a d d r a, s_{1}\right\rangle ; P \vdash\left\langle e s, s_{1}\right\rangle[\rightarrow]^{*}\left\langle m a p\right.\) Val \(\left.v s,\left(h_{2}, l_{2}\right)\right\rangle\);
\(h_{2} a=\lfloor(C, f s)\rfloor ; P \vdash C\) sees \(M: T s \rightarrow T=(p n s\), body \()\) in \(D ;|v s|=|p n s|\);
\(l_{2}^{\prime}=[\) this \(\mapsto\) Addr a, pns \([\mapsto] v s] ; P \vdash\left\langle b o d y,\left(h_{2}, l_{2}{ }^{\prime}\right)\right\rangle \rightarrow^{*}\left\langle e f,\left(h_{3}, l_{3}\right)\right\rangle\); final ef \(\rrbracket\)
\(\Longrightarrow P \vdash\left\langle e . M(e s), s_{0}\right\rangle \rightarrow^{*}\left\langle e f,\left(h_{3}, l_{2}\right)\right\rangle\)
```

It is straightforward to derive $P \vdash\left\langle e . M(e s), s_{0}\right\rangle \rightarrow^{*}\left\langle(a d d r a) \cdot M(e s), s_{1}\right\rangle \rightarrow^{*}$ $\left\langle(a d d r a) . M(\operatorname{map} \operatorname{Val} p v s),\left(h_{2}, l_{2}\right)\right\rangle \rightarrow\left\langle b l k s,\left(h_{2}, l_{2}\right)\right\rangle \quad$ (where blks abbreviates blocks (this•pns, Class D•Ts, Addr a•pvs, body)) from the assumptions. From $P \vdash\left\langle\right.$ body,$\left.\left(h_{2}, l_{2}{ }^{\prime}\right)\right\rangle \rightarrow^{*}\left\langle e f,\left(h_{3}, l_{3}\right)\right\rangle(1)$ it follows by the easy lemma
$P \vdash\langle e,(h, l)\rangle \rightarrow^{*}\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle \Longrightarrow P \vdash\left\langle e,\left(h, l_{0}++l\right)\right\rangle \rightarrow^{*}\left\langle e^{\prime},\left(h^{\prime}, l_{0}++l^{\prime}\right)\right\rangle$
(provable by induction) that $P \vdash\left\langle\right.$ body, $\left(h_{2}, l_{2}(\right.$ this $\mapsto A d d r a, p n s[\mapsto]$ pvs $\left.\left.)\right)\right\rangle \rightarrow^{*}$ $\left\langle e f,\left(h_{3}, l_{2}++l_{3}\right)\right\rangle$. Now we can transfer the bindings for this and pns from the store into blocks to obtain

$$
P \vdash\left\langle b l k s,\left(h_{2}, l_{2}\right)\right\rangle \rightarrow^{*}\left\langle e f,\left(h_{3},\left(l_{2}++l_{3}\right)\left(l_{2} \mid\{\text { this }\} \cup \text { set pns }\right)\right)\right\rangle
$$

where $f(g \mid A)$ means λa. if $a \in A$ then g a else $f a$. Finally we prove $\left(l_{2}++\right.$ $\left.l_{3}\right)\left(l_{2} \mid\{\right.$ this $\} \cup$ set pns $)=l_{2}(2)$, which finishes the call case. The proof of (2) is easy once we know dom $l_{3} \subseteq\{t h i s\} \cup$ set pns which in turn follows from (1) using the lemma
$\llbracket w w f-J-p r o g ~ P ; P \vdash\langle e,(h, l)\rangle \rightarrow^{*}\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle \rrbracket \Longrightarrow \operatorname{dom} l^{\prime} \subseteq \operatorname{dom} l \cup f v e$
which in its turn is proved using the lemma
$\llbracket w w f-J-p r o g P ; P \vdash\langle e,(h, l)\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle \rrbracket \Longrightarrow f v e^{\prime} \subseteq f v e$

The other direction of Theorem 2.3
Theorem 2.5. If wwf-J-prog P and $P \vdash\langle e, s\rangle \rightarrow^{*}\left\langle e^{\prime}, s^{\prime}\right\rangle$ and final e^{\prime} then $P \vdash\langle e, s\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$.
is proved easily by induction on \rightarrow^{*} : the base case is Lemma 2.2 , the induction step follows directly from

Theorem 2.6. If wwf-J-prog P and $P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime \prime}, s^{\prime \prime}\right\rangle$ and $P \vdash\left\langle e^{\prime \prime}, s^{\prime \prime}\right\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$ then $P \vdash\langle e, s\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$.

It is proved by induction on \rightarrow. Most cases are straightforward, except for method call, which requires the following three lemmas:
$\llbracket|p s|=|T s| ;|p s|=|v s| ; P \vdash\langle$ blocks $(p s, T s, v s, e),(h, l)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right\rangle\right\rangle \rrbracket$
$\Longrightarrow \exists l^{\prime \prime} . P \vdash\langle e,(h, l(p s[\mapsto] v s))\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime \prime}\right)\right\rangle$
$\llbracket w w f-J$-prog $P ; P \vdash\langle e,(h, l)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle ; f v e \subseteq W \rrbracket \Longrightarrow P \vdash\left\langle e,\left(h, l \upharpoonright_{W}\right)\right\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime} \uparrow{ }_{W}\right)\right\rangle$
$\llbracket P \vdash\langle e,(h, l)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle ; f v e=\{ \} \rrbracket \Longrightarrow l^{\prime}=l$
The notation $m \upharpoonright_{A}$ means restriction of m to A, i.e. λx. if $x \in A$ then $m x$ else None. The proofs of these lemmas and the proof of the method call case from them are reasonably straightforward.

Note that the fact that Theorem 2.6 holds is not just a nice coincidence: this theorem is trivially implied whenever \Rightarrow and \rightarrow^{*} coincide.

2.6 Type System

Having concluded the dynamic semantics, we now turn to context conditions, starting with the type system. Jinja types are either primitive (Boolean and Integer), class types Class C, NT (the type of Null), or Void (the type of Unit). The corresponding HOL type is called ty. A reference type is either Class C or NTpredicate is-ref $T:: t y \Rightarrow$ bool tests for reference types.

Types should only refer to classes that exist in the current programm:

```
is-type P T \equiv case T of Class C = is-class P C | - = True
```

Function typeof :: heap \Rightarrow val \Rightarrow ty option computes the type of a value. The heap argument is necessary because values may contain addresses. The result type is ty option rather than ty because unallocated addresses do not have a type.

```
typeof }\mp@subsup{h}{h}{Unit}=\lfloor\mathrm{ Void }
typeof }\mp@subsup{h}{}{N}\mathrm{ Null = \NT }
```

```
typeof \(_{h}(\) Bool b) \(=\lfloor\) Boolean \(\rfloor\)
typeof \(_{h}(\) Intg \(i)=\lfloor\) Integer \(\rfloor\)
typeof \(_{h}(\) Addr \(a)=(\) case \(h\) a of None \(\Rightarrow\) None \(\mid\lfloor(C, f s)\rfloor \Rightarrow\) Class \(\left.C\rfloor\right)\)
```

If we want to rule out addresses in values, we simply supply an empty heap and define the abbreviation

$$
\text { typeof } v \equiv \text { typeof }_{\text {empty }} v
$$

The subclass relation $P \vdash C \preceq^{*} C^{\prime}$ induces a subtype relation $P \vdash T \leq T^{\prime}$ (often called widening) in the obvious manner:

$$
P \vdash T \leq T \quad P \vdash N T \leq \text { Class } C \quad \frac{P \vdash C \preceq \preceq^{*} D}{P \vdash \text { Class } C \leq \text { Class } D}
$$

The pointwise extension of \leq to lists of types is written $[\leq]$.
The core of the type system is the judgement $P, E \vdash e:: T$, where E is an environment, i.e. a map from variables to their types. The complete set of typing rules is shown in Fig. 12. We only discuss the more interesting ones, starting with field access and field assignment. Their typing rules do not just enforce that the types fit together but also that the annotation $\{D\}$ is correct: $\{D\}$ must be the defining class of the field F visible from the static class of the object.

Now we examine the remaining rules for $P, E \vdash e:: T$. We only allow up and down casts: other casts are pointless because they are bound to fail at runtime. The rules for $e_{1} \ll>e_{2}$ and if $(e) e_{1}$ else e_{2} follow Java (with its conditional operator ? : rather than its if-else) in requiring that the type of e_{1} is a subtype of that of e_{2} or conversely. Loops are of type Void because they evaluate to unit. Exceptions (throw) are of type Void, as in Java. They could also be polymorphic, but that would complicate the type system. The rule for try e_{1} catch ($C V$) e_{2} follows Java (where e_{1} and e_{2} must be statements) in requiring that e_{1} and e_{2} have the same type.

The extension of :: to lists is denoted by [::].
Although the rules for $P, E \vdash e:: T$ can be viewed as computing the annotations $\{D\}$ (via the constraint on D), an explicit computation $P, E \vdash e \leadsto e^{\prime}$ may be clearer: the input e is an unannotated expression, the output e^{\prime} its annotated version. Here are two representative rules, one that just copies, and one that adds an annotation:

$$
\begin{aligned}
& \frac{P, E \vdash e \leadsto e^{\prime}}{\frac{}{P, E \vdash \text { Cast } C e} \leadsto \text { Cast } C e^{\prime}} \\
& P, E \vdash e \leadsto e^{\prime} \quad \begin{array}{l}
P, E \vdash e^{\prime}:: \text { Class } C \quad P \vdash C \text { sees } F: T \text { in } D \\
P, E \vdash e . F \leadsto e^{\prime} . F\{D\}
\end{array}
\end{aligned}
$$

While we are at it, we also determine if some $\operatorname{Var} V$ really refers to a variable or to a field. In the latter case it is prefixed by this and annotated:

$$
\frac{E V=\lfloor T\rfloor}{P, E \vdash \operatorname{Var} V \leadsto \operatorname{Var} V} \quad \frac{E V=\text { None } \quad E \text { this }=\lfloor\text { Class } C\rfloor \quad P \vdash C \text { sees } V: T \text { in } D}{P, E \vdash \operatorname{Var} V \leadsto \operatorname{Var} \text { this. } V\{D\}}
$$

Thus \leadsto should be viewed as a translation that is part of type checking. As we do not refer to it again, we need not show the remaining (obvious) rules.

$$
\begin{aligned}
& \frac{\text { is-class } P C}{P, E \vdash \text { new } C:: \text { Class } C} \quad \frac{\text { typeof } v=\lfloor T\rfloor}{P, E \vdash \operatorname{Val} v:: T} \quad \frac{E V=\lfloor T\rfloor}{P, E \vdash \operatorname{Var} V:: T} \\
& \frac{P, E \vdash e:: \text { Class } D \quad \text { is-class } P C \quad P \vdash C \preceq \preceq^{*} D \vee P \vdash D \preceq^{*} C}{P, E \vdash \text { Cast } C e:: \text { Class } C} \\
& \frac{P, E \vdash e_{1}:: T_{1} \quad P, E \vdash e_{2}:: T_{2} \quad P \vdash T_{1} \leq T_{2} \vee P \vdash T_{2} \leq T_{1}}{P, E \vdash e_{1} \ll \gg e_{2}:: \text { Boolean }} \\
& \frac{P, E \vdash e_{1}:: \text { Integer } \quad P, E \vdash e_{2}:: \text { Integer }}{P, E \vdash e_{1} \ll+e_{2}:: \text { Integer }} \\
& \frac{E V=\lfloor T\rfloor \quad P, E \vdash e:: T^{\prime} \quad P \vdash T^{\prime} \leq T \quad V \neq \text { this }}{P, E \vdash V:=e:: \text { Void }} \\
& \frac{P, E \vdash e:: C l a s s C \quad P \vdash C \text { sees } F: T \text { in } D}{P, E \vdash e . F\{D\}:: T} \\
& \frac{P, E \vdash e_{1}:: \text { Class } C \quad P \vdash C \text { sees } F: T \text { in } D \quad P, E \vdash e_{2}:: T^{\prime} \quad P \vdash T^{\prime} \leq T}{P, E \vdash e_{1} . F\{D\}:=e_{2}:: \text { Void }} \\
& P, E \vdash e:: \text { Class } C \\
& \begin{array}{c}
P \vdash C \text { sees } M: T s \rightarrow T=(p n s, \text { body }) \text { in } D \quad P, E \vdash \text { es }[::] T s^{\prime} \quad P \vdash T s^{\prime}[\leq] T s \\
P, E \vdash e . M(e s):: T
\end{array} \\
& \frac{\text { is-type } P T \quad P, E(V \mapsto T) \vdash e:: T^{\prime}}{P, E \vdash\{V: T ; e\}:: T^{\prime}} \quad \frac{P, E \vdash e_{1}:: T_{1} \quad P, E \vdash e_{2}:: T_{2}}{P, E \vdash e_{1} ; e_{2}:: T_{2}} \\
& P, E \vdash e:: \text { Boolean } \\
& P, E \vdash e_{1}:: T_{1} \quad P, E \vdash e_{2}:: T_{2} \quad P \vdash T_{1} \leq T_{2} \vee P \vdash T_{2} \leq T_{1} \\
& P \vdash T_{1} \leq T_{2} \longrightarrow T=T_{2} \quad P \vdash T_{2} \leq T_{1} \longrightarrow T=T_{1} \quad(e) e_{1} \text { else } e_{2}:: T \\
& \frac{P, E \vdash e:: \text { Boolean } \quad P, E \vdash c:: T}{P, E \vdash \text { while }(e) c:: \text { Void }} \quad \frac{P, E \vdash e:: \text { Class } C}{P, E \vdash \text { throw } e:: \text { Void }} \\
& \frac{P, E \vdash e_{1}:: T \quad P, E(V \mapsto \text { Class } C) \vdash e_{2}:: T \quad \text { is-class } P C}{P, E \vdash \operatorname{try} e_{1} \text { catch }(C V) e_{2}:: T} \\
& P, E \vdash[][::][] \quad \frac{P, E \vdash e:: T \quad P, E \vdash e s[::] T s}{P, E \vdash e \cdot e s[::] T \cdot T s}
\end{aligned}
$$

Fig. 12. Typing rules

2.7 Definite Assignment

One of Java's notable features is the check that all variables must be assigned to before use, called "definite assignment". Jinja's rules for definite assignment are much simpler than Java's, thus missing certain cases, but still demonstrating the feature in its full generality. We employ two recursive functions

$$
\mathcal{D}:: \text { expr } \Rightarrow \text { vname set option } \Rightarrow \text { bool } \quad \mathcal{A}:: \text { expr } \Rightarrow \text { vname set option }
$$

For a moment ignore the option type. Then $\mathcal{D} e A$ is meant to check if evaluation of e starting from any state where all variables in A are initialized only accesses initialized variables. The auxiliary function $\mathcal{A} e$ computes the set of variables that have been assigned to after any normal evaluation of e.

```
\(\mathcal{D}\) (new \(C\) ) \(A=T\) True
\(\mathcal{D}\) (Cast \(C\) e) \(A=\mathcal{D}\) e \(A\)
\(\mathcal{D}(\) Val \(v) A=\) True
\(\mathcal{D}\left(e_{1} \ll b o p \gg e_{2}\right) A=\left(\mathcal{D} e_{1} A \wedge \mathcal{D} e_{2}\left(A \sqcup \mathcal{A} e_{1}\right)\right)\)
\(\mathcal{D}(\operatorname{Var} V) A=(V \in \in A)\)
\(\mathcal{D}(V:=e) A=\mathcal{D}\) e \(A\)
\(\mathcal{D}(e . F\{D\}) A=\mathcal{D}\) e \(A\)
\(\mathcal{D}\left(e_{1} \cdot F\{D\}:=e_{2}\right) A=\left(\mathcal{D} e_{1} A \wedge \mathcal{D} e_{2}\left(A \sqcup \mathcal{A} e_{1}\right)\right)\)
\(\mathcal{D}(e . M(e s)) A=(\mathcal{D} e A \wedge \mathcal{D} s\) es \((A \sqcup \mathcal{A} e))\)
\(\mathcal{D}\{V: T ; e\} A=\mathcal{D}\) e \((A \ominus V)\)
\(\mathcal{D}\left(e_{1} ; e_{2}\right) A=\left(\mathcal{D} e_{1} A \wedge \mathcal{D} e_{2}\left(A \sqcup \mathcal{A} e_{1}\right)\right)\)
\(\mathcal{D}\left(\right.\) if \((e) e_{1}\) else \(\left.e_{2}\right) A=\left(\mathcal{D} e A \wedge \mathcal{D} e_{1}(A \sqcup \mathcal{A} e) \wedge \mathcal{D} e_{2}(A \sqcup \mathcal{A} e)\right)\)
\(\mathcal{D}(\) while \((e) c) A=(\mathcal{D} e A \wedge \mathcal{D} c(A \sqcup \mathcal{A} e))\)
\(\mathcal{D}\) (throw e) \(A=\mathcal{D} e A\)
\(\mathcal{D}\left(\right.\) try \(\left.e_{1} \operatorname{catch}(C V) e_{2}\right) A=\left(\mathcal{D} e_{1} A \wedge \mathcal{D} e_{2}(A \sqcup\lfloor\{V\}\rfloor)\right)\)
Ds [] \(A=\) True
\(\mathcal{D} s(e \cdot e s) A=(\mathcal{D}\) e \(A \wedge \mathcal{D} s\) es \((A \sqcup \mathcal{A} e))\)
```

Fig. 13. Definition of \mathcal{D}

```
\(\mathcal{A}(\) new \(C)=\lfloor\{ \}\rfloor\)
\(\mathcal{A}(\) Cast \(C e)=\mathcal{A} e\)
\(\mathcal{A}(\) Val \(v)=\lfloor\{ \}\rfloor\)
\(\mathcal{A}\left(e_{1} \ll b o p \gg e_{2}\right)=\mathcal{A} e_{1} \sqcup \mathcal{A} e_{2}\)
\(\mathcal{A}(\operatorname{Var} V)=\lfloor\{ \}\rfloor\)
\(\mathcal{A}(V:=e)=\lfloor\{V\}\rfloor \sqcup \mathcal{A} e\)
\(\mathcal{A}(e . F\{D\})=\mathcal{A} e\)
\(\mathcal{A}\left(e_{1} \cdot F\{D\}:=e_{2}\right)=\mathcal{A} e_{1} \sqcup \mathcal{A} e_{2}\)
\(\mathcal{A}(e . M(e s))=\mathcal{A} e \sqcup \mathcal{A} s\) es
\(\mathcal{A}\{V: T ; e\}=\mathcal{A} e \ominus V\)
\(\mathcal{A}\left(e_{1} ; e_{2}\right)=\mathcal{A} e_{1} \sqcup \mathcal{A} e_{2}\)
\(\mathcal{A}\left(\right.\) if \((e) e_{1}\) else \(\left.e_{2}\right)=\mathcal{A} e \sqcup \mathcal{A} e_{1} \sqcap \mathcal{A} e_{2}\)
\(\mathcal{A}(\) while \((b) e)=\mathcal{A} b\)
\(\mathcal{A}(\) throw \(e)=\) None
\(\mathcal{A}\left(\right.\) try \(\left.e_{1} \operatorname{catch}(C V) e_{2}\right)=\mathcal{A} e_{1} \sqcap\left(\mathcal{A} e_{2} \ominus V\right)\)
\(\mathcal{A} s[]=\lfloor\{ \}\rfloor\)
\(\mathcal{A} s(e \cdot e s)=\mathcal{A} e \sqcup \mathcal{A} s\) es
```

Fig. 14. Definition of \mathcal{A}

The need for option arises because of throw: what should \mathcal{A} (throw e) return? We use None to indicate that the expression will always fail. However, you should already think of set option as a completion of set with a top element None representing the universal set of all variable names (called UNIV). We will discuss this issue again below, but first we look at the definition of \mathcal{D} (Fig. 13) and \mathcal{A} (Fig. 14). They use the auxiliary operations $\sqcup, \sqcap, \ominus, \sqsubseteq$ and $\in \in$ (Fig. 15) which extend \cup, \cap, - and \subseteq from set to set option, treating None (almost) as the universal set.

The rules for \mathcal{D} and \mathcal{A} are essentially straightforward and we just discuss a few of the ones for \mathcal{A} : evaluating if $(e) e_{1}$ else e_{2} guarantees all assignments that e guarantees, and those that both e_{1} and e_{2} guarantee; evaluating while (b) e guarantees only the assignments in b because e may never be evaluated; evaluating $\{V: T ; e\}$ cannot assign to V, because its V is local. The test $\mathcal{D} e A$ is even more

```
\(A \sqcup B \equiv\) case \(A\) of None \(\Rightarrow\) None \(\mid\lfloor A\rfloor \Rightarrow\) case \(B\) of None \(\Rightarrow\) None \(\mid\lfloor B\rfloor \Rightarrow\lfloor A \cup B\rfloor\)
\(A \sqcap B \equiv\) case \(A\) of None \(\Rightarrow B \mid\lfloor A\rfloor \Rightarrow\) case \(B\) of None \(\Rightarrow\lfloor A\rfloor \mid\lfloor B\rfloor \Rightarrow\lfloor A \cap B\rfloor\)
\(A \ominus a \equiv\) case \(A\) of None \(\Rightarrow\) None \(\mid\lfloor A\rfloor \Rightarrow\lfloor A-\{a\}\rfloor\)
\(A \sqsubseteq B \equiv\) case \(B\) of None \(\Rightarrow\) True \(\mid\lfloor B\rfloor \Rightarrow\) case \(A\) of None \(\Rightarrow\) False \(\mid\lfloor A\rfloor \Rightarrow A \subseteq B\)
\(a \in \in A \equiv\) case \(A\) of None \(\Rightarrow\) True \(\mid\lfloor A\rfloor \Rightarrow a \in A\)
```

Fig. 15. Operations on set option
uniform. It descends into all subexpressions of e in the order they are evaluated, extends A according to \mathcal{A}, and every time it comes across some $\operatorname{Var} V$ it checks if $V \in \in A$, i.e. if V has definitely been assigned to beforehand.

Monotonicity of \mathcal{D} is proved by induction on e :
Lemma 2.7. If \mathcal{D} e A and $A \sqsubseteq A^{\prime}$ then \mathcal{D} e A^{\prime}.
Let us now come back to the question of None vs. UNIV. If we worked with set as opposed to set option, we would need to define \mathcal{A} (throw _) $=U N I V$ to ensure that \mathcal{A} (if (e) throw _ else $\left.e_{2}\right)=\mathcal{A} e \cup \mathcal{A} e_{2}$, i.e. that \mathcal{A} (throw _) does not reduce the overall result, which should only reflect normal evaluations. Returning $U N I V$ in the case of guaranteed throw is what Schirmer [2003] does. For a start, this loses direct executability, as $U N I V$ is not a finite set. What is worse, in Jinja it would lead to undesirable imprecision of the analysis. Let e be the expression if $(\operatorname{Var} B)\{V: T$; throw $\}$ else $V:=$ true. We would obtain $\mathcal{A}\left\{V: T\right.$; throw $\left.{ }_{-}\right\}$ $=$ UNIV $-\{V\}, \mathcal{A} e=\{ \}$, and hence $\neg \mathcal{D}(e ; V:=\operatorname{Var} V)\{B\}$, contrary to what one would expect. This is where None comes in: we would like UNIV $-\{V\}$ $=U N I V$, but since that does not hold, we introduce None as the new top element of the lattice and define \ominus such that None $\ominus V=$ None. Schirmer [2003] gets away with UNIV because he does not allow e above: it contains both a local and a global V, something that Java forbids. In Jinja, however, we did not want to ban nested declarations of the same variable, which cripples the classic block structure.

2.8 Well-formed Jinja Programs

Well-formedness of Jinja method declarations

```
wf-J-mdecl P C (M,Ts,T, pns, body) \equiv
|Ts|}=|pns| ^ distinct pns ^ this & set pns ^
(\exists T'. P,[this \mapsto Class C, pns [\mapsto] Ts]\vdashbody :: T'^P\vdash T's
D body \lfloor{this}\cup set pns\rfloor
```

extends weak well-formedness ($(2.4 .1)$ by requiring that method bodies a) are welltyped with a subtype of the declared return type, and b) pass the definite assignment test assuming only this and the parameters are initialized. A Jinja program is well-formed iff all its method bodies are:

$$
w f-J-p r o g \equiv \quad \text { wf-prog wf-J-mdecl }
$$

2.9 Type Safety

In $\S 2.9$ we prove type safety in the traditional syntactic way [Wright and Felleisen 1994]: we show progress (every well-typed expression that is not final can reduce) and subject reduction (well typed expressions reduce to well-typed expressions
and their type may only become more specific). These inductive proofs need a number of new notions (invariants) to go through.
2.9.1 Conformance. It expresses that semantic objects conform to their syntactic description. Let v_{m} be a map to values and T_{m} one to types:

Conformance of values to types.
$P, h \vdash v: \leq T \equiv \exists T^{\prime}$. typeof $_{h} v=\left\lfloor T^{\prime}\right\rfloor \wedge P \vdash T^{\prime} \leq T$
Conformance of fields to types.
$P, h \vdash v_{m}(: \leq) T_{m} \equiv \forall F D T . T_{m} F D=\lfloor T\rfloor \longrightarrow\left(\exists v . v_{m} F D=\lfloor v\rfloor \wedge P, h \vdash v: \leq T\right)$
Weak conformance of local variables to types.
$P, h \vdash v_{m}(: \leq)_{w} T_{m} \equiv \forall V v . v_{m} V=\lfloor v\rfloor \longrightarrow\left(\exists T . T_{m} V=\lfloor T\rfloor \wedge P, h \vdash v: \leq T\right)$
Conformance of objects.

$$
\begin{aligned}
& P, h \vdash \text { obj } \sqrt{ } \equiv \\
& \text { let }\left(C, v_{m}\right)=\text { obj in } \exists F D T s . P \vdash C \text { has-fields } F D T s \wedge P, h \vdash v_{m}(: \leq) \text { map-of FDTs }
\end{aligned}
$$

Conformance of heaps.
$P \vdash h \sqrt{ } \equiv(\forall a$ obj. $h a=\lfloor$ obj $\rfloor \longrightarrow P, h \vdash$ obj $\sqrt{ }) \wedge$ preallocated h
preallocated $h \equiv \forall C \in$ sys-xcpts. \exists fs. $h($ addr-of-sys-xcpt $C)=\lfloor(C, f s)\rfloor$
Conformance of states.
$P, E \vdash s \sqrt{ } \equiv l e t(h, l)=s$ in $P \vdash h \sqrt{ } \wedge P, h \vdash l(: \leq)_{w} E$
Note that $(: \leq)$ says that all declared fields must have values of the right type, whereas $(: \leq)_{w}$ says that only initialized variables must have values of the right type. This reflects the difference in initialization of fields and local variables.
2.9.2 Runtime Type System. The proof of subject reduction requires a modified type system. The purpose of $\vdash::$ (Fig. 12) is to rule out not just unsafe expressions but "ill-formed" ones in general. For example, assignments to this are considered bad style and are thus ruled out although such assignments are perfectly safe (and are in fact allowed in the JVM). But now we need a type system that is just strong enough to characterize absence of type safety violations and is invariant under reduction. For a start, during reduction expressions containing addresses may arise. To make them well-typed, the runtime type system [Drossopoulou and Eisenbach 1999] takes the heap into account as well (to look up the class of an object) and is written $P, E, h \vdash e: T$. But there are more subtle changes exemplified by the rule for field access: $P, E \vdash e . F\{D\}:: T$ requires $P \vdash C$ sees $F: T$ in D if e is of class C. If e reduces to an object belonging to a subclass of C, this condition may no longer be met. Thus we relax it to $P \vdash C$ has $F: T$ in D which is preserved by reduction and is still strong enough to imply type safety. It is interesting to note that this change was missed by Flatt et al. [1999], which invalidates their Lemma 6 and thus subject reduction. Please keep in mind that the runtime type system is a purely technical device needed in the proof of type safety.

In Fig. 16 we show only those rules for $\vdash:$ (and $\vdash[:]$) that differ from their ::-counterpart beyond the addition of h. The most frequent change is the following.

$$
\begin{aligned}
& \frac{\text { typeof }_{h} v=\lfloor T\rfloor}{P, E, h \vdash \operatorname{Val} v: T} \quad \frac{P, E, h \vdash e: T \quad \text { is-refT } T \quad \text { is-class } P C}{P, E, h \vdash \operatorname{Cast} C e: \text { Class } C} \\
& \frac{P, E, h \vdash e_{1}: T_{1} \quad P, E, h \vdash e_{2}: T_{2}}{P, E, h \vdash e_{1} \ll>e_{2}: \text { Boolean }} \quad \frac{E V=\lfloor T\rfloor \quad P, E, h \vdash e: T^{\prime} \quad P \vdash T^{\prime} \leq T}{P, E, h \vdash V:=e: \text { Void }} \\
& \frac{P, E, h \vdash e: \text { Class } C \quad P \vdash C \text { has } F: T \text { in } D}{P, E, h \vdash e . F\{D\}: T} \quad \frac{P, E, h \vdash e: N T}{P, E, h \vdash e . F\{D\}: T} \\
& \frac{P, E, h \vdash e_{1}: \text { Class } C \quad P \vdash C \text { has } F: T \text { in } D \quad P, E, h \vdash e_{2}: T_{2} \quad P \vdash T_{2} \leq T}{P, E, h \vdash e_{1} \cdot F\{D\}:=e_{2}: \text { Void }} \\
& \frac{P, E, h \vdash e_{1}: N T \quad P, E, h \vdash e_{2}: T_{2}}{P, E, h \vdash e_{1} \cdot F\{D\}:=e_{2}: \text { Void }} \quad \frac{P, E, h \vdash e: N T \quad P, E, h \vdash e s[:] T s}{P, E, h \vdash e . M(e s): T} \\
& \frac{P, E(V \mapsto T), h \vdash e: T^{\prime}}{P, E, h \vdash\{V: T ; e\}: T^{\prime}} \quad \frac{P, E, h \vdash e: T_{r} \quad \text { is-ref } T T_{r}}{P, E, h \vdash \text { throw } e: T} \\
& \frac{P, E, h \vdash e_{1}: T_{1} \quad P, E(V \mapsto \text { Class } C), h \vdash e_{2}: T_{2} \quad P \vdash T_{1} \leq T_{2}}{P, E, h \vdash \operatorname{try} e_{1} \operatorname{catch}(C V) e_{2}: T_{2}}
\end{aligned}
$$

Fig. 16. Core of runtime typing rules
Expressions that are required to be of class type by :: may reduce to null. In order to preserve well-typedness we have to add rules for the case $e:: N T$ in e.F\{D\}, $e . F\{D\}:=e_{2}$ and $e . M(e s)$. Note that we lose uniqueness of typing: null. $F\{D\}$ unavoidably does not even have a unique least type anymore. A similar situation arises with throw e and Cast $C e$ where we avoid an additional rule by requiring e to be of reference type (which includes $N T$). For try e_{1} catch ($C V$) e_{2} we no longer require e_{1} and e_{2} to have the same type because reduction of e_{1} may also have reduced its type. Then there is the change from sees to has for field access and update. And finally we drop two preconditions in the rules for $V:=e$ and $\{V: T ; e\}$ just to show that they are orthogonal to type safety.
2.9.3 The type safety proof. Under suitable conditions we can now show progress:

Lemma 2.8. (Progress) If $w w f-J-p r o g ~ P a n d ~ P \vdash h \sqrt{ }$ and $P, E, h \vdash e: T$ and $\mathcal{D} e\lfloor$ dom $l\rfloor$ and \neg final e then $\exists e^{\prime} s^{\prime} . P \vdash\langle e,(h, l)\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$.
The proof is by induction on $P, E, h \vdash e: T$. Because of the special treatment of $\left\{V: T ; V:=\right.$ Val $\left.v ;{ }_{-}\right\}$we need a slightly modified induction scheme with a separate rule for this case. Alternatively one can do an induction on the size of e.

Let us examine the necessity for the individual premises. Weak well-formedness of P is needed to ensure that each method declaration has as many parameter types as parameter names, a precondition of the method call rule. In addition wellformedness is necessary for the following subtle reason: even if P defines a class C, relations has-fields (needed for the reduction of new) and sees (needed for the reduction of method calls) are only defined if P is well-formed because acyclicity is needed in the traversal of the class hierarchy. Well-typedness of e is needed, for example, to ensure that in every method call the number of formal and actual parameters agrees. Heap conformance $(P \vdash h \sqrt{ })$ is needed because otherwise an object may not have all the fields of its class and field access may get stuck. Definite assignment is required to ensure that variable access does not get stuck.

Eventually we show that a sequence of reductions preserves well-typedness by showing that each reduction preserves well-typedness. However, preservation of well-typedness requires additional assumptions, e.g. conformance of the initial heap. Thus we need to show conformance of all intermediate heaps, i.e. preservation of heap conformance with each step. We need three auxiliary preservation theorems which are all proved by induction on $P \vdash\langle e,(h, l)\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$:

Theorem 2.9. If $P \vdash\langle e,(h, l)\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$ and $P, E, h \vdash e: T$ and $P \vdash h \sqrt{ }$ then $P \vdash h^{\prime} \sqrt{ }$.

Theorem 2.10. If $P \vdash\langle e,(h, l)\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$ and $P, E, h \vdash e: T$ and $P, h \vdash l(: \leq)_{w} E$ then $P, h^{\prime} \vdash l^{\prime}(: \leq)_{w} E$.

THEOREM 2.11. If $w f-J$-prog P and $P \vdash\langle e,(h, l)\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$ and $\mathcal{D} e\lfloor$ dom $l\rfloor$ then $\mathcal{D} e^{\prime}\left\lfloor\right.$ dom $\left.l^{\prime}\right\rfloor$.

Because preservation of definite assignment has not been treated in the literature before, we look at a typical case in detail: sequential composition. We assume $\mathcal{D}\left(e ; e_{2}\right)\lfloor$ dom $l\rfloor$, i.e. $\mathcal{D} e\lfloor$ dom $l\rfloor \wedge \mathcal{D} e_{2}(\lfloor\operatorname{dom} l\rfloor \sqcup \mathcal{A} e)$ and have to show $\mathcal{D}\left(e^{\prime} ; e_{2}\right)\left\lfloor\right.$ dom $\left.l^{\prime}\right\rfloor$, i.e. $\mathcal{D} e^{\prime}\left\lfloor\operatorname{dom} l^{\prime}\right\rfloor \wedge \mathcal{D} e_{2}\left(\left\lfloor\operatorname{dom} l^{\prime}\right\rfloor \sqcup \mathcal{A} e^{\prime}\right)$. From $\mathcal{D} e\lfloor\operatorname{dom} l\rfloor$ it follows by induction hypothesis that $\mathcal{D} e^{\prime}\left\lfloor\operatorname{dom} l^{\prime}\right\rfloor$, and from $\mathcal{D} e_{2}(\lfloor$ dom $l\rfloor \sqcup \mathcal{A} e)$ it follows with lemma
$P \vdash\langle e,(h, l)\rangle \rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle \Longrightarrow\lfloor\operatorname{dom} l\rfloor \sqcup \mathcal{A} e \sqsubseteq\left\lfloor\operatorname{dom} l^{\prime}\right\rfloor \sqcup \mathcal{A} e^{\prime}$
(which is proved by induction over \rightarrow) together with monotonicity of \mathcal{D} that $\mathcal{D} e_{2}\left(\left\lfloor\right.\right.$ dom $\left.\left.l^{\prime}\right\rfloor \sqcup \mathcal{A} e^{\prime}\right)$, thus concluding the case.

The main preservation theorem is single step subject reduction:
Theorem 2.12. If wf-J-prog P and $P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$ and $P, E \vdash s \sqrt{ }$ and $P, E, h p s \vdash e: T$ then $\exists T^{\prime} . P, E, h p s^{\prime} \vdash e^{\prime}: T^{\prime} \wedge P \vdash T^{\prime} \leq T$.
The proof is again by induction on \rightarrow.
Now we extend subject reduction to \rightarrow^{*}. To ease notation we introduce the following definition
$P, E, s \vdash e: T \sqrt{ } \equiv P, E \vdash s \sqrt{ } \wedge P, E, h p s \vdash e: T$
Now we can combine the auxiliary preservation theorems and subject reduction:
$\llbracket w f-J-$ prog $P ; P \vdash\langle e, s\rangle \rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle ; P, E, s \vdash e: T \sqrt{ } \rrbracket$
$\Longrightarrow \exists T^{\prime} . P, E, s^{\prime} \vdash e^{\prime}: T^{\prime} \sqrt{ } \wedge P \vdash T^{\prime} \leq T$
Induction yields the final form of subject reduction:
Theorem 2.13. If $w f-J$ - prog P and $P \vdash\langle e, s\rangle \rightarrow^{*}\left\langle e^{\prime}, s\right\rangle$ and $P, E, s \vdash e: T \sqrt{ }$ then $\exists T^{\prime} . P, E, s^{\prime} \vdash e^{\prime}: T^{\prime} \sqrt{ } \wedge P \vdash T^{\prime} \leq T$.

Combining this theorem, the extension of Theorem 2.11 to \rightarrow^{*}, and progress, and replacing the runtime type system by the original one, yields

Corollary 2.14. (Type Safety)
If $w f-J-p r o g P$ and $P, E \vdash s \sqrt{ }$ and $P, E \vdash e:: T$ and $\mathcal{D} e\lfloor\operatorname{dom}(l c l s)\rfloor$ and $P \vdash\langle e, s\rangle \rightarrow^{*}\left\langle e^{\prime}, s^{\prime}\right\rangle$ and $\nexists e^{\prime \prime} s^{\prime \prime} . P \vdash\left\langle e^{\prime}, s^{\prime}\right\rangle \rightarrow\left\langle e^{\prime \prime}, s^{\prime \prime}\right\rangle$ then
$\left(\exists v . e^{\prime}=\mathrm{Val} v \wedge P, h p s^{\prime} \vdash v: \leq T\right) \vee\left(\exists a . e^{\prime}=\right.$ Throw $\left.a \wedge a \in \operatorname{dom}\left(h p s^{\prime}\right)\right)$.

If the program and the initial state are ok, and the expression is well-typed (w.r.t. $\vdash::)$ and has the definite assignment property, then reduction to normal form yields either a value of a subtype of the initial expression or throws an existing object.

Note that we intentionally leave out the details of many of these proofs because type safety proofs abound in the literature.

2.10 Related Work

Most closely related are the work by Nipkow and Oheimb [1998; 1999] which provided the starting point for our big step semantics. Also closely related is the small step semantics by Drossopoulou and Eisenbach [1999]. The main difference is that they distinguish three very similar languages and transform from one into the next, whereas we have intentionally started with the "enriched language" (hence the class annotations in field references) and have taken care to identify it with the "runtime language". There are also a number of smaller differences (e.g. we have omitted interfaces and arrays for space reasons, although they were present in our previous work [Nipkow and Oheimb 1998]), in particular the way in which method calls are unfolded: we use local variables to hold the parameter values whereas they choose new names and add those to the store. A name is new if it is not yet in the domain of the store. This scheme would need to be refined in a language like Jinja where one can have uninitialised local variables. Also closely related is the small step semantics by Flatt et al. [1999] who define a much smaller subset of Java without mutable variables. Nobody seems to have connected these two styles of Java semantics before, except Nipkow [2005], who obtained an even closer correspondence, but at the cost of allowing dynamic binding in the big step semantics, too. Syme [1999] formalised the work by Drossopoulou and Eisenbach [1999] in his theorem prover DECLARE. The main difference is that his store is a list of maps, one for each method invocation. DECLARE, just like Isar [Wenzel 2002], aims at readable proofs. Ancona et al. [2001] analyse a feature of Java we have ignored, namely the possibility to declare which exceptions a method may raise. This leads to very subtle interactions between type system and exceptions. Schirmer [2004] has analysed the interaction of packages and access modifiers. On the other end of the spectrum we have Featherweight Java [Igarashi et al. 2001], a minimal subset of Java which was used to study type soundness proofs. On the borderline to program verification we have the denotational semantics of Java by Huisman [2001]. Further aspects formalised in the literature but beyond this paper include multi threading, dynamic class loading, inner classes, generic classes and mixins.

3. JINJA VIRTUAL MACHINE

This section presents the machine model of the Jinja Virtual Machine (§3.1) and its operational semantics, first without (§3.2) and then with (§3.3) runtime type checks.

3.1 Machine Model

The model of the Jinja VM comprises the state space and the definition of method bodies. The state space of the Jinja VM is modelled closely after the Java VM.

The state consists of a heap, a stack of call frames, and a flag whether an exception was raised (and, if yes, a reference to the exception object).

```
types jum-state \(=\) addr option \(\times\) heap \(\times\) frame list
```

The heap is the same as in the source language. The exception flag corresponds to the expression throw in the source language. The frame list is new.

Each method execution gets its own call frame, containing its own operand stack (a list of values), its own set of registers ${ }^{2}$ for local variables (also a list of values), and its own program counter. We also store the class and name of the method and arrive at:

$$
\text { types } \begin{aligned}
\text { frame } & =\text { opstack } \times \text { registers } \times \text { cname } \times \text { mname } \times p c \\
\text { opstack } & =\text { val list } \\
\text { registers } & =\text { val list }
\end{aligned}
$$

It will turn out that the list of local variables is of fixed length, i.e. does not change with program execution. In fact, it is only modified and accessed by updating and indexing it at some position. Hence it can be implemented as an array. The size of the operand stack may change during execution, but here the maximum size is known statically. This enables efficient implementation for the stack as well. Although the registers do not exclusively store the local variables of the method, but also its parameters and this-pointer, we use the terms registers and local variables interchangeably when the distinction is not important or clear from context.

The instruction set of the Jinja VM is listed in Fig. 17. The instructions are a bit more abstract than comparable Java VM instructions, but no further conceptual simplifications have been made. In Java, there is for instance a separate Load instruction for most of the basic machine types, in Jinja there is only one polymorphic instruction. The more high-level instructions that may seem to be a substantial simplification over a real machine on the other hand (like Getfield, Putfield and Invoke), have a direct correspondence to instructions in the Java VM.

Method bodies are lists of instructions together with an exception table and two numbers $m x s$ and $m x l_{0}$. These are the maximum operand stack size and the number of local variables (not counting the this pointer and the parameters of the method, which are stored in the first 0 to n registers). So the type parameter ' m for method bodies gets instantiated with nat \times nat \times instr list \times ex-table:

$$
\begin{array}{ll}
\text { types } & \text { jvm-method }=\text { nat } \times \text { nat } \times \text { instr list } \times \text { ex-table } \\
& \text { jvm-prog }=\text { jvm-method prog }
\end{array}
$$

The exception table is a list of tuples (f, t, C, h, d) :

$$
\text { types } \text { ex-table }=(\text { nat } \times \text { nat } \times \text { cname } \times \text { nat } \times n a t) \text { list }
$$

The asymmetric interval $[f, t)$ denotes those instructions in the method body that correspond to the try block on the source level. The handler pc h points to the first instruction of the corresponding catch block. The code starting at h is the

[^0]datatype instr $=$

Load nat	load from register		
Store nat	Push val		
New cname	store into register		
Getfield vname cname	create object on heap		
fetch field from object			
Putfield vname cname	set field in object		
Checkcast cname	check if object is of class cname		
Invoke mname nat	invoke instance method with nat parameters		
Return	return from method		
Pop	remove top element		
IAdd	integer addition		
Goto int	goto relative address		
CmpEq	equality comparison		
IfFalse int	Throw	\quad	throw if top of stack false
:---	:---		

Fig. 17. The Jinja bytecode instruction set.
exception handler, and d is the size of the stack the exception handler expects. An exception handler protects a program position $p c$ iff $p c \in[f, t)$. An exception table entry matches an exception E if the handler protects the current $p c$ and if the class of E is a subclass of C.

3.2 Operational Semantics

This section defines the state transition relation of the Jinja VM.
For easy direct executability, our main definition of the operational semantics of the Jinja VM is written down in a functional rather than in a relational style. The function exec :: jvm-prog \Rightarrow jvm-state \Rightarrow jum-state option describes one-step execution:

```
exec \(P(x p, h,[])=\) None
exec \(P(\lfloor a\rfloor, h\), frs \()=\) None
exec \(P(\) None, \(h,(s t k, l o c, C, M, p c) \cdot f r s)=\)
(let \(i=(\text { instrs-of } P C M)_{[p c]} ;\left(x p^{\prime}, h^{\prime}\right.\), frs \(\left.{ }^{\prime}\right)=\) exec-instr i \(P h\) stk loc \(C M p c\) frs
in \case \(x p^{\prime}\) of None \(\Rightarrow\) (None, \(h^{\prime}\), frs \({ }^{\prime}\) )
    \(\lfloor\lfloor a\rfloor \Rightarrow\) find-handler Pah((stk,loc, C, M, pc) frs \()\rfloor)\)
```

It says that execution halts if the call frame stack is empty or an unhandled exception has occurred. In all other cases, execution is defined: exec decomposes the top call frame, retrieves the instruction list of the current method via instrs-of, delegates actual execution for single instructions to exec-instr, and finally sets the $p c$ to the appropriate exception handler (with find-handler) if an exception occurred.

The function instrs-of selects the instruction sequence of method M in class C of program P. As the operational semantics of the Jinja VM at this level is phrased in a functional rather than a relational style, we turn the field and method accessor relations of $\S 2.1 .4$ into functions. To look up methods, we use method, to look up fields, we use field. They satisfy:
$P \vdash C$ sees $M: T s \rightarrow T=m$ in $D \Longrightarrow$ method $P C M=(D, T s, T, m)$
$P \vdash C$ sees $F: T$ in $D \Longrightarrow$ field $P C F=(D, T)$

Exception handling in find-handler (definition omitted) is similar to the Java VM: it looks up the exception table in the current method, and sets the program counter to the first handler that protects $p c$ and that matches the exception class. If there is no such handler, the topmost call frame is popped, and the search continues recursively in the invoking frame. If no exception handler is found, the exception flag remains set and the machine halts. If this procedure does find an exception handler (f, t, C, h, d), it cuts down the operand stack of the frame to d elements, puts a reference to the exception on top, and sets the $p c$ to h. This is different from the Java VM where the stack is always emptied. Thus exception handling in the Jinja VM is a generalisation of the Java VM where d is always 0 . Leaving a number of elements on the stack gives us a nice way to translate try-catch constructs of the source language that handle exceptions in the middle of an expression as opposed to just on the statement level as in Java.

For some proofs the relational view is more convenient than the functional one. Therefore we also define the one-step state transition relation:

$$
P \vdash \sigma \xrightarrow{\mathrm{jvm}} 1 \sigma^{\prime}=\left(\operatorname{exec} P \sigma=\left\lfloor\sigma^{\prime}\right\rfloor\right)
$$

The state transition relation $\xrightarrow{\mathrm{jvm}}$ is the reflexive transitive closure of $\xrightarrow{\mathrm{jvm}} 1$.
The definition of exec-instr in Fig. 18 is large, but straightforward. The parameters of exec-instr are the following: the instruction to execute, the program P, the heap h, the operand stack $s t k$ and local variables loc of the current call frame, the class C_{0} and name M_{0} of the method that is currently executed, the current $p c$, and the rest of the call frame stack frs. One of the smaller definitions in exec-instr is the one for the IAdd instruction:
exec-instr IAdd $P h\left(\right.$ Intg $\left.i_{2} \cdot \operatorname{Intg} i_{1} \cdot s t k\right)$ loc $C_{0} M_{0} p c$ frs $=$ (None, $\left.h,\left(\operatorname{Intg}\left(i_{1}+i_{2}\right) \cdot s t k, l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)$

It takes the top two values as integers from the stack, adds them and puts the result back onto the stack. The program counter is incremented, the rest remains untouched.
Most instructions in Fig. 18 are of this simple form. Some of them use new functions: $h d$ and $t l$ return the head and tail of a list, and the destructor the-Addr is defined by the equality the $-A d d r(A d d r a)=a$. The New instruction needs new- $A d d r$ which was introduced in $\S 2.2$. A new object of class C with all fields set to default values is produced by blank $P C$ (not shown). Remember that the field part of objects is a map from name and defining class to value, so $f s(F, C)$ used for Getfield and Putfield is the value of field F defined in class C. The Checkcast instruction uses cast-ok P Chv (also not shown) to check if the value v is an address that points to an object of at least class C.

The definition for Invoke $M n$ is the most complex: it first uses take n stk to get the the first n elements of the stack (the parameters in reverse order), then it looks up the dynamic class C of the object, determines the correct method (using method $P C M$), and finally constructs the new state. If the object reference r is Null an exception is thrown, otherwise a new call frame for the invoked method is prepared. The new call frame has an empty operand stack, the object reference r as this pointer in local variable 0 , the parameters (rev ps is $p s$ in reverse order) in the next n variables, and the rest of the local variables filled with a dummy value

```
exec-instr (Load \(n\) ) Ph stk loc \(C_{0} M_{0} p c\) frs \(=\left(\right.\) None, \(\left.h,\left(l o c_{[n]} \cdot s t k, l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\)
exec-instr (Store \(n\) ) \(P h\) stk loc \(C_{0} M_{0}\) pc frs \(=\)
(None, \(h,\left(t l\right.\) stk, loc \(\left.\left.[n:=h d s t k], C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\)
exec-instr (Push \(v\) ) Ph stk loc \(C_{0} M_{0} p c\) frs \(=\left(\right.\) None, \(\left.h,\left(v \cdot s t k, l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\)
exec-instr (New \(C\) ) \(P h\) stk loc \(C_{0} M_{0} p c\) frs \(=\)
(case new-Addr \(h\) of None \(\Rightarrow\left(\lfloor\right.\) addr-of-sys-xcpt OutOfMemory \(\left.\rfloor, h,\left(s t k, l o c, C_{0}, M_{0}, p c\right) \cdot f r s\right)\)
\(\mid\lfloor a\rfloor \Rightarrow\left(N o n e, h(a \mapsto\right.\) blank \(\left.\left.P C),\left(A d d r a \cdot s t k, l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\right)\)
exec-instr (Getfield \(F C\) ) \(P\) h stk loc \(C_{0} M_{0} p c\) frs \(=\)
(let \(v \cdot_{-}=s t k ; x p^{\prime}=\) if \(v=\) Null then \(\lfloor a d d r\)-of-sys-xcpt NullPointer \(\rfloor\) else None;
    \(\lfloor(D, f s)\rfloor=h(\) the-Addr \(v)\)
in \(\left(x p^{\prime}, h,\left(t h e(f s(F, C)) \cdot t l\right.\right.\) stk, loc, \(\left.\left.\left.C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\right)\)
exec-instr (Putfield \(F C\) ) \(P h\) stk loc \(C_{0} M_{0} p c\) frs \(=\)
(let \(v \cdot_{-}=s t k ;_{-} \cdot r \cdot{ }_{-}=s t k ; x p^{\prime}=\) if \(r=\) Null then \(\lfloor a d d r\)-of-sys-xcpt NullPointer \(\rfloor\) else None;
    Addr \(a=r ;\lfloor(D, f s)\rfloor=h a ; h^{\prime}=h(a \mapsto(D, f s((F, C) \mapsto v)))\)
in \(\left.\left(x p^{\prime}, h^{\prime},\left(t l(t l s t k), l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\right)\)
exec-instr (Checkcast \(C\) ) \(P h\) stk loc \(C_{0} M_{0} p c\) frs \(=\)
(let \(v \cdot{ }_{-}=s t k ; x p^{\prime}=\) if \(\neg\) cast-ok \(P C h v\) then \(\lfloor a d d r\)-of-sys-xcpt ClassCast \(\rfloor\) else None
    in \(\left.\left(x p^{\prime}, h,\left(s t k, l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\right)\)
exec-instr (Invoke \(M n\) ) \(P h\) stk loc \(C_{0} M_{0} p c\) frs \(=\)
(let ps = take \(n\) stk; \(r=s t k_{[n]}\);
    \(x p^{\prime}=\) if \(r=\) Null then \(\lfloor a d d r\)-of-sys-xcpt NullPointer \(\rfloor\) else None;
    \(\left\lfloor\left(C,,_{-}\right)\right\rfloor=h(\) the-Addr \(r) ;\left(D, M^{\prime}, T s, m x s, m x l_{0}, i n s, x t\right)=\operatorname{method} P C M\);
    \(f^{\prime}=\left([],[r] @\right.\) rev ps @ replicate \(m x l_{0}\) arbitrary, \(\left.D, M, 0\right)\)
in \(\left.\left(x p^{\prime}, h, f^{\prime} \cdot\left(s t k, l o c, C_{0}, M_{0}, p c\right) \cdot f r s\right)\right)\)
exec-instr Return \(P h s t k_{0}\) loc \(_{0} C_{0} M_{0} p c\) frs \(=\)
(if frs \(=[]\) then (None, \(h,[]\) )
    else let \(v \cdot{ }_{-}=s t k_{0} ;(s t k, l o c, C, m, p c) \cdot{ }_{\wedge}=f r s ; n=\left|f s t\left(s n d\left(\operatorname{method} P C_{0} M_{0}\right)\right)\right|\)
        in (None, \(h,(v \cdot \operatorname{drop}(n+1) s t k, l o c, C, m, p c+1) \cdot t l\) frs \())\)
exec-instr Pop \(P h\) stk loc \(C_{0} M_{0} p c\) frs \(=\left(\right.\) None, \(\left.h,\left(t l s t k, l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\)
exec-instr IAdd \(P h\) stk loc \(C_{0} M_{0} p c\) frs \(=\)
(let Intg \(i_{2} \cdot{ }_{-}=s t k ;{ }_{-}\)Intg \(i_{1} \cdot_{-}=s t k\)
in (None, \(\left.\left.h,\left(\operatorname{Intg}\left(i_{1}+i_{2}\right) \cdot t l(t l s t k), l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\right)\)
exec-instr (IfFalse i) Ph stk loc \(C_{0} M_{0} p c\) frs \(=\)
(let \(p c^{\prime}=\) if \(h d s t k=\) Bool False then nat (int \(p c+i\) ) else \(p c+1\)
    in (None, h, \(\left(t l\right.\) stk, loc, \(\left.\left.\left.C_{0}, M_{0}, p c^{\prime}\right) \cdot f r s\right)\right)\)
exec-instr CmpEq \(P\) h stk loc \(C_{0} M_{0}\) pc frs \(=\)
(let \(v_{2} \cdot{ }_{-}=s t k ;_{-} \cdot v_{1} \cdot{ }_{-}=s t k\)
in \(\left(\right.\) None, \(h,\left(\right.\) Bool \(\left.\left.\left.\left(v_{1}=v_{2}\right) \cdot t l(t l s t k), l o c, C_{0}, M_{0}, p c+1\right) \cdot f r s\right)\right)\)
exec-instr (Goto i) Ph stk loc \(C_{0} M_{0} p c\) frs \(=\)
(None, h, (stk, loc, \(C_{0}, M_{0}\), nat (int pc \(\left.\left.\left.+i\right)\right) \cdot f r s\right)\)
exec-instr Throw \(P\) h stk loc \(C_{0} M_{0}\) pc frs \(=\)
(let \(x p^{\prime}=\) if hd stk \(=\) Null then \(\lfloor a d d r\)-of-sys-xcpt NullPointer \(\rfloor\) else \(\lfloor\) the-Addr (hd stk) \(\rfloor\)
    in \(\left.\left(x p^{\prime}, h,\left(s t k, l o c, C_{0}, M_{0}, p c\right) \cdot f r s\right)\right)\)
```

Fig. 18. Single step execution
arbitrary (replicate $n v$ is a list of length n that contains only v-elements). The new call frame also records the method (defining class D and name M), and has the $p c$ set to 0 .

It is in this Invoke context that Return is understood best: if the current frame is the only one on the frame stack, the machine halts; if the current frame is not the only one, then the next frame on the stack must be the caller where the corresponding Invoke occurred. The Return instruction removes the current frame from the call stack and manipulates the caller frame. In the caller, it drops the parameters and the object reference, i.e. $n+1$ elements, from the stack (drop n xs is the dual to take $n x s$), puts the return value v on top, and increments the $p c$.

This style of VM is also called aggressive, because it does not perform any runtime type or sanity checks. It just assumes that everything is as expected, e.g. for IAdd that there are indeed two integers on the stack. If the situation is not as expected, the operational semantics is unspecified at this point. In Isabelle, this means that there is a result (because HOL is a logic of total functions), but nothing is known about that result. It is the task of the bytecode verifier to ensure that this does not occur.

3.3 A Defensive VM

Although it is possible to prove type safety by using the aggressive VM alone, it is crisper to write and more obvious to see what the bytecode verifier guarantees when we additionally look at a defensive VM. The defensive VM builds on the aggressive one by performing extra type and sanity checks. We can then state the type safety theorem by saying that these checks will never fail if the bytecode is well-typed. This differs from the approach of Wright and Felleisen [1994] that we follow for the source language where we prove progress and preservation instead. The separation into exec-instr and check-instr allows us to write down the semantics in a functional rather than relational style at the single-step level. This in turn results in a higher degree of automation in the proofs.

To indicate type errors, we introduce another data type.

$$
\text { datatype 'a type-error }=\text { TypeError } \mid \text { Normal ' } a
$$

Similar to $\S 3.2$, we build on a function check-instr that is lifted over several steps. At the deepest level, we take apart the state, check if the current method exists, feed check-instr with parameters (which are the same as for exec-instr), and check that $p c$ and stack size are valid:

```
check \(P \sigma \equiv\)
let \((x c p t, h, f r s)=\sigma\)
in case frs of []\(\Rightarrow\) True
    \(\mid(s t k, l o c, C, M, p c) \cdot f r s^{\prime} \Rightarrow\)
        \(P \vdash C\) has \(M \wedge\)
        (let \(\left(C^{\prime}, T s, T, m x s, m x l_{0}\right.\), ins, xt \()=\) method \(P C M ; i=i n s_{[p c]}\)
        in \(p c<\mid\) ins \(|\wedge| s t k \mid \leq m x s \wedge\) check-instr \(i P h\) stk loc \(C M\) pc frs')
```

The next level is the one-step execution of the defensive VM, which stops in case of a type error. If there is no type or other error, it simply calls the aggressive VM:
$\operatorname{exec}_{d} P \sigma \equiv$ if check $P \sigma$ then Normal (exec $P \sigma$) else TypeError

```
check-instr (Load n) Ph stk loc C Mopc frs \(=(n<|l o c|)\)
check-instr (Store \(n\) ) Ph stk loc \(C_{0} M_{0}\) pc frs \(=(0<\mid\) stk \(|\wedge n<|\) loc \(\mid)\)
check-instr (Push \(v) P h\) stk loc \(C_{0} M_{0} p c\) frs \(=(\neg i s-A d d r v)\)
check-instr (New \(C\) ) \(P\) h stk loc \(C_{0} M_{0}\) pc frs \(=i s\)-class \(P C\)
check-instr (Getfield \(F C\) ) \(P\) h stk loc \(C_{0} M_{0}\) pc frs \(=\)
\(\left(0<|s t k| \wedge\left(\exists C^{\prime} T . P \vdash C\right.\right.\) sees \(F: T\) in \(\left.C^{\prime}\right) \wedge\)
    (let \(\left(C^{\prime}, T\right)=\) field P C F; ref._ = stk
    in \(C^{\prime}=C \wedge\) is-Ref ref \(\wedge\)
        (ref \(\neq\) Null \(\longrightarrow\)
        \(h(\) the-Addr ref \() \neq\) None \(\wedge\)
        (let \(\lfloor(D, v s)\rfloor=h\) (the-Addr ref)
        in \(P \vdash D \preceq^{*} C \wedge v s(F, C) \neq\) None \(\wedge P, h \vdash\) the \(\left.\left.\left.\left.(v s(F, C)): \leq T\right)\right)\right)\right)\)
check-instr (Putfield \(F C\) ) \(P\) h stk loc \(C_{0} M_{0} p c\) frs \(=\)
\(\left(1<|s t k| \wedge\left(\exists C^{\prime} T . P \vdash C\right.\right.\) sees \(F: T\) in \(\left.C^{\prime}\right) \wedge\)
    (let \(\left(C^{\prime}, T\right)=\) field \(P C F ; v \cdot \_=s t k ; \_\cdot r e f \cdot \_=s t k\)
    in \(C^{\prime}=C \wedge\) is-Ref ref \(\wedge\)
        (ref \(\neq\) Null \(\longrightarrow\)
            \(h(\) the-Addr ref \() \neq\) None \(\wedge\)
            (let \(\lfloor(D,-)\rfloor=h\left(\right.\) the- \(A d d r\) ref) in \(\left.\left.\left.P \vdash D \preceq^{*} C \wedge P, h \vdash v: \leq T\right)\right)\right)\) )
check-instr (Checkcast C) Ph stk loc \(C_{0} M_{0}\) pc frs \(=\)
\((0<|s t k| \wedge i s\)-class \(P C \wedge i s\)-Ref \((h d s t k))\)
check-instr (Invoke \(M\) n) \(P\) h stk loc \(C_{0} M_{0} p c\) frs \(=\)
\(\left(n<|s t k| \wedge i s\right.\)-Ref \(s t k_{[n]} \wedge\)
    \(\left(s^{t} k_{[n]} \neq\right.\) Null \(\longrightarrow\)
    (let Addr \(a=\operatorname{stk}_{[n]} ;\left\lfloor\left(C, \_\right)\right\rfloor=h a ;(-\), Ts, -\()=\) method \(P C M\)
    in \(h a \neq\) None \(\wedge P \vdash C\) has \(M \wedge P, h \vdash \operatorname{rev}(\) take \(n\) stk) \([: \leq] T s))\) )
check-instr Return \(P h\) stk loc \(C_{0} M_{0}\) pc frs \(=\)
\((0<\mid\) stk \(\mid \wedge\)
    \((0<\mid\) frs \(\mid \longrightarrow\)
    \(P \vdash C_{0}\) has \(M_{0} \wedge\left(\right.\) let \(v \cdot_{-}=\operatorname{stk} ;\left({ }_{-}, \quad, T,{ }_{-}\right)=\)method \(P C_{0} M_{0}\) in \(\left.\left.\left.P, h \vdash v: \leq T\right)\right)\right)\)
check-instr Pop \(P h\) stk loc \(C_{0} M_{0} p c\) frs \(=(0<|s t k|)\)
check-instr IAdd \(P\) h stk loc \(C_{0} M_{0}\) pc frs \(=\)
\((1<|s t k| \wedge i s\)-Intg \((h d s t k) \wedge i s\)-Intg \((h d(t l s t k)))\)
check-instr (IfFalse b) Ph stk loc \(C_{0} M_{0}\) pc frs \(=\)
\((0<|s t k| \wedge i s\)-Bool \((h d s t k) \wedge 0 \leq i n t p c+b)\)
check-instr CmpEq \(P\) h stk loc \(C_{0} M_{0}\) pc frs \(=(1<|s t k|)\)
check-instr (Goto b) Ph stk loc \(C_{0} M_{0}\) pc frs \(=(0 \leq\) int \(p c+b)\)
check-instr Throw \(P h\) stk loc \(C_{0} M_{0}\) pc frs \(=(0<|s t k| \wedge i s-R e f(h d s t k))\)
```

Fig. 19. Type checks in the defensive Jinja VM.

Again, we also define the relational view. This time, it is easier to give two introduction rules for $\xrightarrow{\text { djvm }}{ }_{1}$:

$$
\frac{\text { exec }_{d} P \sigma=\text { TypeError }}{P \vdash \text { Normal } \sigma \xrightarrow{\text { djvm }} 1 \text { TypeError }} \quad \frac{\text { exec }_{d} P \sigma=\text { Normal }\left\lfloor\sigma^{\prime}\right\rfloor}{P \vdash \text { Normal } \sigma \xrightarrow{\text { dvm }} 1 \text { Normal } \sigma^{\prime}}
$$

We write $\xrightarrow{\text { djvm }}$ for the reflexive transitive closure of $\xrightarrow{\text { djum }} 1$.

It remains to define check-instr, the heart of the defensive Jinja VM. We do so in Fig. 19. The IAdd case looks like this:
check-instr IAdd $P h$ stk loc $C_{0} M_{0} p c$ frs $=(1<|s t k| \wedge i s$-Intg $(h d s t k) \wedge i s-\operatorname{lntg}(h d(t l s t k)))$
IAdd requires that the stack has at least two entries $(1<|s t k|)$, and that these entries are of type Integer (checked with the is-Intg function). For Load and Store there are no type constraints, because they are polymorphic in Jinja. In the Java VM, the definition would be in the style of IAdd, requiring integer for iload, float for fload, and so on. The discriminator functions $i s-A d d r$ and $i s$-Ref in Fig. 19 do the obvious.

Because of its size, we also take a closer look at the instruction Getfield:

```
check-instr (Getfield \(F C\) ) \(P h\) stk loc \(C_{0} M_{0}\) pc frs \(=\)
\(\left(0<|s t k| \wedge\left(\exists C^{\prime} T . P \vdash C\right.\right.\) sees \(F: T\) in \(\left.C^{\prime}\right) \wedge\)
    (let \(\left(C^{\prime}, T\right)=\) field P C F; ref._ = stk
    in \(C^{\prime}=C \wedge\) is-Ref ref \(\wedge\)
        \((\) ref \(\neq\) Null \(\longrightarrow\)
        \(h(\) the- \(A d d r\) ref \() \neq\) None \(\wedge\)
        (let \(\lfloor(D, v s)\rfloor=h\) (the-Addr ref)
        in \(P \vdash D \preceq^{*} C \wedge v s(F, C) \neq\) None \(\wedge P, h \vdash\) the \(\left.\left.\left.\left.(v s(F, C)): \leq T\right)\right)\right)\right)\)
```

The Getfield $F C$ instruction is supposed to access the object reference on top of the stack, remove it from the stack, and to put the value of field F defined in class C onto the stack instead. To ensure this can work without errors, the first two conjuncts in this definition demand that the stack is large enough to hold the object reference, and that the field F is visible from class C. The let-part collects the defining class and the type of field F, as well as the object reference. The next line checks that the field is of the right class $\left(C^{\prime}=C\right)$ and that we are indeed dealing with an object reference. If that reference does not happen to be Null, the heap at position ref must contain an object of class at least C, the object must contain a field $F(v s(F, C) \neq N o n e)$, and the field value must be of the type that was declared for the field. The Putfield instruction works analogously.

It is easy to see that defensive and aggressive VM have the same operational one-step semantics if there are no type errors.

Theorem 3.1. One-step execution in aggressive and defensive machines commutes if there are no type errors.

$$
\text { exec }_{d} P \sigma \neq \text { TypeError } \Longrightarrow \operatorname{exec}_{d} P \sigma=\operatorname{Normal}(\operatorname{exec} P \sigma)
$$

Figure 20 depicts this result as a commuting diagram. The proof is trivial (and fully automatic in Isabelle), because the defensive VM is constructed directly from the aggressive one.

For executing programs, we will later also need a canonical start state. In the Java VM, a program is started by invoking its static main method. We start the Jinja VM by invoking any existing method M (without parameters) in a class C. We define the canonical start state start $P C M$ as the state with exception flag None, a heap start-heap P, and a frame stack with one element. The heap start-heap P contains the preallocated system exceptions and is otherwise empty. The single frame has an empty operand stack, the this pointer set to $N u l l$, the rest of the register set filled up with a dummy value arbitrary, the class entry set to C, the name to M, and the program counter 0 .

Fig. 20. Aggressive and defensive Jinja VM commute if there are no type errors.

```
start-state P C M \equiv
let (D,Ts,T, mxs,mxlo,b) = method P C M
in (None, start-heap P, [([], Null replicate mxl0 arbitrary, C, M, 0)])
```

This concludes the formalisation of the Jinja VM. It will serve as the basis for the proof of type safety below.

3.4 Related Work

Most closely related to the virtual machine formalisation presented here is the Ph.D. thesis by Klein [2003]. Barthe et al. [2001] use the Coq system for a similar formalisation of the Java VM. Liu and Moore [2003] show one of the most comprehensive executable models of the KVM (a restricted JVM for embedded devices) in the theorem prover ACL2. Cohen [1997] was the first to propose the concept of a defensive Java VM and to formalise it in a theorem prover. Bertelsen [1997] was one of the first to give a formal semantics for the JVM. Most publications about Java's bytecode verifier contain some form of reference virtual machine, be that in the form of a traditional small step semantics, or in an explicitly executable format in a theorem prover. Instead of recounting all of these here we refer to the overview articles [Alves-Foss 1999; Hartel and Moreau 2001; Nipkow 2003a] and the related work section on bytecode verification in $\S 4.11$.

4. BYTECODE VERIFIER

The JVM relies on the following assumptions for executing bytecode:
Correct types. All bytecode instructions are provided with arguments of the type they expect on operand stack, registers, and heap.

No overflow and underflow. No instruction tries to retrieve a value from the empty stack, no instruction puts more elements on the stack than statically specified in the method, and no instruction accesses more registers than statically specified in the method.

Code containment. The program counter is always within the code array of the method. Specifically, it must not fall off the end of the method's code.

Initialised registers. All registers apart from the this pointer and the method parameters must be written to before they are first read. This corresponds to the definite assignment requirement for local variables on the source level.

Fig. 21. Example of a method well-typing.

It is the purpose of the bytecode verifier (BV) to ensure statically that these assumptions are met at any time during execution.

Bytecode verification is an abstract interpretation of bytecode methods: instead of values, we only consider their types. A state type characterises a set of runtime states by giving type information for the operand stack and registers. For example, the first state type in Fig. 21 ([],[Class B, Integer]) characterises all states whose stack is empty, whose register 0 contains a reference to an object of class B (or to a subclass of B), and whose register 1 contains an integer. A method is called welltyped if we can assign a well-typing to each instruction. A state type ($S T, L T$) is a well-typing for an instruction if it is consistent with the successors of the instruction and if the instruction can be executed safely in any state whose stack is typed according to $S T$ and whose registers are typed according to $L T$. In other words: the arguments of the instruction are provided in correct number, order and type. We explain consistent below.

The example in Fig. 21 shows the instructions on the left and the type of stack elements and registers on the right. The method type is the full right-hand side of the table, a state type is one line of it. The type information attached to an instruction characterises the state before execution of that instruction. The $\lfloor\ldots\rfloor$ around each entry means that it was possible to predict some type for each instruction. If one of the instructions had been unreachable, the type entry would have been None. We assume that class B is a subclass of A and that A has a field F of type A.

Execution starts with an empty stack and the two registers holding a reference to an object of class B and an integer. The first instruction loads register 0 , a reference to a B object, on the stack. The type information associated with the following instruction may puzzle at first sight: it says that a reference to an A object is on the stack, and that usage of register 1 may produce an error. This means the type information has become less precise but is still correct: a B object is also an A object and an integer is now classified as unusable (Err). The reason for these more general types is that the predecessor of the Store instruction may have either been Load 0 or Goto -3 . Since there exist different execution paths to reach Store, the type information of the two paths has to be merged. The type of the second register is either Integer or Class A, which are incompatible: the only common supertype is Err.

Bytecode verification is the process of inferring the types on the right from the instruction sequence on the left and some initial condition, and of ensuring that each instruction receives arguments of the correct type. Type inference is the computation of a method type from an instruction sequence, type checking means
checking that a given method type fits an instruction sequence.
Figure 21 was an example for a well-typed method: we were able to find a welltyping. If we changed the third instruction from Load 0 to Store 0, the method would not be well-typed. The Store instruction would try to take an element from the empty stack and could therefore not be executed.

In the following, we will formalise the Jinja bytecode verifier by introducing an abstract framework for well-typedness, then instantiating this framework in $\S 4.6$ and $\S 4.7$ to get a description of well-typedness for Jinja VM programs as well as an executable program that computes those well-typings in $\S 4.8$ and $\S 4.9$. Finally we show in $\S 4.10$ that execution of well-typed programs is safe in the sense motivated above.

The typing framework uses semilattices (§4.1) and an abstract transfer function to describe well-typings (§4.2). After detailing which constraints on the transfer function are necessary to obtain an executable algorithm in $\S 4.3$ and refining the transfer function to make instantiation easier in $\S 4.4$, we show an implementation of Kildall's algorithm within the framework (§4.5). As the framework itself already appeared elsewhere [Klein 2003; Klein and Nipkow 2003; Nipkow 2001], we will keep its description brief and only reproduce the main definitions and properties.

4.1 Semilattices

This section introduces the formalisation of the basic lattice-theoretic concepts required for data flow analysis and its application to the JVM.
4.1.1 Partial Orders. Partial orders are formalised as binary predicates. Based on the type synonym ' a ord $={ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow$ bool and the notations $x \sqsubseteq r y \equiv r x y$ and $x \sqsubset_{r} y \equiv x \sqsubseteq_{r} y \wedge x \neq y, r::$ ' a ord is by definition a partial order iff the predicate order :: ' a ord \Rightarrow bool holds for r :
order $r \equiv$
$(\forall x . x \sqsubseteq r x) \wedge(\forall x y . x \sqsubseteq r y \wedge y \sqsubseteq r x \longrightarrow x=y) \wedge(\forall x y z . x \sqsubseteq r y \wedge y \sqsubseteq r z \longrightarrow x \sqsubseteq r z)$
A partial order r satisfies the ascending chain condition on A if there is no infinite ascending chain $x_{0} \sqsubset_{r} x_{1} \sqsubset_{r} \ldots$ in A, and \top is called a top element if $x \sqsubseteq_{r} \top$ for all x. Instead of "no infinite ascending chain" we require in Isabelle the equivalent "the converse of r is well-founded".

$$
\text { acc } r \equiv w f\left\{(y, x) \mid x \sqsubset_{r} y\right\} \quad \text { top } r \top \equiv \forall x . x \sqsubseteq_{r} \top
$$

4.1.2 Semilattices. Based on the supremum notation $x \sqcup_{f} y \equiv f x y$ and the two type synonyms 'a binop $={ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ and ' a sl $={ }^{\prime} a$ set $\times{ }^{\prime} a$ ord \times ' a binop, the tuple $(A, r, f)::{ }^{\prime} a s l$ is by definition a semilattice iff the predicate semilat :: 'a sl \Rightarrow bool holds:

```
semilat (A,r,f) \equiv
order r ^ closed A f^( }\forallx\inA.\forally\inA.x\sqsubseteqrx \sqcupf y)^(\forallx\inA.\forally\inA.y\sqsubseteqrx \sqcupf y)
(}\forallx\inA.\forally\inA.\forallz\inA.x\sqsubseteqrz\wedgey\sqsubseteqrz\longrightarrowx\mp@subsup{\sqcup}{f}{}y\sqsubseteqrz
where closed A f}\equiv\forall\forallx\inA.\forally\inA.x \sqcupf y \inA
```

Data flow analysis is usually phrased in terms of infimum semilattices. Here, a supremum semilattice fits better with the intended application, where the ordering is the subtype relation and the join of two types is the least common supertype (if it exists).

The next sections look at a few data types and the corresponding semilattices which are required for the construction of the Jinja VM bytecode verifier. The definition of those semilattices follows a pattern: they lift an existing semilattice to a new semilattice with more structure. They extend the carrier set and define two functionals le and sup that lift the ordering and supremum operation to the new semilattice. In order to avoid name clashes, Isabelle provides separate name spaces for each theory. Qualified names are of the form Theoryname.localname, and they apply to constant definitions and functions as well as type constructions. So Err.sup later on refers to the sup functional defined for the error type in §4.1.3.

Let (A, r, f) in the following be a semilattice.
4.1.3 The Error Type and Err-semilattices. Theory Err introduces an error element to model the situation where the supremum of two elements does not exist. It introduces both a data type and an equivalent construction on sets:

$$
\text { datatype 'a err }=\operatorname{Err} \mid O K^{\prime} a \quad \operatorname{err} A \equiv\{\operatorname{Err}\} \cup\{O K x \mid x . x \in A\}
$$

The additional x. in $\{O K x \mid x . x \in A\}$ tells Isabelle that x is a bound variable. It is used if the set comprehension is of the form $\{f x \mid x . P x\}$ rather than just $\{x \mid P x\}$. An ordering r on ' a can be lifted to ' a err by making Err the top element:

$$
\begin{aligned}
\text { le } r(O K x)(O K y) & =x \sqsubseteq_{r} y \\
\text { le } r_{-} \operatorname{Err} & =\text { True } \\
\text { le r Err }\left(O K_{-}\right) & =\text {False }
\end{aligned}
$$

Lemma 4.1. If acc r then acc (le r).
The following lifting functional is frequently useful:

$$
\begin{array}{ll}
\text { lift }_{2} f(O K x)(O K y) & =f x y \\
\text { lift }_{2} f \text { Err } & =E r r \\
\text { lift }_{2} f \text { Err } & =E r r
\end{array}
$$

This leads to the notion of an err-semilattice. It is a variation of a semilattice with top element. Because the behaviour of the ordering and the supremum on the top element is fixed, it suffices to say how ordering and supremum behave on non-top elements. Thus we can represent a semilattice with top element Err compactly by a triple of type esl:

$$
\text { 'a ebinop }=' a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a \mathrm{err} \quad \text { 'a esl }=\text { 'a set } \times{ }^{\prime} a \text { ord } \times{ }^{\prime} a \text { ebinop }
$$

Conversion between the types $s l$ and esl is easy:

$$
\begin{array}{ll}
\text { esl }:: ~ ' a ~ s l \Rightarrow ' a ~ e s l ~ & \text { sl }:: \text { 'a esl } \Rightarrow \text { 'a err sl } \\
\text { esl }(A, r, f) \equiv(A, r, \lambda x y . O K(f x y)) & \text { sl }(A, r, f) \equiv(\text { err } A, \text { le r, lift } 2 f)
\end{array}
$$

A tuple $L::$ ' a esl is by definition an err-semilattice iff $s l L$ is a semilattice. Conversely, we have Lemma 4.2.

Lemma 4.2. If semilat L then err-semilat (esl L).
The supremum operation of $\operatorname{sl}($ esl $L)$ is useful on its own:

$$
\sup f \equiv \text { lift }_{2}\left(\lambda x y . O K\left(x \sqcup_{f} y\right)\right)
$$

4.1.4 The Option Type. Theory Opt uses the type option and introduces the set opt as dual to set err,

$$
\text { opt } A \equiv\{\text { None }\} \cup\{\lfloor y\rfloor \mid y . y \in A\}
$$

an ordering that makes None the bottom element, and a corresponding supremum operation:

$$
\begin{aligned}
& \text { le } r\lfloor x\rfloor\lfloor y\rfloor=x \sqsubseteq_{r} y \\
& \text { le } r \text { None _ }=\text { True } \\
& \text { le } r \text { L-」None }=\text { False } \\
& \text { sup } f\lfloor x\rfloor\lfloor y\rfloor=(\text { case } f x y \text { of } \operatorname{Err} \Rightarrow \operatorname{Err} \mid O K z \Rightarrow O K\lfloor z\rfloor) \\
& \text { sup } f \text { z None }=O K z \\
& \text { sup } f \text { None } z=O K z
\end{aligned}
$$

Lemma 4.3. Let esl $(A, r, f)=($ opt A, le r, sup $f)$. If err-semilat L then err-semilat (esl L).

It is possible to define an $s l$ that lifts a semilattice to an option semilattice, but we only use the esl version below.

Lemma 4.4. If acc r then acc (le r).
4.1.5 Products. Theory Product provides what is known as the coalesced product, where the top elements of both components are identified. In terms of errsemilattices, this is:

$$
\begin{aligned}
& \text { esl }::{ }^{\prime} a \text { esl } \Rightarrow{ }^{\prime} b \text { esl } \Rightarrow\left({ }^{\prime} a \times{ }^{\prime} b\right) \text { esl } \\
& \text { esl }\left(A, r_{A}, f_{A}\right)\left(B, r_{B}, f_{B}\right) \equiv\left(A \times B \text {, le } r_{A} r_{B}, \sup f_{A} f_{B}\right) \\
& \text { le }:: ' a \text { ord } \Rightarrow{ }^{\prime} b \text { ord } \Rightarrow\left({ }^{\prime} a \times ' b\right) \text { ord } \\
& \text { le } r_{A} r_{B}\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \equiv a_{1} \sqsubseteq r_{A} a_{2} \wedge b_{1} \sqsubseteq r_{B} b_{2} \\
& \text { sup }::{ }^{\prime} a \text { ebinop } \Rightarrow \text { 'b ebinop } \Rightarrow\left({ }^{\prime} a \times ' b\right) \text { ebinop } \\
& \text { sup } f g\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \equiv \operatorname{Err} . \sup (\lambda x y \cdot(x, y))\left(a_{1} \sqcup_{f} a_{2}\right)\left(b_{1} \sqcup_{g} b_{2}\right)
\end{aligned}
$$

Note that \times is used both on the type and the set level.
Lemma 4.5. If err-semilat L_{1} and err-semilat L_{2} then err-semilat (esl $L_{1} L_{2}$).

Lemma 4.6. If acc r_{A} and acc r_{B} then acc (le $r_{A} r_{B}$).
4.1.6 Lists of Fixed Length. Theory Listn provides the concept of lists of a given length over a given set. In HOL, this is formalised as a set rather than a type:

$$
\text { list } n A \equiv\{x s||x s|=n \wedge \text { set } x s \subseteq A\}
$$

This set can be turned into a semilattice in a componentwise manner, essentially viewing it as an n-fold Cartesian product:

$$
\begin{array}{ll}
\text { sl }:: \text { nat } \Rightarrow{ }^{\prime} a \text { sl } \Rightarrow{ }^{\prime} a \text { list sl } & \text { le }::{ }^{\prime} a \text { ord } \Rightarrow{ }^{\prime} a \text { list ord } \\
\text { sl } n(A, r, f) \equiv\left(\text { list } n A, \text { le } r, \operatorname{map}_{2} f\right) & \text { le } r \equiv \text { list-all }_{2}\left(\lambda x y . x \sqsubseteq_{r} y\right)
\end{array}
$$

where $\operatorname{map}_{2}::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} c\right) \Rightarrow^{\prime} a$ list $\Rightarrow{ }^{\prime} b$ list $\Rightarrow^{\prime} c$ list and list-all $2::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right.$ \Rightarrow bool $) \Rightarrow{ }^{\prime}$ a list $\Rightarrow{ }^{\prime} b$ list \Rightarrow bool are the obvious functions. Below, we use the notation $x s\left[\sqsubseteq_{r}\right] y s$ for $x s \sqsubseteq_{l e} r$ ys.

Fig. 22. Data flow graph for step $3 s_{3}=\left[\left(1, t_{1}\right),\left(4, t_{4}\right)\right]$.
Lemma 4.7. If semilat L then semilat (sl $n L$).
Lemma 4.8. If order r and acc r then acc (le r).
In case we want to combine lists of different lengths, or if the supremum on the elements of the list may return Err (not to be confused with Err.sup the sup functional defined in Theory Err, §4.1.3), the following function is useful:

$$
\begin{aligned}
& \text { sup }::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c \text { err }\right) \Rightarrow{ }^{\prime} a \text { list } \Rightarrow^{\prime} b \text { list } \Rightarrow^{\prime} c \text { list err } \\
& \text { sup } f x s \text { ys } \equiv i f|x s|=|y s| \text { then coalesce }\left(\text { map }_{2} f x s \text { ys }\right) \text { else Err } \\
& \text { coalesce }[]=O K[] \\
& \text { coalesce }(e \cdot e s)=\text { Err.sup }(\lambda x \text { xs. } x \cdot x s) e(\text { coalesce es })
\end{aligned}
$$

This corresponds to the coalesced product. Below, we also need the structure of all lists up to a specific length:

$$
\begin{aligned}
& \text { upto-esl }:: \text { nat } \Rightarrow{ }^{\prime} a \text { esl } \Rightarrow^{\prime} a \text { list esl } \\
& \text { upto-esl } n(A, r, f) \equiv\left(\bigcup_{i \leq n} \text { list } i \text {, le } r \text {, sup } f\right)
\end{aligned}
$$

Lemma 4.9. If err-semilat L then err-semilat (upto-esl m L).

4.2 Well-Typings

This section describes well-typings abstractly. On this abstract level, there is no need yet to talk about the instruction sequences themselves. They will be hidden inside a function that characterises their behaviour. This function and a semilattice form the parameters of the model.

Data flow analysis and type systems are based on an abstract view of the semantics of a program in terms of types instead of values. At this level, programs are sequences of instructions, and the semantics can be characterised by a function step $:: p c \Rightarrow^{\prime} s \Rightarrow\left(p c \times{ }^{\prime} s\right)$ list where $p c$ is an abbreviation for nat. It is the abstract execution function: step $p s$ provides the results of executing the instruction at p, starting in state s, together with the positions where execution continues. Contrary to the usual concept of transfer function or flow function in the literature, step p not only provides the result, but also the structure of the data flow graph at position p. This is best explained through an example. Figure 22 depicts the information we get when step $3 s_{3}$ returns the list $\left[\left(1, t_{1}\right),\left(4, t_{4}\right)\right]$: executing the instruction at position 3 with state type s_{3} may lead to position 1 in the graph with result t_{1}, or to position 4 with result t_{4}.

Note that the length of the list and the target instructions do not only depend on the source position p in the graph, but also on the value of s. It is possible that the structure of the data flow graph dynamically changes in the iteration process of the
analysis. It may not change freely, however. $\S 4.3$ will introduce certain constraints on the step function that the analysis needs in order to succeed.

Data flow analysis is concerned with solving data flow equations, which are systems of equations involving the flow functions over a semilattice. In this case, step is the flow function and 's the semilattice. Instead of an explicit formalisation of the data flow equation, it suffices to consider certain prefixed points. To that end we define what it means that a method type $\tau s::$'s list is stable at p :

$$
\text { stable } \tau \text { s } p \equiv \forall(q, \tau) \in \text { set }\left(\text { step } p \tau s_{[p]}\right) . \tau \sqsubseteq_{r} \tau s_{[q]}
$$

Stability induces the notion of a method type τs being a well-typing w.r.t. step:

$$
\text { wt-step } \tau s \equiv \forall p<|\tau s| . \tau s_{[p]} \neq \top \wedge \text { stable } \tau s p
$$

\top is assumed to be a special element in the state space (the top element of the ordering). It indicates a type error.

An instruction sequence is well-typed if there is a well-typing τs such that wt-step τ s.

4.3 Constraints on the Transfer Function

This section defines constraints on the transfer function that the data flow algorithm in $\S 4.5$ needs to succeed.

The transfer function step is called monotone up to n iff the following holds:

$$
\text { mono } n \equiv \forall \tau \in A . \forall p<n . \forall \tau^{\prime} . \tau \sqsubseteq_{r} \tau^{\prime} \longrightarrow \text { set }(\text { step } p \tau)\left\{\sqsubseteq_{r}\right\} \text { set }\left(\text { step } p \tau^{\prime}\right)
$$

where

$$
A\left\{\sqsubseteq_{r}\right\} B \equiv \forall(p, \tau) \in A . \exists \tau^{\prime} .\left(p, \tau^{\prime}\right) \in B \wedge \tau \sqsubseteq_{r} \tau^{\prime}
$$

This means, if we increase the state type τ at a position p, the data flow graph may have more edges (but not less), and the result at each edge may increase (but not decrease).
If for all $p<n$ and all τ the position components of step $p \tau$ are less than n, then step is bounded by n. This expresses that, from below instruction n, instruction n and beyond are unreachable: control never leaves the list of instructions below n.

$$
\text { bounded } n \equiv \forall p<n . \forall \tau . \forall\left(q, \tau^{\prime}\right) \in \operatorname{set}(\text { step } p \tau) . q<n
$$

If for all $p<n$ and $\tau \in A$ the values that step $p \tau$ returns are again in A, then step preserves A up to n :

$$
\text { preserves } n \equiv \forall \tau \in A . \forall p<n . \forall\left(q, \tau^{\prime}\right) \in \text { set }(\text { step } p \tau) . \tau^{\prime} \in A
$$

4.4 Refining the Transfer Function

The single transfer function step of $\S 4.2$ is compact and convenient for describing the abstract typing framework. For a large instantiation, however, it carries too much information in one place to be modular and intuitive. We will therefore first refine step into a part $a p p$ for applicability and a part eff for the effect of instructions, and then instantiate these parts in §4.7. Furthermore, the state space 's will be of the form 't err for a suitable type ' t, in which case the error element \top is Err itself. Given app :: pc $\Rightarrow^{\prime} t \Rightarrow$ bool, eff :: pc $\Rightarrow^{\prime} t \Rightarrow\left(p c \times^{\prime} t\right)$ list, and n :: nat (the size of the method type), step is defined as follows:

$$
\begin{array}{ll}
\text { step } p \text { Err } & =\text { error } \\
\text { step } p(O K \tau) & =(\text { if app } p \tau \text { then map-snd OK }(\text { eff } p \tau) \text { else error }) \\
\text { error } & \equiv \operatorname{map}(\lambda x \cdot(x, \text { Err })[0 . .<n] \\
\text { map-snd } f & \equiv \operatorname{map}(\lambda(x, y) \cdot(x, f y))
\end{array}
$$

The function error is used to propagate the error element Err to every position in the method type.

If we take the semilattice (A, r, f) to be an err-semilattice and the order r to be of the form $l e r^{\prime}$, we can similarly refine the notion of a well-typing w.r.t. step to a well-typing w.r.t. app and eff:

$$
\text { wt-app-eff } \tau s \equiv \forall p<|\tau s| . \operatorname{app} p \tau s_{[p]} \wedge\left(\forall(q, \tau) \in \operatorname{set}\left(\text { eff } p \tau s_{[p]}\right) . \tau \sqsubseteq_{r^{\prime}} \tau s_{[q]}\right)
$$

This is very natural: every instruction is applicable in its start state, and the effect is compatible with the state expected by all successor instructions.

Function step composed of app and eff as defined above has type $p c \Rightarrow{ }^{\prime} t$ err $\Rightarrow\left(p c \times{ }^{\prime} t\right.$ err $)$ list. This is an instance of the type the stability predicates in $\S 4.2$ expect. If we furthermore set n to $|\tau s|$, we get the following lemma.

Lemma 4.10. If the composed function step is bounded by $n=|\tau s|$, then wt-app-eff and wt-step coincide:

$$
\text { bounded }|\tau s| \Longrightarrow \text { wt-step (map OK } \tau s)=\text { wt-app-eff } \tau s
$$

4.5 Kildall's Algorithm

A well-typing is a witness of well-typedness in the sense of stability. Now we turn to the problem of computing such a witness. This is precisely the task of a bytecode verifier: it computes a method type such that the absence of \top in the result means the method is well-typed. Formally, a function $b c v::$'s list \Rightarrow 's list is a bytecode verifier w.r.t. $n::$ nat and A :: 's set iff
$\forall \tau s_{0} \in$ list n A. $\left(\forall p<n .\left(b c v \tau s_{0}\right)_{[p]} \neq \top\right)=\left(\exists \tau s \in\right.$ list $n A . \tau s_{0}[\sqsubseteq r] \tau s \wedge$ wt-step $\left.\tau s\right)$
The notation $\left[\sqsubseteq_{r}\right]$ lifts \sqsubseteq_{r} to lists (see also §4.1.6), \top is the top element of the semilattice. In practise, $b c v \tau s_{0}$ itself will be the well-typing, and it will also be the least well-typing. However, it is simpler not to require this.

This section first defines and then verifies a functional version of Kildall's algorithm [Kildall 1973; Muchnick 1997], a standard data flow analysis tool. In fact, the description of bytecode verification in the official JVM specification [Lindholm and Yellin 1999, pages 129-130] is essentially Kildall's algorithm, an iterative computation of the solution to the data flow problem. The main loop operates on a method type τs and a worklist $w:: p c$ set. The worklist contains the indices of those elements of τs that have changed and whose changes still need to be propagated to their successors. Each iteration picks an element p from w, executes instruction number p, and propagates the new states to the successor instructions of p. Iteration terminates once w becomes empty: in each iteration, p is removed but new elements can be added to w. The algorithm is expressed in terms of a predefined while-combinator of type $\left({ }^{\prime} a \Rightarrow b o o l\right) \Rightarrow\left(' a \Rightarrow{ }^{\prime} a\right) \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ which satisfies the recursion equation

$$
\text { while } b c s=(\text { if } b s \text { then while } b c(c r s) \text { else } s)
$$

The term while $(\lambda s . b s)(\lambda s . c s)$ is the functional counterpart of the imperative program while $b(s)$ do $s:=c(s)$. The main loop can now be expressed as

```
iter \(\tau s w \equiv\)
while \((\lambda(\tau s, w) . w \neq\{ \})\)
    \(\left(\lambda(\tau s, w)\right.\). let \(p=\) SOME \(p . p \in w\) in propa \(\left(\right.\) step \(\left.\left.p \tau s_{[p]}\right) \tau s(w-\{p\})\right)\)
    \((\tau s, w)\)
```

Since the choice SOME p. $p \in w$ in iter is guarded by $w \neq\{ \}$, we know that there is a $p \in w$. An implementation is free to choose whichever element it wants.

Propagating the results $q s$ of executing instruction number p to all successors is expressed by the primitive recursive function propa:

```
propa [] \(\tau s w=(\tau s, w)\)
propa \(\left(q^{\prime} \cdot q s\right) \tau s w=\)
(let \((q, \tau)=q^{\prime} ; u=\tau \sqcup_{f} \tau s_{[q]} ; w^{\prime}=\) if \(u=\tau s_{[q]}\) then \(w\) else \(\{q\} \cup w\)
    in propa qs \(\left.(\tau s[q:=u]) w^{\prime}\right)\)
```

In the terminology of the official JVM specification [Lindholm and Yellin 1999, page 130], τ is merged with the state of all successor instructions q, i.e., the supremum is computed. If this results in a change of $\tau s_{[q]}$, then q is inserted into w.

Kildall's algorithm is simply a call to iter where the worklist is initialised with the set of unstable indices; upon termination we project on the first component:

$$
\text { kildall } \tau s \equiv \text { fst }(\text { iter } \tau s\{p|p<|\tau s| \wedge \neg \text { stable } \tau s p\})
$$

The key theorem is that Kildall's algorithm is a bytecode verifier as defined above:
Theorem 4.11. If (A, r, f) is a semilattice, r meets the ascending chain condition on A, and step is monotone, preserving, and bounded w.r.t. A and n, then kildall is a bytecode verifier w.r.t. A and n.

Proof. The correctness proof proceeds along the following lines. (1) Given the assumptions of Theorem 4.11, kildall is a total function: The work list either becomes smaller, or, if new positions are introduced, the elements they point to are larger than the element at the position that was taken out. Since there are no infinitely ascending chains in r, the algorithm must terminate. (2) The following are invariants of the analysis (mainly because of monotonicity of step): all positions not in the worklist are stable, and the computed method type is always between the start value τs_{0} and any well-typing τs which is stable everywhere and satisfies $\tau s_{0} \sqsubseteq_{r} \tau s$. Upon termination the worklist is empty, and kildall τs_{0} is stable everywhere. With (1) and (2), Theorem 4.11 follows easily. The implication from left to right holds with the result of the algorithm as witness. The result is stable, it does not contain \top (by assumption), and it is above τs_{0} because of (2). The implication from right to left holds, because $w t$-step implies that τs is stable and does not contain T. Because of (2), kildall τs_{0} is smaller than τs, hence it does not contain T either.

This specification of Kildall's algorithm is executable: the worklist (in the specification a set) can be implemented by a list, the SOME operator by $h d$.

4.6 Semilattice for the Jinja VM

This section takes the first step to instantiate the framework of $\S 4.1$ to $\S 4.5$. It defines the semilattice structure on which Jinja's bytecode verifier builds. It begins by turning the Jinja types $t y$ into a semilattice in theory SemiType below. We can then use the abstract combinators of $\S 4.1$ to construct the stack and register structure.

The carrier set types is easy: the set of all types declared in the program.

$$
\text { types } P=\{T \mid \text { is-type } P T\}
$$

The order is the standard subtype ordering \leq of Jinja and the supremum operation follows it.

```
sup :: jvm-prog \(\Rightarrow t y \Rightarrow t y \Rightarrow\) ty err
sup \(P N T(\) Class \(C)=O K(\) Class \(C)\)
\(\sup P(\) Class \(C) N T=O K(\) Class \(C)\)
sup \(P(\) Class \(C)(\) Class \(D)=O K(\) Class \((\) lub P C D) \()\)
sup \(P t_{1} t_{2}=\left(\right.\) if \(t_{1}=t_{2}\) then \(O K t_{1}\) else Err \()\)
```

The lub function (not shown here) computes the least upper bound of two classes by walking up the class hierarchy until one is a subclass of the other. Since every class is a subclass of Object in a well-formed program (see also wf-prog in §2.4), this least upper bound is guaranteed to exist.

With SemiType.esl $P \equiv($ types $P, \lambda x y . P \vdash x \leq y$, sup $P)$ we have proved the following theorem.

Theorem 4.12. If P is well-formed, then SemiType.esl is an err-semilattice and the subtype ordering \leq satisfies the ascending chain condition:

$$
\begin{aligned}
& \text { wf-prog }-P \Longrightarrow \text { err-semilat }(\text { SemiType.esl } P) \\
& \text { wf-prog } P \Longrightarrow \text { acc }(\lambda x y . P \vdash x \leq y)
\end{aligned}
$$

Proof. The proof is easy: it is obvious that \leq is transitive and reflexive. If P is well-formed, \leq is also antisymmetric, hence a partial order. It satisfies the ascending chain condition, because, if P is well-formed, the class hierarchy is a tree with Object at its top. We have already argued above that sup is well defined, and it is easy to see that it is closed w.r.t. types P. Hence SemiType.esl P is an err-semilattice.

We can now construct the stack and register structure. State types in the Jinja BV are the same as in the example in Fig. 21: values on the operand stack must always contain a known type $t y$, values in the local variables may be of an unknown type and therefore be unusable (encoded by Err). To handle unreachable code, the BV needs an additional option layer: if None occurs in the well-typing, the corresponding instruction is unreachable. On the HOL-type level:

$$
\begin{array}{rll}
\text { types } & t y_{s}=t y \text { list } & t y_{l}=\text { ty err list } \\
& t y_{i}=t y_{s} \times t y_{l} & t y_{i}^{\prime}=t y_{i} \text { option }
\end{array}
$$

The types of the stack and the local variables are $t y_{s}$ and $t y_{l}$. We call $t y_{i}$ the instruction type, and let the term state type refer to either of $t y_{i}$ or $t y_{i}{ }^{\prime}$. It will be clear from the context which of these is meant.

The data flow analysis also needs to indicate type errors during the algorithm (see also $\S 4.4$), so we arrive at $t y_{i}{ }^{\prime}$ err for the semilattice construction.

Turning $t y_{i}{ }^{\prime}$ err into a semilattice is easy, because all of its constituent types are (err-)semilattices. The expression stacks form a semilattice because the supremum of stacks of different size is Err; the local variables form a semilattice because their number $m x l$ is fixed:

$$
\begin{aligned}
& \text { stk-esl }:: \text { jum-prog } \Rightarrow \text { nat } \Rightarrow \text { ty } y_{s} \text { esl } \\
& \text { stk-esl } P \text { mxs } \equiv \text { upto-esl } m x s(\text { SemiType.esl } P) \\
& \text { loc-sl }:: \text { jum-prog } \Rightarrow \text { nat } \Rightarrow \text { tyl sl } \\
& \text { loc-sl } P m x l \equiv \text { Listn.sl mxl }(\text { Err.sl }(\text { SemiType.esl } P))
\end{aligned}
$$

Stack and local variables are combined in a coalesced product via Product.esl and then embedded into option and err to create the final semilattice for 's $\mathrm{s}=\mathrm{ty}{ }_{i}{ }^{\prime} \mathrm{err}$:

```
sl \(::\) jum-prog \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow t y_{i}{ }^{\prime}\) err sl
sl P mxs mxl \(\equiv\) Err.sl (Opt.esl (Product.esl (stk-esl P mxs) (Err.esl (loc-sl P mxl))))
```

It is useful below to have special notation \leq^{\prime} for the ordering on $t y_{i}{ }^{\prime}$.
Combining the theorems about the various (err-)semilattice constructions involved in the definition of $s l$ (starting from Theorem 4.12, using Lemmas 4.1 to 4.9), it is easy to prove

Corollary 4.13. If P is well-formed, then $s l$ is a semilattice. Its order (written le $P m x s m x l$) satisfies the ascending chain condition:

$$
\begin{aligned}
& \text { wf-prog }-P \Longrightarrow \text { semilat }(\text { sl } P \text { mxs } m x l) \\
& \text { wf-prog }-P \Longrightarrow \text { acc }(\text { le } P \text { mxs } m x l)
\end{aligned}
$$

4.7 Applicability and Effect Instantiated

In this section, we instantiate app and eff from $\S 4.4$ for the instruction set of the Jinja VM. As for the source language we have divided the definitions into one part for normal and one part for exceptional execution.

Since the BV verifies one method at a time, we can see the context of a method and a program as fixed for the definition. The context consists of the following values:

P	$::$ jvm-prog	the program,
C^{\prime}	$::$ cname	the class the method we are verifying is declared in,
$m x s$	$::$ nat	maximum stack size of the method,
$m x l$	$::$ nat	
size of the register set for local variables,		
$T s$	$::$ ty list	types of the parameters of the method,
T_{r}	$:$ ty	return type of the method,
is	$::$ instr list	
instructions of the method,		
$x t$	$:$ ex-table	exception handler table of the method.

The context variables are proper parameters of eff and app in the Isabelle formalisation. We treat them as global here to spare the reader endless parameter lists in each definition. Formally, we use Isabelle's locale mechanism to hide these parameters in the presentation. Ballarin [2003] describes locales in detail.

```
\(a p p_{i}::\) instr \(\Rightarrow p c \Rightarrow t y_{i} \Rightarrow\) bool
\(\operatorname{app}_{i}(\operatorname{Load} n) p c(S T, L T)=\left(n<|L T| \wedge L T_{[n]} \neq \operatorname{Err} \wedge|S T|<m x s\right)\)
\(\operatorname{app}_{i}(\) Store \(n) p c(T \cdot S T, L T)=(n<|L T|)\)
\(\operatorname{app}_{i}(\) Push \(v) p c(S T, L T)=(|S T|<m x s \wedge\) typeof \(v \neq\) None \()\)
\(a^{2 p p} p_{i}(\) New \(C) p c(S T, L T)=(\) is-class \(P C \wedge|S T|<m x s)\)
\(\operatorname{app}_{i}(\) Getfield \(F C) p c(T \cdot S T, L T)=\left(\exists T_{f} . P \vdash C\right.\) sees \(F: T_{f}\) in \(\left.C \wedge P \vdash T \leq C l a s s C\right)\)
\(\operatorname{app}_{i}(\) Putfield \(F C) p c\left(T_{1} \cdot T_{2} \cdot S T, L T\right)=\)
\(\left(\exists T_{f} . P \vdash C\right.\) sees \(F: T_{f}\) in \(C \wedge P \vdash T_{2} \leq\) Class \(\left.C \wedge P \vdash T_{1} \leq T_{f}\right)\)
\(\operatorname{app}_{i}(\) Checkcast \(C) p c(T \cdot S T, L T)=(\) is-class \(P C \wedge\) is-ref \(T T)\)
\(a p p_{i}\) (Invoke \(M n\) ) pc \((S T, L T)=\)
\((n<|S T| \wedge\)
    \(\left(S T_{[n]} \neq N T \longrightarrow\right.\)
    ( \(\exists C D\) Ts \(T\).
        \(S T_{[n]}=C l a s s C \wedge P \vdash C\) sees \(M: T s \rightarrow T=m\) in \(D \wedge P \vdash \operatorname{rev}(\) take \(\left.\left.\left.n S T)[\leq] T s\right)\right)\right)\)
\(a p p_{i}\) Return \(p c(T \cdot S T, L T)=P \vdash T \leq T_{r}\)
\(\operatorname{app}_{i} \operatorname{Pop} p c(T \cdot S T, L T)=\) True
\(a p p_{i}\) IAdd \(p c\left(T_{1} \cdot T_{2} \cdot S T, L T\right)=\left(T_{1}=T_{2} \wedge T_{1}=\right.\) Integer \()\)
\(\operatorname{app}_{i}(\) Goto \(b) p c s=(0 \leq\) int \(p c+b)\)
\(\operatorname{app}_{i}\) CmpEq \(p c\left(T_{1} \cdot T_{2} \cdot S T, L T\right)=\left(T_{1}=T_{2} \vee i s\right.\)-refT \(T_{1} \wedge i s\)-refT \(\left.T_{2}\right)\)
\(\operatorname{app}_{i}(\) IfFalse b) \(p c(\) Boolean \(\cdot S T, L T)=(0 \leq\) int \(p c+b)\)
\(a^{p p} p_{i}\) Throw \(p c(T \cdot S T, L T)=i s\)-ref \(T T\)
\(a p p_{i}\) i pc \(\tau=\) False
```

Fig. 23. Applicability of instructions.
4.7.1 Normal Execution. We begin with the definition of applicability for normal execution. The intermediate function $a p p_{i}$, defined in Fig. 23, works on $t y_{i}$, app will later lift it to $t y_{i}{ }^{\prime}$. The definition is parallel to check-instr in $\S 3.3$, it just works on types instead of values. The definition is smaller than the one of check-instr because some of the conditions cannot be expressed at the type level alone. These conditions are the ones that access the heap or the frame stack (most notable in the Getfield, Putfield, and Return instructions). It will be the responsibility of the type safety proof to show that the BV still manages to guarantee that all checks in the defensive machine are successful.

Let's take a closer look at the IAdd example again:

$$
a^{a p p_{i}} \text { IAdd } p c\left(T_{1} \cdot T_{2} \cdot S T, L T\right)=\left(T_{1}=T_{2} \wedge T_{1}=\text { Integer }\right)
$$

This is completely parallel to the defensive machine. The pattern on the left hand side ensures that there are at least two elements on the stack, and the right hand side requires that they both are integers.

The non-exceptional effect of instructions $e f f{ }_{i}$ is equally simple. First, we calculate the successor program counters in Fig. 24, after that, the effect of the instruction on the type level in Fig. 25.

The successors are easy, most instructions simply proceed to $p c+1$. The relative jumps in IfFalse and Goto use the nat and int functions to convert the HOL-

$$
\begin{aligned}
\text { succs }:: \text { instr } \Rightarrow t y_{i} \Rightarrow p c & \Rightarrow p c \text { list } \\
\text { succs }(\text { IfFalse } b) \tau p c & =[p c+1, \text { nat }(\text { int } p c+b)] \\
\text { succs }(\text { Goto } b) \tau p c & =[\text { nat }(\text { int } p c+b)] \\
\text { succs }(\text { Invoke } M n) \tau p c & =\left(\text { if }(\text { fst } \tau)_{[n]}=N T \text { then }[] \text { else }[p c+1]\right) \\
\text { succs Return } \tau p c & \\
\text { succs Throw } \tau p c & \\
\text { succs } i \tau p c & \\
\text { s } & =[p c+1]
\end{aligned}
$$

Fig. 24. Successor program counters for the non-exceptional case.

```
eff i}\mp@subsup{i}{: : instr }{>
eff i (Load n) (ST,LT) =(ok-val LT Tn] ST,LT)
eff i}\mathrm{ (Store n) (T ST,LT) = (ST,LT[n:=OK T])
eff i (Push v) (ST,LT) = (the (typeof v)\cdotST,LT)
eff i (New C) (ST,LT) = (Class C ST,LT)
eff i
eff }\mp@subsup{}{i}{(Putfield FC) (T}\mp@subsup{T}{1}{}\cdot\mp@subsup{T}{2}{}\cdotST,LT)=(ST,LT
eff i (Checkcast C)(T.ST,LT) = (Class C ST,ST)
eff i Pop (T.ST,LT) = (ST,LT)
eff i IAdd (T T 
eff i (Goto n) s
eff i CmpEq ( T T }\cdot\mp@code{T}\mp@subsup{T}{2}{}\cdotST,LT)=(\mathrm{ Boolean }\cdotST,LT
eff i}\mathrm{ (IfFalse b) (T T · ST,LT) = (ST,LT)
```



```
    (_, _, Trr,_) = method P C M
    in}(\mp@subsup{T}{r}{}\cdot\operatorname{drop}(n+1)ST,LT
```

Fig. 25. Effect of instructions on the state type.
types nat to int and vice versa. Return and Throw have no successors in the same method (for the non-exceptional case). The Invoke $n M$ instruction has no normal successor if the the stack at position n contains $N T$-it will always throw a NullPointer exception in this case. It is different from Getfield and Putfield, because they have enough information in the instruction itself to determine the effect. Invoke on the other hand must rely on computed information at $S T_{[n]}$ to determine the return type of the method. In the Java VM, the Invoke instruction contains the static class of the method (and is thus easier to handle).

The effect $e f f{ }_{i}$ on $t y_{i}$ is shown in Fig. 25. The destructor ok-val is defined by ok-val $(O K x)=x$.

The IAdd instruction is in this case:

$$
e f f_{i} \text { IAdd }\left(T_{1} \cdot T_{2} \cdot S T, L T\right)=(\text { Integer } \cdot S T, L T)
$$

Again, as befits an abstract interpretation, the definition is completely parallel to the operational semantics, this time to exec-instr of the aggressive machine.

The next step is combining eff ${ }_{i}$ and succs:

$$
\begin{aligned}
& \text { norm-eff }:: \text { instr } \Rightarrow p c \Rightarrow t y_{i} \Rightarrow\left(p c \times t y_{i}^{\prime}\right) \text { list } \\
& \text { norm-eff } i p c \tau \equiv \operatorname{map}\left(\lambda p c^{\prime} .\left(p c^{\prime},\lfloor\text { eff } i \text { i } \tau\rfloor\right)\right)(\text { succs } \text { i } \tau p c)
\end{aligned}
$$

```
is-relevant-class :: instr }=>\mp@subsup{}{}{\prime}m\mathrm{ prog }=>\mathrm{ cname }=>\mathrm{ bool
is-relevant-class (Getfield F D) P C = P\vdashNullPointer \preceq* C
is-relevant-class (Putfield F D) PC=P\vdashNullPointer \preceq* C
is-relevant-class (Checkcast D) PC=P
is-relevant-class (New D) PC =P\vdashOutOfMemory \preceq* C
is-relevant-class Throw P C = True
is-relevant-class (Invoke M n) PC = True
is-relevant-class i P C = False
is-relevant-entry :: 'm prog }=>\mathrm{ instr }=>\mathrm{ pc 知 ex-entry }=>\mathrm{ bool
is-relevant-entry P i pc e \equivlet (f,t,C,h,d) =e in is-relevant-class i P C ^ pc\in{f..<t}
relevant-entries :: 'm prog }=>\mathrm{ instr }=>\mathrm{ pc 在 ex-table }=>\mathrm{ ex-table
relevant-entries P i pc \equivfilter (is-relevant-entry P i pc)
```

Fig．26．Finding relevant exception handlers．
The result is a list of edges in the control flow graph determined by succs，each of them marked with the result of eff i ．As we use norm－eff only for reachable instructions below，we can safely mark the successors as reachable with $\left\lfloor_{-}\right\rfloor$．

We now have two functions $a p p_{i}$ and norm－eff describing normal execution in the bytecode verifier．The next section turns to exceptions．

4．7．2 Exceptions．Abstractly，exceptions merely add more edges to the control flow graph．In the JVM（Jinja as well as Java），these edges must all lead to the start of the exception handler that is relevant for the current instruction．Only at runtime this relevant handler is uniquely determined，statically we must consider a number of handlers，because relevance of a handler depends on which exception was raised．The Invoke instruction for instance may raise a NullPointer exception， or it may propagate an exception up that was thrown in the invoked method．For each of these cases a different handler might be relevant．As for the conditional branch instruction，the bytecode verifier simply checks all of them．

Thus，the first thing we need to do is determine which handlers might be relevant for an instruction．Figure 26 shows this in three stages：relevant－class i $P C$ is True iff i can raise an exceptions of class C ，is－relevant－entry $P i p c e$ is True iff entry e in the exception table might match instruction i at position $p c$ ，and finally relevant－entries P i pc xt is the list of exception table entries that are relevant for instruction i at position $p c$ ．

For applicability in the exception case we require that the class name mentioned in the exception handler is indeed a declared class，and that the stack is between $m x s$ and the number d of entries the exception handler expects．

```
xcpt-app :: instr }=>\mathrm{ pc # ty }\mp@subsup{\mp@code{i}}{i}{\prime}\mathrm{ bool
xcpt-app i pc (ST,LT) 三
\forall(f,t,C,h,d)\inset (relevant-entries P i pc xt). is-class P C ^d s |ST| ^d< mxs
```

The effect of instructions in the exception case is equally simple．Each edge leads to the start of the exception handler，and the local variables are unchanged．We cut down the operand stack to d elements of the current stack，and push the exception object on top．

```
xcpt-eff :: instr => pc=>ty }=>\mathrm{ | (pc }\timest\mp@subsup{y}{i}{\prime}) lis
xcpt-eff i pc (ST,LT) \equiv
```

map $(\lambda(f, t, C, h, d) .(h,\lfloor($ Class $C \cdot d r o p(|S T|-d) S T, L T)\rfloor))($ relevant-entries P i $p c x t)$
4.7.3 Combining Normal and Exceptional Execution. Combining the normal and exceptional case, we can now build the full effect function: if an instruction is unreachable, it has no outgoing edges; if it is reachable the overall effect is simply an append of the normal and the exception case.

```
eff :: instr }=>\mathrm{ pc # ty }\mp@subsup{}{i}{}\mp@subsup{}{}{\prime}=>(pc\timest\mp@subsup{y}{i}{\prime}) lis
eff i pct\equivcase t of None =>[]| \\tau\rfloor=> norm-eff i pc \tau @ xcpt-eff i pc \tau
```

For applicability we have: an instruction is applicable if it is unreachable (then it can do no harm) or if it is applicable in the normal and in the exception case. Additionally, we require that the $p c$ does not leave the instruction sequence.

```
app :: instr }=>pc=>t\mp@subsup{y}{i}{\prime}=|\mathrm{ bool
app i pc t 三
case t of None }=>\mathrm{ True
| \lfloor\tau\rfloor=> appi i pc \tau ^ xcpt-app i pc \tau^(\forall(p\mp@subsup{c}{}{\prime},\mp@subsup{\tau}{}{\prime})\in\mathrm{ set (eff i pc t).pc'< < is|)})
```


4.8 Well-typings

Having defined the semilattice and the transfer function in $\S 4.6$ and $\S 4.7$, we show in this section how the parts are put together to get a definition of well-typings for the Jinja VM.

The abstract framework gives us a predicate wt-app-eff (§4.4) describing welltypings $\tau s:: t y_{i}{ }^{\prime}$ list as method types that fit an instruction sequence. To obtain type-safety and an executable bytecode verifier, we additionally require a start condition for instruction 0 (at method invocation) and some side conditions explained below.

The operational semantics of Invoke tells us the start condition at method invocation: the stack is empty, the first register contains the this pointer (of type Class C^{\prime}), the next registers contain the parameters of the method, and the rest of the registers are reserved for local variables (which do not have a value yet). Note that the definitions are still in the context of a fixed method as defined in $\S 4.7$, so C^{\prime} is the class to be verified, Ts are the parameters, and $m x l_{0}$ the number of local variables (which is related to $m x l$ of $\S 4.7$ by $m x l=1+|T s|+m x l_{0}$). The \leq^{\prime} is the semilattice order on $t y_{i}{ }^{\prime}$ of $\S 4.6$.

```
wt-start \taus \equivP\vdash\lfloor([],OK (Class C')}\cdot\mathrm{ map OK Ts @ replicate mxlo Err) }\rfloor\mp@subsup{\leq}{}{\prime}\tau\mp@subsup{s}{[0]}{
```

The method type τs is a well-typing for a method if it satisfies wt-method. To define it, we instantiate wt-app-eff from the framework with $\lambda p c \tau$. app $i s_{[p c]} p c \tau$ for the abstract $a p p$, and $\lambda p c \tau$. eff $i s_{[p c]} p c \tau$ for the abstract eff.

```
wt-method \(\tau s=\)
\((i s \neq[] \wedge|\tau s|=m p c \wedge O K '\) set \(\tau s \subseteq\) states \(P m x s m x l \wedge\) wt-start \(\tau s \wedge\) wt-app-eff \(\tau s)\)
```

The states are the carrier set of the semilattice. Remember that the method type τs does not contain the Err layer of the semilattice, hence we take the image $O K$ 'set τs of set τs under $O K$. For well-typedness wt-method also requires that the method contains at least one instruction, and that the method type covers all instructions.

It is occasionally useful in the proofs and also for the compiler below, to define the notion of an instruction being well-typed. This is just the matrix of the $\forall p<|\tau s|$ in $w t$-app-eff (c.f. $\S 4.4$). Since it will be used outside the fixed method context of this section, it has more parameters.

```
\(P, T_{r}, m x s, m p c, x t \vdash i, p c:: \tau s \equiv\)
app ipc \(\tau s_{[p c]} \wedge\left(\forall\left(p c^{\prime}, \tau^{\prime}\right) \in\right.\) set \(\left(\right.\) eff i pc \(\left.\left.\left.\tau s_{[p c]}\right) . P \vdash \tau^{\prime} \leq^{\prime} \tau s_{[p c}{ }^{\prime}\right]\right)\)
```

The notation $P, T_{r}, m x s, m p c, x t \vdash i, p c:: \tau s$ is read as: in the context of program P, return type T_{r}, maximum stack size $m x s$, number of instructions $m p c$ and exception table $x t$, the instruction i at position $p c$ is well-typed w.r.t. method type $\tau s:: t y_{i}{ }^{\prime}$ list.

It remains to lift well-typings from methods to programs. Well-typings of programs are functions Φ :: $t y_{P}$ with

$$
\text { types } t y_{P}=\text { cname } \Rightarrow \text { mname } \Rightarrow t y_{i}^{\prime} \text { list }
$$

These functions return a well-typing for each class and method in the program. A Jinja VM program is well-formed according to Φ if each method body is well-typed. At this point, the full parameter list of $w t$-method becomes visible.
wf-jvm-prog ${ }_{\Phi} \equiv$
$w f-\operatorname{prog}\left(\lambda P C\left(M, T s, T_{r}, m x s, m x l_{0}, i s, x t\right)\right.$. wt-method $P C T s T_{r} m x s m x l_{0}$ is $\left.x t(\Phi C M)\right)$
wf-jvm-prog $P \equiv \exists \Phi . w f$-jvm- $\operatorname{prog}_{\Phi} P$

4.9 An Executable Bytecode Verifier

In $\S 4.8$ we defined well-typings for the Jinja VM. This section shows how to instantiate the type inference algorithm of $\S 4.5$ to get an executable bytecode verifier for Jinja.

With the semilattice as defined in $\S 4.6$ and the transfer function of $\S 4.7$, and still within the same method context as for wt-method, we only need to provide the correct start value to Kildall's algorithm to get an executable BV:

```
wt-kildall \equiv
is # []^
(let }\mp@subsup{\tau}{0}{}=\lfloor([],[OK (Class C')] @ map OK Ts @ replicate mxlo Err)\rfloor
    \taus}0=OK \mp@subsup{\tau}{0}{}\cdot\mathrm{ replicate ( |is | - 1)(OK None)
in}\foralln<|is|.(kildall \tauso) [n] 仡 Err)
```

Position 0 in τs_{0} is the same as the start value in wt-start. Since we know nothing yet about the positions greater than 0 , we fill in the bottom element OK None for those.

Lifting to full programs and filling in the method context is the same as for wt-method:
wf-jum- prog $_{k} P \equiv$
wf-prog $\left(\lambda P C^{\prime}\left(M, T s, T_{r}, m x s, m x l_{0}\right.\right.$, is, xt). wt-kildall $P C^{\prime} T s T_{r} m x s m x l_{0}$ is xt) P
This definition only gives us a working BV if step meets the conditions of Theorem 4.11. We have shown that the transfer function step, built from $a p p$ and eff as described in $\S 4.4$ and $\S 4.7$, is monotone, bounded, and type preserving (w.r.t. states and $|i s|$). Albeit large (a case distinction over the instruction set), the proof that step is monotone and type preserving is easy and mostly automatic. That step is bounded is checked explicitly by the app component of step.

Using Theorem 4.11, we have then proved the following:

ThEOREM 4.14. The executable BV is sound and recognises all well-typed programs:

$$
w f \text {-jvm-prog }{ }_{k} P=w f \text {-jvm-prog } P
$$

4.10 Type Safety

This section is about the type safety of the well-typing specification above. The type safety theorem states that the bytecode verifier is correct, that it guarantees safe execution. If the bytecode verifier succeeds and we start the program P in its canonical start state (§3.3), the defensive Jinja VM will never return a type error. With Theorem 3.1, this implies that the checks of the defensive machine are redundant and the aggressive machine can be used safely instead.

Theorem 4.15. If C is a class in P with a method M, formally $P \vdash C$ sees $M:[] \rightarrow T=b$ in C, and if $w f$-jum-prog P, then

$$
P \vdash \text { Normal }(\text { start-state } P C M) \xrightarrow{\text { djum }} \sigma^{\prime} \Longrightarrow \sigma^{\prime} \neq \text { TypeError }
$$

To prove this theorem, we set out from a program P for which the bytecode verifier returns true, i.e., for which there is a Φ such that $w f$-jvm- $\operatorname{prog}_{\Phi} P$ holds. The proof builds on the observation that all runtime states σ that conform to the types in Φ are type safe. For σ conforms to Φ, we write $P, \Phi \vdash \sigma \sqrt{ }$. For $P, \Phi \vdash \sigma \sqrt{ }$ to be true, the following must hold: if in state σ execution is at position $p c$ of method M in C, then the state type $(\Phi C M)_{[p c]}$ must be of the form $\lfloor\tau\rfloor$, and for every value v on the stack or in the register set the type of v must be a subtype of the corresponding entry in its static counterpart τ. This is the essence of the conformance relation. To show that it is invariant during execution, it needs to be strengthened. We show the complete formal definition of conformance below, but to avoid getting bogged down in detail we continue to sketch the general proof outline first. For this strong conformance we have shown that it is invariant during execution if the program is well-typed.

Lemma 4.16. If $w f$-jvm- $\operatorname{prog}_{\Phi} P$ and $P \vdash \sigma \xrightarrow{\text { jvm }} \sigma^{\prime}$ and $P, \Phi \vdash \sigma \sqrt{ }$ then $P, \Phi \vdash \sigma^{\prime} \sqrt{ }$.

The proof is by induction on the length of the execution and then by case distinction on the instruction set. For each instruction, we conclude from the conformance of σ together with the app part of $w f$-jvm-prog that all assumptions of the operational semantics are met (like "the stack is not empty"). Then we execute the instruction and observe that the new state σ^{\prime} conforms to the corresponding τ^{\prime} in eff pc τ. This invariance lemma corresponds to subject reduction in a traditional small step semantics.

Lemma 4.16 is still not sufficient for type safety, though: it might be the case that start $P C M$ does not conform to Φ. We have shown that this is not so.

Lemma 4.17. If wf-jvm- $\operatorname{prog}_{\Phi} P$ and $P \vdash C$ sees M : [] $\rightarrow T=m$ in C then $P, \Phi \vdash$ start-state $P C M \sqrt{ }$.

Lemmas 4.16 and 4.17 together say that all states that occur in any execution of program P conform to Φ if we start P in the canonical way.

The last step in the proof of Theorem 4.15 is Lemma 4.18. It corresponds to progress in a traditional small step semantics.

Lemma 4.18. An execution step started in a conformant state cannot produce a type error in well-typed programs:

$$
\text { If } w f-j v m-\operatorname{prog}_{\Phi} P \text { and } P, \Phi \vdash \sigma \sqrt{ } \text { then } \text { exec }_{d} P \sigma \neq \text { TypeError. }
$$

The proof of Lemma 4.18 is by case distinction on the current instruction in σ. Similar to the proof of Lemma 4.16, the conformance relation together with the app part of wf-jvm-prog ensures check-instr in exec $_{d}$ returns true. Because we know that all states during execution conform, we can conclude Theorem 4.15: there will be no type errors in well-typed programs.

We now show the formal definition of the conformance relation between dynamic Jinja VM states and static states (types) in the Jinja BV.

For the proof of the invariance lemma (Lemma 4.16) to go through, the intuitive notion of conformance we have given above is not sufficient, the formal conformance relation $P, \Phi \vdash \sigma \sqrt{ }$ is stronger. It describes in detail the states that can occur during execution, the form of the heap, and the form of the method invocation stack.

We begin by lifting the single value conformance $P, h \vdash v: \leq T$ of $\S 2.9$ to stack and local variables. For the stack this is just the pointwise lifting of $: \leq$ to lists. As usual, we write $P, h \vdash v s[: \leq] S T$ for this. For the local variables we first need to treat the Err level:
$P, h \vdash v: \leq \top E \equiv$ case E of $\operatorname{Err} \Rightarrow$ True \mid OK $T \Rightarrow P, h \vdash v: \leq T$
Lifting to lists $P, h \vdash v s\left[: \leq_{\top}\right] L T$ is then canonical again.
A call frame conforms if its stack and register set conform, and if the program counter lies inside the instruction list.

```
conf-f Ph (ST,LT) is (stk,loc, C,M,pc) \equiv
P,h\vdashstk[:\leq] ST^P,h\vdashloc [:\leq丁] LT ^ pc< < is 
```

This is still not enough. For proving the Return case, we also need information about the structure of the call frame stack. The predicate conf-fs below describes the structure of the call frame stack beneath the topmost frame. The parameters M_{0}, n_{0} and T_{0} are name, number of parameters and return type of the method in the topmost frame.

```
conf-fs \(P h \Phi M_{0} n_{0} T_{0}[]=\) True
conf-fs \(P h \Phi M_{0} n_{0} T_{0}((s t k, l o c, C, M, p c) \cdot f s)=\)
( \(\exists S T\) LT Ts \(T\) mxs mxl \(l_{0}\) is xt.
    \((\Phi C M)_{[p c]}=\lfloor(S T, L T)\rfloor \wedge P \vdash C\) sees \(M: T s \rightarrow T=\left(m x s, m x l_{0}, i s, x t\right)\) in \(C \wedge\)
    ( \(\exists \mathrm{D} T s^{\prime} T^{\prime} m D^{\prime}\).
        \(i s_{[p c]}=\) Invoke \(M_{0} n_{0} \wedge S T_{\left[n_{0}\right]}=\) Class \(D \wedge P \vdash D\) sees \(M_{0}: T s^{\prime} \rightarrow T^{\prime}=m\) in \(D^{\prime} \wedge\)
        \(\left.P \vdash T_{0} \leq T^{\prime}\right) \wedge\)
    conf-f \(P h(\bar{S} T, L T)\) is \((s t k, l o c, C, M, p c) \wedge\)
    conf-fs \(P h \Phi M|T s| T f s)\)
```

In the definition above, a list of call frames conforms if it is empty. If it is not empty, then for the head frame the following must hold: the state type $(\Phi C M)_{[p c]}$ for the current instruction must denote a reachable instruction; the call frame must belong to a defined method; it must be halted at the Invoke instruction which created the
call frame above (this is not easily expressed without access to something like a call history, but it is enough to demand that the M and n in Invoke $M n$ are M_{0} and n_{0}, and that the return type of a lookup on the class D in $S T_{\left[n_{0}\right]}$ conforms to T_{0}, the return type the frame above expects); finally, the current frame and the rest of the call frame stack must conform.

The following is the top level conformance relation between a state and a program type. The first two cases are trivial, the third case requires a conformant heap $(P \vdash h \sqrt{ })$, contains special handling for the topmost call frame and delegates the rest to conf-fs. The topmost frame is special because it does not need to be halted at an Invoke instruction. The topmost frame must conform and the current state type must denote a reachable instruction. The method lookup provides conf-f and conf-fs with the required parameters.

```
\(P, \Phi \vdash(\) None, \(h,[]) \sqrt{ }=\) True
\(P, \Phi \vdash(\lfloor x\rfloor, h, f s) \sqrt{ }=(f s=[])\)
\(P, \Phi \vdash(\) None \(, h,(s t k, l o c, C, M, p c) \cdot f s) \sqrt{ }=\)
( \(\exists\) Ts T mxs \(m x l_{0}\) is \(x t s\).
    \(P \vdash h \vee \wedge P \vdash C\) sees \(M: T s \rightarrow T=\left(m x s, m x l_{0}\right.\), is, \(\left.x t\right)\) in \(C \wedge(\Phi C M)_{[p c]}=\lfloor s\rfloor \wedge\)
    conf-f Phsis (stk, loc, C, M, pc) \(\wedge\)
    conf-fs \(P h \Phi M|T s| T f s)\)
```

Fig. 27 is a snapshot of the Jinja VM state in the middle of a typical program execution. On the left there is the Jinja VM with its frame stack and heap, on the right there are the method types the BV predicted for this program. The program declarations appear on the lower right side in the static part.

The state on the left in Fig. 27 conforms to the static type information on the right: all objects in the heap conform, because the values of the field F (declared in class B) are all of type Class $A($ Null is of type Class A, and the address $A d d r 0$ points to an object of Class B which is a subclass of Class A). All frames but the topmost one are halted at the Invoke instruction that created the next frame. The dynamic operand stacks conform to the static ones, because their length is the same and all values have conforming type. The topmost frame conforms, too, because its $p c$ points to a valid instruction (Getfield $F B$), and the value on the dynamic operand stack is an address that points to an object of class C.

4.11 Related Work

The bytecode verifier presented here is a simplified version of the one by Klein [2003] which in turn builds on the work by Nipkow [2001] and Pusch [1999]. Most closely related to these is the work by Barthe and Dufay [2004] who use the Coq system for a formalisation of the JavaCard virtual machine and its BV. They formalise the full JavaCard bytecode language, but with a simplified treatment of some features like bytecode subroutines.

The ASM formalisation of Stärk et al. [2001] contains almost all of the Java BV's features and is executable. It does not use mechanical support or checking for its proofs.

Paper formalisations of Java bytecode verification begin with Stata and Abadi [1998] who give a first formal type system for the JVM. Freund and Mitchell [2003] and Freund [2000] build on this type system and extend it to a substantial subset of the JVM.

Fig. 27. Jinja VM execution snapshot.

Working towards a verified implementation in Specware, Coglio et al. [2000] have specified and analysed large portions of the bytecode verifier. Goldberg [1998] rephrases and generalises the overly concrete description of the BV given in the JVM specification [Lindholm and Yellin 1999] as an instance of a generic data flow framework. Qian [2000] also proves the correctness of an algorithm for turning his type checking rules into a data flow analyser. However, his algorithm is still quite abstract. The formulation of the bytecode verification algorithm as a direct instance of an abstract data flow framework first appears in the work by Nipkow [2001] and is refined by Klein and Nipkow [2003] and Klein [2003].

There is an interesting variant of type inference for the JVM, namely lightweight bytecode verification [Rose and Rose 1998; Rose 2002; 2003]. It uses a certificate to reduce time and space usage during type inference. For space reasons we have left it out here, but lightweight bytecode verification fits in nicely with our formalisation of the VM type system [Klein and Nipkow 2001]. Moreover, it can be formulated as an
inference algorithm in the same abstract framework that we use for Kildall's data flow analyser [Klein 2003]. Other variations of lightweight bytecode verification algorithms are surveyed by Leroy [2003].

There is a large body of literature on bytecode verification that concentrates on special language features like subroutines [Coglio 2004; Klein and Wildmoser 2003], object initialisation, dynamic class loading, thread monitors and access control. There are also a number of more or less radically different approaches to type inferences like model checking, reducing the BV to Haskell type inference, and using ML-style polymorphism. We refer to the overview articles for these.

5. COMPILER

Our compiler operates in two stages: first it replaces variable names in expressions by indices ($\S 5.2$), then it generates the actual JVM code (§5.3). Once we have lifted compilation of expressions to the level of programs (§5.4) we show that both compiler stages preserve the big-step semantics ($\S 5.5$ and $\S 5.6$). Finally we show that not only the semantics, but also the well-typedness of expressions and wellformedness of programs is preserved by compilation, i.e. that the compiler produces well-typed JVM code ($\S 5.8$ and $\S 5.9$).

5.1 Intermediate Language

The intermediate language of expressions is called expr ${ }_{1}$ and is identical to expr, except that all variable names are replaced by natural numbers, except in field access and field assignment. To avoid duplication, in Isabelle/HOL we have defined one parameterised data type ' $a \exp$, and expr and expr r_{1} are abbreviations for the instances vname exp and nat exp. The type of J_{1} programs is defined by

$$
\text { types } J_{1}-p r o g=e x p r_{1} p r o g
$$

In contrast to J-prog, methods no longer need parameter names because they have been replaced by numbers.
5.1.1 Big step semantics. The motivation for our choice of intermediate language is that its semantics is based on almost the same state space as the JVM: local variables are no longer stored in a map but in a fixed length list of values, i.e. in an array. Its big step semantics is of the form $P \vdash_{1}\langle e, s\rangle \Rightarrow\left\langle e^{\prime}, s^{\prime}\right\rangle$ where $P::$ J_{1}-prog, e, $e^{\prime}::$ expr $_{1}$ and $s, s^{\prime}::$ heap \times val list.

Most of the evaluation rules for expr ${ }_{1}$ are the same as the ones for expr. The ones that differ are shown in Fig. 28. The modifications in the rules for variable access, variable assignment and exception catching simply reflect the difference between a map and an array. Note that the rules are defensive in that they require the index to be within the bounds of the array. The rule for blocks expresses that all local variables are pre-allocated and blocks are irrelevant for the semantics. However, they are not irrelevant for the type system because of the types of local variables.

The method call rule has changed because the state in which the body is evaluated needs to be initialized with an array $\left(l s_{2}\right)$. The initial section of that array contains the address of the object and the parameters, the remainder is initalized with an arbitrary value, just as in the semantics of Invoke in the JVM (see $\S 3.2$). To find

$$
\begin{aligned}
& \frac{l s_{[i]}=v \quad i<|l s|}{P \vdash_{1}\langle\operatorname{Var} i,(h, l s)\rangle \Rightarrow\langle\operatorname{Val} v,(h, l s)\rangle} \\
& \frac{P \vdash_{1}\left\langle e, s_{0}\right\rangle \Rightarrow\langle\operatorname{Val} v,(h, l s)\rangle \quad i<|l s| \quad l s^{\prime}=l s[i:=v]}{P \vdash_{1}\left\langle i:=e, s_{0}\right\rangle \Rightarrow\left\langle\text { unit },\left(h, l s^{\prime}\right)\right\rangle} \\
& P \vdash_{1}\left\langle e_{1}, s_{0}\right\rangle \Rightarrow\left\langle\text { Throw } a,\left(h_{1}, l s_{1}\right)\right\rangle \quad h_{1} a=\lfloor(D, f s)\rfloor \\
& \frac{P \vdash D \preceq^{*} C \quad \underset{C}{ } \quad i<\left|l s_{1}\right| \quad P \vdash_{1}\left\langle e_{2},\left(h_{1}, l s_{1}[i:=A d d r a]\right)\right\rangle \Rightarrow\left\langle e_{2}{ }^{\prime},\left(h_{2}, l s_{2}\right)\right\rangle}{P \vdash_{1}\left\langle\text { try } e_{1} \operatorname{catch}(C i) e_{2}, s_{0}\right\rangle \Rightarrow\left\langle e_{2}^{\prime},\left(h_{2}, l s_{2}\right)\right\rangle} \\
& \frac{P \vdash_{1}\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle e^{\prime}, s_{1}\right\rangle}{P \vdash_{1}\left\langle\{i: T ; e\}, s_{0}\right\rangle \Rightarrow\left\langle e^{\prime}, s_{1}\right\rangle} \\
& P \vdash_{1}\left\langle e, s_{0}\right\rangle \Rightarrow\left\langle a d d r a, s_{1}\right\rangle \quad P \vdash_{1}\left\langle e s, s_{1}\right\rangle[\Rightarrow]\left\langle m a p \mathrm{Val} v s,\left(h_{2}, l s_{2}\right)\right\rangle \\
& h_{2} a=\left\lfloor\left(C, f_{s}\right)\right\rfloor \quad P \vdash C \text { sees } M: T s \rightarrow T=\operatorname{body} \text { in } D \\
& |v s|=|T s| \quad l s_{2}{ }^{\prime}=A d d r a \cdot v s @ \text { replicate (max-vars body) arbitrary } \\
& \begin{array}{c}
P \vdash_{1}\left\langle b o d y,\left(h_{2}, l s_{2}{ }^{\prime}\right)\right\rangle \Rightarrow\left\langle e^{\prime},\left(h_{3}, l s_{3}\right)\right\rangle \\
P \vdash_{1}\left\langle e . M(e s), s_{0}\right\rangle \Rightarrow\left\langle e^{\prime},\left(h_{3}, l s_{2}\right)\right\rangle
\end{array}
\end{aligned}
$$

Fig. 28. Evaluation rules for expr r_{1} differing from those for expr

```
\(\mathcal{B}\) (new \(C\) ) \(i=T r u e\)
\(\mathcal{B}(\) Cast \(C e) i=\mathcal{B} e i\)
\(\mathcal{B}(\) Val \(v) i=\) True
\(\mathcal{B}\left(e_{1} \ll b o p \gg e_{2}\right) i=\left(\mathcal{B} e_{1} i \wedge \mathcal{B} e_{2} i\right)\)
\(\mathcal{B}(\operatorname{Var} j) i=\) True
\(\mathcal{B}(e . F\{D\}) i=\mathcal{B}\) e \(i\)
\(\mathcal{B}(j:=e) i=\mathcal{B}\) ei
\(\mathcal{B}\left(e_{1} \cdot F\{D\}:=e_{2}\right) i=\left(\mathcal{B} e_{1} i \wedge \mathcal{B} e_{2} i\right)\)
\(\mathcal{B}(e . M(e s)) i=(\mathcal{B}\) e \(i \wedge \mathcal{B} s\) es \(i)\)
\(\mathcal{B}\{j: T ; e\} i=(i=j \wedge \mathcal{B} e(i+1))\)
\(\mathcal{B}\left(e_{1} ; e_{2}\right) i=\left(\mathcal{B} e_{1} i \wedge \mathcal{B} e_{2} i\right)\)
\(\mathcal{B}\left(\right.\) if \((e) e_{1}\) else \(\left.e_{2}\right) i=\left(\mathcal{B}\right.\) e \(\left.i \wedge \mathcal{B} e_{1} i \wedge \mathcal{B} e_{2} i\right)\)
\(\mathcal{B}\) (throw e) \(i=\mathcal{B} e i\)
\(\mathcal{B}(\) while \((e) c) i=(\mathcal{B} e i \wedge \mathcal{B} c i)\)
\(\mathcal{B}\left(\operatorname{try} e_{1} \operatorname{catch}(C j) e_{2}\right) i=\left(\mathcal{B} e_{1} i \wedge i=j \wedge \mathcal{B} e_{2}(i+1)\right)\)
\(\mathcal{B} s\) [] \(i=\) True
\(\mathcal{B} s(e \cdot e s) i=(\mathcal{B}\) e \(i \wedge \mathcal{B} s\) es \(i)\)
```

Fig. 29. Definition of \mathcal{B}
out how many local variables are needed, max-vars (Fig. 30) computes the maximal depth of nested local variables. However, the depth may say nothing about the actual indices, for example in $\left\{29: T_{0} ;\left\{17: T_{1} ; e\right\}\right\}$. But the layout of $l s_{2}{ }^{\prime}$ assumes the two are related: all indices in body must be below $1+$ size vs + max-vars body. This assumption is justified because, as we will see later on, stage 1 of the compiler produces intermediate expressions with the following property: starting from some given index, say 4 , indices increase by 1 for each nested block. For example, $\left\{5: T_{0}\right.$; $\left.\left\{6: T_{1} ; e_{1}\right\} ;\left\{6: T_{2} ; e_{2}\right\}\right\}$ is fine, but $\left\{6: T_{1} ;\left\{5: T_{0} ; e\right\}\right\},\left\{5: T_{0} ;\left\{7: T_{2} ; e\right\}\right\}$ and $\left\{6: T_{1} ;\left\{7: T_{0} ; e\right\}\right\}$ are not. This property is formalized by \mathcal{B} in Fig. 29 and could be called an inverse de Bruijn numbering scheme.

```
max-vars (new C) = 0
max-vars (Cast C e) = max-vars e
max-vars (Val v) = 0
max-vars ( }\mp@subsup{e}{1}{<<bop>> e}2)=\operatorname{max}(\mathrm{ max-vars e }\mp@subsup{e}{1}{})(\mathrm{ max-vars }\mp@subsup{e}{2}{}
max-vars (Var V) = 0
max-vars (V :=e) = max-vars e
max-vars (e.F{D})= max-vars e
max-vars (e.F{D} := e 2) = max (max-vars e e ) (max-vars e e )
max-vars (e.M(es)) = max (max-vars e) (max-varss es)
max-vars {V:T;e} = max-vars e + 1
max-vars ( }\mp@subsup{e}{1}{\prime};\mp@subsup{e}{2}{})=\operatorname{max (max-vars e e ) (max-vars e e
max-vars (if (e) e else el e ) = max (max-vars e) (max (max-vars e e ) (max-vars e e ) )
max-vars (while (b) e) = max (max-vars b) (max-vars e)
max-vars (throw e) = max-vars e
max-vars (try e catch (C V) e e ) = max (max-vars e e ) (max-vars e e 2 + 1)
max-varss [] = 0
max-varss (e\cdotes)=max (max-vars e) (max-varss es)
```

Fig. 30. Definition of max-vars

$$
\begin{gathered}
\frac{E_{[i]}=T \quad i<|E|}{P, E \vdash_{1} \operatorname{Var} i:: T} \\
\frac{E_{[i]}=T \quad i<|E| \quad P, E \vdash_{1} e:: T^{\prime} \quad P \vdash T^{\prime} \leq T}{P, E \vdash_{1} i:=e:: \text { Void }} \\
\frac{\text { is-type } P T \quad P, E @[T] \vdash_{1} e:: T^{\prime}}{P, E \vdash_{1}\{i: T ; e\}:: T^{\prime}} \\
\frac{P, E \vdash_{1} e_{1}:: T \quad P, E @[C l a s s C] \vdash_{1} e_{2}:: T}{P, E \vdash_{1} \operatorname{try} e_{1} \operatorname{catch}(C i) e_{2}:: T}
\end{gathered}
$$

Fig. 31. Typing rules for expr ${ }_{1}$ differing from those for expr
5.1.2 Type system. Again we replace a map by a list: in the judgment $P, E \vdash_{1}$ $e:: T$, the environment E is now of type ty list (and $P:: J_{1}-p r o g$). Most rules for this type system are identical to the ones for expr. The ones that have changed are shown in Fig. 31. They also rely on the inverse de Bruijn numbering scheme by ignoring the i in $\{i: T ; e\}$.
5.1.3 Well-formedness. Well-formedness of J_{1} programs is essentially wellformedness of Jinja programs (§2.8) where the conditions on the parameter names have been dropped and inverse de Bruijn numbering is required:

```
wf-J1-mdecl P C (M,Ts,T, body) \equiv
(\exists\mp@subsup{T}{}{\prime}.P,Class C}\cdotTs\mp@subsup{\vdash}{1}{}\mathrm{ body :: T'^P 
wf-J J-prog \equivwf-prog wf-J J-mdecl
```

In the definition of \mathcal{D} (§2.7) we pretended that it operates on expr, but in reality it is defined on the polymorphic type ' a exp and hence works on expr ${ }_{1}$ as well.

```
compE 
compE E Vs (Cast Ce) = Cast C (compE E Vse)
compE E Vs (Val v)= Val v
compE E1 Vs ( }\mp@subsup{e}{1}{<<bop>> e}2)=compE\mp@subsup{E}{1}{}\mathrm{ Vs e}\mp@subsup{e}{1}{<<bop> compE E Vs e
compE 1 Vs (Var V) = Var (index Vs V)
compE E Vs (V:=e)= index Vs V := compE1 Vs e
compE E Vs (e.F{D}) = compE E Vs e.F{D}
compE E Vs (e, F F{D} := e e ) = compE E Vs e
compE E Vs (e.M(es))= compE E Vs e.M(compEs (cos es)
compE E Vs {V:T;e}={|Vs|:T;compE E (Vs@ [V])e}
compE E Vs (e, ; e e})=\mp@subsup{compE E Vs e}{1}{\prime};\mp@subsup{\operatorname{compE}}{1}{}Vs\mp@subsup{e}{2}{
```



```
compE E Vs (while (e)c) = while (compE E Vs e) compE E Vs c
compE 1 Vs (throw e) = throw (compE E Vs e)
compE E Vs (try e}\mp@subsup{e}{1}{}\mathrm{ catch (CV) e e})
try compE E Vs e c catch (C|Vs|)compE 1 (Vs@ [V]) e}\mp@subsup{\mp@code{2}}{1}{
compEs1 Vs [] = []
compEs
```

Fig. 32. Definition of $\operatorname{comp} E_{1}$

5.2 Stage 1: Names to Indices

The translation from expr to expr r_{1} is parametrised by the list of variables declared on the path from the root of the expression to the current subexpression. The index of a variable is the position of its rightmost occurrence in that list: in $[A, B, A, C, D], A$ has index $2, B$ index 1 , and C index 3 . The formal definition index [] $y=0$
index $(x \cdot x s) y=($ if $x=y$ then if $x \in$ set $x s$ then index $x s y+1$ else 0 else index xs $y+1)$
reveals that the index of an element not in the list is the length of the list. Function comp E_{1} :: vname list \Rightarrow expr $\Rightarrow \operatorname{expr}_{1}$ (Fig. 32) traverses an expression and translates variable names via index.

5.3 Stage 2: Code Generation

Code generation comprises the generation of an instruction list and of an exception table. Generating the instruction list (function $\operatorname{comp}_{2}::$ expr $_{1} \Rightarrow$ instr list in Fig. 33) is straightforward since we are already on the level of indices rather than names. The only case that may need some explanations is try-catch. We compile the code as suggested in the official JVM specification [Lindholm and Yellin 1999]: first the try block, then a jump over the rest to the end, then (and this is the entry point for the exception handler) the exception reference is stored in the local variable, and finally the catch block. Remember that int is the injection from naturals (produced by the length function) into integers (required by branch instructions).

Producing the code is simplified because branch instructions are relative. Hence the compiler does not need to compute absolute address. The exception table, however, contains absolute addresses. Hence its generation (function compxE 2 :: $\operatorname{expr}_{1} \Rightarrow p c \Rightarrow$ nat \Rightarrow ex-table in Fig. 34) requires the current program counter as a parameter. The final parameter is the current size of the stack. Function $\operatorname{compx} E_{2}$ traverses the expression top-down and left-to-right, collecting the handler information from all try-catch constructs it encounters, while keeping track of the

```
\(\operatorname{comp} E_{2}(\) new \(C)=[\) New \(C]\)
\(\operatorname{comp} E_{2}(\) Cast \(C e)=\operatorname{comp}_{2} e @[\) Checkcast \(C\) ]
\(\operatorname{comp} E_{2}(\mathrm{Val} v)=[\) Push \(v]\)
\(\operatorname{comp} E_{2}\left(e_{1} \ll b o p \gg e_{2}\right)=\operatorname{compE} E_{2} e_{1} @ \operatorname{compE} E_{2} e_{2} @(\) case bop of \(=\Rightarrow[\mathrm{CmpEq}] \mid+\Rightarrow[\) IAdd \(])\)
\(\operatorname{comp} E_{2}(\operatorname{Var} i)=[\) Load \(i]\)
\(\operatorname{comp}_{2}(i:=e)=\operatorname{comp}_{2} e @[\) Store \(i\), Push Unit]
\(\operatorname{comp} E_{2}(e . F\{D\})=\operatorname{comp} E_{2} e @[G e t f i e l d F D]\)
\(\operatorname{comp} E_{2}\left(e_{1} \cdot F\{D\}:=e_{2}\right)=\operatorname{comp} E_{2} e_{1} @ \operatorname{comp} E_{2} e_{2} @[P u t f i e l d F D\), Push Unit]
\(\operatorname{comp} E_{2}(e \cdot M(e s))=\operatorname{comp}_{2} e\) @ compEs 2 es @ [Invoke \(\left.M|e s|\right]\)
\(\operatorname{comp} E_{2}\{i: T ; e\}=\operatorname{comp}_{2} e\)
\(\operatorname{comp} E_{2}\left(e_{1} ; e_{2}\right)=\operatorname{comp} E_{2} e_{1} @[P o p] @ \operatorname{comp} E_{2} e_{2}\)
\(\operatorname{comp} E_{2}\left(\right.\) if \((e) e_{1}\) else \(\left.e_{2}\right)=\)
(let cnd \(=\operatorname{compE} E_{2} e ;\) thn \(=\operatorname{compE} E_{2} e_{1} ;\) els \(=\operatorname{compE} E_{2} e_{2}\); test \(=\) IfFalse \((\) int \((|t h n|+2))\);
    thnex \(=\) Goto \((\) int \((|e l s|+1))\)
in cnd @ [test] @ thn @ [thnex] @ els)
\(\operatorname{comp} E_{2}(\) while \((e) c)=\)
(let cnd \(=\operatorname{comp} E_{2} e ; b d y=\operatorname{compE} E_{2} c ;\) test \(=\) IfFalse \((\) int \((|b d y|+3))\);
    loop \(=\) Goto \((-\operatorname{int}(|b d y|+|c n d|+2))\)
in cnd @ [test] @ bdy @ [Pop] @ [loop] @ [Push Unit])
comp \(E_{2}\) (throw e) \(=\operatorname{comp}_{2} e\) @ [Throw]
\(\operatorname{comp} E_{2}\left(\operatorname{try} e_{1}\right.\) catch \(\left.(C i) e_{2}\right)=\)
(let catch \(=\operatorname{comp} E_{2} e_{2}\) in compE \(E_{2} e_{1} @[\) Goto (int \(\mid\) catch \(\mid+2)\), Store \(\left.i\right]\) @ catch)
\(c o m p E s_{2}[]=[]\)
\(\operatorname{compEs}_{2}(e \cdot e s)=\operatorname{compE}_{2} e @ \operatorname{compEs}_{2}\) es
```

Fig. 33. Definition of $\operatorname{comp} E_{2}$
current program counter (by adding the size of the compiled code to the left to it) and the current stack size (by incrementing it suitably). Each try-catch generates one entry in the exception table. It contains the stack size d before execution of the try-catch: that is the stack size we must return to when an exception is encountered and execution continues with the catch block. The precise addresses in this exception table entry are of course implicitly determined by the layout of the code produced by $\operatorname{comp} E_{2}$. It is crucial that this entry is placed behind the exception tables belonging to the try and catch blocks: because the JVM searches exception tables from the left, it will only find this entry if none of the more directly enclosing handlers match. At least that is the intuition. The proof follows below.

5.4 Program Compilation

Lifting expression compilation to the level of programs is easy: simply replace all method bodies by their compiled version. This is defined generically:

```
compP :: \(\left(\right.\) ' \(a \Rightarrow\) 'b) \(\Rightarrow{ }^{\prime}\) 'a prog \(\Rightarrow^{\prime} b\) prog
\(\operatorname{compP} f \equiv \operatorname{map}(\operatorname{comp} C f)\)
comp \(C::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a\) cdecl \(\Rightarrow{ }^{\prime} b\) cdecl
\(\operatorname{compCf} \equiv \lambda(C, D, F d e c l s, M d e c l s) .(C, D, F d e c l s, \operatorname{map}(c o m p M f) M d e c l s)\)
comp \(M::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a\) mdecl \(\Rightarrow{ }^{\prime} b\) mdecl
\(\operatorname{compM} \mathcal{F} \equiv \lambda(M, T s, T, m) .(M, T s, T, f m)\)
```

Now we can lift the two compiler stages from expressions to programs:
$\operatorname{comp} P_{1}:: J-p r o g \Rightarrow J_{1}-$ prog

```
compx \(E_{2}\) (new \(C\) ) pc \(d=[]\)
\(\operatorname{compx}_{2}\) (Cast \(C\) e) pcd= compxE \(E_{2}\) epc \(d\)
\(\operatorname{compxE}_{2}(\mathrm{Val} v) p c d=[]\)
compxE \(2\left(e_{1} \ll b o p \gg e_{2}\right) p c d=\operatorname{compxE} E_{2} e_{1} p c d @ \operatorname{compx} E_{2} e_{2}\left(p c+\left|\operatorname{comp} E_{2} e_{1}\right|\right)(d+1)\)
compxE \(2(\operatorname{Var} i) p c d=[]\)
compx \(E_{2}(i:=e) p c d=\operatorname{compx} E_{2}\) e pc \(d\)
\(\operatorname{compx}_{2}(e . F\{D\}) p c d=\operatorname{compx} E_{2}\) e pcd
\(\operatorname{compx} E_{2}\left(e_{1} \cdot F\{D\}:=e_{2}\right) p c d=\operatorname{compxE} E_{2} e_{1} p c d @ \operatorname{compxE}_{2} e_{2}\left(p c+\left|\operatorname{comp} E_{2} e_{1}\right|\right)(d+1)\)
\(\operatorname{compx} E_{2}(e . M(e s)) p c d=\operatorname{compx} E_{2}\) epcd@compxEs \(s_{2}\) es \(\left(p c+\left|\operatorname{comp} E_{2} e\right|\right)(d+1)\)
\(\operatorname{compx} E_{2}\{i: T ; e\} p c d=\operatorname{compxE} E_{2}\) e pc \(d\)
\(\operatorname{compx} E_{2}\left(e_{1} ; e_{2}\right) p c d=\operatorname{compxE} E_{2} e_{1} p c d @ \operatorname{compxE} E_{2} e_{2}\left(p c+\left|\operatorname{comp} E_{2} e_{1}\right|+1\right) d\)
compx \(E_{2}\) (if (e) \(e_{1}\) else \(e_{2}\) ) pc \(d=\)
\(\left(\right.\) let \(p c_{1}=p c+\left|\operatorname{compE} E_{2} e\right|+1 ; p c_{2}=p c_{1}+\left|\operatorname{compE} E_{2} e_{1}\right|+1\)
in compxE \(E_{2}\) e pcd@ compxE \(\left.E_{2} e_{1} p c_{1} d @ \operatorname{compxE}_{2} e_{2} p c_{2} d\right)\)
\(\operatorname{compx} E_{2}\) (while (b) e) pc d=compxE \(E_{2} b p c d @ \operatorname{compx}_{2} e\left(p c+\left|\operatorname{compE} E_{2} b\right|+1\right) d\)
compx \(E_{2}\) (throw e) pc \(d=\operatorname{compx} E_{2}\) e pcd
compxE \(E_{2}\) (try \(e_{1}\) catch \(\left.(C i) e_{2}\right) p c d=\)
\(\left(\right.\) let \(p c_{1}=p c+\left|\operatorname{comp} E_{2} e_{1}\right|\)
in compxE \(\left.E_{2} e_{1} p c d @ \operatorname{compx} E_{2} e_{2}\left(p c_{1}+2\right) d @\left[\left(p c, p c_{1}, C, p c_{1}+1, d\right)\right]\right)\)
compxEs \(_{2}\) [] pc \(d=[]\)
\(\operatorname{compxEs}_{2}(e \cdot e s) p c d=\operatorname{compxE} E_{2}\) e pcd@ compxEs \(s_{2}\) es \(\left(p c+\left|\operatorname{comp}_{2} e\right|\right)(d+1)\)
```

Fig. 34. Definition of compx E_{2}

```
\(\operatorname{comp} P_{1} \equiv \operatorname{compP}\left(\lambda(p n s\right.\), body \() . \operatorname{comp} E_{1}(\) this \(\cdot p n s)\) body \()\)
comp \(P_{2}:: J_{1}-p r o g ~ \Rightarrow j u m-p r o g\)
comp \(P_{2} \equiv \operatorname{compP}{\text { comp } M b_{2}}\)
\(\mathrm{compMb}_{2} \equiv\)
\(\lambda\) body. let ins \(=\operatorname{comp} E_{2}\) body @ [Return]; xt \(=\operatorname{compx} E_{2}\) body 00
    in (max-stack body, max-vars body, ins, xt)
```

Function $\operatorname{comp} P_{1}$ compiles each method body in the context of this and its parameter names as the only local variables. Function $\operatorname{comp} P_{2}$ compiles each method body into the required 4 -tuple of maximal stack size (Fig. 35), number of local variables, instructions, and exception table.

The main compiler $J 2 J V M$ is simply the composition of $\operatorname{comp} P_{1}$ with comp P_{2}.

5.5 Correctness of Stage 1

Although the translation from names to indices appears straightforward, formulating its correctness is already a bit involved. We want to prove preservation of the semantics, i.e. that an evaluation $P \vdash\langle e,(h, l)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$ implies some evaluation comp $P_{1} P \vdash_{1}\left\langle\operatorname{comp} E_{1}\right.$ Vs $\left.e,(h, l s)\right\rangle \Rightarrow\left\langle\operatorname{comp} E_{1} V s e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle$. It is plausible that set $V s$ should be a superset of $f v e$ and that $[V s[\mapsto] l s]$ should be related to l. Equating them does not work because variables in $V s$ that have not yet been assigned to will not be in dom l - uninitialised variables again complicate matters. Hence we have to settle for the weaker $l \subseteq_{m}[V s[\mapsto] l s]$ where
$m_{1} \subseteq_{m} m_{2} \equiv \forall a \in \operatorname{dom} m_{1} . m_{1} a=m_{2} a$
is defind for arbitrary maps. This relationship should be preserved, i.e. $l^{\prime} \subseteq_{m}$ [Vs $[\mapsto] l s]$ should hold.

We are now ready for the main theorem:

```
max-stack (new C) = 1
max-stack (Cast Ce) = max-stack e
max-stack (Val v) = 1
max-stack ( }\mp@subsup{e}{1}{<<bop>> e}2)=\operatorname{max}(\operatorname{max}-stack \mp@subsup{e}{1}{})(\operatorname{max}-stack e e 2 ) +
max-stack (Var i) =1
max-stack ( }i:=e)=\mathrm{ max-stack e
max-stack (e.F{D}) = max-stack e
max-stack ( }\mp@subsup{e}{1}{}.F{D}:=\mp@subsup{e}{2}{})=\operatorname{max}(\mathrm{ max-stack e}\mp@subsup{e}{1}{})(\mathrm{ max-stack e }\mp@subsup{e}{2}{})+
max-stack (e.M(es)) = max (max-stack e) (max-stacks es) +1
max-stack {i:T;e} = max-stack e
max-stack ( }\mp@subsup{e}{1}{};\mp@subsup{e}{2}{})=\operatorname{max}(max-stack e e ) (max-stack e e ) 
max-stack (if (e) e else e e ) = max (max-stack e) (max (max-stack e e ) (max-stack e e ) )
max-stack (while (e)c) = max (max-stack e) (max-stack c)
max-stack (throw e) = max-stack e
max-stack (try e catch (C i) e e ) = max (max-stack e e ) (max-stack e e )
max-stacks [] = 0
max-stacks (e\cdotes) = max (max-stack e) (1 + max-stacks es)
```

Fig. 35. Definition of max-stack
Theorem 5.1. If wwf- J-prog P and $P \vdash\langle e,(h, l)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$ and $f v e \subseteq$ set $V s$ and $l \subseteq_{m}[V s[\mapsto] l s]$ and $|V s|+$ max-vars $e \leq|l s|$ then $\exists l s^{\prime} . c o m p P_{1} P$ $\vdash_{1}\left\langle c o m p E_{1}\right.$ Vs e, $\left.(h, l s)\right\rangle \Rightarrow\left\langle f i n_{1} e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle \wedge l^{\prime} \subseteq_{m}\left[V s[\mapsto] l s^{\prime}\right]$.

First we examine the additional premises. Weak well-formedness is necessary for method calls: in order to apply the induction hypothesis arising from the evaluation of the method body, we need to establish an instance of $f v e \subseteq$ set $V s$, namely that the only free variables in the body are this and the parameters. The premise $|V s|+$ max-vars $e \leq|l s|$ ensures that $l s$ is large enough to hold all local variables needed during the evaluation of e. In the conclusion, comp $E_{1} V s e^{\prime}$ has been replaced by $f i n_{1} e^{\prime}$ where $f i n_{1}$:: expr \Rightarrow expr $_{1}$ is the "identity" on final expressions: $f i n_{1}(\mathrm{Val} v)=\operatorname{Val} v$ and $\mathrm{fin}_{1}(\operatorname{Throw} a)=$ Throw a. This simplifies the proposition and the proof because it removes the pointless $V s$.

Proof. The proof is by induction on $P \vdash\langle e,(h, l)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$. The only non-trivial cases are blocks and try-catch. We discuss the block case as it isolates the main issue, local variables. Let e be $\left\{V: T ; e_{0}\right\}$. From the assumptions $f v e \subseteq$ set $V s, l \subseteq_{m}[V s[\mapsto] l s]$ and $|V s|+$ max-vars $e \leq|l s|$ the preconditions for the induction hypothesis follow and we obtain an $l s^{\prime}$ such that $\operatorname{comp} P_{1} P \vdash_{1}\left\langle\operatorname{comp} E_{1}\right.$ $\left.V s_{0} e_{0},(h, l s)\right\rangle \Rightarrow\left\langle f i n_{1} e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle(1)$ and $l^{\prime} \subseteq_{m}\left[V s_{0}[\mapsto] l s^{\prime}\right]$ (2), where $V s_{0}$ is $V s @[V]$. This $l s^{\prime}$ is also the witness for our goal. Its first conjunct comp $P_{1} P$ $\vdash_{1}\left\langle c o m p E_{1}\right.$ Vs $\left.e,(h, l s)\right\rangle \Rightarrow\left\langle f i n_{1} e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle$ follows directly from (1) by the rule for blocks. The second conjunct is the conclusion of the following general lemma about maps:

```
\(\llbracket l \subseteq_{m}[V s[\mapsto] l s] ; l^{\prime} \subseteq_{m}\left[V s[\mapsto] l s^{\prime}, V \mapsto v\right] ; V \in\) set \(V s \Longrightarrow l s_{[\text {index }}\) Vs \(\left.\left.V\right]=l s_{[\text {index }}^{\prime} V_{s} V\right] ;\)
    \(|l s|=\left|l s^{\prime}\right| ;|V s|<\left|l s^{\prime}\right| \rrbracket\)
\(\Longrightarrow l^{\prime}(V:=l V) \subseteq_{m}\left[V s[\mapsto] l s^{\prime}\right]\)
```

It is proved via the chain $l^{\prime}(V:=l V) \subseteq_{m}\left[V s[\mapsto] l s^{\prime}, V \mapsto v\right](V:=l V)=[V s$ $\left.[\mapsto] l s^{\prime}\right](V:=l V) \subseteq_{m}\left[V s[\mapsto] l s^{\prime}\right]$ where the rightmost \subseteq_{m} is proved by a case distinction on whether $l V$ is None or not.

```
unmod (new C) i = True
unmod (Cast Ce) i= unmod e i
unmod (Val v) i= True
unmod ( }\mp@subsup{e}{1}{<<bop>> e}2)i=(unmod \mp@subsup{e}{1}{}i\wedge\operatorname{unmod}\mp@subsup{e}{2}{}i
unmod (Var i) j= True
unmod (i := e) j=(i\not=j^unmod e j)
unmod (e.F{D}) i= unmod e i
unmod (e e}.F{D}:=\mp@subsup{e}{2}{})i=(\mathrm{ unmod }\mp@subsup{e}{1}{}i\wedge\operatorname{unmod}\mp@subsup{e}{2}{}i
unmod (e.M(es)) i=(unmod e i}\wedge unmods es i
unmod {j:T; e} i= unmod e i
unmod (e
unmod (if (e) e}\mp@subsup{e}{1}{}\mathrm{ else e e
unmod (while (e) c) i=(unmod e i ^ unmod ci)
unmod (throw e) i= unmod e i
unmod (try e catch (Ci) e e ) j = (unmod e e j ^ (if i= j then False else unmod e e j j))
unmods [] i = True
unmods (e\cdotes) i=(unmod e i}\wedge unmods es i
```

Fig. 36. Definition of unmod
The first premise of the lemma is one of our assumptions. The second premise (with v being $l s^{\prime}{ }_{[|V s|]}$) follows from (2) because $|V s|<|l s|$, which follows from the assumption $|V s|+$ max-vars $e \leq|l s|$. Premise $|l s|=\left|l s^{\prime}\right|$ holds because J_{1}-evaluation does not change the length of the list of local variables. Thus we are left with the premise
$V \in$ set $V s \Longrightarrow l s_{[\text {index }}$ Vs $\left.V\right]=l s^{\prime}{ }_{[\text {index }}$ Vs $\left.V\right]$
which follows because evaluation does not modify hidden local variables. We call an element in a list hidden if it occurrs again further to the right:
hidden :: 'a list \Rightarrow nat \Rightarrow bool
hidden xs $i \equiv i<|x s| \wedge x s_{[i]} \in \operatorname{set}(\operatorname{drop}(i+1) x s)$
Now we introduce a predicate unmod :: expr $_{1} \Rightarrow$ nat \Rightarrow bool (Fig. 36) such that unmod e i means i is not assigned to in e. It is easy to prove that hidden variables are unmodified and that evaluation preserves unmodified variables:
hidden $V s i \Longrightarrow \operatorname{unmod}\left(c o m p E_{1}\right.$ Vs e) i
$\llbracket P \vdash_{1}\langle e,(h, l s)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle ;$ unmod e $i ; i<|l s| \rrbracket \Longrightarrow l s_{[i]}=l s^{\prime}{ }_{[i]}$
Now assume $V \in$ set $V s$. It follows easily that hidden $V s_{0}$ (index $V s V$), hence that unmod (comp $\left.E_{1} V s_{0} e\right)($ index $V s V)$, and hence that $l s_{[\text {index }}$ Vs $\left.\left.V\right]=l s_{[\text {index }}^{\prime} \quad V s \quad V\right]$, thus proving the remaining premise.

5.6 Correctness of Stage 2

We need to prove that evaluation on the J_{1}-level implies a related execution sequence on the JVM-level:

Theorem 5.2. If $P_{1} \vdash C$ sees $M: T s \rightarrow T=b o d y$ in C and $P_{1} \vdash_{1}\langle$ body, $(h, l s)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle$ then
comp $P_{2} P_{1} \vdash($ None, $h,[([], l s, C, M, 0)]) \xrightarrow{\mathrm{jvm}}\left(\right.$ exception $\left.e^{\prime}, h^{\prime},[]\right)$.

Essentially this theorem says that when executing a method body one obtains the same final heap on the JVM-level as on the J_{1}-level. The local variables have disappeared from the final JVM state because we are right at the end of the computation, where the frame stack is empty. Function exception of type 'a exp \Rightarrow addr option extracts the exception reference if there is one: exception (Throw a) $=\lfloor a\rfloor$ and exception ${ }_{-}=$None.

Unfortunately, this theorem needs to be strengthened greatly before it becomes provable by induction. The result is

$P, C, M, p c \triangleright c o m p E_{2} e$ and $P, C, M \triangleright c o m p x E_{2}$ e $p c|v s| / I,|v s|$ and
$\left\{p c . .<p c+\left|c o m p E_{2} e\right|\right\} \subseteq I$. If $P_{1} \vdash_{1}\langle e,(h, l s)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle$ then, letting σ $\equiv($ None $, h,(v s, l s, C, M, p c) \cdot f s)$, there are two cases:
-If $e^{\prime}=\mathrm{Val} v$ then
$P \vdash \sigma \xrightarrow{\mathrm{jvm}}\left(\right.$ None, $\left.h^{\prime},\left(v \cdot v s, l s^{\prime}, C, M, p c+\left|c o m p E_{2} e\right|\right) \cdot f s\right)$.
-If $e^{\prime}=$ Throw a then there is a $p c^{\prime}$ such that $p c \leq p c^{\prime}<p c+\left|c o m p E_{2} e\right|$ and
\neg caught $P p c^{\prime} h^{\prime}$ a (compxE E_{2} e $\left.p c|v s|\right)$ and
$P \vdash \sigma \xrightarrow{\mathrm{jvm}}$ find-handler P a $h^{\prime}\left(\left(v s, l s^{\prime}, C, M, p c^{\prime}\right) \cdot f s\right)$.
We will discuss the various components of this lemma in turn.
Instead of a method body we allow an arbitrary expression e. As a consequence we require that the $p c$ in the top frame points to the compiled expression. To this end we define

```
P,C,M,pc\triangleright is \equivis \leqdrop pc(instrs-of P C M)
P,C,M,pc\trianglerighti\equiv\existsis.drop pc (instrs-of P C M) =i.is
```

where $P, C, M, p c \triangleright$ is means that the instruction list is is a prefix (\leq) of the instructions of method M starting at $p c$, and $P, C, M, p c \triangleright i$ means that i is the instruction at $p c$ in M. Exception handling complicates matters further. We need to say that the exception table compiled from e is contained in the exception table of M in such a way that exceptions thrown by e are not erroneously caught by exception table entries further to the left (because exception tables are searched from the left). We also need to say that if an exception thrown by e is caught by an entry further to the right, that entry does not expect more elements on the stack than we currently have. This is what $P, C, M \triangleright c o m p x E_{2}$ e $p c|v s| / I,|v s|$ expresses:

```
P,C,M\triangleright xt / I,d\equiv
\existsxt0 xt .
    ex-table-of P C M = xt0 @ xt @ xt \ ^ pcs xt 0 \cap I={} ^ pcs xt \subseteqI^
    (}\forallpc\inI.\forallCp\mp@subsup{c}{}{\prime}\mp@subsup{d}{}{\prime}.\mathrm{ match-ex-table P C pc xt t }=\lfloor(p\mp@subsup{c}{}{\prime},\mp@subsup{d}{}{\prime})\rfloor\longrightarrow\mp@subsup{d}{}{\prime}\leqd
```

where ex-table-of $P C M$ returns the exception table component of method $P C M$, and pcs :: ex-table \Rightarrow pc set yields all program counters guarded by some entry in the table: pcs $x t \equiv \bigcup_{(f, t, C, h, d) \in \text { set } x t}\{f . .<t\}$. The requirement concerning the exception entries to the right of $x t$ is expressed via function match-ex-table which we describe informally: match-ex-table $P C p c x t_{1}$ searches $x t_{1}$ for an entry matching an exception of class C thrown at $p c$. If it finds a suitable entry, it returns the corresponding pair $\left(p c^{\prime}, d^{\prime}\right)$ of the handler pc and the size the stack has to be reduced to, which must be less or equal d.

Let us now turn to the conclusion of the lemma. If the J_{1} evaluation ended in a value v, there is a corresponding JVM execution which deposits v on top of the operand stack. If the J_{1} evaluation ended with an exception, there must be a $p c^{\prime}$ where the corresponding JVM exception is raised. This $p c^{\prime}$ must lie within the instruction list generated from e, the exception (identified by $p c^{\prime}$ and the class of the exception object h^{\prime} a) must not be caught by an exception handler in e, and the final JVM state is the one reached by searching the frame stack for a matching handler. The definition of caught is straightforward and omitted.

Proof. Lemma 5.3 is proved by induction on $P_{1} \vdash_{1}\langle e,(h, l s)\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l s^{\prime}\right)\right\rangle$. Each case is a lengthy combination of JVM executions of the compiled subexpressions of e (obtained from the induction hypotheses) to obtain the JVM execution of $\operatorname{comp} E_{2} e$. We will sketch one case, the penultimate rule in Fig. 4, which describes the evaluation of $e=\operatorname{try} e_{1}$ catch $\left(C^{\prime} V\right) e_{2}$ when e_{1} throws an exception of a subclass of C^{\prime}. Let $\sigma_{0}=\left(\right.$ None, $\left.h_{0},\left(v s, l s_{0}, C, M, p c\right) \cdot f s\right), p c_{1}=p c+\mid c o m p E_{2}$ $e_{1} \mid$, and $\sigma_{0}^{\prime}=\left(\right.$ None, $\left.h_{1},\left(A d d r a \cdot v s, l s_{1}, C, M, p c_{1}+1\right) \cdot f s\right)$.

First we show $P \vdash \sigma_{0} \xrightarrow{\mathrm{jvm}} \sigma_{0}{ }^{\prime}$. From the induction hypothesis for the evaluation of e_{1} we obtain $p c^{\prime}$ such that $p c \leq p c^{\prime}<p c_{1}$ and \neg caught $P p c^{\prime} h_{1} a\left(c o m p x E_{2} e_{1}\right.$ $p c|v s|)$ and $P \vdash \sigma_{0} \xrightarrow{\mathrm{jvm}}$ find-handler P a $h_{1}\left(\left(v s, l s_{1}, C, M, p c^{\prime}\right) \cdot f s\right)$. It remains to show that find-handler returns $\sigma_{0}{ }^{\prime}$, which is the case if it reaches the entry at the end of $x t=\operatorname{compx} E_{2}$ e pc $|v s|=c o m p x E_{2} e_{1} p c|v s| @ \operatorname{compx} E_{2} e_{2}\left(p c_{1}+2\right)$ $|v s| @\left[\left(p c, p c_{1}, C, p c_{1}+1,|v s|\right)\right]$. From the assumption $P, C, M \triangleright x t / I,|v s|$ it follows that ex-table-of PCM is of the form $x t_{0} @ x t @ x t_{1}$ and that pcs $x t_{0}$ and I are disjoint. Because $p c \leq p c^{\prime}<p c_{1}$ implies $p c^{\prime} \in\left\{p c . .<p c+\left|c o m p E_{2} e\right|\right\}$ and because by assumption $\left\{p c . .<p c+\left|\operatorname{comp} E_{2} e\right|\right\} \subseteq I$, we cannot have $p c^{\prime} \in p c s x t_{0}$, i.e. the exception is not protected by an entry in $x t_{0}$. We already know that it is not caught by compx $E_{2} e_{1} p c|v s|$ and it cannot be caught by compx $E_{2} e_{2}\left(p c_{1}+\right.$ 2) $|v s|$ either because all of its entries protect program counters $\geq p c_{1}+2>p c^{\prime}$. Thus find-handler reaches the matching entry at the end of $x t$.

Executing the Store instruction yields $P \vdash \sigma_{0}{ }^{\prime} \xrightarrow{\mathrm{jvm}} \sigma_{1}$ where $\sigma_{1}=\left(\right.$ None, h_{1}, $\left.\left(v s, l s_{1}[i:=A d d r a], C, M, p c_{1}+2\right) \cdot f s\right)$. Let $p c_{2}=p c_{1}+2+\left|c o m p E_{2} e_{2}\right|$. If the evaluation of e_{2} ends in $\mathrm{Val} v$ it follows easily from the second induction hypothesis that $P \vdash \sigma_{1} \xrightarrow{\mathrm{jvm}}\left(\right.$ None, $\left.h_{2},\left(v \cdot v s, l s_{2}, C, M, p c_{2}\right) \cdot f r s\right)$, as required. If it ends in an exception Throw $x a$, the second induction hypothesis yields a $p c^{\prime \prime}$ such that $p c_{1}+2 \leq p c^{\prime \prime}<p c_{2}$ and \neg caught $P p c^{\prime \prime} h_{2} x a\left(\operatorname{compxE} E_{2} e_{2}\left(p c_{1}+2\right)|v s|\right)$ and $P \vdash \sigma_{1} \xrightarrow{\mathrm{jvm}} \sigma_{2}$ where $\sigma_{2}=$ find-handler P xa $h_{2}\left(\left(v s, l s_{2}, C, M, p c^{\prime \prime}\right) \cdot f s\right)$. This $p c^{\prime \prime}$ will also be the witness of the overall goal. We need to show that $p c \leq p c^{\prime \prime}$ $<p c+\left|c o m p E_{2} e\right|$, which is trivial, that the exception is not caught by $x t$, which follows because it is not caught by $\operatorname{compx} E_{2} e_{2}\left(p c_{1}+2\right)|v s|$ and the remaining entries of $x t$ all protect program counters $<p c_{1}<p c^{\prime \prime}$, and that $P \vdash \sigma_{1} \xrightarrow{\mathrm{jvm}} \sigma_{2}$, which we already have.

The proof of Theorem 5.2 from Lemma 5.3 is straightforward.

5.7 Main Correctness Theorem

Composing Theorems 5.1 and 5.2 yields the main correctness theorem:

Theorem 5.4. If $w w f-J$-prog P and $P \vdash C$ sees $M: T s \rightarrow T=(p n s, b o d y)$ in C and
$P \vdash\langle b o d y,(h,[$ this $\cdot p n s[\mapsto] v s])\rangle \Rightarrow\left\langle e^{\prime},\left(h^{\prime}, l^{\prime}\right)\right\rangle$ and $|v s|=|p n s|+1$ and
\mid rest $\mid=$ max-vars body then

If the program is weakly well-formed, then a big step evaluation of a Jinja method body implies a corresponding JVM execution of the compiled program. The initial JVM state contains the same heap, an empty operand stack, and a list of local variables consisting of the parameters values vs followed by an arbitrary rest which only needs to be of the right length max-vars body.

One may also want to prove the converse: any result produced by the compiled program can be produced by the source program. Given the above correctness result and the fact that the JVM is deterministic, it would suffice to prove that if the compiled program terminates, so does the source program. We have not done so.

5.8 Preservation of Well-formedness: Stage 1

Now we turn from the semantics to the question of type correctness and general well-formedness of the generated code. Preservation of well-typedness by $\operatorname{comp} E_{1}$ is easily proved by induction on e :

Lemma 5.5. If $P,[V s[\mapsto] T s] \vdash e:: U$ and $|T s|=|V s|$ then compP f P,Ts \vdash_{1} comp E_{1} Vs e $:: U$.
Because program compilation compP does not modify the types, which is reflected in a number of lemmas like compP f $P \vdash T \leq T^{\prime}$ iff $P \vdash T \leq T^{\prime}$, it does not matter what f is.

The preservation of definite assignment requires a sequence of lemmas, all proved by induction on e, the first three automatically.

$$
\begin{aligned}
& \text { If } \mathcal{A} e=\lfloor A\rfloor \text { then } A \subseteq f v e . \\
& \text { If } \mathcal{A} e=\text { None then } \mathcal{A}\left(c o m p E_{1} \text { Vs e) }=\right.\text { None. } \\
& \mathcal{D} e \text { None }
\end{aligned}
$$

If $\mathcal{A} e=\lfloor A\rfloor$ and $f v e \subseteq$ set $V s$ then $\mathcal{A}\left(c o m p E_{1} V s e\right)=\lfloor$ index $V s ' A\rfloor$.
If $A \subseteq$ set $V s$ and $f v e \subseteq$ set $V s$ and $\mathcal{D} e\lfloor A\rfloor$ then $\mathcal{D}\left(\operatorname{comp} E_{1} V s e\right)\lfloor$ index $V s$ ' $A\rfloor$.
Here f ' A is the image of A under $f: f{ }^{\prime} A \equiv\{y \mid \exists x \in A . y=f x\}$. The final lemma has the following corollary:

Corollary 5.6. If $\mathcal{D} e\lfloor$ set $V s\rfloor$ and $f v e \subseteq$ set $V s$ and distinct $V s$ then $\mathcal{D}\left(c o m p E_{1}\right.$ Vs e) $\lfloor\{. .<|V s|\}\rfloor$.

The combination of this corollary (applicable because all parameter names of a well-formed method are distinct and do not contain this), Lemma 5.5, and the easy lemma $\mathcal{B}\left(\operatorname{comp} E_{1} V s e\right)|V s|$ yields

Theorem 5.7. If $w f-J$-prog P then $w f-J_{1}-\operatorname{prog}\left(\operatorname{comp} P_{1} P\right)$.
The proof is straightforward using the lemma (where Λ is universal quantification)

```
\(\llbracket \wedge C M\) Ts Tm.
    \(\llbracket P \vdash C\) sees \(M: T s \rightarrow T=m\) in \(C ; w f-m d e c l w f_{1} P C(M, T s, T, m) \rrbracket\)
    \(\Longrightarrow w f-m d e c l w f_{2}(c o m p P f P) C(M, T s, T, f m)\);
    wf-prog \(w f_{1} P \rrbracket\)
\(\Longrightarrow w f-\) prog \(w f_{2}(c o m p P f P)\)
```

which essentially says that compP f turns a $w f_{1}$ well-formed program into a $w f_{2}$ well-formed program if f turns a $w f_{1}$ well-formed method into a $w f_{2}$ well-formed method.

5.9 Preservation of Well-formedness: Stage 2

We have to show that $\operatorname{comp} E_{2}$ maps a well-typed J_{1} expression into a well-typed instruction list. For that purpose we follow Stärk et al. [2001] and define a "type compiler" that compiles an expression into type annotations (a method type) for the instruction list that $c o m p E_{2}$ produces:
comp $T::$ ty list \Rightarrow nat set option \Rightarrow ty list \Rightarrow expr $_{1} \Rightarrow t y_{i}{ }^{\prime}$ list
As in $\S 4.7$ we fix the program and the method we are in:

$$
\begin{array}{lll}
P \quad:: J_{1}-p r o g & \text { the program, } \\
m x l:: \text { nat } & \text { number of local variables, } \\
m x s:: \text { nat } & \text { maximum stack size, } \\
T_{r}:: \text { ty } & \text { and return type of the method. }
\end{array}
$$

The type compiler call compT E A ST e produces the method type for comp $E_{2} e$ in the context of the environment E assuming that initially a) the local variables in A :: nat set option are initialised and b) the stack elements are typed according to $S T::$ ty list. It uses the following auxiliary functions:
tyl $E A^{\prime} \equiv \operatorname{map}\left(\lambda i\right.$. if $i \in A^{\prime} \wedge i<|E|$ then $O K E_{[i]}$ else Err) $[0 . .<m x l]$
computes the typing of the local variables based on their declared types in E and their initialisation status in $A^{\prime}::$ nat set.
$t y_{i}{ }^{\prime} S T E A \equiv$ case A of None \Rightarrow None $\mid\left\lfloor A^{\prime}\right\rfloor \Rightarrow\left\lfloor\left(S T, t y_{l} E A^{\prime}\right)\right\rfloor$
computes the state type described by $S T, E$ and A. Remember that $A=$ None indicates unreachability.
after $E A S T e \equiv t y_{i}{ }^{\prime}(t y E e \cdot S T) E(A \sqcup \mathcal{A} e)$
produces the state type characterising stack and local variables after the evaluation of e. Thus we need to push the type of e onto the stack and take the effect of e on A into account. Function $t y$ is a functional version of type checking and is characterised by $P, E \vdash_{1} e:: T \Longrightarrow t y E e=T$

The full definition of comp T is shown in Fig. 37 and uses the additional function $c_{c o m p} T_{a} E A S T e \equiv \operatorname{compT} E A S T e @[a f t e r E A S T e]$
because the method type that comp T produces (intentionally) lacks the state types directly before and after the execution of the corresponding instruction list. That is, it is one element shorter than the instruction list, describing only the states between the instructions. As a simple example let e be the expression $1:=\mathrm{Val}$ (Intg 42) and hence

```
compTEAST(new \(C\) ) = []
compTEAST(Cast Ce)= compTa EASTe
\(\operatorname{compT} E A S T(\operatorname{Val} v)=[]\)
compTEAST( \(\left.e_{1} \ll b o p \gg e_{2}\right)=\)
(let \(S T_{1}=\) ty \(E e_{1} \cdot S T ; A_{1}=A \sqcup \mathcal{A} e_{1}\) in \(\left.\operatorname{comp}_{\text {a }} E A S T e_{1} @ \operatorname{comp}_{a} E A_{1} S T_{1} e_{2}\right)\)
compTEAST \((\operatorname{Var} i)=[]\)
\(\operatorname{compTEAST}(i:=e)=\operatorname{comp} T_{a} E A S T e @\left[t y_{i}{ }^{\prime} S T E(A \sqcup \mathcal{A} e \sqcup\lfloor\{i\}\rfloor)\right]\)
\(\operatorname{comp} T E A S T(e . F\{D\})=\operatorname{comp}_{\mathrm{c}} \mathrm{E} E A S T e\)
compTEAST \(\left(e_{1} \cdot F\{D\}:=e_{2}\right)=\)
\(\left(\right.\) let \(S T_{1}=\) ty \(E e_{1} \cdot S T ; A_{1}=A \sqcup \mathcal{A} e_{1} ; A_{2}=A_{1} \sqcup \mathcal{A} e_{2}\)
in comp \(T_{a} E A S T e_{1} @ \operatorname{comp}_{a} E A_{1} S T_{1} e_{2} @\left[t y_{i}{ }^{\prime} S T E A_{2}\right]\) )
compTEAST\{i:T;e\}=compT(E@[T])(AӨi)STe
\(\operatorname{compTEAST}\left(e_{1} ; e_{2}\right)=\)
\(\left(\right.\) let \(A_{1}=A \sqcup \mathcal{A} e_{1}\) in compTa \(\left.E A S T e_{1} @\left[t y_{i}{ }^{\prime} S T E A_{1}\right] @ \operatorname{compTE} A_{1} S T e_{2}\right)\)
\(\operatorname{compTEAST}\) (if (e) \(e_{1}\) else \(e_{2}\) ) =
(let \(A_{0}=A \sqcup \mathcal{A} e ; \tau=t y_{i}{ }^{\prime} S T E A_{0}\)
in comp \(T_{a} E A S T e @[\tau] @ \operatorname{comp}_{a} E A_{0} S T e_{1} @[\tau] @ \operatorname{compTE} A_{0} S T e_{2}\) )
compTEAST(while (e) c) =
(let \(A_{0}=A \sqcup \mathcal{A} e ; A_{1}=A_{0} \sqcup \mathcal{A} c ; \tau=t y_{i}{ }^{\prime} S T E A_{0}\)
in comp \(T_{a} E A S T e @[\tau] @ \operatorname{comp} T_{a} E A_{0} S T c @\left[t y_{i}{ }^{\prime} S T E A_{1}, t y_{i}{ }^{\prime} S T E A_{0}\right]\) )
comp TEAST(throw e) \(=\operatorname{comp}_{\mathrm{c}} \mathrm{E} E A S T e\)
\(\operatorname{compTEAST}(e \cdot M(e s))=\operatorname{comp} T_{a} E A S T e @ \operatorname{compTs} E(A \sqcup \mathcal{A} e)(t y E e \cdot S T)\) es
\(\operatorname{compT} E A S T\left(\operatorname{try} e_{1} \operatorname{catch}(C i) e_{2}\right)=\operatorname{comp}_{\mathrm{com}} \mathrm{E} A S T e_{1} @\)
\(\left[t y_{i}{ }^{\prime}(\right.\) Class \(C \cdot S T) E A, t y_{i}{ }^{\prime} S T(E\) @ [Class C]) \((A \sqcup\lfloor\{i\}\rfloor)] @\)
\(\operatorname{compT}\left(E\right.\) @ [Class C]) \((A \sqcup\lfloor\{i\}\rfloor) S T e_{2}\)
compTs E A ST [] = []
compTs EAST \((e \cdot e s)=\operatorname{comp} T_{a} E A S T e @ \operatorname{compTs} E(A \sqcup \mathcal{A} e)(t y E e \cdot S T)\) es
```

Fig. 37. Type compiler
$\operatorname{compE} E_{2} e=[$ Push (Intg 42), Store 1, Push Unit]
With $E=[$ Class C, Integer $], A=\lfloor\{0\}\rfloor$ and $S T=[]$ we obtain
compTEASTe=[L([Integer $],[$ OK (Class C $)$, Err $])\rfloor,\lfloor([],[$ OK (Class $C)$, OK Integer $])\rfloor]$
Since we are dealing with instruction lists in isolation rather than whole methods, we need a new well-typedness notion. We write \vdash is, xt [::] τs to mean that the instruction list is together with the exception table $x t$ is well-typed w.r.t. the method type $\tau s:: t y_{i}{ }^{\prime}$ list:

```
\vdash is, xt [::] \taus \equiv
```


The key theorem says that the instruction list and exception table are well-typed w.r.t. the method type produced by the type compiler:

Theorem 5.8. If $P, E \vdash_{1} e:: T$ and $\mathcal{D} e A$ and $\mathcal{B} e|E|$ and $|S T|+$ max-stack $e \leq m x s$ and $|E|+$ max-vars $e \leq m x l$ then $\vdash \operatorname{comp}_{2}$ e, compxE E_{2} e $0|S T|[: \because] t y_{i}{ }^{\prime} S T E A \cdot \operatorname{comp} T_{a} E A S T$ e.

```
\vdash[],[] [:] \taus
\vdash
\vdash
\vdash [test],[] [::] \mp@subsup{\tau}{e}{}\cdot\mp@subsup{\tau}{1}{}\cdot\tau\mp@subsup{s}{c}{}@[\mp@subsup{\tau}{c}{},\mp@subsup{\tau}{2}{},\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{}{\prime}]
\vdashise @ [test], xt e[::] \taus
\vdash
\vdashise @ [test]@ is c,xte @ xt c}\mp@subsup{}{}{\prime}[::] \taus
```



```
\vdashise@[test]@isc}@ [Pop],x\mp@subsup{t}{e}{}@x\mp@subsup{t}{c}{\prime}\mp@subsup{}{}{\prime}[::]\taus) Lemma 5.
```



```
P,Tr,mxs, |\taus ,,[]\vdashgoto, }|i\mp@subsup{s}{e}{}|+|i\mp@subsup{s}{c}{}|+2::\tau
\vdashise @ [test]@ isc}@[Pop, goto],xte @ xtcc' [::] \taus Lemma 5.1
\vdash[Push Unit], [] [::] [ }\mp@subsup{\tau}{1}{},\mp@subsup{\tau}{}{\prime}
\vdashcompE 2 (while (e)c), compxE E (while (e)c) 0 |ST| [::] \taus Lemma 5.9
```

Fig. 38. Proof summary for while

Proof. By induction on e. In order to combine different well-typedness propositions we need a central lemma which follows readily from the definitions:

LEMMA 5.9. If $\vdash i s_{1}, x t_{1}[::] \tau s_{1} @ \tau s_{2}$ and $\vdash i s_{2}, x t_{2}[::] \tau s_{3}$ and $\left|\tau s_{1}\right|=\left|i s_{1}\right|$ and $\tau s_{3} \leq \tau s_{2}$ then $\vdash i s_{1} @ i s_{2}, x t_{1} @ s h i f t\left|i s_{1}\right| x t_{2}[\because:] \tau s_{1} @ \tau s_{2}$.

Here shift $n x t$ shifts all program counters in $x t$ by n and \leq again means prefix. This lemma works well in the presence of forward jumps, but for backward ones we need a second one:

Lemma 5.10. If $\vdash i s, x t[::] \tau s$ and $P, T_{r}, m x s, m p c,[] \vdash i, p c:: \tau s$ and $p c=|i s|$ and $m p c=|\tau s|$ and $|i s|+1<|\tau s|$ then $\vdash i s @[i], x t[::] \tau s$.

We present just one case of the proof of Theorem 5.8, the while-loop. The correspondence of instructions comp E_{2} (while (e) c) (first column) and types compTEAST (while (e) c) (second column) is best described by a table:

compE $2_{2} e$	$\tau \cdot \tau s_{e}$	where $\tau=t y_{i}{ }^{\prime} S T E A$ and $\tau s_{e}=\operatorname{compTEASTe}$
IfFalse \ldots	τ_{e}	where $\tau_{e}=t y_{i}{ }^{\prime}($ Boolean $\cdot S T) E A_{0}$ and $A_{0}=A \sqcup \mathcal{A} e$
compE $E_{2} c$	$\tau_{1} \cdot \tau s_{c}$	where $\tau_{1}=t y_{i}{ }^{\prime} S T E A_{0}$ and $\tau s_{c}=\operatorname{compTE} A_{0} S T c$
Pop	τ_{c}	where $\tau_{c}=t y_{i}{ }^{\prime}(t y E c \cdot S T) E A_{1}$ and $A_{1}=A_{0} \sqcup \mathcal{A} c$
Goto \ldots	τ_{2}	where $\tau_{2}=t y_{i}{ }^{\prime} S T E A_{1}$
Push Unit	τ_{1}	
	τ^{\prime}	where $\tau^{\prime}=t y_{i}{ }^{\prime}($ Void $\cdot S T) E A_{0}$

Using the abbreviations $i s_{e}=\operatorname{comp} E_{2} e, x t_{e}=\operatorname{compx} E_{2} e 0|S T|, i s_{c}=\operatorname{comp} E_{2} c$, $x t_{c}=\operatorname{compx} E_{2} \quad c 0|S T|, x t_{c}{ }^{\prime}=\operatorname{shift}\left(\left|i s_{e}\right|+1\right) x t_{c}$, test $=$ IfFalse \ldots, goto $=$ Goto \ldots and $\tau s=\tau \cdot \tau s_{e} @\left[\tau_{e}, \tau_{1}\right] @ \tau s_{c} @\left[\tau_{c}, \tau_{2}, \tau_{1}, \tau^{\prime}\right]$ (i.e. $\tau s=\operatorname{compTEA}$ $S T$ (while $(e) c)$), we can summarize the proof in the table in Fig. 38 where the uncommented lines follow easily.

The remaining cases follow the same pattern. Try-catch requires
Lemma 5.11. If $\left|i s_{1}\right|=\left|\tau s_{1}\right|$ and is-class $P C$ and $|S T|<m x s$ and $\vdash i s_{1} @ i s_{2}, x t[::] \tau s_{1} @\left(t y_{i}{ }^{\prime}(\right.$ Class $\left.C \cdot S T) E A \cdot \tau s_{2}\right)$ and

```
\forall\tau\inset \taus .
    \forallST'}L\mp@subsup{T}{}{\prime}
        \tau=\lfloor(ST\mp@subsup{T}{}{\prime},LT
        |ST|\leq |ST'|^P\vdash\lfloor(drop (|ST'| - |ST|)ST',LT') \rfloor\leq'ty\mp@subsup{|}{i}{\prime}}STE E A
```


to justify the additional exception table entry.
Now it is not very difficult to conclude
Theorem 5.12. If $w f-J_{1}-p r o g ~ P$ then $w f$-jvm-prog $\left(\operatorname{comp} P_{2} P\right)$.
By definition of $w f$-jvm-prog we need a table Φ such that $w f$-jvm- $\operatorname{prog}_{\Phi}\left(\operatorname{comp}_{2} P\right)$. The table can be computed by compTP :: $J_{1}-p r o g \Rightarrow t y_{P}$

```
compTP P CM三
let \((D, T s, T, e)=\) method \(P C M ; E=\) Class \(C \cdot T s ; A=\lfloor\{. .|T s|\}\rfloor ;\)
    \(m x l=1+|T s|+\) max-vars \(e\)
in \(t y_{i}{ }^{\prime} m x l\) [] \(E A \cdot \operatorname{comp} T_{a} P m x l E A[] e\)
```

and the proof of $w f-j v m-\operatorname{prog}_{\Phi}$ follows largely from Theorem 5.8. Note that $t y_{i}{ }^{\prime}$ and $\operatorname{comp} T_{a}$ are explicitly supplied with their implicit arguments $m x l$ and P because those are no longer fixed globally but are the specific values in this definition.

5.10 Preservation of Well-formedness: Main theorem

Combining Theorems 5.7 and 5.12 yields the main theorem:
Theorem 5.13. If $w f$-J-prog P then $w f$-jum-prog ($J 2 J V M P$).
If the source program is wellformed-which includes every method body being well-typed-then the compiled program is also wellformed and will pass bytecode verification. This is a non-trivial property not guaranteed by Java compilers (for example JDK 1.2 and 1.3) [Stärk and Schmid 2001].

5.11 Related Work

There is a sizable amount of literature on compiler verification in general [Dave 2003], which we cannot possibly survey here, but very little specifically for Java. An early landmark in mechanically verified compilers is the work by Young [1989] whose source language has procedures but no OO features, but whose target language is a real rather than a virtual machine. The work by Strecker [2002] and Klein and Strecker [2004] is closely related to ours but their main theorem does not talk about exceptions, which is a considerable simplification. Furthermore, their type compiler intrinsically assumes that variables are initialized and do not change their type (which they can if you have local variables and reuse storage as we do).

Stärk et al. [2001] show that terminating computations are compiled into terminating ones, just as we have done. They also claim to prove a $1: 1$ correspondence between Java and JVM executions. However, their main theorem fails to imply that nonterminating computations are compiled into nonterminating ones (which we have not shown either). Its statement and proof need to be augmented to prove that one cannot have a diverging Java computation in correspondence with a terminating JVM execution. Furthermore, it is interesting to note that their compiler has one stage only. Our stage 1 disappears in the sentence "we suppress the details
of a consistent assignment of JVM variable numbers \bar{x} to (occurrences of) Java variables x " combined with the fact that their Java semantics treats local variables like the JVM: upon exit of a block, the local variables of the block are unchanged and still visible. This works only because Java forbids nested declarations of the same variable, which Jinja allows. Finally it is interesting to note that their formalization uses attributed syntax trees that tell you, for example, what the current environment E of each subexpression is, whereas we pass E explicitly into many of our functions. Although this is true for the whole formalization, it is most noticeable for the type compiler with its lengthy parameter list. It may well reduce clutter in our formalization to work with expressions annotated with E etc. We have not done so to minimize the number of concepts needed.

The correctness of compiling exceptions is studied by Hutton and Wright [2004]. They treat a very simple expression language and a stack machine where all exception handling information is kept on the stack. Because there is no separate exception table, this leads to simpler exception handling on the machine level and simpler proofs. It is possible that their machine could serve as a convenient stepping stone between Jinja and the Jinja VM.

League et al. [2002] compile Featherweight Java into F_{ω}, which is very different from our compilation into the JVM.

6. CONCLUSION

We have given a completely formal account of the core of a Java-like sequential language, abstract machine and compiler. Although there are some interesting contributions to the analysis of individual facets, for example definite assignment, the emphasis is on a unified model. At the same time we have demonstrated that it is possible to present this model in a style appropriate for a scientific journal, although the formal and machine-checked meta-language prohibits some of the liberties (like "...") of traditional journal articles (and we have decided not to take others like hiding injections such as $\lfloor\rfloor$.$) . Of course Jinja is still a small language$ compared to Java, but we hope that our theories will become the basis for further extensions of Jinja, just as others, e.g. Büchi and Weck [1998], have extended some of our earlier Java formalisations.

The whole development (excluding this paper) runs to 20000 lines of Isabelle/HOL text (with few comments), roughly 350 printed pages and just over 1000 theorems (available at www.in.tum.de/ ${ }^{\sim}$ nipkow/Jinja/). The proofs take about 25 min to process on a 3 GHz Pentium IV with 1GB RAM. This is a major investment, but one that can be built up to gradually: from type checking via prototyping to full-blown theorem proving. The early stages are cheap and worthwhile for any language definition, the final stage is more of an investment but yields a considerable increase in confidence - in particular since the proofs are structured and the general drift of an argument can be followed even by a non-theorem-proving-expert.

We have already hinted that the whole formalisation is executable. (With the exception of wf-jvm-prog, a specification that is implemented by the executable BV.) That is, Isabelle/HOL supports the translation of a mixture of recursive functions and inductive relations into executable (ML) code [Berghofer and Nipkow 2002; Berghofer 2003] and we have run test cases to increase our confidence in the intu-
itive correctness of our definitions. Although we have not gone into this aspect at all, we consider prototyping essential for projects like this, where the initial specification (here: the source language) is already too large to be "obviously" correct. In addition we consider these executable ML prototypes as reference implementations for the language, the compiler, the bytecode verifier etc. Although these prototypes do not have the performance required for production purposes, theorem provers offer the right environment for achieving the required performance: efficient programs can be proved correct w.r.t. initial specifications and then exported to ML just like the prototypes. In fact, the Jinja code generator is a standard recursive functional program without particular performance bottlenecks and may not need much tuning. The bytecode verifier is another matter because its fixed point engine passes a large list around in a single-threaded manner but the generated ML code does not take advantage of this. ACL2 and PVS have code generators that could safely implement this list by an array that is updated destructively. There is ongoing work to provide similar features in Isabelle. We are convinced that theorem provers provide the right means to develop certified efficient language processors that are largely functional but imperative where necessary. Liu and Moore [2003] already provide strong evidence for this thesis.

ACKNOWLEDGMENTS

This work is directly based on and would not exist without the Isabelle formalisations of various facets of Java by David von Oheimb, Conny Pusch, Norbert Schirmer, Martin Strecker and Martin Wildmoser, for which we are very grateful. We also thank them and the referees for commenting on draft versions of this paper.

REFERENCES

Alves-Foss, J., Ed. 1999. Formal Syntax and Semantics of Java. LNCS, vol. 1523. SpringerVerlag.
Ancona, D., Lagorio, G., and Zucca, E. 2001. A core calculus for Java exceptions. In Proc. 16th ACM Conf. Object oriented programming, systems, languages, and applications. 16-30.
Aspinall, D. 2000. Proof General - a generic tool for proof development. In Tools and Algorithms for Construction and Analysis of Systems, TACAS 2000, S. Graf and M. Schwartzbach, Eds. LNCS, vol. 1785. Springer-Verlag, 38-42.
Ballarin, C. 2003. Locales and locale expressions in Isabelle/Isar. In Types for Proofs and Programs, TYPES 2003, S. Berardi, M. Coppo, and F. Damiani, Eds. LNCS, vol. 3085. SpringerVerlag, 34-50.
Barthe, G. and Dufay, G. 2004. A tool-assisted framework for certified bytecode verification. In Fundamental Approaches to Software Engineering, FASE 2004, M. Wermelinger and T. Margaria, Eds. LNCS, vol. 2984. Springer-Verlag, 99-113.
Barthe, G., Dufay, G., Jakubiec, L., Serpette, B., and de Sousa, S. M. 2001. A formal executable semantics of the JavaCard platform. In Programming Languages and Systems (ESOP 2001), D. Sands, Ed. LNCS, vol. 2028. Springer-Verlag, 302-319.

Berghofer, S. 2003. Proofs, programs and executable specifications in higher order logic. Ph.D. thesis, Institut für Informatik, Technische Universität München.
Berghofer, S. and Nipkow, T. 2002. Executing higher order logic. In Types for Proofs and Programs (TYPES'00), P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, Eds. LNCS, vol. 2277. Springer-Verlag, 24-40.

Bertelsen, P. 1997. Semantics of Java bytecode. Tech. rep., Technical University of Denmark. Mar. http://home.tiscali.dk/petermb/.

Büchi, M. and Weck, W. 1998. Compound types for Java. In Proc. 13th ACM conf. Objectoriented programming, systems, languages, and application. ACM Press.
Coglio, A. 2004. Simple verification technique for complex Java bytecode subroutines. Concurrency and Computation: Practice and Experience 16, 7 (June), 647-670.
Coglio, A., Goldberg, A., and Qian, Z. 2000. Toward a provably-correct implementation of the JVM bytecode verifier. In Proc. DARPA Information Survivability Conference and Exposition (DISCEX'00), Vol. 2. IEEE Computer Society Press, 403-410.
Cohen, R. 1997. The defensive Java virtual machine specification. Tech. rep., Computational Logic Inc. http://www.cli.com/software/djvm/.
Dave, M. A. 2003. Compiler verification: A bibliography. SIGSOFT Softw. Eng. Notes 28, 6, 2-2.
Drossopoulou, S. and Eisenbach, S. 1999. Describing the semantics of Java and proving type soundness. See Alves-Foss [1999], 41-82.
Flatt, M., Krishnamurthi, S., and Felleisen, M. 1999. A programmer's reduction semantics for classes and mixins. See Alves-Foss [1999], 241-269.
Freund, S. N. 2000. Type systems for object-oriented intermediate languages. Ph.D. thesis, Stanford University.
Freund, S. N. and Mitchell, J. C. 2003. A type system for the Java bytecode language and verifier. J. Automated Reasoning 30, 271-321.
Goldberg, A. 1998. A specification of Java loading and bytecode verification. In Proc. 5th ACM Conf. Computer and Communications Security. ACM Press, 49-58.
Hartel, P. and Moreau, L. 2001. Formalizing the safety of Java, the Java virtual machine and Java card. ACM Comput. Surv. 33, 517-558.
Huisman, M. 2001. Reasoning about Java programs in higher order logic with PVS and Isabelle. Ph.D. thesis, Universiteit Nijmegen.
Hutton, G. and Wright, J. 2004. Compiling exceptions correctly. In Mathematics of Program Construction, MPC 2004, D. Kozen and C. Shankland, Eds. LNCS, vol. 3125. Springer-Verlag, 211-227.
Igarashi, A., Pierce, B. C., and Wadler, P. 2001. Featherweight Java: a minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 396-450.
Kildall, G. A. 1973. A unified approach to global program optimization. In Proc. ACM Symp. Principles of Programming Languages. ACM Press, 194-206.
Klein, G. 2003. Verified Java bytecode verification. Ph.D. thesis, Institut für Informatik, Technische Universität München.
Klein, G. and Nipkow, T. 2001. Verified lightweight bytecode verification. Concurrency and Computation: Practice and Experience 13, 1133-1151.
Klein, G. And Nipkow, T. 2003. Verified bytecode verifiers. Theor. Comput. Sci. 298, 583-626.
Klein, G. and Strecker, M. 2004. Verified Bytecode Verification and type-certifying Compilation. Journal of Logic and Algebraic Programming 58, 1-2, 27-60.
Klein, G. and Wildmoser, M. 2003. Verified bytecode subroutines. J. Automated Reasoning 30, 363-398.
League, C., Shao, Z., and Trifonov, V. 2002. Type-preserving compilation of Featherweight Java. ACM Trans. Program. Lang. Syst. 24, 112-152.
Leroy, X. 2003. Java bytecode verification: Algorithms and formalizations. J. Automated Reasoning 30, 235-269.
Lindholm, T. and Yellin, F. 1999. The Java Virtual Machine Specification. Addison-Wesley.
Liu, H. and Moore, J. S. 2003. Executable JVM model for analytical reasoning: a study. In Proc. 2003 Workshop Interpreters, Virtual Machines and Emulators. ACM Press, 15-23.
Muchnick, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann.
Nipkow, T. 1991. Higher-order critical pairs. In 6th IEEE Symp. Logic in Computer Science. IEEE Computer Society Press, 342-349.
Nipkow, T. 2001. Verified bytecode verifiers. In Foundations of Software Science and Computation Structures (FOSSACS 2001), F. Honsell, Ed. LNCS, vol. 2030. Springer-Verlag, 347-363.

Nipkow, T., Ed. 2003a. Special Issue on Java Bytecode Verification. J. Automated Reasoning, vol. 30. 3-4.
NiPkow, T. 2003b. Structured Proofs in Isar/HOL. In Types for Proofs and Programs (TYPES 2002), H. Geuvers and F. Wiedijk, Eds. LNCS, vol. 2646. Springer-Verlag, 259-278.

Nipkow, T. 2005. Jinja: Towards a comprehensive formal semantics for a Java-like language. In Proof Technology and Computation, Proc. Marktobderdorf Summer School 2003, H. Schwichtenberg and K. Spies, Eds. IOS Press.
Nipkow, T. and Oheimb, D. v. 1998. Java light $^{\text {is type-safe - definitely. In Proc. 25th ACM }}$ Symp. Principles of Programming Languages. ACM Press, 161-170.
Nipkow, T., Paulson, L., and Wenzel, M. 2002. Isabelle/HOL - A Proof Assistant for HigherOrder Logic. LNCS, vol. 2283. Springer-Verlag. http://www.in.tum.de/~nipkow/LNCS2283/.
Oheimb, D. v. and Nipkow, T. 1999. Machine-checking the Java specification: Proving typesafety. See Alves-Foss [1999], 119-156.
Pusch, C. 1999. Proving the soundness of a Java bytecode verifier specification in Isabelle/HOL. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS'99), W. Cleaveland, Ed. LNCS, vol. 1579. Springer-Verlag, 89-103.
Qian, Z. 2000. Standard fixpoint iteration for Java bytecode verification. ACM Trans. Program. Lang. Syst. 22, 638-672.
Rose, E. 2002. Vérification de Code d'Octet de la Machine Virtuelle Java. Formalisation et Implantation. Ph.D. thesis, Université Paris VII.
Rose, E. 2003. Lightweight bytecode verification. J. Automated Reasoning 31, 3-4, 303-334.
Rose, E. and Rose, K. 1998. Lightweight bytecode verification. In OOPSLA' '98 Workshop Formal Underpinnings of Java.
Schirmer, N. 2003. Java Definite Assignment in in Isabelle/HOL. In Formal Techniques for Javalike Programs 2003 (Proceedings), S. Eisenbach, G. Leavens, P. Müller, A. Poetzsch-Heffter, and E. Poll, Eds. Chair of Software Engineering, ETH Zürich. Technical Report 108.
SChirmer, N. 2004. Analysing the Java package/access concepts in Isabelle/HOL. Concurrency and Computation: Practice and Experience 16, 689-706.
Stärk, R. and Schmid, J. 2001. The problem of bytecode verification in current implementations of the JVM. Tech. rep., Department of Computer Science, ETH Zürich.
StÄrk, R., Schmid, J., And Börger, E. 2001. Java and the Java Virtual Machine - Definition, Verification, Validation. Springer-Verlag.
Stata, R. and Abadi, M. 1998. A type system for Java bytecode subroutines. In Proc. 25th ACM Symp. Principles of Programming Languages. ACM Press, 149-161.
Strecker, M. 2002. Formal verification of a Java compiler in Isabelle. In Automated Deduction - CADE-18, A. Voronkov, Ed. LNCS, vol. 2392. Springer-Verlag, 63-77.

Syme, D. 1999. Proving Java type soundness. See Alves-Foss [1999], 83-118.
Wenzel, M. 2002. Isabelle/Isar - a versatile environment for human-readable formal proof documents. Ph.D. thesis, Institut für Informatik, Technische Universität München. http: //tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.
Wright, A. and Felleisen, M. 1994. A syntactic approach to type soundness. Information and Computation 115, 38-94.
Young, W. D. 1989. A mechanically verified code generator. J. Automated Reasoning 5, 493-518.

```
Index
::, 2
#,2
\llbracket\rrbracket\Longrightarrow,3
{.. }, 3
{..<},3
{.. }, 3
{..<},3
[ ],3
@,3
| |, 3
[..< ], 3
[], 3
\cdot, 3
\lfloor\rfloor, 3
[[\mapsto]],3
[\mapsto], 3
([\mapsto] ), 3
(:= ), 3
(\mapsto),3
++,3
\rightharpoonup,3
. {} :=, 5
    . {},5
    .( ), 5
<>,5
+, 5
:=,5
;,5
=,5
\vdash \mp@code { h a s : i n , ~ 6 }
\vdash ~ h a s - f i e l d s , 7
\vdash ~ s e e s : i n , 6
\vdash \text { sees : } \rightarrow = \text { in, 6}
\vdash`*,6
\vdash}\mp@subsup{}{}{1},
\vdash\langle,\rangle=>\langle, \rangle,8
\vdash\langle, \rangle ->\langle, \rangle,13
\vdash\langle,\rangle[->]\langle,\rangle,14
\vdash\langle,\rangle 虽\langle, \rangle,16
\vdash\langle,\rangle [->]** <, \rangle,16
\vdash \leq , 2 1
\vdash [ \leq ] , 2 1
\vdash ::, 22
\vdash [ : : ] , 2 2
\vdash : : \leq , 2 5
\vdash(:\leq)
\vdash ( : \leq ) , 2 5
\vdash \},2
\vdash [:], 26
\vdash:,26
\vdash : ~ : ~ \sqrt { , ~ 2 7 }
\textrm{jvm}
\xrightarrow { \mathrm { jvm } } , 3 1
\xrightarrow { \mathrm { dvm } } 1 , 3 4
\xrightarrow { \text { djum } , 3 4 }
\sqsubseteqr,38
\sqcup, 38
[\mp@subsup{\sqsubseteq}{r}{}],40
{\mp@subsup{\leq}{r}{}},42
\vdash , ~ : : , , 5 1
\vdash
\vdash
\subseteqm,61
\triangleright /, 64
\triangleright,64
\triangleright, 64
\vdash,[::],68
A, 23
acc, 38
Addr, 4
addr, 4, 5
addr-of-sys-xcpt, 11
app, 42,50
appi,47
arbitrary, 33
assigned, 14
\mathcal{B},57
bcv, 43
binop, 5, 38
blank, 31
blocks, 15
Bool, 4
bool, 2
Boolean, 20
bounded, 42
C',46
Cast, 5
```

```
cdecl, 6
check, 33
check-instr, 33, 34
Checkcast, 30
Class, 20
class, 6
ClassCast, 10
closed, 38
CmpEq, 30
cname, 4
coalesce, 41
compC, }6
compE }\mp@subsup{\mp@code{1}}{1}{,59
compE 2, ,60
compM, }6
compP, }6
comp P}\mp@subsup{P}{1}{},6
compP2, 61
compT,68
compT Ta,67
compxE 2,61
D, 23
distinct, 3
distinct-fst, 17
dom, 3
drop, 33
ebinop, 39
eff, 42, 50
eff}\mp@subsup{}{i}{},4
empty,3
Err, }3
err, 39
err-semilattice, 39
Err.esl, 39
Err.le, 39
Err.sup, 39
error, 43
esl,}4
ex-table, 29
exception, 64
exec, 30
exec
exec-instr, 32
exp,56
expr,4
```

$\operatorname{expr}_{1}, 56$
false, 5
fdecl, 6
field, 30
fields, 8
filter, 3
final, 12
finals, 13
find-handler, 30, 31
frame, 29
fst, 2
fv, 19
fvs, 19

Getfield, 30
Goto, 30
$h d, 31$
heap, 8
hidden, 63
$h p, 8$
IAdd, 30
if else, 5
IfFalse, 30
init-fields, 8
instrs-of, 30
int, 47
int (type), 2
Integer, 20
Intg, 4
Invoke, 30
is-class, 6
is-Intg, 35
is-reft, 20
is-type, 20
$J-m b, 6$
J-prog, 6
J_{1}-prog, 56
J2JVM, 61
jum-method, 29
jum-prog, 29
jvm-state, 29
kildall, 44
lcl, 8
le, 39
lift2, 39
list, 3, 40
Listn.le, 40
Listn.sl, 40
Listn.sup, 41
Load, 30
locals, 8
lub, 45
map, 3
map-of, 3
map-snd, 43
map2, 40
max-stack, 62
max-var, 58
mdecl, 6
method, 30
mname, 4
mono, 42
$m x l, 46,67$
$m x l_{0}, 29$
$m x s, 29,46,67$
nat, 47
nat (type), 2
New, 30
new, 5
new-Addr, 31
None, 3
norm-eff, 48
Normal, 33
NT, 20
Null, 4
null, 5
NullPointer, 10
obj, 8
OK, 39
ok-val, 48
opstack, 29
opt, 40
Opt.esl, 40
Opt.le, 40
Opt.sup, 40
option, 3
ord, 38
order, 38
OutOfMemory, 10
P, 46, 67
pc, 41
pcs, 64
Pop, 30
preallocated, 25
preserves, 42
Product.esl, 40
Product.le, 40
Product.sup, 40
prog, 6
Push, 30
Putfield, 30
reg-sl, 46
registers, 29
relevant-entries, 49
replicate, 33
Return, 30
rev, 31
semilat, 38
set, 3
shift, 69
sl, 46
sl (type), 38
snd, 2
SOME, 44
Some, 3
stable, 42
start-heap, 35
state, 8
states, 50
step, 41, 42
stk-esl, 46
Store, 30
succs, 48
sup, 39
sys-xcpts, 10
take, 31
the, 3
the-Addr, 31
this, 29
Throw, 30

```
throw, 5
tl, 31
Tr,46,67
true, 5
try catch, 5
Ts,46
ty,20
tyi,45
ty }\mp@subsup{}{i}{\prime},4
tyl,45
tyP},5
type-error, 33
TypeError, 33
typeof, 20, 21
types,45
tys,45
Unit, 4
unit, 5
unmod,63
upto-esl, 41
Val, 5
Var, 5
vname, 4
Void, 20
wf-cdecl, 17
wf-fdecl, 17
wf-J-mdecl, 24
\(w f-J_{1}\)-mdecl, 58
wf-J-prog, 24
wf- \(J_{1}\)-prog, 58
wf-jum-prog, 51
wf-jvm-prog \({ }_{k}, 51\)
wf-mdecl, 17
wf-mdecl-test, 17
wf-prog, 17
wf-syscls, 17
while, 44
while, 5
wt-app-eff, 43, 50
wt-kildall, 51
wt-method, 50
wt-start, 50
wt-step, 42
wwf-J-mdecl, 18
```

wwf-J-prog, 18
xcpt-app, 49
xcpt-eff, 50
$x t, 46$

[^0]: ${ }^{2}$ We deliberatly deviate here from the nomenclature of the JVM specification that calls these local variables. They hold the this-pointer, the parameters, and what would be the local variables in the source language. It will be important when talking about the compiler below to distinguish between these.

