© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings

A Practical Approach to align Research with Master’s Level Courses

Marco Kuhrmann
Technische Universitdt Miinchen
Faculty of Informatics, Software & Systems Engineering
Garching, Germany
kuhrmann@in.tum.com

Abstract—Software Engineering is a discipline in computer
sciences that covers different topics ranging from formal
methods to practical topics. An essential part of Software
Engineering is the organization and the management of soft-
ware projects. From several studies we know that we master
the “craftsmanship”, which means coding, but suffer in the
organizational topics, i.e. project or process management.
Those topics are important to Software Engineering, however,
they are rather boring for students, which makes it hard to
enthuse them about such topics. During the last years we
developed a teaching format that on the one hand covers those
high-level and abstract topics and, on the other hand, provides
students with the opportunity to have experiences, and lecturers
to conduct research. In this paper we present a concept for
courses that combines the classic teaching formats lecture,
seminar and practical training into a new format that allows
for interactive teaching as well as for conducting research. We
contribute a blueprint, which can be implemented in further
courses. We present experiences made in a first implementation
in the area of software process management, and conclude the
paper with a discussion and a teaching agenda.

Keywords-education; teaching methods; lecture design; soft-
ware engineering

I. INTRODUCTION

Software Engineering (SE) aims at developing software
systems in a systematic, methodically sound, and economic
manner to master the key challenges of time constraints,
budget adherence, quality and functionality. Beyond the soft-
ware technology that covers mainly technical aspects such
as programming, SE also covers organizing and managing
software projects.

In Software Engineering education, however, we focus
on theoretical basics, architecture, requirements engineering,
programming, or other advanced (technical) topics. When it
comes to more abstract or methodical topics we face the
problem that students are “bored beyond belief”. To give
an example: During the last three years, our chair gave
a lecture on project management that about 450 students
(bachelor’s level) attended. At the same time, we offered an
advanced lecture on process management (master’s level), a
practical training on Global Software Development (GSD
[1]) and several examination papers. Summarized, about
only 30 students (of those 450 candidates) were interested
in those advanced topics, which is less than 10% of the
potential number of participants. We had to realize that

other topics such as iPhone programming, robotics or game
engineering attracted significantly more students. A possible
explanation is the “fun factor”. Another reason is that most
of the students, even if they work in a company, have
no experience with long-term projects in larger teams and
complex software systems that go beyond prototypes. Most
of the students have no relation to such topics. Partners from
industry note that the students are usually not ready for work,
even if they master a couple of programming languages. An
extreme feedback: “I need to qualify a graduate for 2 or 3
extra months to make him fit...” Besides company-specific
knowledge (which a university cannot teach) most partners
from industry complain about missing soft-skills and miss-
ing understanding of how organizations and projects work,
which are exactly the objectives of our research and of the
advanced courses we offer.

A. Problem Statement

As it is difficult to get students interested in such abstract
methodical topics, students have rather few opportunities
to gain experiences to understand why organizations and
projects work the way they do. Classic teaching formats
provide students with theoretical basics and a toolbox. Even
practical trainings are limited to prototypes that often do not
incorporate with real world problems, e.g., social aspects,
communication, negotiation, conflict management, and so
on. From the lecturers perspective teaching is also often not
aligned with current research. Consequently, lecturers may
not be motivated to give interesting lectures, but to finish a
class as fast as possible to get back to research. From the
students’ perspective this is a further demotivating factor.

Yet missing is a practicable approach to (1) teach theoret-
ical basics, which are (2) combined with practical trainings,
and accompanied (3) by research activities.

B. Contribution

We contribute a blueprint for a teaching format at master’s
level, which combines several classic teaching formats to
create a “win-win” situation where teaching and research go
side by side. To this end we provide a detailed description
of the course blueprint and report on a first implementation.
We furthermore discuss our experiences and draw a teaching
agenda for further implementations.

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings

C. Outline

The remainder of the paper is organized as follows:
In Sect. II we discuss the context and the related work.
Section III introduces our approach to combine teaching and
research. In Sect. IV we want to share our experiences that
we made during the first implementation of the proposed
blueprint. We conclude the paper in Sect. V by describing
our teaching agenda and future work.

II. CONTEXT & RELATED WORK

In this section we describe the context by giving infor-
mation about typical teaching formats that are established at
our faculty. After that we discuss the related work.

A. Established Teaching Formats

At our faculty we have curricula built on a small set of
teaching formats, which we will name the established or the
classic formats. Table I gives a brief summary on the most
common teaching formats.

Table I
BRIEF SUMMARY OF THE ESTABLISHED (CLASSIC) TEACHING FORMATS
IMPLEMENTED AT OUR FACULTY.

Format Description

Lecture A lecture is a teaching approach in which the lecturer more
or less directly instructs the students. Except some ques-
tions lectures are, however, not interactive. Lectures are,
usually, supplemented by exercises in which theoretical
contents are “practically” applied. Exams are either oral

or written (mid and/or end term).

Seminar A seminar is a format in which students work indepen-
dently on individual topics. Usually, advisors deliver the
topics and guide the students. As outcome the students
give presentations and write an essay on their particular
topic. The final grade is based on the evaluation of both,
the presentation as well as the essay.

Practical
Training

Practical labs/sessions/trainings (short: training) focus on
transferring theoretical knowledge into a practical envi-
ronment. This format is usually applied when learning
programming languages. The final grade is based on the
(set of) outcomes, e.g., software.

Guided
Research

This teaching format addresses students, who are interested
in participating in current research. Students work as a part
of the research group on current topics. The goal of this
teaching format is to get a paper published. Advisors, e.g.,
senior researchers, evaluate the student’s performance on
which the grade is determined. This teaching format is
especially designed to support a long-term investigation,
which is complemented by a Master’s Thesis.

Theses Theses are comprehensive pieces of work that students
write individually to get their academic degrees, e.g.,
Bachelor’s or Masters’ Theses.

Since 22 chairs at our faculty compete for the students, it
is hard to interest more than a handful of students for specific
topics. Furthermore, since the teaching formats shown in
Table I are usually closed in themselves the creation of
consecutive courses is challenging. Only the guided research
project, which is a rather new format, allows for bridging the

gap between the Bachelor’s Thesis and the Master’s Thesis
by integrating students into the research group.

B. Related Work

Since Software Engineering is also affected by many
(non-technical) disciplines, Ghezzi and Mandrioli [2] state
that teaching SE in isolation is not meaningful. The main
challenge when teaching SE is to provide students with a
mixture of theoretical basics and practical skills. It seems to
be common sense that teaching SE has to include practical
parts. Especially Gnatz et. al [3] note that SE cannot be
thought using text books. An example for an insufficient way
to teach project management is the PMBOK Guide [4] — hav-
ing read this book does not make students project managers,
nor understanding project situations, nor enabling them to
apply project management methods in practice. Instead,
Gnatz et. al present an approach to combine theory and
practical hand-on-lab sessions; a pattern that is also applied
in [5]-[8]. Those courses mainly address the topics of project
management and systematic software development in (small)
teams, external or internal clients in one- or multi-site [9],
[10] settings. Mandl-Strieglitz [11] proposes a simulation-
based approach to teach students project management that
gives them the opportunity to make “real” experiences,
similar to what we have reported in the context of GSD
[1]. Combining practical parts and theory becomes hard (or
impossible) if the curriculum is not based on an appropriate
strategy. Even if there are enough students, there is a
huge uncertainty w.r.t. the pre-knowledge. Another aspect
is the researchers’ point of view. Padua [12], for instance,
investigates the performance of SE courses, while Chen
and Chong [13] investigate a particular topic of interest.
It is a basic question to determine, what the added value
beyond teaching is and how can courses contribute to current
research. In [12] a systematization is provided. Nevertheless,
such an approach works only if the course is self-contained,
if the particular lecture is given at least once a year, and
the course can attract a comparable number of students per
term.

The idea to combine teaching formats such as (theoretical)
lectures, practical sessions, and also research activities is not
new. Especially the integration of lectures and practical ses-
sions is state of the art, but missing a link for systematically
conducting research. The challenge is to justify all teaching
formats so that they fit into one course. We did not have an
appropriate blueprint available at our faculty. Considering,
e.g., the aforementioned key contributions we designed a
new format and inferred a blueprint from our experiences.

III. COMBINING TEACHING AND RESEARCH

The paper at hands describes a new teaching format that
combines the established formats into an integrated course
that not only combines theory and practice (from a student’s

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings

Figure 1.

point of view), but also gives space to systematically con-
duct research!. This makes teaching an integrated part of
researchers’ work rather than a burdensome obligation. In
the following we describe the key concept we created based
on our experiences.

A. Goals

Our teaching format aims at systematically combining
teaching and research, and to create a “win-win” situation
where students (1) get high-quality courses, can (2) partici-
pate in current research and learn about current and hot
topics, and (3) researchers can include student groups into
their research activities.

B. Audience

Our teaching format addresses lecturers that need to create
specialized and/or advanced courses at the master’s level. It
is targeted to small or medium groups of up to 25 students.

C. Organization Blueprint

In this section we present the teaching format in a
blueprint-style that allows for simple adaptation and reuse.
The blueprint (Fig. 1) is based on certain assumptions. The

IThis teaching format was awarded with the “Ernst Otto Fischer Teaching
Award” (2012) by the Faculty of Informatics, Technische Universitit
Miinchen (http://portal. mytum.de/studium-und-lehre/lehrpreise/ernst_otto_
fischer_lehrpreis.html).

Phases =
Lecture Period Exams
W. 1-3 W. 4-11 W. 12-13
_‘_9" Basic knowledge Lecturer: further basic knowledge, motivation and Evaluation using
° 2 organizational frame for the practical trainings, Students: work emperical
SE on spotlight topics methods
=
Fun?:lgnen- Areas| of specialization and context for practical trainings Evaluation Exam
T ., <i>> Workshop 1 >> >> Workshop N >
"é 5 Project definition for
gt the practical
trainings W. 5-11
Workshops in small student teams
» W. 10-13
< T —_— U i
o ' Closing the projects and evaluation Scientific :
;,% , - Controlled experiment publication H
‘q&; ! Definition of '
— 1 i 1
] \ research questions Research parts 2 researchers get data/proofs, ,
H preparation of a scientific publication |

Course blueprint showing the theoretical (light blue), the practical (dark blue), the scientific parts (ochre), and a planning pattern.

calculation is based on a semester with 13 weeks of lectures.
A pilot implementation of this blueprint and first experiences
are presented in Sect. IV.

1) Theoretical Parts (light blue): The course consists
of three phases. In the first phase (about three weeks)
the fundamentals and the basic knowledge is imparted.
During those first three weeks the lecturer acts as a classical
“teacher” (classic lecture style).

In the second phase of about eight weeks the lecturer
prepares the frame for the spotlight topics that cover areas
of specialization. The students work independently on the
spotlight topics; they prepare presentations and small essays
to summarize their outcomes. During this second phase of
the course, the lecturer is in the role of a mentor/consultant
and moderates the interactive sessions. Also, during this
phase the practical parts are prepared.

The third phase (about two weeks) is the evaluation phase.
Outcomes from the practical parts are evaluated according
to scientific methods. Since students usually do not know
much about empirical methods the lecturer is, again, in the
role of the “teacher”. On the other hand, the lecturer is also
in the role of an auditor and guides the evaluation of the
outcomes from the practical phases.

2) Practical Parts (dark blue): At the time when the
second phase of the theoretical parts starts, the classical
exercises (which can be used at the very beginning of the
course, i.e. two sessions) are replaced by practical trainings.

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings

Therefore, the lecturer needs to prepare a project assignment
in which the project objectives are contained. The project
objectives need to be aligned with the course’s contents
w.r.t. the agenda of the overall course and topics that can be
worked on in a self-contained manner, e.g., work packages
that can be handled in one session. The work packages have
to support continuous work to avoid repeated incorporation.
Another important aspect is that outcomes of the practical
parts need to be prepared for evaluation and thus, need to
be defined in order to be measurable.

3) Scientific Parts (ochre): The “experimentation phase”
starts around the final workshop of the practical parts. If the
considered research objective is appropriately tailored exper-
imentation can, of course, start earlier. Research questions
that are defined by the lecturer are mandatory prerequisites
for the experimentation. When the research questions have
been defined the lecturer checks the tentative results of the
passed workshops, and if necessary, consolidates the results
to ensure that all teams can start under the same conditions.
The experiments can start after all the preparations have been
completed. Experiments should be designed to be completed
without interruptions within one session of, e.g., 90 minutes
or 180 minutes, respectively.

Data, which have gained during experimentation, can be
prepared for being published as a scientific publication.
However, the publication is written outside the class.

D. Organization Recommendations

The aforementioned blueprint allows for flexible and

advanced courses, but requires some organization effort.
Prerequisites: Since the presented teaching format al-

lows for the systematically embedding of research activities
into courses, lecturers need more preparation. In addition
o “classic” supporting material, e.g., scripts, slides, and so
on, lecturers especially have to prepare the artifacts for the
project/experimentation setting such as:

« Project assignment for the sample project
All input artifacts required for the sample project
o Consolidated artifacts for the experiment setting(s)
Surveys and so on for the evaluation
o Analysis report(s)

Examination: Since the course is not done “as usual”
the examination procedure needs to be tailored w.r.t. the
concrete setting (and embodiment) of the course. Special
attention should be payed to the possibilities of an examina-
tion procedure that allows for a continuous evaluation of the
students’ performance. There is not only one appointment
where students have to be in great shape, as students’ work
continuously over the whole semester for their final grades.
For small and medium groups (up to 25 students), the
following procedure worked well:

Students prepeare presentations and write essays on their
spotlight topics. Those are a part of the final grade. The
rest of the grade is given based on an oral exam. The final

grade can be found by weighting the parts, e.g., 1/3 for the
presentations and 2/3 for the oral exam.

IV. PILOT IMPLEMENTATION

The blueprint was implemented for the first time in the
winter term 2011/2012. We describe the concrete class and
our experiences.

A. Course Description

The blueprint was implemented for the first time in the
second run of the lecture “Software Engineering Processes”
(the first lecture was given in the classic way). This lecture
gives an introduction to the domain of process engineering
and process management [14]-[16]. Students learn about:

o Software processes in general, why they are important
and how they relate to organizations that drive software
projects.

o Concrete software processes, such as Rational Unified
Process [17], Extreme Programming (XP [18]), Scrum
[19], V-Modell XT, Kanban, and so on.

« The process ecosystem including, e.g., maturity models
(CMMI [20]), processes for IT operation and services
(ITIL [21]), and about the relations among them.

o Software process metamodels, e.g., [ISO 24744 [22],
SPEM [23], V-Modell XT [24], and supporting tools to
author software processes and methods.

« The software process life cycle and the (common) tasks
needed to be performed to analyze, conceptualize, de-
sign, implement, publish, and assess a software process.

This course was implemented at the master’s level. In order
to provide a high-quality class, to foster interaction, and due
to the experimental character, the group size was restricted
to 15 students. The whole lecture was organized to be held
in a block of 180 minutes per week to create the necessary
space for practical trainings and experiments. A schedule for
the pilot implementation is shown in Table II. The table boils

B e, T e U CE

m b a,uhek'
?,wu‘@
\all
Ve

5 \(“ Cw.\r

3 e

e,

P

Figure 2. Workshop 2: Final artifact and process models (conceptualiza-
tion) are the results of the workshops. (week 8 and 9, see Table II).

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings

Table II

SCHEDULE OF THE PILOT IMPLEMENTATION OF THE LECTURE “SOFTWARE ENGINEERING PROCESSES” (WINTER TERM 2011/2012).

Motivation, establishing the relations to and incorporation into Software Engineering, repe-
tition of project management basics, e.g., organization models, project settings/organization,

Fundamentals, terminology, and concepts of software processes

Preparation and incorporation of the spotlight topics. Where needed, context-specific back-
ground knowledge and detailed information w.r.t. certain topics was provided by the lecturer.
Preparation of the sample project (including: motivation of the project, presentation of the
requirements, incorporation of the initial supporting material, and so on).

Students work on their spotlight topics with focus on specific methods/approaches and tools
(e.g., Scrum, Kanban, CMMI, Eclipse Process Framework, SPEM, and so on), and give a

Students work on their practical tasks/work packages in workshops. The first workshop aims
at identifying stakeholdes, roles, and responsibilities. The second workshop is focused on
artifact structures and processes (see Fig. 2) and prepares the consolidation. Lecturer advises

Students present their first outcomes. Lecturer evaluates the outcomes and prepares a consol-
idated set of outcomes, which are the input for the planned experiment (each experimentation
group is provided with the same initial conditions for the experiment). The subject of
investigation is the performance of a process model realization depending on the (design)
philosophy of a given process framework.

Students work on the tasks demanded by the (consolidated) project assignment. One group
used the Eclipse Process Framework for the process’s realization, the other group used the
V-Modell XT platform, respectively. The lecturer monitors the experiment.

Week Phase (Who) Topics and Description
1-3 Basic Knowledge (lecturer)
and so on.
4-7 Context for the project (lecturer)
Context-specific knowledge (lecturer)
Spotlight topics (students)
presentation in class.
8-9 Two workshops addressing software
process analysis and conception
(students)
the students w.r.t. their particular tasks.
10 Evaluation of the first workshops and
presentation of the outcomes (students)
Consolidation of the outcomes and
preparation of the experiment (lecturer)
11-12 Realization/implementation workshop
(2 student groups)
13 Evaluation/audit of the outcomes

(students and lecturer)

In the first part the basics regarding assessment and evaluation were thought, i.e. creation of
surveys and assessment fundamentals (lecturer). In the second part of the last session, the
students firstly evaluate themselves (self-audit of their own work), and secondly audit the
outcomes of the other group.

down the blueprint (Fig. 1) and shows, who is in charge to

Table IV
EVALUATION OF THE ONE-MINUTE-PAPERS.

do certain tasks, what are the particular contents of a phase,
and what is the duration a phase.

B. Experiences

We implemented this teaching format in the second run

1= Pro

Structure of the topics and the class,
Combination of theory and practice,
Projects in teams (atmosphere),

Self-motivation due to presentations,

of the lecture “Software Engineering Processes”. Therefore,
we are able to compare both classes and to report some
experiences (Table III) that we made during the second run.

C. The Students’ Voice

Besides the formal course evaluation by the faculty we
performed an internal evaluation. Students were asked to
write a one-minute-paper that contained the following three
questions to be answered in short words:

1) (up to 5) points that are positive
2) (up to 5) points that are negative
3) (up to 5) points that I still wanted to say (informal)

Table IV summarizes the evaluation of the one-minute-
papers. Those opinions were considered during summarizing
our experiences (Table III).

D. Drawbacks & Critical Discussion

Summarized, we consider this new teaching format to be
a success. Nevertheless, we realized some drawbacks that
need to be critically discussed:

Continuous evaluation and finding of the final grades

1.2 Con

Tough schedule,
Tailoring of the tasks for the practical sessions was not always optimal
Students signed off, just because of the examination procedure

Informal

“Thank you, this was the lecture I learned the most.”
“Super class, and I loved those many samples from practice.”

Effort: From the lecturer’s point of view, we have to
note that the preparation and the coordination of the pilot
class caused much effort (about twice the effort of running
this lecture in the classic shape as done the year before).
Although some preliminary work is available, there were no
experiences in running a class this way. In consequence, we
cannot yet generalize and thus have to implement the new
teaching format again to increase our experience base.

Complexity of the samples: Teaching students with
real world examples requires appropriate samples. However,
a lecture aims at educating students and not at solving

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings

Table III

EXPERIENCES AND LESSONS LEARNED ([K/;'E POSITIVE, IC2: NEGATIVE, HE/B;E REQUIRES MORE EXPERIENCE FOR A FINAL RATING).

Conext & Experience

Lesson Learned

The requirement that students become active themselves, work on spotlight topics, and present
their outcomes in class, made students feel inconvenient for the first moment. Those feelings
faded away during the first two presentations.

Since the spotlight topic presentations fostered the discussion, we had to tighten the schedule.
We decided to limit the presentation slots to 15 minutes to have more space for the discussion.

Each presentation was supplemented by a short essay of 4-5 pages (LNCS style). The essay
should summarize the basic facts and findings. This approach worked well, since all students
had summaries of all topics available.

Not only working on a synthetical sample, but on a real world process has proved successful.
For this class we got a process by the working group Software Processes of the German
Computer Society.

Working in self-organizing teams has proved successful. Each student had his tasks and could
also give information w.r.t. the overall project at anytime.

Combining active and interactive parts during lectures, exercises, and practical trainings (the
project) proved successful. Students actively communicated with each other without the usual
anxieties.

Mutual evaluation of the process realizations proved successful. Each student did a self-
assessment according to given criteria, and in a second step, reviewed the outcomes of the
other group (according to the same criteria). Everybody respects everybody else’s work.

In the first session we presented the examination mode. We told the students that we would

find the final grades by a continuous evaluation, that they would have to give two presentations
(including the essay) each, and that they have to pass an oral exam. Some students had fear

Students improve their presentation skills

Discussion is important but can get out of
control

Students document their findings, but need
assistance (review) to write the essays

A real-world-example is of advantage, but
it needs to be tailored in advance

Students work independently and identify
themselves with the project

Students improve their communication
skills

Although students are usually not expe-
rienced in evaluation, they learn to rate
other’s work

The examination mode is fair, but causes
effort for the students, which they try to
avoid

I’s

2/ ()

2/ ()

La/1E

FB

s

FB

s

2/ ()

of “too much” work and signed off.

somebody else’s problems. Therefore, sample projects need
to be tailored in advance to fit in the lecture, which means
that complexity needs to be reduced including a reduction
of “reality”.

The “right” research question: Our main goal is to
provide lecturers with the opportunity to combine teaching
and research. Since the schedule of a lecture is fixed,
research questions need to be tailored to fit in the classes.
Due to the 180 minute time slots, we learned that (1)
research has to be intensively prepared and planned, and that
(2) not every research objective is reasonable to be treated
in such a setting.

V. TEACHING AGENDA & FUTURE WORK

We presented a teaching approach that combines the
classic lecture with seminars and practical trainings, and
allows for systematically conducting research. Lecturers give
a lecture on a particular topic, and provide students with
the opportunity to work independently on spotlight topics,
and thus foster interaction in classes. Furthermore, lecturers
can define projects/experiments that are performed during
practical sessions. Students work on real problems that
are motivated and backed-up by the theoretical contents
of the lecture. They can transfer the theoretical knowledge
to gain experiences. The lecturer can align the project
with his research in order to get data (e.g., experiments),
or to evaluate current research (e.g., experiments, surveys,
prototypes). Summarized, we extended the classic lecture by
reorganizing the schedule to integrate interactive parts and to

give researches space to conduct research without reducing
the contents of teaching.

Experiences: Our experiences from the pilot imple-
mentation show that this teaching format met our expec-
tations. Classes were interactive, students got a theoretical
foundation as well as in-depth knowledge w.r.t. spotlight
topics. The students worked practically, experienced real
world problems, and learned how to deal with problems. The
exams showed that students learned more effectively and
understood the contents better than in the first (classic) run
of the lecture. Furthermore, we could perform a controlled
experiment and thus could integrate current research.

The pilot implementation causes, however, about twice
the effort in organizing the lecture than the classic format.
Since we were not experienced with this particular teaching
format, the additional effort may decrease, which is also a
subject for further investigation.

Future Work — A Teaching Agenda: Since the pilot
implementation met our expectations we will implement
the new format in several new lectures. For the winter
term 2012/2013 we are already preparing a lecture on
agile project management methods?. Since agility allows for
manifold experiments (e.g., team building, social aspects, de-
velopment performance, software quality, and so on) we can
apply our blueprint to teach the students project management
while conducting several experiments. We also discuss with

2Lecture “Agile Project Mangement & Software Development”, win-
ter semester 2012/2013, master’s level, http://www4.in.tum.de/lehre/
vorlesungen/vgmse/ws1213/index.shtml

© IEEE. This is the author's version of the work. It is posted here by permission of IEEE for your personal use.
Not for redistribution. The definitive version was published in the conference/workshop proceedings

lecturers at our chair, whether they want to (partially) adapt
our concept in their lectures. Furthermore, we are looking for
more lecturers, who are interested in this teaching format. As
a first step we start to disseminate our concept at our faculty.
Finally, the lecture “Software Engineering Processes” will
be given again in the winter term 2013/2014 to monitor the
implementation (quality) of our concept.

ACKNOWLEDGEMENTS

First of all, we want to thank Manfred Broy, who gave us
the freedom to create this new teaching format at his chair.
Furthermore we want to thank Daniel Méndez Ferndndez
and Georg Kalus for their essential and valuable support
during the implementation of the lecture “Software Engi-
neering Processes”, and Manuel Then for his support on the
exercise materials. Finally, we want to thank Katharina Spies
for her organizational support to set up the lecture, and Birgit
Penzenstadler, Sebastian Eder, Jonas Eckhardt, and Hennig
Femmer for reviewing this paper.

REFERENCES

[1] Deiters, C., Herrmann, C., Hildebrandt, R., Knauss, E.,
Kuhrmann, M., Rausch, A., Rumpe, B., and Schneider, K.,
“GloSE-Lab: Teaching Global Software Engineering,” in Pro-
ceedings of 6th IEEE International Conference on Global
Software Engineering. 1EEE, 2011.

[2] Ghezzi, C. and Mandrioli, D., “The Challenges of Software
Engineering Education,” in International Conference on Soft-
ware Engineering (ICSE). ACM, 2005.

[3] Gnatz, M., Kof, L., Prilmeier, F., and Seifert, T., “A practical
approach of teaching software engineering,” in Conference on
Software Engineering Education and Training, 2003.

[4] Project Management Institute, A Guide to the Project Man-
agement Body of Knowledge, 4th ed. Project Management
Institute, 2009.

[5] Richardson, I., Milewski, A. E., and Mullick, N., “Distributed
Development — an Education Perspective on the Global
Studio Project,” in International Conference on Software
Engineering (ICSE). ACM, 2006.

[6] Huang, L., Dai, L., Guo, B., and Lei, G., “Project-Driven
Teaching Model for Software Project Management Course,”
in International Conference on Computer Science and Soft-
ware Engineering. 1EEE, 2008.

[7] Dahiya, D., “Teaching Software Engineering: A Practical Ap-
proach,” ACM SIGSOFT Software Engineering Notes, vol. 35,
no. 2, 2010.

[8] Bavota, G., De Lucia, A., Fasano, F., Oliveto, R., and Zottoli,
C., “Teaching Software Enginerring and Software Project
Management: An Integrated and Practical Approach,” in
International Conference on Software Engineering (ICSE).
IEEE, 2012.

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

(21]

(22]

(23]

[24]

Brereton, P., Gumbley, M., and Lees, S., “Distributed student
projects in software engineering,” in Conference on Software
Engineering Education and Training. 1EEE, 1998.
Keenan, E., Steele, A., and Jia, X., “Simulating Global
Software Development in a Course Environment,,” in Interna-
tional Conference on Global Software Engineering (ICGSE).
1EEE, 2010.

Mandl-Strieglitz, P., “How to successfully use software
project simulation for educating software project managers,”
in Frontiers in Education Conference. 1EEE, 2001.

Padua, W., “Measuring complexity, effectiveness and effi-
ciency in software course projects,” in International Confer-
ence on Software Engineering (ICSE). ACM, 2010.

Chen, C. and Chong, P., “Software Engineering Education:
A study on conducting collaborative senior project develop-
ment,” The Journal of Systems and Software, 2010.

W. S. Humphrey, “The software process: Global goals,” in
International Software Process Workshop (SPW), ser. Lecture
Notes in Computer Science. Springer, 2005.

D. Rombach, “Integrated Software Process and Product
Lines,” in International Software Process Workshop (SPW),
ser. Lecture Notes in Computer Science. Springer, 2005.
A. Goodman, Defining and Deploying Software Processes.
Auerbach Publishers Inc., 2005.

P. Kroll and P. Kruchten, The Rational Unified Process Made
Easy — A Practinioner’s Guide to RUP. Addison-Wesley,
2003.

K. Beck, Extreme Programming. Addison-Wesley, 2003.
K. Schwaber, Agile Project Management with Scrum. Mi-
crosoft Press, 2004.

R. Kneuper, CMMI: Improving Software and Systems Devel-
opment Processes Using Capability Maturity Model Integra-
tion (CMMI-Dev), 1st ed. Rocky Nook, 2008, no. ISBN:
978-3898643733.

Office of Government Commerce, ITIL Lifecycle Suite 2011.
The Stationery Office Ltd., 2011.

Joint Technical Committee ISO/IEC JTC 1, Subcommittee
SC 7, “Software engineering — metamodel for development
methodologies,” International Organization for Standardiza-
tion, Tech. Rep. ISO/IEC 24744:2007, 2007.

OMG, “Software & Systems Process Engineering Meta-
model Specification (SPEM) Version 2.0,” Object Manage-
ment Group, Tech. Rep., 2008.

Federal Ministery of the Interior, “V-Modell XT Online
Portal,” Online, 2010. [Online]. Available: http://www.
v-modell-xt.de/

