
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computer Science

Investigation of the Usage of Artifacts in Agile
Methods

Matthias Gröber

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Computer Science

Analyse der Verwendung von Artefakten in Agilen Methoden

Investigation of the Usage of Artifacts in Agile Methods

Author: Matthias Gröber

Supervisor: Prof. Dr. Dr. h.c. Manfred Broy

Advisor: Dr. Marco Kuhrmann

Submission date: January 15, 2013

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Munich, January 15, 2013 Matthias Gröber

Acknowledgements

I like to express my honest gratitude to all the people who supported and encouraged
me during the realization of this thesis.
First of all, I would like to express my deepest gratitude to my advisor Dr. Marco Kuhr-
mann who welcomed me well at the Chair for Software & Systems Engineering and pro-
vided me a good introduction to the topic. I am very thankful for his confidence, opti-
mism, advice and guidance I got whenever we met. All the consultations we had were
very inspiring and motivating for me.
I also would like to thank my co-advisor Dr. Daniel Méndez Fernández for taking the
time to equip me with the necessary expertise and knowledge about study methods.
Further I am very grateful for the insightful talks about artifact orientation and modeling.
I would like to thank him for all the support he provided when we met or by studying
his publications.
My very sincere thanks go to my family, my parents and my sister, for their constant sup-
port and encouragement. They were, and are, always supporting me as good as possible.
My special thanks go to my father for proofreading and his helpful remarks on the thesis.
Finally I want to express my gratefulness to my girlfriend for motivating me every time
when it was necessary. Moreover I thank her for help me to elaborate and stick to my
schedule.
Also I am grateful to my flat mates for not complaining about missing check marks on
the cleaning roster in the last weeks before submitting this thesis.
Without the effort of all of you, the completion of the thesis would not have been possible.

Abstract

BACKGROUND: There is a lack in formalism regarding artifact-orientation in agile deve-
lopment. Even though artifacts support the values stated in the Agile Manifesto, they
attract little attention. Artifacts are poorly defined for agile methods. This thesis starts to
close this gap.
AIMS: The target is to investigate the state of the art in artifact-orientation in agile soft-
ware development. Find and analyze artifacts commonly used in agile development and
the relationships between them. Generalize artifacts and relations over different agile
methods. The aim of this study is to create an artifact model supporting various agile
development methods.
METHODS: A systematic review technique combining a Systematic Literature Review and
a Systematic Mapping Study is used to extract data about artifacts from literature. The
data was extracted from literature in digital libraries with the help of an automated ap-
proach following a strict research protocol.
RESULTS: Artifact-orientation is not very common in agile development but the number
of publications is increasing in the last years and the research is maturing. 76 of 489 ana-
lyzed publications qualified to contribute to the study. 19 commonly used artifacts and
their relationships could be extracted from a well-chosen set of agile methods.
CONCLUSION: The resulting artifacts and relations were composed to an artifact model
for agile development that is independent of any specific agile method. It is completely
new to the field of agile development to have an empirically generated artifact model.
The artifact model could be refined, extended and validated as further work.

Zusammenfassung

HINTERGRUND: Bezüglich der Artefakt-orientierung in der agilen Software Entwicklung
herrscht ein Mangel an Formalismus. Obwohl Artefakte mit den Werten des Agilen Ma-
nifests harmonieren, erfahren sie wenig Aufmerksamkeit. Artefakte sind für agile Me-
thoden mangelhaft definiert, diese Arbeit beginnt damit diesen Mangel zu beheben.
ZIELE: Das Ziel ist es den Stand der Technik in der Artefakt-orientierung in der agilen
Software Entwicklung zu untersuchen. Gängige Artefakte und ihre Beziehungen zu fin-
den, zu analysieren und für unterschiedliche agile Methoden zu generalisieren. Das Ziel
dieser Arbeit ist es ein Artefakt Model für verschiedene agile Methoden zu erstellen.
METHODIK: Eine systematische Studie kombiniert aus Systematischer Literaturrecherche
und systematischer Kartierung wird verwendet um Informationen über Artefakte zu ge-
winnen. Die Daten werden mittels Forschungsprotokoll automatisiert aus Einträgen di-
gitaler Bibliotheken extrahiert.
ERGEBNISSE: Artefakt-orientierung ist nicht sehr gängig in agiler Software Entwicklung
aber die Zahl der Publikationen und die Forschungsreife nehmen in den letzten Jahren
zu. Aus 76 von 489 analysierten Veröffentlichungen konnten 19 Artefakte und ihre Bezie-
hungen extrahiert werden.
ZUSAMMENFASSUNG: Die resultierenden Artefakte und Beziehungen wurden zu einem
methodenübergreifenden agilen Artefakt Model vereint. Ein empirisch erzeugtes Arte-
fakt Modell ist es völlig neu für die agile Software Entwicklung Das Modell könnte in
der Zukunft verfeinert, erweitert und validiert werden.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research objective . 2
1.4 Contribution . 2
1.5 Related work . 2
1.6 Fundamental and Terminology . 3

1.6.1 Fundamentals . 3
1.6.2 Terminology . 4

1.7 Outline . 4

2 Case Study Design 5
2.1 Research Questions . 6
2.2 Search Process . 6

2.2.1 Data Sources . 6
2.2.2 Search Terms . 7

2.3 Inclusion and Exclusion . 8
2.3.1 Inclusion and Exclusion Criteria . 8
2.3.2 Inclusion and Exclusion Procedures 9

2.4 Quality Assessment . 10
2.5 Data Collection . 11
2.6 Data Analysis . 11
2.7 Research Limitations . 13

3 Study Results 15
3.1 Study Population . 16
3.2 Artifact-orientation in processes and practices - RQ1 19
3.3 Maturity of research on agile processes and practices - RQ2 20
3.4 Artifacts resulting from the literature search - RQ3 22
3.5 Relations between common artifacts - RQ4 24

3.5.1 Classification of artifacts . 25

4 Resulting Artifact Model 29
4.1 Overview of Artifacts . 30
4.2 Notation and Application . 32
4.3 Model Description . 32
4.4 Interpretation . 34

5 Conclusion 37
5.1 Summary of Outcomes . 38
5.2 Future work . 38

iii

iv

List of Figures

3.1 Comparison of the number of resulting artifact oriented papers and all agile
papers over time. 17

3.2 Distribution of publication types for qualified papers 18
3.3 Distribution of terms used to describe artifacts 18
3.4 Key words of all included papers . 19
3.5 Distribution of research type facets within results. 19
3.6 Map of processes and artifact names . 20
3.7 Map of practices and artifact names . 21
3.8 Map of publications per research type facet per year 21
3.9 Tag cloud for resulting artifacts . 22
3.10 Valid common agile artifacts and research type facets of originating papers . . 24
3.11 Tag cloud for categories and attributes . 26

4.1 Artifact model constructed of resulting artifacts 33

v

vi

List of Tables

2.1 Sub-queries and the final search string . 8
2.2 Inclusion criteria and abbreviations . 9
2.3 Exclusion criteria and abbreviations . 9
2.4 Research Type Facets of Wieringa summarized by Petersen [76, 95] 10
2.5 Format of inclusion list table . 12

3.1 Search results by source . 16
3.2 Resulting exclusions and inclusions by criteria 16
3.3 Number of papers by process and practice . 20
3.4 Synonyms introduced for homogenization . 23
3.5 Relationships of artifacts . 25

4.1 Resulting common artifacts . 32

vii

viii

1 Introduction

Agile software development is more and more common in industry. According to the
survey [43, p. 8] already 25% of software projects are utilizing agile processes like Scrum
or Extreme Programming (XP). And the rate of adopters for agile processes is still grow-
ing. These processes and other agile techniques are even playing an important role on
time, cost or security critical projects ranging from small application to complex business
applications. Agile is also used by big players like Microsoft1, IBM2 or Google3. Also
the academia has an interest in research in this area which can be seen by the plenty of
conferences related to this topic. But what is agile all about?
Agile software development (agile development) is defining a whole bunch of methods,
principles, practices and processes talking about the values defined in the Agile Mani-
festo. The agile approach is focusing on how to create software, necessary activities and
not on intermediate results on the way to the final product. There is no clear answer
related to which intermediate results lead to high quality software. This is where the
investigation of this study starts. The intermediate results represent the artifacts created
by agile development. Unfortunately there is no unique formal definition and therefore
leaving room for interpretation related to structure, relationships and usage.
One common application for artifacts is the domain of controlling where they are used to
automatically create metrics. This approach is also recommended for agile development
and also applied in practice hence there are artifacts.
But what artifacts are common in agile development and how can they be extracted?
The study done investigated in artifacts in agile development and the thesis provides an
overview of the common artifacts.

1.1 Motivation

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more [10].

Agile development is built on the Agile Manifesto which states the common values of
all what is called "agile" today. The Agile Manifesto values "working software" which

1 www.microsoft.com
2 www.ibm.com
3 www.google.com

1

1.5 Related work

can be seen as collection of artifacts forming a final software product. But it would be
interesting to understand witch artifacts contribute to working software. Another value
of the Agile Manifesto is "responding to change". Which artifacts are affected by changes
and how do they simplify response to change. To answer these questions there is a need
for an artifact model which supports agile development.

Since 2002 there has been a large amount of research publications around agile devel-
opment. A significant increase in publications is noticeable since 2006 according to the
study [23] as shown in Figure 3.1. The number of published studies is still growing and
the quality of studies in the field is maturing. This makes it more and more interesting
for secondary studies like the study done in the context of this thesis.

1.2 Problem Statement

Artifacts are often mentioned in literature and used a lot in practice but are not very often
correctly described. Processes and practices create and use artifacts but seldom define
them. Artifacts may be shared between processes and practices and may be connected
to other artifacts. Not all of these relationships are necessarily documented. The task
is to extract existing artifacts and connections and develop an artifact model for agile
development.

1.3 Research objective

The aim of this study is to investigate the state of the art in artifact-orientation (see Sec-
tion 1.6.2) in agile development. Therefore all artifacts that are commonly used in agile
development shall be found. It is necessary to investigate the relations between those
artifacts. In case they are similar over different processes and practices it is the task of
this study to find commonalities. The study will generalize artifacts of different processes
and practices to develop a common artifact model for different processes or practices. As
a final goal an artifact model for agile development shall be created.

1.4 Contribution

This is a systematic case study which combines methods of a Systematic Literature Re-
view (SLR) and a Systematic Mapping Study (SMS). This approach is proposed by Pe-
tersen et al. which see no reason for not use several analysis methods in the same
study [76]. Based on this study towards artifacts in agile development the following
contribution is made.

• Systematic overview of found publications
• Systematic map of found artifacts
• Investigation on relations and classification of artifacts
• Artifact model for agile development

1.5 Related work

In the field of artifact oriented agile development there has not been too much research.
Hence all studies about agile or artifact-orientation can be used.

2

1 Introduction

A Systematic review on agile development. Dybå and Dingsøyr identify empirical
studies on agile software development until 2005. They investigate in the four thematic
groups introduction and adoption, human and social factors, perceptions of agile meth-
ods and comparative studies. They found, that almost all studies were investigating XP
and no other processes. They conclude criticizing the low number and a lack of quality
and strength of evidence in the found studies on agile software development and propose
a common research agenda to follow [27].

A decade of agile methodologies. Dingsøyr et al. undertook a systematic review
which provides a good overview of the publications in last ten years since the Agile
Manifesto was published. In the review the number and distribution over years and
countries is detailed. He emphasizes that the number of studies published has increased
significantly since 2005. Also the quality seems to increase according to this study. The
interest in other topics like Scrum, Flow based and Lean approaches, is increasing as
well. They also provide directions for future research. Another important conclusion of
this study is the need for more methodology independent theory underpinning the agile
development [23].

Agile Software Development Model (ASDM). Janus tries to create in his study a com-
mon agile software development model by formalizing the Agile Manifesto and a set of
processes to derive a combined model. Then he applies rules to derive a formal model in
form of sets of characteristics for agile development. A part of his work describes how to
derive artifacts from the Agile Manifesto, Scrum and XP [50].

Discussion. It can be concluded that most related work concentrates on agile devel-
opment without a special attention to artifacts. Also a first tendency towards searching
for generalization instead of treating agile development no longer as a set of individual
methodologies can be seen. This study concentrates on the lack of artifact-orientation
and follows the trend of generalization of agile methodologies.

1.6 Fundamental and Terminology

1.6.1 Fundamentals

Agile is only an umbrella term created during the conference where the Agile Manifesto
was born. This is why it is necessary to look what’s under the hood. Certain processes
and practices are considered to be agile so let’s see which ones are commonly used. Most
representative processes and practices for agile development can be found in the studies
of VersionOne4 [94], Peter Haberl et al. [43] and Abrantes and Travassos [3]. Details can
be found in the papers.

Top five common processes
• Scrum
• XP
• Kanban
• Feature Driven Development (FDD)
• Agile Unified Process (AUP)

4 www.versionone.com

3

1.7 Outline

Top ten common practices
• Stand-Up meetings
• Iteration planning
• Test Driven Development (TDD) and Unit tests
• Burn-down and measuring
• Retrospectives
• Continuous integration
• Velocity / Sustainable pace
• Coding standards
• Refactoring
• Collective ownership of code

1.6.2 Terminology

This section will explain the terms used in this thesis.

Artifact: Artifacts have different meaning in different areas of computer science. In
image processing artifacts are commonly used in the sense of an inaccurate observation
or an error in an image. It’s a part of an image which was not recorded or coded as
intended.
In software engineering artifacts have a complementary meaning and are no longer asso-
ciated with a failure. “An artefact is any form of representation of significant (in the sense
of required by a process) intermediate or final work product (result) of the development
process” [65]. The difference is, artifacts are used and manipulated to develop software
and are created by intention.

Artifact-orientation: According to Méndez Fernández et al. “artefact-orientation gives
a more detailed view onto the corresponding results structure with the purpose of en-
abling seamless modelling of consistent results without having to take into account the
variability of volatile processes and the compatibility of methods.” [66]

Agile development: The IEEE Computer Society defines in Standard 26515 agile devel-
opment as “software development approach based on iterative development, frequent
inspection and adaptation, and incremental deliveries, in which requirements and so-
lutions evolve through collaboration in cross-functional teams and through continuous
stakeholder feedback” [49].

1.7 Outline

The next chapter describes the design of the study conducted to achieve the research ob-
jectives. Chapter 3 presents the results of this study starting with the study population of
papers conducted for the study and followed by answers to the individual research ques-
tions. In the following chapter a resulting artifact model is presented. The last chapter
provides a summary of the findings and an outlook about what research could be done
related to this topic in future.

4

2 Case Study Design

The reason for this systematic case study is to find commonly used artifacts in agile soft-
ware development. As they are not properly defined nor collected at a centralized place
they cannot be found easily. The term agile development is a generic term as defined by
the IEEE Standard (see Section 1.6.2) hence it is essential to define the scope of it for the
study. The study will concentrate on the main agile processes such as Scrum or XP for
example and the main practices like TDD or Continuous Integration (CI) to find artifacts
that contribute to a general agile artifact model.
Kitchenham and Charters proposed to use a SMS to evaluate if there is enough evidence
on a topic and if a SLR makes sense [55]. Because artifact-orientation is not very common
in agile development as visible from the related work section there might be a lack of
evidence within the primary studies. This leads to the approach to combine a SMS with
a SLR for this study. The goal is to provide a wide overview with the methods of a SMS
but extract data about artifacts on the level of detail used in a SLR. For the design of the
study the structure proposed by Kitchenham and Charters [55] for SLRs is followed. But
some of the methods described by Petersen et al. [76] are injected to the single protocol
steps of the SLR. Also the detailed report of reviewed publications will be omitted due to
the lack of significance of each single publication.
The research protocol that was followed is described in this chapter divided into the
following sections. First the research questions are defined. Then Section 2.2 describes
the search process which is followed. The next section describes the criteria and the
procedure to include promising studies from the search results as qualified publications.
Afterwards the procedure to extract relevant data from the studies is introduced and the
protocol step for the data analysis procedure is described. Deviating from Kitchenham
and Charters’ protocol in the last section research limitations are considered.

Overview
2.1 Research Questions . 6

2.2 Search Process . 6

2.2.1 Data Sources . 6

2.2.2 Search Terms . 7

2.3 Inclusion and Exclusion . 8

2.3.1 Inclusion and Exclusion Criteria 8

2.3.2 Inclusion and Exclusion Procedures 9

2.4 Quality Assessment . 10

2.5 Data Collection . 11

2.6 Data Analysis . 11

2.7 Research Limitations . 13

5

2.2 Search Process

2.1 Research Questions

The overall target of this study is to investigate the state of the art in agile artifact-
orientation. Therefore agile artifact-orientation is split into several subfields dealing with
the agile processes and practices, the degree of maturity, common artifacts and their rela-
tions. The study tries to answer the following research questions related to artifacts and
the subfields:

RQ1: Which agile software engineering processes and practices consider artifacts to
which extent?
This addresses common artifacts in agile development and their relation to prac-
tices and processes or parts of them.

RQ2: Which degree of maturity have the agile development processes and practices and
their artifact oriented concepts with respect to their research type facet?
This addresses mainly the research type facets and their behavior since 2001. The
research type facet can shed light on the maturity of scientific studies in a domain.

RQ3: Which artifacts are proposed for agile development and could contribute to a
cross-process and cross-practice artifact model?
Artifacts being produced and artifacts that are utilized by agile development are
contributing in the same way.
RQ3a: Which of these proposed artifacts are commonly used?
RQ3b: Which of these artifacts are used in the domain of controlling?

RQ4: How are the common artifacts related to each other and what model does result
from these relationships?
This question aims at giving an answer if the common artifacts have enough rela-
tions to build a complete artifact model upon the results.

The first two RQs are developed for quantitative investigation and the second two for
qualitative investigation. Thus this study goes beyond a classical SMS and complements
with a SLR.

2.2 Search Process

To find the artifacts used in agile development, literature research is conducted in a hy-
brid form of a SMS and SLR as described by Petersen et al. [76] and Kitchenham and
Charters [55]. The primary studies are found based on an automatic search within digital
libraries. This section describes how the search is performed starting from data sources
continuing with the search terms, sub-queries and the query itself.

2.2.1 Data Sources

Because most relevant literature about computer science is digitally available, digital li-
braries are used as sources for the study. To not miss any important result different li-
braries are included. The selected libraries have been chosen as they are the major digital
resources in computer science subscribed by the University. The sources for the study are
following libraries:
ACM Digital Library, IEEE Explore, SpringerLink and ScienceDirect.

6

2 Case Study Design

2.2.2 Search Terms

Titles, Abstracts and Keyword fields of all sources are scanned by queries. The overall
search result is the conjunction of the results of all performed sub-queries (SQ) in all
digital libraries. Sub-queries need to be adjusted to the input masks of the digital libraries
before performing the search. Each sub-query is composed of the conjunction of the name
of an agile process, practice or a generic agile term with a synonym for artifact. The
synonyms for artifacts used are listed below:

• artifact, artefact
• work item, work product, work result
• deliverable
• manufacture

Agile processes and practices. According to several studies [43, 94] the most com-
monly used agile processes in industry are the following five. This is why the queries are
limited on these terms. The searched process models are:

• Scrum (most common)
• XP
• Kanban
• Feature Driven development (FDD)
• Agile Unified Process (AUP) (least common)

In the same way the most used practices are identified according to a study of Abrantes
and Travassos [3] and the yearly surveys of VersionOne [94]. All of the selected practices
have been found in both publications. The search is limited to the ten most common agile
practices to find existing artifacts. The selected practices are:

• Stand-Up meetings
• Iteration planning
• TDD and unit tests
• Burn-down and measuring
• Retrospectives
• Continuous integration
• Velocity / sustainable pace
• Coding standards
• Refactoring
• Collective ownership of code

Terms for Agile. To not miss artifacts not correlated with specific processes or practices
but common to agile software engineering another query is created by a synonym of
artifact and an agile term combined with software. Agile terms used are the following:

• agile
• agility
• lean
• light weight

Agile and Controlling. In addition to address the third research question the sources
are scanned for a synonym of artifact and a common term for controlling combined with
a synonym for Software Engineering (SE). The used terms are:

• controlling
• measuring

7

2.3 Inclusion and Exclusion

• reporting
And for SE the following terms are used:

• software development
• software engineering

Query construction. The following table shows the individual steps in the process of
query creation from the individual terms identified above till the complete query.

Query name Search string

ARTIFACT (artifact OR artefact OR work item OR work product OR work result OR
deliverable OR manufacture)

PROCESS (scrum OR extreme programm OR kanban OR feature driven develop
OR agile unified process)

PRACTICE (Stand up OR (Iteration OR Sprint) plan OR test driven OR unit test OR
burn down OR retrospective OR continuous integration OR (velocity
OR sustainable pace) OR coding standard OR refactoring OR collective
ownership)

AGILESE (agile OR agility OR lean OR light weight) AND (software)
SE (software AND (development OR engineering))

SQ1 PROCESS AND ARTIFACT
SQ2 PRACTICE AND ARTIFACT
SQ3 AGILESE AND ARTIFACT
SQ4 (controlling OR measuring OR reporting) AND SE AND ARTIFACT

FINAL SQ1 OR SQ2 OR SQ3 OR SQ4

Table 2.1: Sub-queries and the final search string

2.3 Inclusion and Exclusion

This section defines a way how to classify the results of the beforehand defined query
and select them to qualify for the study. First some classification criteria are defined.
Afterwards the procedure is described how to use the classification criteria to select pub-
lications from the results of the query.

2.3.1 Inclusion and Exclusion Criteria

In general only literature published between Feb 2001 and Sept 2012 (present) is subject
to the study as before the term agile wasn’t emerged. In case of studies published in
multiple papers, the most complete version is used.
For further filtering of the results the selection criteria listed below are applied. The
inclusion and exclusion criteria are determining the studies which are relevant to answer
the research questions.
The criteria are chosen in a way that all publications can be either included or excluded
but not without selection criterion. All criteria were tested and adjusted in trial runs of
the study and were tagged with an abbreviation for better traceability of results.

Inclusion Criteria. The inclusion criteria are listed in Table 2.2.

8

2 Case Study Design

Abbr. Description

(xN) Study is mentioning at least one artifact by name and a process or practice re-
lated to the artifact if available.

(xD) Study is describing at least one artifact in detail and mentions a process model
or practice related to the artifact.

(xC) Study is mentioning at least one artifact in context of controlling and agile de-
velopment

(xG) Study is classifying a number of artifacts with an arbitrary characteristic. (Pos-
sible characteristics could be e. g. textual artifacts, test artifacts)

Table 2.2: Inclusion criteria and abbreviations

Exclusion Criteria. The exclusion criteria are listed in Table 2.3.

Abbr. Description

(NA) Study is mentioning artifact(s) not in the context of agile development.
(ND) Study is mentioning artifact(s) only in general without name, description or

classifying characteristic. But in the Context of agile development
(OD) Study is outside the discipline of software engineering, process engineering,

software development or controlling.
(NF) Study is not available as digital full text or cannot be used due to copyright

issues.
(OL) Study is not written in English.

Table 2.3: Exclusion criteria and abbreviations

2.3.2 Inclusion and Exclusion Procedures

Now follows a detailed description how to apply the criteria on the results to select cases
in the results. All studies found are checked against the inclusion and exclusion criteria
by a single researcher in two stages. In the first stage publications are scanned to achieve
exclusion according to the criteria OD, NF and OL. This is done with help of the meta-
data, abstract and a random view into the paper. If the study is definitely associated with
another discipline or there is no full text in English available it is added to the exclusion
list. This list contains a column for the document identifier, title, corresponding sub-
query and the exclusion criterion.
After this first check all studies so far identified as candidates will be tested against the
other criteria by queries searching within the whole text. In this stage also studies are
excluded that do not deal with agile development NA or do not provide detailed infor-
mation about artifacts ND. There are also studies excluded according to the three above
mentioned exclusion criteria. In this step the excluded studies are noted in the exclusion
list without the originating search number as there could be multiple entries. The papers
in the exclusion list are manually reviewed to not accidentally miss an important one for
further research.
The selected studies are classified according to the inclusion criteria. One study can be
classified by multiple criteria. Meta information and full text of the selected studies are
imported into a document management system (citavi) for further processing. For each
study a quality assessment is performed and a data collection step as described in Sec-
tion 2.5 is executed.

9

2.4 Quality Assessment

2.4 Quality Assessment

The quality assessment of publications is not following theory described by Kitchenham
in [55]. As most of the studies are not dealing with artifact-orientation Kitchenhams
quality assessment approach defining quality scores does not seem to be a good fit. In-
stead the research type facet which is an existing classification of research approaches by
Wieringa et al. [95] is used. Petersen et al. introduced the applicability of facets to proof
the quality of results in a SMS [76]. Wieringa describes the facets listed in Table 2.4.

Category Description

Validation Research Techniques investigated are novel and have not yet been im-
plemented in practice. Techniques used are for example experi-
ments, i.e., work done in the lab.

Evaluation Research Techniques are implemented in practice and an evaluation of
the technique is conducted. That means, it is shown how the
technique is implemented in practice (solution implementa-
tion) and what are the consequences of the implementation in
terms of benefits and drawbacks (implementation evaluation).
This also includes to identify problems in industry.

Solution Proposal A solution for a problem is proposed, the solution can be either
novel or a significant extension of an existing technique. The
potential benefits and the applicability of the solution is shown
by a small example or a good line of argumentation.

Philosophical Papers These papers sketch a new way of looking at existing things
by structuring the field in form of a taxonomy or conceptual
framework.

Opinion Papers These papers express the personal opinion of somebody
whether a certain technique is good or bad, or how things
should been done. They do not rely on related work and re-
search methodologies.

Experience Papers Experience papers explain on what and how something has
been done in practice. It has to be the personal experience of
the author.

Table 2.4: Research Type Facets of Wieringa summarized by Petersen [76, 95]

This study interprets philosophical papers in a slightly different way than described by
Wieringa. Here an emphasis is put on the new interpretation of existing facts by using a
different view point. This is done to compensate for a lack in scientific proven taxonomies
and conceptual frameworks in agile development.

Utilizing the classification in research type facets it is possible to ensure that found re-
sults do not only origin from an individual research approach but are reconfirmed and
supported by different approaches. If for example a finding is supported by a valida-
tion research and an experience paper we can assume it was successfully applied and
thus delivers a quality to build on. If a result of the study is only relying on opinion- or
philosophical papers or solution proposals there might a be a risk that the finding is not
proven sufficiently.

10

2 Case Study Design

2.5 Data Collection

All studies that passed the selection procedure are considered one by one for data col-
lection. After scanning the content of a selected study the information is extracted into a
table called the inclusion list with entries of the format showed below in Table 2.5.

Each Study is identified by its DOI or ISBN (see DOI column in Table 2.5). In case there is
no identifier the Title and Author is used to identify the document. A progressive number
is introduced to index the qualified results. There are four options for publication types:
Conference paper, Journal article, Book / Chapter or Other. Additionally the Research
Type Facet according to Petersen and Wieringa (see Table 2.4) is collected from the papers.
Each entry has a field for the number of resulting artifacts. The names are listed in the
next column. The practice and process field can contain one of the above mentioned
practices or process models to keep track where artifacts origin from. The describing field
(Yes / No) is identifying if there is a detailed description or a formal model for an artifact
available. The Classification section is only filled for papers suggesting a characteristic
or category for a group of artifacts.

2.6 Data Analysis

The tabulated inclusion list contains basic data about each study. The data can be cat-
egorized by practice or process. For further analysis an extra table is created to list all
artifacts of each study. Therefore all artifact-names are noted together with a reference
to its origin and potentially a synonym which is used in other documents for the same
artifact. The synonym column in this table is also used for word stemming to homoge-
nize the found artifacts. This table containing all artifacts can be used to answer research
questions about the occurrences of artifacts in agile development. Further analysis is
done by creating tag clouds for different categories and attributes of artifacts. The found
artifacts are analyzed regarding the frequency of occurrence and the research type facets
dealing with. The artifacts with a high frequency of occurrences are defined as commonly
used artifacts. These are further analyzed regarding relationships and association with
processes and practices.

The Table is reviewed to answer the Research questions as follows:

RQ1: Which agile software engineering processes and practices consider artifacts to
which extent?
All qualified papers will be evaluated based on their classification by process or
practice. The artifacts found will be related to the processes and practices to see if
certain artifacts are only used in certain processes or practices.

RQ2: Which degree of maturity have the agile development processes and practices and
their artifact oriented concepts with respect to their research type facet?
The degree of maturity will be measured with the help of the research type facets
described in Section 2.4 and the constellation of different facets over time. By build-
ing a chronological ordering of facets the research maturity can be determined.
Some facets are independent of the chronological ordering but nevertheless shed
light on the maturity.

RQ3: Which artifacts are proposed for agile development and could contribute to a
cross-process and cross-practice artifact model?
All artifacts named in the included papers are extracted. Word stemming and syn-
onyms are used to find commonality. By counting the instances of all different arti-
facts it is possible to find common artifacts. Common artifacts need to be mentioned

11

2.6 Data Analysis

Column name Values Description

Inclusion criteria xN, xD, xC, xG Lists the reason why a paper
is part of this list.

Number Integer Indexing for easy referenc-
ing.

Reference DOI, ISBN or ISSN/EISSN A reference to find the pa-
per.

Title String Self explanatory.

Authors String Self explanatory.

Year Integer Self explanatory.

Keywords String Keywords provided by the
author. If not available Key-
words used in the digital
library.

Publication type Conference, Journal article,
Book / Chapter, Other

Information about which
type of publication was
used

Research type facet Research type facets as de-
fined by Wieringa. See Ta-
ble 2.4 for details.

Facet of the research that
will be used for quality as-
sessment.

Number of artifacts Integer Number of different arti-
facts that were found in the
paper.

Name of artifacts String List of names of all artifacts
that were found in the pa-
per.

Agile process or practice Processes and practices as
defined in Section 1.6.1

The process or practice that
is discussed in the paper.

Describing Yes / No This field indicates if the
found artifacts or classifi-
cation categories are only
named or described with
more details.

Classification String Possibilities to categorize or
classify artifacts.

Table 2.5: Format of inclusion list table

12

2 Case Study Design

in at least three different papers classified with certain facets. Valid combinations of
facets are explained in Section 3.4. All homogenized artifacts resulting from papers
marked with the inclusion criterion xC help to answer RQ3b related to controlling.

RQ4: How are the common artifacts related to each other and what model does result
from these relationships?
The relation of different artifacts can either be answered based on the papers de-
scribing relations or with respect to the naming of artifacts in context of the same
process or practice. Based on the papers a classification is created that also helps to
find relations between artifacts. In this RQ it will also be investigated if there are
different types of relationships between artifacts. The relations shall be consulted
to construct an artifact model.

2.7 Research Limitations

Due to the automatic approach to search publications, papers that are not fully digitalized
or indexed might not be found. In case of changing processes or practices commonly
used in agile development the artifacts also could change and the findings might become
invalid. As the research team consists only of one single person, this might lead to an
increased risk of internal validity.

13

2.7 Research Limitations

14

3 Study Results

The results of the applied research protocol will be presented in this chapter. The first
3 sections provide a quantitative view of the results. The last 2 sections are a qualita-
tive analysis of the collected data. The key findings are based on the 19 different most
common artifacts that result from 76 qualified publications. Scrum and XP are the best
investigated processes in the qualified papers. The analysis of the publications reveals
a clear tendency towards a maturing area of research. The research is done mostly in a
steady cooperation with industry which can be seen in the amount of evaluation studies
and experience reports. The found artifact set shows a high cohesion which seems to be
a good baseline to develop an artifact model.

Overview
3.1 Study Population . 16

3.2 Artifact-orientation in processes and practices - RQ1 19

3.3 Maturity of research on agile processes and practices - RQ2 20

3.4 Artifacts resulting from the literature search - RQ3 22

3.5 Relations between common artifacts - RQ4 24

3.5.1 Classification of artifacts . 25

15

3.1 Study Population

3.1 Study Population

A total number of 540 papers were returned by the query in all the defined digital li-
braries. After removing the duplicates 489 were left. About 10% of the found papers
were duplicates but only a few were identical papers published in different libraries. The
largest portion of the duplicates was created because the search was performed by sub-
query due to the complex search string. This was necessary because the libraries allowed
only a limited number of logically linked search terms. The distribution of qualified pub-
lications over the sources can be seen in Table 3.1. About half of the papers are from IEEE
Explore followed by ACM DL and Springerlink with 1̃00 results. In the first stage all

Library Results Removed in stage one

ACM DL 109 36
IEEE Explore 263 72
Science Direct 65 39
Springerlink 103 19

Total 540 166

Table 3.1: Search results by source

papers are excluded that are not available as full text in English and which are related to
other disciplines. Even after the first exclusion IEEE Explore remains the library with the
most contributions with about 190 results.

Inclusion and Exclusion. In stage two the Exclusion criteria NA and ND are checked.
From the second stage on the results are no longer listed and evaluated by database as
some papers result from multiple sources. The large number of papers excluded for the
lack of details ND is an indicator for the usage of the word artifact in a common sense
without worrying about a correct definition or detailed examples. In total 413 publica-
tions have been excluded (see Table 3.2). After the exclusion of all irrelevant papers a total

Exclusion criteria Stage one Stage two Total Inclusion criteria #

NA 0 88 88 xN 71
ND 0 131 131 xD 8
OD 163 5 168 xC 5
NF 1 21 22 xG 32
OL 2 2 4

Total 166 247 413 116

Table 3.2: Resulting exclusions and inclusions by criteria

set of 76 papers is left for data collection and analysis. The included papers are classified
according to the inclusion criteria where one paper can be mapped to multiple inclusion
criteria. The distribution of the inclusion criteria is shown in Table 3.2 The high number
of the exclusion criteria xN is a hint for a lack of artifact-orientation and formalism in
agile development.

Publications over Time. By plotting the number of included publications over time
there is an immense similarity to the graph of Dingsøyr et al. [23] published in his SLR.
Both graphs show a steady increase in papers but a local decline on studies for the years

16

3 Study Results

2006 and 2010. The comparison of these two graphs can be seen in Figure 3.1. As the
results of this study range from 2001 until 2012 and the one from Dingsøyr only until
2010 the upper image continues after the decline in 2010. This comparison shows that
papers related to agile artifact-orientation represent a similar percentage of the overall
agile papers and probably don’t follow other trends.

0

2

4

6

8

10

12

14

16

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

(a) Papers resulting from this study

(b) Papers resulting from Dingsøyr et al. [23]

Figure 3.1: Comparison of the number of resulting artifact oriented papers and all agile papers
over time.

Publication Type. The type of publications was also evaluated as demonstrated in Fig-
ure 3.2 About two-thirds of the 76 qualified publications result from conference proceed-
ings. And only 15 results were published in journals. A similar amount of 10 publications
are books. There was only one paper that could not be classified in the before mentioned
categories. This distribution shows that most of the research is presented at conferences.

17

3.1 Study Population

0

10

20

30

40

50

60

Conference Journal Book Other

52

15

8

1

Figure 3.2: Distribution of publication types for qualified papers

Artifact vs. Work Item. As stated in the study design, there are a couple of synonyms
in use describing the concept of artifact. Thus the included papers were analyzed for the
word for or spelling of artifact they used. The distribution found can be seen in Figure 3.3.
Because the word "artifact" was used in most cases in this way it is used through the entire
paper.

artifact; 70%

artefact; 11%

work product;
4%

work item; 4%
work result;

0%

deliverable;
7% manu-facture;

0%

Figure 3.3: Distribution of terms used to describe artifacts

Keywords. Another interesting aspect is the used keywords within the qualified pa-
pers. The used keywords lead to the research field that deals with artifact-orientation
in agile development. To visualize the keywords a tag cloud shown in Figure 3.4 was
created. In the tag cloud the font size represents the commonality of a tag or word in the
underlying data. Words that are more common in the data thus result in bigger tags in the
cloud. Prominent keywords are of course "agile", "software engineering" and "software
development" as well as "management" and "programming". Against all expectations the
individual processes are rather under represented as keywords.

Research Type Facets. Analyzing the research type facet of the included 76 papers re-
veals that four of six facets are almost equally present. Only five results are classified as
opinion papers and there is no philosophical paper included. For details see Figure 3.5.
An even distribution over many facets is important, as they are used for the quality as-
sessment of the results.

18

3 Study Results

Figure 3.4: Key words of all included papers

0
2
4
6
8

10
12
14
16
18
20

15

20

16

0

5

20

Figure 3.5: Distribution of research type facets within results.

3.2 Artifact-orientation in processes and practices - RQ1

This section provides an insight which processes and practices contribute to artifact-
orientation and which are independent of artifacts. The five selected processes and ten
selected practices are not evenly represented within the results of this study. Therefore
the papers have been attributed with processes and practices where each paper can be
linked to none or multiple processes and practices. Resources dealing with agility in
general without reference to any process or practice are not considered for this evalua-
tion and aren’t attributed. Table 3.3 shows the relationship between papers and process
or practice. Because some papers are attributed to multiple or none process or practice
the total number deviates from 76. Against the expectation that AUP will provide lots of
information because of more than 50 official defined deliverables, Scrum and XP are the
most common processes to deal with artifacts in the resulting papers. The most common
practices are TDD and Refactoring as expected.

But what was unexpected is that no paper explicitly deals with artifacts related to mea-
suring and burn-down, velocity and collective ownership of code.

This basic statistics also can be found in the map showing the most common artifacts
with the processes and practices they result from. In Figure 3.6 it is visible, that almost
all artifacts are present in Scrum and XP where Kanban, AUP and FDD only provide
almost no additional artifacts. These two processes seem to rely on artifacts even if not
specified exhaustive in their definitions. The amount of distinct artifacts used in both
Scrum and XP seem to give an answer why the two processes are often combined (14%

19

3.3 Maturity of research on agile processes and practices - RQ2

Process # Practice #

XP 27 TDD 9
Scrum 21 Refactoring 5
Kanban 2 pair programming 4
AUP 1 continuous integration 4
FDD 1 iteration planning 4

stand-up 2
retrospective 1
Burn-down and measuring 0
Velocity 0
Collective ownership of code 0

Table 3.3: Number of papers by process and practice

of agile adopters [94]).

1 1 1 1

1 3 1

15 2 1 1 1 3 2 1 1 10 2 15 5

5 6 1 2 4 2 6 1 1 2 3 1 9 3 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Mapping Artifacts and Processes

FDD

Kanban

AUP

XP

Scrum

Figure 3.6: Map of processes and artifact names

The map for practices and artifact names (Figure 3.7) shows almost no contributions to
artifacts in comparison to Figure 3.6. Only eight artifacts are part of more than one prac-
tice where twelve artifacts are part of more than one process. The different practices can
interact and work on a common target via these intersecting artifacts.

3.3 Maturity of research on agile processes and practices -
RQ2

This section tries to answer how mature the research results for agile development are.
Therefore the research type facet is considered. The six facets (see Table 2.4) give a hint
related to the maturity of research as most of them can be ordered in a chronological way.
Usually in an immature field there are lots of solution proposals which may be validated
after a period of time. While maturing experience papers are published describing the
implementation in practice. They are more a hint for industry adoption than for research
maturity. Opinion papers also occur while maturing because authors give their personal
impression before having scientific evidence about the correctness of their opinion. In a
mature research field you can find lots of evaluation researches that evaluate well imple-

20

3 Study Results

2 1 1 1

3 1

7 2 4

2

1 3 2 1 1

1 1 1

3 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Mapping Artifacts and Method

refactoring

ci

tdd

retrospective

iteration planing

stand-up

pair programming

Figure 3.7: Map of practices and artifact names

mented concepts. Philosophical papers do not provide any information about maturity
as they could give another view on a topic at any given degree of maturity.
Relying on this concept the presence of evaluation research is an indication for a mature
research field. Solution proposals and validation research without support of evaluation
give a hint for an immature research field. The presence of solution proposals and vali-
dation research until now shows that there is still a lot of innovation ongoing. Experience
reports show the industry adoption.

1 1 2 1 1 2 4 2 1 2 3

1 1 3

1 1 1 1 4 1 4 3

2 1 5 3 3 6

1 1 2 3 2 3 3

Mapping for number of Publications of interest

Experience Papers

Opinion Papers

Philosophical Papers

Solution Proposal

Evaluation Research

Validation Research

Figure 3.8: Map of publications per research type facet per year

The described approach is used to analyses the map of publications per research type
facet per year as illustrated in Figure 3.8. Within the 76 qualified papers there is steady
number of experience reports over the years which represents the wide adoption of agile
practices in the industry and their roots in best practices used. There had been at least
one experience report dealing with artifacts per year since 2002. The amount of solu-
tion proposals and validation research in the last two years shows that there is still a lot
of ongoing research around agile development and artifacts creating new insights. The

21

3.4 Artifacts resulting from the literature search - RQ3

enormous increase in evaluation research since 2009 (three to six papers per year) defi-
nitely shows a maturing area of research proving more and more findings. Considering
only these evaluation studies they provide a tremendous evidence base for artifacts in
agile SE with 90 appearances of artifact names.

This shows huge potential for the future as research is maturing but there is still inno-
vation potential paired with interest from industry for funding research and applying
results.

3.4 Artifacts resulting from the literature search - RQ3

Figure 3.9: Tag cloud for resulting artifacts

This section describes the results of the data analysis with respect to the found artifacts.
Within the 76 papers only three do not contribute to a list of artifact names and from the
remaining 73 publications results a total of 314 named artifacts. This list contains each
artifact once if named multiple times per paper but multiple times if named in multiple
papers. In a first step these artifacts have been visualized in the tag cloud in Figure 3.9
to get a first impression on common artifacts and their distribution. Each word in an
artifacts list entry is its own tag in the cloud. Thus ’user story’ and ’story card’ result in
three different tags not two. The cloud shows that code, test, backlog and story are the
main artifacts, related to agile development, that were found. A description of the found
artifacts follows later in Table 4.1.

Within the 314 named artifacts there are many that implement the same concept but are
called different in different papers. To avoid redundant results word stemming and re-
naming of artifacts with synonyms is implemented. After stemming and introducing

22

3 Study Results

synonyms for same artifact names a total of 162 different artifacts can be distinguished.
Synonyms introduced after stemming can be found in Table 3.4.

Synonym Replacements Description

code class, method, program source,
markup file, code packages, sys-
tem code, production code, pro-
gram code, java code, source
code, gui code, unit code

Accumulates all types, parts
and concepts of source code.

test case test code, unit test, test require-
ment, test case code, test, ac-
ceptance test, automated test
case, stress test, automation test,
functional test, automated ac-
ceptance test case, integration
test, test case

Accumulates tests and test de-
scriptions of all different types.

user story story, story card, shared story,
user story card, index card user
story, user stories with accep-
tance criteria, user story with
usability issues

Accumulates all variants of user
stories.

issue defect list, bug, issue tracking,
change request list, bug tracker
items

Issue is a synonym for all kinds
of problems that need action on
the resulting system.

wall scrum wall, scrum board, infor-
mation radiator, kanban board

Accumulation for all types of
display, for information on pro-
cess and progress tracking and
interacting.

coding standard programming guidelines, cod-
ing style, coding standards, cod-
ing guidelines

Consistent name for all ap-
proaches to standardize the lay-
out of source code.

iteration backlog sprint backlog Introduced to generalize the
backlog used in scrum.

Table 3.4: Synonyms introduced for homogenization

Research question RQ3a asks for common artifacts. This will be addressed in the follow-
ing paragraph. Lots of the artifacts are only named once in a single paper in a specific
context or even only in the context of a solution proposal. These are definitely not clas-
sified as common artifacts. The set of common artifacts is for sure a subset of the 162
artifact that is handier. To find common artifacts first of all a definition for common ar-
tifacts is needed. This study defines an artifact as common by the number of papers
mentioning a single artifact and the research type facets of these papers. Artifacts that
are mentioned in at least three studies are considered as candidates for common to agile
development in this case. To validate these candidates and assure a certain quality the
finding the research type facet is used. A valid common artifact needs to be present in at
least three studies with research type facets including multiple validation researches or
an experience paper or an evaluation research. Figure 3.10 shows 19 artifacts out of the
162 meeting the above criterion. The main artifacts identified by the cloud in Figure 3.9

23

3.5 Relations between common artifacts - RQ4

1 2 1 2 1

1 6 1 2 1 3 2 1 3 1 3 1 4 1

2 10 1 1 2 1 1 3 2 3 2 2 7 9 3 4

12 1 3 1 2 7 2 3 1 1

1 7 2 1 1 1 1 1 1 2 2 4 1 7 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Opinion Papers

Experience Papers

Evaluation Research

Validation Research

Solution Proposal

Figure 3.10: Valid common agile artifacts and research type facets of originating papers

can also be found in the map in Figure 3.10. Code, user story and test case are the most
common artifacts with 32, 20 and 19 papers referencing them. Backlog was the fourth
candidate. But it is split into two artifacts the iteration backlog and the production back-
log and therefore is no more that prominent as thought in the beginning by evaluating
only the cloud. Each other artifact is referenced by 3 to 7 papers naming it. The resulting
artifacts will be described in section 4.1.

It was impossible to find answers to the research question related to controlling (RQ3b)
since only five papers were classified with the inclusion criterion xC (see Table 3.2). These
five papers did not reveal any knowledge apart from the fact that artifacts are used for
controlling of agile development.

3.5 Relations between common artifacts - RQ4

This section tries to uncover the relationships between common artifacts and how they
can be classified. These relationships and classifications shall later help to create an arti-
fact model. Artifacts can relate to each other in different ways.

One way is the affiliation to a certain process or practice forming an artifact model. As
the resulting artifacts are associated with different processes or practices there is no guar-
antee that they can form any connected artifact model. Also there is no proof that the set
of resulting artifacts is complete.

Another relation between artifacts may be a dependency where an artifact is created
as result by processing one or more other artifacts as explained by Gonzalez-Perez and
Henderson-Sellers in their work product pool approach [39].

A third relationship is a containment relationship. This relationship is quite easy to ex-
plain with an example. As photo is one of the identified artifacts it is easy to imagine to
take a picture of any other physical artifact or a collection of artifacts [87]. Thus a photo is
a container for any other artifact. In the same way a backlog contains a set of user stories,
tasks or requirements as described by Sutherland et al. [86, 52] or Beck [9].

Refinement and generalization is one more relationship between artifacts. For example
the iteration backlog refines the entries of the product backlog. Also test cases are having
the same relation where one test T1 on a general level can be refined by several tests t1 -
tn checking for parts of T1.

Interaction also can be seen as a relation between artifacts. Usually interaction is de-
scribed in activities that follow a certain process or practice. For example the implemen-

24

3 Study Results

tation of a specific requirement may result in an extension of the source code and the
reconfirmation that no test case was broken by the extension. Thus requirement, code
and test case are interacting within the activity of implementation.

By applying the previous types of relations to the nineteen common artifacts a matrix
showing all the relations between the artifacts can be created. Utilizing this matrix it can
be checked whether all found artifacts can contribute to one common artifact model. All

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

A
19

A1 X X X X X X X X X X X

A2 X X X X X X X X X X X

A3 X X X

A4 X X X

A5 X X X X X X X X X X X X X X X X X X X

A6 X X X X X X X X X X X X X X X X X

A7 X X X X X X X X X X X X X X

A8 X X X X X X X X X X X X

A9 X X X X X X

A10 X X X X X X X X X

A11 X X X X X X X X X X X X

A12 X X X X X X X X X X

A13 X X X X X X X X X X X X X X X X X

A14 X X X X X X X X X X X X X X X

A15 X X X X X X X X X X

A16 X X X X X X X X X X X X X X X X X

A17 X X X X X X X X X X X X X X X X X

A18 X X X X X X X X X X X X X

A19 X X X X X X X

Table 3.5: Relationships of artifacts

artifacts within the matrix have a relation to others. A graph created by the artifacts as
nodes and relations as edges is in the sense of graph theory connected. Thus it is possible
to create a syntactically correct model of the artifacts including all nineteen findings. If
there is a semantically correct model and how to create it will be discussed in the next
chapter.

3.5.1 Classification of artifacts

During the data collection all classification criteria for artifacts were collected and noted
in the inclusion list introduced in Table 2.5. 32 studies were marked with the inclusion
criteria xG that displays contribution to the classification of artifacts. These classification
criteria shall now be used to describe artifacts in a more precise way and to cluster them
in groups. To aggregate all criteria and find those which are common again a tag cloud
has been generated. The cloud was created with the help of the "Classification" column
of the inclusion list and can be seen in Figure 3.11. The cloud revealed several classifi-

25

3.5 Relations between common artifacts - RQ4

Figure 3.11: Tag cloud for categories and attributes

cation criteria in which artifacts can be grouped. The most used criteria are: code, test,
design, requirements, physical, documentation, management, production, intermediate,
final, internal and digital. The next paragraphs will concentrate on these classification
criteria.

Source code artifacts are all artifacts that contain written source code and some other
artifacts. This category includes production code as well as the code for tests or libraries.
Also models that can be executed to generate code are classified as code artifacts. Further
all forms of markup code e. g. HTML or XML contribute to the code artifacts. Resources
for properties or language files also can be considered as they are also translated into the
code.

A classification as test artifacts describes the ones related to tests. They can be test code,
test case descriptions or produced and expected test results. But also test systems like
xUnit in form of COTS should be classified as test artifact.

Design artifacts are not generally defined. There is a huge tag "design" in the cloud but it
is created from different interpretations of the classification as design artifact. A part of
the contributions to it is resulting from the artifacts of the AUP that are associated with
the analysis and design discipline. This also holds for the Analysis tag in the cloud (see
Making Rup Agile [46]). Another contribution to the design tag are papers concerned
about UI design which see UI designs as design artifacts [74]. This is contrasted by Neill
who states that “code is the primary design artifact, not a series of class and sequence
diagrams, or dataflow models.” [72] and thus classifies code as design artifact. According
to Cohn, Sim and Lee summarizing Bertelsen design artifacts are boundary objects that
“move between construction and representation” [22]. They explain with the help of a

26

3 Study Results

user story being between the envisioned software system to construct and the code as a
representation [22]. Dulipovici and Robillard refer for design artifacts in XP to mental
models which are shared among developers. These shared models form the final design
model [26]. Owing to these manifold definitions and interpretations design seems not to
be the best way to classify artifacts, as it is real ambiguous. Hence it is not used further
in this thesis for a classification of artifacts.

Requirements specification is a classification for all artifacts that contain information
about what system to develop and how it should behave. Beck names functional
tests as the primary requirements specification artifact [9]. They are also supported by
Ghanam [35]. Also stories are requirements specifications [20, 35]. Use cases and features
are also described as requirements specification by Hirsch [46].

Another classification described in the included papers is physical vs. mental artifacts.
Abdullah, Sharp and Honiden describe physical artifacts as those which “focus on cap-
turing and displaying progress information rather than requirements issues such as prob-
lems, goals or functionality”[1]. They name story cards and the wall as examples which
are confirmed in [69]. Abdullah, Sharp and Honiden contrast physical to mental artifacts
e. g. requirements of the product which “reside in the social context and are sustained
through communication and collaboration activities”. The terms physical and mental are
also defined by Dulipovici and Robillard [26] in the following way:

We defined the term "physical artifact" - a piece of information produced by
completing an active, creative activity, as Write, Draw, Code, Code & Test,
Test, Integrate & Test, Technical Administration. A physical artifact can be a
text document, a model - mainly represented by diagrams, or a piece of code.

We also defined the term "mental artifact" - a piece of information produced
by completing a reflexive or an interactive activity, as Read, Think, Discuss,
Browse/Search, Training, Inspect/Review. A mental artifact is a model that
"runs" in the human mind.

This definition is quite close to the use of Abdullah and Sharp. Thus we can distinguish
between an artifact that has a physical representation and those who are only a product
of the social context of the software engineering process.

Documentation is a way to classify artifacts which is often mixed up with the artifact doc-
umentation itself thus in this study it is treated as the same concept. A common meaning
is, source code is the only documentation of the system [80]. But there are different in-
terpretations as well. Cohn, Sim and Lee found, that in agile development the role of
documentation must be seen differently than in traditional software processes. Their
study revealed that documentation does not follow formal document specifications but
“it is whatever you want” [22]. This enables the use of any artifact in a process as docu-
mentation. This study follows this approach and classifies all artifacts as documentation.

Project management artifacts are those referring the managerial aspect of the process.
Dulipovici and Robillard describe them for XP by “[...] short releases, which are planed
based on the estimation and the priority of the user stories.” [26] Based on this the ar-
tifacts: release plan, story estimates which reflect the specification of a user story and
the backlog as a root for the priority of stories. Hirsch lists Software Development Plan,
Iteration Plans and Iteration Assessments [46] as artifacts of the project management dis-
cipline. This discipline contains the project planning and monitoring thus all related
artifacts even if not listed by Hirsch will be classified as management artifacts. The Soft-
ware Development Plan implements the same concept as a release plan and the Iteration
Plan provides the same functionality as the iteration backlog in this way the two sources
support each other.

Production process can be used to classify artifacts whether if they are inside or outside

27

3.5 Relations between common artifacts - RQ4

the software process. Following Cohn and her colleagues, artifacts that are necessary
to enact a software process are classified as inside production process artifacts. Other
artifacts that exist in the context of a process but are not used for enactments are out-
side, e. g. additional documentation of stories or tests [22]. Hence artifacts can move
from within to outside of the production process or vice versa through an enactment, the
classification is dynamic.
The classification as intermediate or final artifact is described by [39, 67]. Gonzalez-Perez
and Henderson-Sellers define intermediate artifacts as such artifacts that need to be cre-
ated to produce the final artifact but are not final by themselves. They further classify
internal artifacts as those intermediate artifacts being provided from within the process.
Final artifacts are defined as the artifacts that are delivered to the customer, in the sim-
plest case the software system. Mikio et al. does not follow this definition of intermediate
and final in the exact same manner. According to Mikio et al. final artifacts are those val-
idated and accepted. [67] Intermediate products thus can be the same ones as final ones
just before validation. Ceravolo et al. who use the words internal product and deliv-
erable in their paper about the XP ontology also distinguish weather an artifact is only
needed during the production of software or if it is part of the final delivery [19].
One more classification for artifacts is digital or analog. This is simply the representation
in the process where a user story can be on an index card or on a virtual index card in a
software system. The concept of digital artifacts is addressed by Kowark et al. [58] and
Brown, Lindgaard and Biddle [15]. They named emails, wiki pages, bug tracker items,
source code and digital images as digital artifacts but there are definitely more.
This classification also helps to find relations between the artifacts as all artifacts classified
by the same criteria are somehow related and often interact with each other.

28

4 Resulting Artifact Model

This chapter shows the common artifacts that result from this thesis in detail and how to
combine them to an artifact model for agile development. The first section describes the
common artifacts found in this study and lists the sources where they result from. This is
followed by a section describing the notation used to create the resulting artifact model.
The next section describes the elements that can be found in the model. Concluding the
last sections highlights the applicability and how the artifact model relates to the Agile
Manifesto.

Overview
4.1 Overview of Artifacts . 30

4.2 Notation and Application . 32

4.3 Model Description . 32

4.4 Interpretation . 34

29

4.1 Overview of Artifacts

4.1 Overview of Artifacts

This section describes the artifacts found in Section 3.4. All nineteen findings are listed in
alphabetical order in Table 4.1. The first column of this table contains the artifact number.
It is followed by the name and description of the artifact. The last column contains ref-
erences to the paper where the artifact was found within the qualified papers. As there
is no generally accepted definition for all artifacts only a description is provided. But in
some cases where available, an official definition is quoted. The source for the descrip-
tion is very often from complementary literature and could not be found in the qualified
studies of this study. This is because most of the papers only name artifacts but do not
describe them in details as visible in Table 3.2 where only eight of the included papers
are classified with the inclusion criteria xD.

Abbr. Aartifact Description Sources

A1 burn-down
chart

“document that records project status, usually
showing tasks completed against total number
of tasks.” ISO/IEC/IEEE 26515:2012 [49]

[98, 62, 41,
69, 11]

A2 Code Source code is an artifact containing com-
puter interpretable instructions implementing
requirements of software to produce. The
source code artifact can also be a model from
which code can be generated. The compiled
code forms the final software system

[37, 53, 28,
26, 71, 7, 72,
12, 30, 99,
38, 8, 5, 82,
92, 89, 68,
14, 77, 80,
4, 96, 60, 35,
51, 6, 40, 93,
24, 85, 84,
34]

A3 Coding
standard

The coding standard is a set of rules to be fol-
lowed during source code creation. These rules
mainly regulate the appearance of source code
(e. g. indentation, spaces or tabs) but can also
treat the structuring of source code (e. g. or-
dering of methods and member within a class).
Applying these rules is supporting collabora-
tion and reuse.

[19, 99, 46,
77]

A4 COTS A "Commercial off the Shelf" (COTS) soft-
ware component is a piece of software that is
commercially available to the general public
without necessary customization [91]. Usually
COTS software is reused in multiple identical
copies by different institutions. It is usually a
part of a software system to integrate require-
ments in a cheap manner.

[39, 85, 84]

A5 Documen-
tation

“Any written or pictorial information describ-
ing, defining, specifying, reporting, or certify-
ing activities, requirements, procedures, or re-
sults.” IEEE 829-2008 [48]

[80, 87, 86,
78]

To be continued . . .

30

4 Resulting Artifact Model

Abbr. Aartifact Description Sources

A6 Feature “functional or non-functional distinguishing
characteristic of a system, usually an enhance-
ment to an existing system.” ISO/IEC/IEEE
26515:2012 [49]

[88, 73, 35]

A7 Issue Issues are special tasks or requirements that
usually deal with the removing of an error. Or
an issue is a kind of refactoring or modification
to improve the system.

[83, 17, 58,
46]

A8 Iteration
backlog

“A list of tasks that defines a Team’s work for
a Sprint. The list emerges during the Sprint.
Each task identifies those responsible for doing
the work and the estimated amount of work re-
maining on the task on any given day during
the Sprint.” Sutherland [52]

[62, 59, 69,
11]

A9 Metaphor “A story that everyone - customers, program-
mers and managers - can tell about how the sys-
tem works” Beck [9]

[26, 57, 72]

A10 Photo A picture of any other artifact taken mostly for
documentation reasons.

[42, 69, 87]

A11 Product
backlog

“The Backlog is a prioritized list. [. . .] Backlog
is the work to be performed on a product. Com-
pletion of the work will transform the prod-
uct from its current form into its vision.” see
Sutherland [52, Apendix I]

[98, 62, 59,
90, 69, 11]

A12 Release
plan

“A release plan is a high-level plan that covers
a period longer than an iteration.” Cohn [21]

[26, 19, 69,
87]

A13 Requirement “A condition or capability that must be met
or possessed by a system or system compo-
nent to satisfy a contract, standard, specifica-
tion, or other formally imposed documents.”
IEEE 610.12-1990 [47]

[28, 77, 39,
87, 60, 93]

A14 Task “The smallest unit of work subject to manage-
ment accountability. A task is a well-defined
work assignment for one or more project mem-
bers.” IEEE 829-2008 [48]

[98, 19, 41,
88, 70, 73,
63]

A15 Test case “A set of test inputs, execution conditions, and
expected results developed for a particular ob-
jective, such as to exercise a particular program
path or to verify compliance with a specific re-
quirement.” IEEE 829-2008 [48]

[37, 53, 26,
7, 57, 19, 12,
99, 8, 92, 31,
46, 77, 87,
60, 35, 32,
100, 78]

A16 Use case “description of the behavioural requirements
of a system and its interaction with a user.”
ISO/IEC/IEEE 26515:2012 [49]

[29, 31, 68,
39]

To be continued . . .

31

4.3 Model Description

Abbr. Aartifact Description Sources

A17 User story “simple narrative illustrating the user
goals that a software function will satisfy."
ISO/IEC/IEEE 26515:2012 [49]

[37, 98, 29,
53, 28, 26,
90, 57, 19,
97, 69, 1, 15,
82, 31, 22,
73, 6, 32, 33]

A18 Wall “The Scrum Board1 has emerged as a best prac-
tice for a team to manage their own tasks.
Teams meet in front of the Board which has
multiple columns. The first column has User
Stories from the Product Backlog [. . .]. At the
start of the Sprint, [. . .] User Story are in the left
column as small cards. Each day developers
move tasks to an "In Progress" column, then to a
"Validation" column, then to a "Done" column.
[. . .] and the Burndown Chart can easily be cal-
culated and posted to the board” Kniberg[56]

[98, 69, 11,
1, 2]

A19 Wiki “A wiki that helps on quickly weaving differ-
ent kinds of contents into a single heteroge-
neous document, whilst preserving its seman-
tic consistency. The fundamental goal of a wiki
is to reduce the development-documentation
gap by making documentation more conve-
nient and attractive to developers.” Riehle [79]

[19, 58, 22,
35, 32]

Table 4.1: Resulting common artifacts

4.2 Notation and Application

To model the artifacts that result from this study a UML2 notation is used. A class di-
agram serves to model the artifact model. Artifacts are represented as classes that are
shown with their relations. Attributes of artifacts are given rarely because they vary a lot
in different implementations. The relations provided by UML seem to represent to a big
part the relations introduced in Section 3.5 and thus can easily be used.
Abstract classes in UML will be used to represent artifacts that form a generalization
for other artifacts. Packages in the artifact model represent classification categories as
described in Section 3.5.1. Another notation for categories is the coloring which groups
the artifacts together that are in different packages.
Other not described cases follow the UML conventions.

4.3 Model Description

After combining and connecting the artifacts the resulting artifact model is shown in
Figure 4.1.

1 The term "Scrum Board" in this definition is used as a synonym for the artifact "Wall". See Table 3.4.
2 Unified Modeling Language see www.uml.org

32

4 Resulting Artifact Model

A5 Documentation

Project Management

A9 Metaphor A3 Coding standard
A4 COTS Software

-final

Production process

A19 Wiki

A1 Burn-down

A18 Wall

A10 Photo

A12 Release plan

A2 Code

-final

Backlog item

-priority

-effort estimate

A11 Backog

A8 Iteration Backlog

contains

A14 Task

A7 Issue / Bug

A15 Test case

compliant touses

+represented as

+implements

*

*

+tests+implements & tested by

**

derives & influences

+tested by

+tests

*

*

refines: Backlog.contains

requirements specification

accumulates

derives & influences

+influences +implements

* *

A6 Feature

A13 Requirement

-description

A16 Use CaseA17 User Stroy

visualized

1

*

visualized

1

*

visualized

1

1

Figure 4.1: Artifact model constructed of resulting artifacts

Documentation. Within the model there is a huge package called documentation con-
taining all other artifacts. This reflects the fact that in agile development every artifact
can and should be used as documentation. This complies with the value of “Working
software over comprehensive documentation” [10] in the Agile Manifesto where com-
prehensive documentation isn’t valued that much. Thus there are no huge documenta-
tion documents. But all artifacts needed during software development can be used as
documentation. This follows the classification described in Section 3.5.1.

Final Artifacts. The other value in the above citation (working software) is represented
in the model by artifacts classified as final. These final artifacts build the delivered soft-
ware system. In this model it is only the source code and COTS software, which is a quite
slim set of artifacts that need to be delivered. They are illustrated in green in the model.

Requirement Specification. In order to build final artifacts the requirement specifica-
tion artifacts need to be implemented. The package is composed of Feature, Requirement,
User story and Use case in the model. Functional tests which were found earlier as re-
quirements specifications were moved out to be able to generalize all tests. The structure

33

4.4 Interpretation

and hierarchy of requirement specification artifacts was not derivable from the included
papers because of ambiguity. Thus the “concept model of the requirements specification”
provided in [64] was adapted.

Test Case. The test case is an abstract class in the model. Such an abstract class is nec-
essary because a lot of different test case implementations were joined with the synonyms
table (see Table 3.4). The Test case class provides the baseline for any test implementation.
Usually the hierarchy created through requirements specification artifacts is mapped to
the test artifacts which are all derived from the abstract class Test case.

Production Process. To transform the requirements to the final product the following
in-production process artifacts are suggested. But as defined by Cohn et al. these artifacts
can vary depending on the enactment of the process and thus the artifacts presented here
are only a hint for what would be applicable [21]. All backlogs and their backlog items
should be seen as in-process artifacts. As well the wall artifact is used to enact the process
as it can be seen as a simplified physical representation of a backlog containing items in
form of index cards. Also parts of the test cases shall be considered as they drive the
production of code which is the last artifact in this classification.

Project Management. The last group of artifacts is the one containing project manage-
ment artifacts. Release plan is definitely a way for the project management to plan for
the future progress. Usually the release plan is using features to plan the content for fur-
ther releases but also could contain issues. Also the Burn-down chart is a management
instrument, which allows depicting the current results of the development activities and
reacting on them. The metaphor is also placed in the management package as it reflects
a vision of the product or the development process and should be used to guide the
development into a certain direction. Coding standard is the last part of the project man-
agement artifacts as it is used to enable collaboration on code and thus is an instrument
of the project management.

Backlog Item. There is an abstract class that cannot be found within the common ar-
tifacts. It is the "backlog item" which is used to abstract different types of content for a
backlog. It was introduced to reduce the complexity of a model that would result without
this abstraction step. As two different backlogs which contain items on a different degree
of detail were identified it is necessary to provide an option to put the items into the back-
logs. Usually the iteration backlog contains backlog items of the type task or issue but
also can contain small requirements that need no further splitting. The product backlog
usually contains requirements or features but also can contain issues that are not relevant
for the current iteration or tasks that result from earlier not implemented planning.

4.4 Interpretation

The model is built from the 19 common artifacts that were found through RQ3 and the re-
lationships found in RQ4. These artifacts and relations were found through an empirical
method. Thus the model is empirically sound.
But as with all agile processes and practices the artifact model is not a silver bullet. It
may be adapted according to the needs of every special case. In some cases the provided
model is too complex. Then artifacts not classified in the production process package
should be considered as candidates to drop. In cases where other artifacts are needed or

34

4 Resulting Artifact Model

prescribed not available in the model they can be integrated and classified where ever
they suit best.
The core of the model can be seen as the triangle of code, test cases and backlog items
which support each other forming a solid structure. This triangular structure tries to
reduce faults in the software because the requirement is on one hand implemented as
code and on the other hand as test cases. Only if the code is doing what is described
by the test cases it is considered as implemented correctly. This relates to the value of
working software of the Manifesto for agile software development.
The value of responding to change is represented in the model by the fact that any cus-
tomer wish can be fulfilled just by adding a backlog item with an according priority and
the agile development will implement it as soon as possible. No matter if it was a new
requirement, new feature, a bug fix or any other task changing anything in the software
system.
The value of customer collaboration is addressed in the model by the fact that a customer
can provide requirements in any form he wants. The absence of any artifact represent-
ing a contract also indicates that contracts are no priority in agile development and the
artifact model.
The last mentioned but first value of the Agile Manifesto is: Individuals and interac-
tions. Abdullah et al. generalize their findings that physical artifacts and individuals are
fundamental stimuli to start, sustain and end interactions. Further they identified eight
patterns that stimulate interactions between developers and six out of them were initial-
ized by artifacts [1]. Thus every artifact in a model can foster the interaction between
individuals.
By addressing all four values of the Agile Manifesto the model itself can be considered
as agile.

35

4.4 Interpretation

36

5 Conclusion

After investigating in the artifact-orientation of agile development methods through a
literature study this Chapter summarizes the outcomes and provides an idea for further
research activities.

Overview
5.1 Summary of Outcomes . 38

5.2 Future work . 38

37

5.2 Future work

5.1 Summary of Outcomes

This section summarizes the outcomes reported in this paper. The systematic case study
reveals that artifact-orientation is not very present in agile development. But enough
research has been done to perform a secondary study. The results of this secondary study
show that the used research methods in primary studies are maturing. Since the last four
years research can be considered as mature due to the presence of numerous Evaluation
Research publications. The number of Solution Proposals indicates that there is still a lot
of innovation in research. Lots of the studies are performed in close cooperation with or
by the industry. Scrum and XP are the agile processes in the focus of research on artifact-
orientation. But it can be assumed that the trend to cover other processes found in general
research on agile development will be followed soon by artifact-oriented research.
The analysis of 76 qualified publications lead to 19 artifacts that are commonly used in
agile development across processes and practices. The found artifacts have a high cohe-
sion which means there are lots of relationships between them. These relationships have
been empirically extracted and were analyzed for their applicability for an artifact model.
Finally an artifact model was created. This model is applicable to any agile development
methodology. The model can easily be adjusted according to the needs. Categories help
to identify the right spot for modification.
19 common artifacts and the relationships between them found utilizing empirical meth-
ods were used to create the artifact model. Thus the extracted artifact model is empiri-
cally sound.

5.2 Future work

The thesis at hand provides an artifact model based on a well-chosen subset of agile
processes and practices. But it is only a first step towards a common artifact model for all
agile development methods.
To provide an advanced model it can be investigated if the inclusion of further processes
and practices leads to additional artifacts and relationships. Also the processes and prac-
tices so far underrepresented in the qualified publications (see Table 3.3) need further
investigation to find artifacts based on other sources. For example not Feature artifact
was found in the context of FDD. This could lead to a refinement and extension of the
artifact model.
The collected data is based literature and therefore might not represent the point of view
from an industry perspective. A further study collecting artifact data from other sources
e. g. an industry survey could be used to verify the findings.
The results of this study are generated through an empirical approach based on a sys-
tematic evaluation of literature. An empirical evaluation of the applicability of the model
in praxis is a recommended step towards a model for agile artifacts accepted by industry
and academia.

38

Bibliography

[1] ABDULLAH, N. N. B., SHARP, H., AND HONIDEN, S. Communication in context:
A stimulus-response account of agile team interactions. In Agile Processes in Software
Engineering and Extreme Programming, W. Aalst, J. Mylopoulos, N. M. Sadeh, M. J.
Shaw, C. Szyperski, A. Sillitti, A. Martin, X. Wang, and E. Whitworth, Eds., vol. 48
of Lecture Notes in Business Information Processing. Springer Berlin Heidelberg, 2010,
pp. 166–171.

[2] ABLETT, R., SHARLIN, E., MAURER, F., DENZINGER, J., AND SCHOCK, C. Build-
bot: Robotic monitoring of agile software development teams. In RO-MAN 2007 -
The 16th IEEE International Symposium on Robot and Human Interactive Communica-
tion (2007), IEEE, pp. 931–936.

[3] ABRANTES, J., AND TRAVASSOS, G. Common agile practices in software processes.
In Empirical Software Engineering and Measurement (ESEM), 2011 International Sym-
posium on (sept. 2011), pp. 355 –358.

[4] AL-ZOABI, Z. Introducing discipline to xp: Applying prince2 on xp projects. In
2008 3rd International Conference on Information and Communication Technologies: From
Theory to Applications (2008), IEEE, pp. 1–7.

[5] ALVES, T. L. Categories of source code in industrial systems. In 2011 International
Symposium on Empirical Software Engineering and Measurement (2011), IEEE, pp. 335–
338.

[6] ALYAHYA, S., IVINS, W. K., AND GRAY, W. Co-ordination support for managing
progress of distributed agile projects. In 2011 IEEE Sixth International Conference on
Global Software Engineering Workshop (2011), IEEE, pp. 31–34.

[7] ANDREA, J. Envisioning next-generation functional testing tools. IEEE Software 24,
3 (2007), 58–66.

[8] BAUMEISTER, H. Combining formal specifications with test driven development.
In Extreme Programming and Agile Methods - XP/Agile Universe 2004, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, C. Zannier, H. Erdogmus, and L. Lindstrom, Eds., vol. 3134 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004, pp. 1–12.

[9] BECK, K. Extreme programming eXplained: Embrace change. Addison-Wesley, Read-
ing and MA, 2000.

[10] BECK, K., BEEDLE, M., VAN BENNEKUM, A., COCKBURN, A., CUNNINGHAM, W.,
FOWLER, M., GRENNING, J., HIGHSMITH, J., HUNT, A., JEFFRIES, R., KERN, J.,
MARICK, B., MARTIN, R. C., MELLOR, S., SCHWABER, K., SUTHERLAND, J., AND

THOMAS, D. Manifesto for agile software development, 2001.
[11] BLANKENSHIP, J., BUSSA, M., AND MILLETT, S. Managing agile projects with

scrum. In Pro Agile .NET Development with Scrum, J. Blankenship, M. Bussa, and
S. Millett, Eds. Apress, 2011, pp. 13–27.

[12] BOGACKI, B., AND WALTER, B. Evaluation of test code quality with aspect-
oriented mutations. In Extreme Programming and Agile Processes in Software Engineer-
ing, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,

39

Bibliography

D. Tygar, M. Y. Vardi, G. Weikum, P. Abrahamsson, M. Marchesi, and G. Succi,
Eds., vol. 4044 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2006, pp. 202–204.

[13] BOOCH, G. The economics of architecture-first. IEEE Software 24, 5 (2007), 18–20.

[14] BREWER, J., AND LORENZ, L. Using uml and agile development methodologies
to teach object-oriented analysis & design tools and techniques. In Proceeding of the
4th conference on Information technology education - CITC ’03 (2003), ACM Press, p. 54.

[15] BROWN, J. M., LINDGAARD, G., AND BIDDLE, R. Collaborative events and shared
artefacts: Agile interaction designers and developers working toward common
aims. In 2011 AGILE Conference (2011), IEEE, pp. 87–96.

[16] BUDGEN, D., KITCHENHAM, B. A., CHARTERS, S. M., TURNER, M., BRERETON,
P., AND LINKMAN, S. G. Presenting software engineering results using structured
abstracts: a randomised experiment. Empirical Software Engineering 13, 4 (2008),
435–468.

[17] CANFORA, G., CONCAS, G., MARCHESI, M., TEMPERO, E., ZHANG, H., ME-
NEELY, A., CORCORAN, M., AND WILLIAMS, L. Improving developer activity
metrics with issue tracking annotations. In Proceedings of the 2010 ICSE Workshop on
Emerging Trends in Software Metrics - WETSoM ’10 (2010), ACM Press, pp. 75–80.

[18] CAPILUPPI, A., FERNANDEZ-RAMIL, J., HIGMAN, J., SHARP, H., AND SMITH, N.
An empirical study of the evolution of an agile-developed software system. In 29th
International Conference on Software Engineering (ICSE’07) (2007), IEEE, pp. 511–518.

[19] CERAVOLO, P., DAMIANI, E., MARCHESI, M., PINNA, S., AND ZAVATARELLI, F. A
ontology-based process modelling for xp. In Tenth Asia-Pacific Software Engineering
Conference, 2003 (2003), IEEE, pp. 236–242.

[20] CHOUDHARI, J., AND SUMAN, U. Story points based effort estimation model for
software maintenance. Procedia Technology 4 (2012), 761–765.

[21] COHN, M. Agile estimating and planning. Prentice Hall Professional Technical Ref-
erence, Upper Saddle River and N.J, 2006.

[22] COHN, M. L., SIM, S. E., AND LEE, C. P. What counts as software process? negoti-
ating the boundary of software work through artifacts and conversation. Computer
Supported Cooperative Work (CSCW) 18, 5-6 (2009), 401–443.

[23] DINGSØYR, T., NERUR, S., BALIJEPALLY, V., AND MOE, N. B. A decade of agile
methodologies: Towards explaining agile software development. Journal of Systems
and Software 85, 6 (2012), 1213–1221.

[24] DOWNS, J., HOSKING, J., AND PLIMMER, B. Status communication in agile soft-
ware teams: A case study. In 2010 Fifth International Conference on Software Engineer-
ing Advances (2010), IEEE, pp. 82–87.

[25] DROBKA, J., NOFTZ, D., AND REKHA RAGHU. Piloting xp on four mission-critical
projects. IEEE Software 21, 6 (2004), 70–75.

[26] DULIPOVICI, M., AND ROBILLARD, P. Cognitive aspects in a project-based course
in software engineering. In Information Technology Based Proceedings of the FIfth Inter-
national Conference onHigher Education and Training, 2004. ITHET 2004 (2004), IEEE,
pp. 353–359.

[27] DYBÅ, T., AND DINGSØYR, T. Empirical studies of agile software development: A
systematic review. Information and Software Technology 50, 9-10 (2008), 833–859.

[28] FARID, W. M., AND MITROPOULOS, F. J. Normatic: A visual tool for modeling non-
functional requirements in agile processes. In 2012 Proceedings of IEEE Southeastcon
(2012), IEEE, pp. 1–8.

40

Bibliography

[29] FARID, W. M., AND MITROPOULOS, F. J. Novel lightweight engineering artifacts
for modeling non-functional requirements in agile processes. In 2012 Proceedings of
IEEE Southeastcon (2012), IEEE, pp. 1–7.

[30] FAVELA, J., NATSU, H., PÉREZ, C., ROBLES, O., MORÁN, A. L., ROMERO, R.,
MARTÍNEZ-ENRÍQUEZ, A. M., AND DECOUCHANT, D. Empirical evaluation of
collaborative support for distributed pair programming. In Groupware: Design, Im-
plementation, and Use, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mat-
tern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, G.-J. Vreede, L. A. Guerrero, and
G. Marín Raventós, Eds., vol. 3198 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2004, pp. 215–222.

[31] GALLARDO-VALENCIA, R. E., OLIVERA, V., AND SIM, S. E. Are use cases benefi-
cial for developers using agile requirements? In 2007 Fifth International Workshop
on Comparative Evaluation in Requirements Engineering (2007), IEEE, pp. 11–22.

[32] GALLARDO-VALENCIA, R. E., AND SIM, S. E. Continuous and collaborative vali-
dation: A field study of requirements knowledge in agile. In 2009 Second Interna-
tional Workshop on Managing Requirements Knowledge (2009), IEEE, pp. 65–74.

[33] GANIS, M., LEIP, D., GROSSMAN, F., AND BERGIN, J. Introducing agile develop-
ment (xp) into a corporate webmaster environment - an experience report. In Agile
Development Conference (ADC’05) (2005), IEEE Comput. Soc, pp. 145–152.

[34] GHANAM, Y., ANDREYCHUK, D., AND MAURER, F. Reactive variability manage-
ment in agile software development. In 2010 Agile Conference (2010), IEEE, pp. 27–
34.

[35] GHANAM, Y., AND MAURER, F. Extreme product line engineering: Managing
variability and traceability via executable specifications. In 2009 Agile Conference
(2009), IEEE, pp. 41–48.

[36] GHANAM, Y., MAURER, F., ABRAHAMSSON, P., AND COOPER, K. A report on the
xp workshop on agile product line engineering. ACM SIGSOFT Software Engineer-
ing Notes 34, 5 (2009), 25.

[37] GINI, M., ISHIDA, T., CASTELFRANCHI, C., JOHNSON, W. L., AND KNUBLAUCH,
H. Extreme programming of multi-agent systems. In Proceedings of the first inter-
national joint conference on Autonomous agents and multiagent systems part 2 - AAMAS
’02 (2002), ACM Press, p. 704.

[38] GOEDICKE, M., MENZIES, T., SAEKI, M., DÖSINGER, S., MORDINYI, R., AND

BIFFL, S. Communicating continuous integration servers for increasing effective-
ness of automated testing. In Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering - ASE 2012 (2012), ACM Press, p. 374.

[39] GONZALEZ-PEREZ, C., AND HENDERSON-SELLERS, B. A work product pool ap-
proach to methodology specification and enactment. Journal of Systems and Software
81, 8 (2008), 1288–1305.

[40] GOODMAN, D., AND ELBAZ, M. It’s not the pants, it’s the people in the pants
learnings from the gap agile transformation what worked, how we did it, and what
still puzzles us. In Agile 2008 Conference (2008), IEEE, pp. 112–115.

[41] GREEN, E. O. Empirical management of engineering projects: A common sense
approach to agility. In Agile Manufacturing, 2007. ICAM 2007. IET International Con-
ference on, (2007), pp. 74–77.

[42] GREGORIO, D. D. How the business analyst supports and encourages collabora-
tion on agile projects. In 2012 IEEE International Systems Conference SysCon 2012
(2012), IEEE, pp. 1–4.

41

Bibliography

[43] HABERL, P., SPILLNER, A., VOSSEBERG, K., AND WINTER, M. Softwaretest in der
praxis: Umfrage 2011.

[44] HADDAD, H. M., DOBRZAŃSKI, Ł., AND KUŹNIARZ, L. An approach to refactor-
ing of executable uml models. In Proceedings of the 2006 ACM symposium on Applied
computing - SAC ’06 (2006), ACM Press, p. 1273.

[45] HASHMI, S. I., AND BAIK, J. Quantitative process improvement in xp using six
sigma tools. In Seventh IEEE/ACIS International Conference on Computer and Informa-
tion Science (icis 2008) (2008), IEEE, pp. 519–524.

[46] HIRSCH, M. Making rup agile. In OOPSLA 2002 Practitioners Reports on - OOPSLA
’02 (2002), ACM Press, p. 1.

[47] IEEE COMPUTER SOCIETY. Ieee standard glossary of software engineering termi-
nology. IEEE Std 610.12-1990 (1990), 1–84.

[48] IEEE COMPUTER SOCIETY. Ieee standard for software and system test documen-
tation. IEEE Std 829-2008 (2008), 1–118.

[49] IEEE COMPUTER SOCIETY. Systems and software engineering – developing user
documentation in an agile environment. ISO/IEC/IEEE 26515 First edition 2011-12-
01; Corrected version 2012-03-15 (2012), 1–36.

[50] JANUS, A. Towards a common agile software development model (asdm): (asdm).
ACM SIGSOFT Software Engineering Notes 37, 4 (2012), 1–8.

[51] JANUS, A., DUMKE, R., SCHMIETENDORF, A., AND JAGER, J. The 3c approach for
agile quality assurance. In 2012 3rd International Workshop on Emerging Trends in
Software Metrics (WETSoM) (2012), IEEE, pp. 9–13.

[52] JEFF SUTHERLAND PH. D, SCHWABER, K., SCRUM, C.-C. O., SUTHERL, C. J., AND

D, P. The Scrum Papers: Nuts, Bolts, and Origins of an Agile Process, 1.1 ed. Scrum
Inc., Cambridge, 2012.

[53] JI, F., AND SEDANO, T. Comparing extreme programming and waterfall project re-
sults. In 2011 24th IEEE-CS Conference on Software Engineering Education and Training
(CSEE&T) (2011), IEEE, pp. 482–486.

[54] KITCHENHAM, B., PEARL BRERETON, O., OWEN, S., BUTCHER, J., AND JEFFERIES,
C. Length and readability of structured software engineering abstracts. IET Soft-
ware 2, 1 (2008), 37.

[55] KITCHENHAM, B. A., AND CHARTERS, S. Guidelines for performing systematic
literature reviews in software engineering, 2007.

[56] KNIBERG, H. Scrum and xp from the trenches: How we do scrum. C4Media Inc., 2007.
[57] KOKKONIEMI, J. K. Gathering experience knowledge from iterative software de-

velopment processes. In Proceedings of the 41st Annual Hawaii International Confer-
ence on System Sciences (HICSS 2008) (2008), IEEE, p. 333.

[58] KOWARK, T., MÜLLER, J., MÜLLER, S., AND ZEIER, A. An educational testbed
for the computational analysis of collaboration in early stages of software devel-
opment processes. In 2011 44th Hawaii International Conference on System Sciences
(2011), IEEE, pp. 1–10.

[59] LAANTI, M. Implementing program model with agile principles in a large soft-
ware development organization. In 2008 32nd Annual IEEE International Computer
Software and Applications Conference (2008), IEEE, pp. 1383–1391.

[60] LI, N., PRAPHAMONTRIPONG, U., AND OFFUTT, J. An experimental comparison
of four unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. In
2009 International Conference on Software Testing, Verification, and Validation Workshops
(2009), IEEE, pp. 220–229.

42

Bibliography

[61] MAALEJ, W., AND HAPPEL, H.-J. A lightweight approach for knowledge shar-
ing in distributed software teams. In Practical Aspects of Knowledge Management,
T. Yamaguchi, Ed., vol. 5345 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pp. 14–25.

[62] MARCHESI, M., MANNARO, K., URAS, S., AND LOCCI, M. Distributed scrum in
research project management. In Agile Processes in Software Engineering and Extreme
Programming, G. Concas, E. Damiani, M. Scotto, and G. Succi, Eds., vol. 4536 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2007, pp. 240–244.

[63] MCHUGH, O., CONBOY, K., AND LANG, M. Agile practices: The impact on trust
in software project teams. IEEE Software 29, 3 (2012), 71–76.

[64] MÉNDEZ FERNÁNDEZ, D. Requirements Engineering: Artefact-Based Customisation.
PhD thesis, Technische Universität München, München, 2011.

[65] MÉNDEZ FERNÁNDEZ, D., AND BROY, M. Artefact orientation: Concepts and
terms, 2012.

[66] MÉNDEZ FERNÁNDEZ, D., PENZENSTADLER, B., KUHRMANN, M., AND BROY,
M. A meta model for artefact-orientation: Fundamentals and lessons learned
in requirements engineering. In Model Driven Engineering Languages and Systems,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds.,
vol. 6395 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010,
pp. 183–197.

[67] MIKIO, I., MASAYUKI, O., TAKAHIRO, T., MICHIKO, O., AND SANSHIRO, S. Using
a validation model to measure the agility of software development in a large soft-
ware development organization. In 2009 31st International Conference on Software
Engineering - Companion Volume (2009), IEEE, pp. 91–100.

[68] MITRA, S., AND BULLINGER, T. A. Using formal software development method-
ologies in a real-world student project: an experience report. J. Comput. Sci. Coll.
22, 6 (2007), 100–108.

[69] MOE, N. B., AURUM, A., AND DYBÅ, T. Challenges of shared decision-making: A
multiple case study of agile software development. Information and Software Tech-
nology 54, 8 (2012), 853–865.

[70] MORIEN, R. Agile management and the toyota way for software project manage-
ment. In INDIN ’05. 2005 3rd IEEE International Conference on Industrial Informatics,
2005 (2005), IEEE, pp. 516–522.

[71] NATSU, H., FAVELA, J., MORAN, A., DECOUCHANT, D., AND MARTINEZ-
ENRIQUEZ, A. M. Distributed pair programming on the web. In Proceedings of the
Fourth Mexican International Conference on Computer Science, 2003. ENC 2003 (2003),
IEEE Comput. Soc, pp. 81–88.

[72] NEILL, C. The extreme programming bandwagon: Revolution or just revolting?
IT Professional 5, 5 (2003), 62–64.

[73] NORD, R. L., OZKAYA, I., AND SANGWAN, R. S. Making architecture visible to im-
prove flow management in lean software development. IEEE Software 29, 5 (2012),
33–39.

[74] PATERNÒ, F., LUYTEN, K., MAURER, F., BOWEN, J., AND REEVES, S. Ui-driven
test-first development of interactive systems. In Proceedings of the 3rd ACM SIGCHI
symposium on Engineering interactive computing systems - EICS ’11 (2011), ACM Press,
p. 165.

43

Bibliography

[75] PAVLOVSKI, C. J., AND ZOU, J. Non-functional requirements in business process
modeling. In Proceedings of the fifth Asia-Pacific conference on Conceptual Modelling -
Volume 79 (2008), APCCM ’08, Australian Computer Society, Inc, pp. 103–112.

[76] PETERSEN, K., FELDT, R., MUJTABA, S., AND MATTSSON, M. Systematic mapping
studies in software engineering. In Proceedings of the 12th international conference on
Evaluation and Assessment in Software Engineering (2008), EASE’08, British Computer
Society, pp. 68–77.

[77] RACHEV, B., SMRIKAROV, A., DĄBROWSKI, R., STENCEL, K., AND TIMOSZUK, G.
Improving software quality by improving architecture management. In Proceedings
of the 13th International Conference on Computer Systems and Technologies - CompSys-
Tech ’12 (2012), ACM Press, p. 208.

[78] RAJLICH, V., AND GOSAVI, P. Incremental change in object-oriented programming.
IEEE Software 21, 4 (2004), 62–69.

[79] RIEHLE, D., AGUIAR, A., AND DAVID, G. Wikiwiki weaving heterogeneous soft-
ware artifacts. In Proceedings of the 2005 international symposium on Wikis - WikiSym
’05 (2005), ACM Press, pp. 67–74.

[80] RUBIN, E., AND RUBIN, H. Supporting agile software development through active
documentation. Requirements Engineering 16, 2 (2011), 117–132.

[81] RUDORFER, A., STENZEL, T., AND HEROLD, G. A business case for feature-
oriented requirements engineering. IEEE Software 29, 5 (2012), 54–59.

[82] SILVA DA SILVA, T., MARTIN, A., MAURER, F., AND SILVEIRA, M. User-centered
design and agile methods: A systematic review. In 2011 AGILE Conference (2011),
IEEE, pp. 77–86.

[83] SJOBERG, D. I., JOHNSEN, A., AND SOLBERG, J. Quantifying the effect of using
kanban versus scrum: A case study. IEEE Software 29, 5 (2012), 47–53.

[84] SUTHERLAND, J., JAKOBSEN, C. R., AND JOHNSON, K. Scrum and cmmi level
5: The magic potion for code warriors. In AGILE 2007 (AGILE 2007) (2007), IEEE,
pp. 272–278.

[85] SUTHERLAND, J., JAKOBSEN, C. R., AND JOHNSON, K. Scrum and cmmi level
5: The magic potion for code warriors. In Proceedings of the 41st Annual Hawaii
International Conference on System Sciences (HICSS 2008) (2008), IEEE, p. 466.

[86] SUTHERLAND, J., SCHOONHEIM, G., RUSTENBURG, E., AND RIJK, M. Fully
distributed scrum: The secret sauce for hyperproductive offshored development
teams. In Agile 2008 Conference (2008), IEEE, pp. 339–344.

[87] SWAMINATHAN, B., AND JAIN, K. Implementing the lean concepts of continuous
improvement and flow on an agile software development project: An industrial
case study. In 2012 Agile India (2012), IEEE, pp. 10–19.

[88] SZÖKE, Á. Conceptual scheduling model and optimized release scheduling for
agile environments. Information and Software Technology 53, 6 (2011), 574–591.

[89] TAYLOR, R. N., GALL, H., MEDVIDOVIĆ, N., CHRISTENSEN, H. B., AND HANSEN,
K. M. Towards architectural information in implementation. In Proceeding of the
33rd international conference on Software engineering - ICSE ’11 (2011), ACM Press,
p. 928.

[90] TENGSHE, A., AND NOBLE, S. Establishing the agile pmo: Managing variability
across projects and portfolios. In AGILE 2007 (AGILE 2007) (2007), IEEE, pp. 188–
193.

[91] UNITED STATES. Federal acquisition regulation [electronic resource], 2005.

44

Bibliography

[92] VAN ROMPAEY, B., AND DEMEYER, S. Establishing traceability links between unit
test cases and units under test. In 2009 13th European Conference on Software Mainte-
nance and Reengineering (2009), IEEE, pp. 209–218.

[93] VANDERLEEST, S. H., AND BUTER, A. Escape the waterfall: Agile for aerospace.
In 2009 IEEE/AIAA 28th Digital Avionics Systems Conference (2009), IEEE, pp. 6.D.3–
1–6.D.3–16.

[94] VERSIONONE. State of agile survey: The state of agile software development: 6th
annual 2011.

[95] WIERINGA, R., MAIDEN, N., MEAD, N., AND COLETTE, R. Requirements engi-
neering paper classification and evaluation criteria: a proposal and a discussion.
Requirements Engineering 11, 1 (2005), 102–107.

[96] WILKERSON, J. W., NUNAMAKER, J. F., AND MERCER, R. Comparing the defect
reduction benefits of code inspection and test-driven development. IEEE Transac-
tions on Software Engineering 38, 3 (2012), 547–560.

[97] YAP, M. Value based extreme programming. In AGILE 2006 (AGILE’06) (2006),
IEEE, pp. 175–184.

[98] ZACHRY, M., SPINUZZI, C., MCNELY, B. J., GESTWICKI, P., BURKE, A., AND

GELMS, B. Articulating everyday actions. In Proceedings of the 30th ACM interna-
tional conference on Design of communication - SIGDOC ’12 (2012), ACM Press, p. 95.

[99] ZETTEL, J., MAURER, F., MÜNCH, J., AND WONG, L. Lipe:a lightweight process
for e-business startup companies based on extreme programming. In Product Fo-
cused Software Process Improvement, F. Bomarius and S. Komi-Sirviö, Eds., vol. 2188
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2001, pp. 255–270.

[100] ZHANG, G., SHEN, L., PENG, X., XING, Z., AND ZHAO, W. Incremental and
iterative reengineering towards software product line: An industrial case study. In
2011 27th IEEE International Conference on Software Maintenance (ICSM) (2011), IEEE,
pp. 418–427.

45

	Introduction
	Motivation
	Problem Statement
	Research objective
	Contribution
	Related work
	Fundamental and Terminology
	Fundamentals
	Terminology

	Outline

	Case Study Design
	Research Questions
	Search Process
	Data Sources
	Search Terms

	Inclusion and Exclusion
	Inclusion and Exclusion Criteria
	Inclusion and Exclusion Procedures

	Quality Assessment
	Data Collection
	Data Analysis
	Research Limitations

	Study Results
	Study Population
	Artifact-orientation in processes and practices - RQ1
	Maturity of research on agile processes and practices - RQ2
	Artifacts resulting from the literature search - RQ3
	Relations between common artifacts - RQ4
	Classification of artifacts

	Resulting Artifact Model
	Overview of Artifacts
	Notation and Application
	Model Description
	Interpretation

	Conclusion
	Summary of Outcomes
	Future work

