
Turning inductive into equational specifications

Stefan Berghofer? and Lukas Bulwahn and Florian Haftmann??

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

http://www.in.tum.de/~berghofe/

http://www.in.tum.de/~bulwahn/

http://www.in.tum.de/~haftmann/

Abstract. Inductively defined predicates are frequently used in formal
specifications. Using the theorem prover Isabelle, we describe an ap-
proach to turn a class of systems of inductively defined predicates into
a system of equations using data flow analysis; the translation is carried
out inside the logic and resulting equations can be turned into functional
program code in SML, OCaml or Haskell using the existing code gener-
ator of Isabelle. Thus we extend the scope of code generation in Isabelle
from functional to functional-logic programs while leaving the trusted
foundations of code generation itself intact.

1 Introduction

Inductively defined predicates (for short, (inductive) predicates) are a popu-
lar specification device in the theorem proving community. Major theory devel-
opments in the proof assistant Isabelle/HOL [8] make pervasive use of them,
e.g. formal semantics of realistic programming language fragments [11]. From
such large applications naturally the desire arises to generate executable proto-
types from the abstract specifications. It is well-known how systems of predicates
can be transformed to functional programs using mode analysis. The approach
described in [1] for Isabelle/HOL works but has turned out unsatisfactorily:

– The applied transformations are not trivial but are carried out outside the
LCF inference kernel, thus relying on a large code base to be trusted.

– Recently a lot of code generation facilities in Isabelle/HOL have been gen-
eralized to cover type classes and more languages than ML, but this has not
yet been undertaken for predicates.

In our view it is high time to tackle execution of predicates again; we present
a transformation from predicates to function-like equations that is not a mere
re-implementation, but brings substantial improvements:
? Supported by BMBF in the VerisoftXT project under grant 01 IS 07008 F

?? Supported by DFG project NI 491/10-1.

http://www.in.tum.de/~berghofe/
http://www.in.tum.de/~bulwahn/
http://www.in.tum.de/~haftmann/

– The transformation is carried out inside the logic; thus the transformation
is guarded by LCF inferences and does not increase the trusted code base.

– The code generator itself can be fed with the function-like equations and
does not need to be extended; also other tools involving equational reasoning
could benefit from the transformation.

– Proposed extensions can also work inside the logic and do not endanger
trustability.

The role of our transformation in this scenario is shown in the following picture:

inductive package inductive predicates transformer

equational theoremscode generatorexecutable code

The remainder of this paper is structured as follows: we briefly review existing
work in §2 and explain the preliminaries in §3. The main section (§4) explains
how the translation works, followed by a discussion of further extensions (§5).
Our conclusion (§6) will deal with future work.

In our presentation we use fairly standard notation, plus little Isabelle/HOL-
specific concrete syntax.

2 Related work

From the technical point of view, the execution of predicates has been extensively
studied in the context of the programming languages Curry [4] and Mercury [10].
The central concept for executing predicates are modes, which describe dataflow
by partitioning arguments into input and output.

We already mentioned the state-of-the-art implementation of code generation
for predicates in Isabelle/HOL [1] which turns inductive predicates into ML
programs extralogically using mode analysis.

Delahaye et al. provide a similar direct extraction for the Coq proof assis-
tant [2]; however at most one solution is computed, multiple solutions are not
enumerated.

For each of these approaches, correctness is ensured by pen-and-paper proofs.
Our approach instead animates the correctness proof by applying it to each
single predicate using the proof assistant itself; thus correctness is guaranteed
by construction.

3 Preliminaries

3.1 Inductive predicates

An inductive predicate is characterized by a collection of introduction rules (or
clauses), each of which has a conclusion and an arbitrary number of premises.

2

It corresponds to the smallest set closed under these clauses. As an example,
consider the following predicate describing the concatenation of two lists, which
can be defined in in Isabelle/HOL using the inductive command:

inductive append :: α list ⇒ α list ⇒ α list ⇒ bool where
append [] ys ys
| append xs ys zs =⇒ append (x · xs) ys (x · zs)

For each predicate, an elimination (or case analysis) rule is provided, which for
append has the form

append Xs Ys Zs =⇒
(
∧

ys. Xs = [] =⇒ Ys = ys =⇒ Zs = ys =⇒ P) =⇒
(
∧

xs ys zs x .
Xs = x · xs =⇒
Ys = ys =⇒ Zs = x · zs =⇒ append xs ys zs =⇒ P) =⇒

P

There is also an induction rule, which however is not relevant in our scenario.
In introduction rules, we distinguish between premises of the form Q u1 . . . uk,
where Q is an inductive predicate, and premises of other shapes, which we call
side conditions. Without loss of generality, we only consider clauses without side
conditions in most parts of our presentation. The general form of a clause is

Ci : Qi,1 ui,1 =⇒ · · · =⇒ Qi,ni ui,ni =⇒ P ti

We use ki,j and l to denote the arities of the predicates Qi,j and P , i.e. the
length of the argument lists ui,j and ti, respectively.

3.2 Code generation

The Isabelle code generator views generated programs as an implementation of
an equational rewrite system, e.g. the following program normalizes a list of
natural numbers to its sum by equational rewriting:

sum [Suc Zero_nat, Suc Zero_nat]

Suc (Suc Zero_nat)

datatype nat = Zero_nat | Suc of nat;

fun plus_nat (Suc m) n = plus_nat m (Suc n)
| plus_nat Zero_nat n = n;

fun sum [] = Zero_nat
| sum (m :: ms) = plus_nat m (sum ms);

3

The code generator turns a set of equational theorems into a program inducing
the same equational rewrite system. This means that any sequence of reduction
steps the generated program performs on a term can be simulated in the logic:

program with same equational semantics `

equational theorems `

t

t

v

v

. . .

. . .

u

u

code generation

This guarantees partial correctness [3]. As a further consequence only program
statements which contribute to a program’s equational semantics (e.g. fun in
ML) are correctness-critical, whereas others are not. For example, the construc-
tors of a datatype in ML need only meet the syntactic characteristics of a
datatype, but not the usual logical properties of a HOL datatype such as injec-
tivity. This gives us some freedom in choosing datatype constructors which we
will employ in §4.2.

4 Transforming clauses to equations

4.1 Mode analysis

In order to execute a predicate P , its arguments are classified as input or output.
For example, all three arguments of append could be input, meaning that the
predicate just checks whether the third list is the concatenation of the first and
second list. Another possibility would be to consider only the first and second
argument as input, while the third one is output. In this case, the predicate
actually computes the concatenation of the two input lists. Yet another way of
using append would be to consider the third argument as input, while the first
two arguments are output. This means that the predicate enumerates all possible
ways of splitting the input list into two parts. This notion of dataflow is made
explicit by means of modes [6].

Modes. For a predicate P with k arguments, we denote a particular dataflow
assignment by a mode which is a set M ⊆ {1, . . . , k} such that M is exactly
the set of all parameter position numbers denoting input parameters. A mode
assignment for a given clause

Qi,1 ui,1 =⇒ · · · =⇒ Qi,ni ui,ni =⇒ P ti

is a list of modes M,Mi,1, . . .Mi,ni for the predicates P,Qi,1, . . . , Qi,ni , where
1 ≤ i ≤ m, M ⊆ {1, . . . , l} and Qi,j ⊆ {1, . . . , ki,j}. Let FV (t) denote the set
of free variables in a term t. Given a vector of arguments t and a mode M , the
projection expression t〈M〉 denotes the list of all arguments in t (in the order of
their occurrence) whose index is in M .

4

Mode consistency. Given a clause

Qi,1 ui,1 =⇒ · · · =⇒ Qi,ni ui,ni =⇒ P ti

a corresponding mode assignment M,Mi,1, . . .Mi,ni is consistent if there exists
a chain of sets v0 ⊆ · · · ⊆ vn of variables generated by

1. v0 = FV (ti〈M〉)
2. vj = vj−1 ∪ FV (ui,j)

such that

3. FV (ui,j〈Mi,j〉) ⊆ vj−1

4. FV (ti) ⊆ vn

Consistency models the possibility of a sequential evaluation of premises in a
given order, where vj represents the known variables after the evaluation of the
j-th premise:

1. initially, all variables in input arguments of P are known
2. after evaluation of the j-th premise, the set of known variables is extended

by all variables in the arguments of Qi,j ,
3. when evaluating the j-th premise, all variables in the arguments of Qi,j have

to be known,
4. finally, all variables in the arguments of P must be contained in the set of

known variables.

Without loss of generality we can examine clauses under mode inference modulo
reordering of premises. For side conditions R, condition 3 has to be replaced by
FV (R) ⊆ vj−1, i.e. all variables in R must be known when evaluating it. This
definition yields a check whether a given clause is consistent with a particular
mode assignment.

4.2 Enumerating output arguments of predicates

A predicate of type α ⇒ bool is isomorphic to a set over type α; executing
inductive predicates means to enumerate elements of the corresponding set. For
this purpose we use an abstract algebra of primitive operations on such predicate
enumerations. To establish an abstraction, we first define an explicit type to
represent predicates:

datatype α pred = pred (α ⇒ bool)

with a projection operator eval :: α pred ⇒ α ⇒ bool satisfying

eval (pred f) = f

We provide four further abstract operations on α pred :

5

– ⊥ :: α pred is the empty enumeration.
– single :: α ⇒ α pred is the singleton enumeration.
– (>>=) :: α pred ⇒ (α ⇒ β pred) ⇒ β pred applies a function to every

element of an enumeration which itself returns an enumeration and flattens
all resulting enumerations.

– (t) :: α pred ⇒ α pred ⇒ α pred forms the union of two enumerations.

These abstract operations, which form a plus monad, are used to build up the
code equations of predicates (§4.3). Table 1 contains their definitions and relates
them to their counterparts on sets. In order to equip these abstract operations
with an executable model, we introduce an auxiliary datatype:

datatype α seq = Empty | Insert α (α pred) | Union (α pred list)

Values of type α seq are embedded into type α pred by defining:

Seq :: (unit ⇒ α seq) ⇒ α pred
Seq f =
(case f () of Empty ⇒ ⊥ | Insert x xq ⇒ single x t xq
| Union xqs ⇒

⊔
◦ xqs)

where
⊔
◦ :: α pred list ⇒ α pred flattens a list of predicates into one predicate.

Seq will serve as datatype constructor for type α pred ; on top of this, we prove
the following code equations for our α pred algebra:

⊥ = Seq (λu. Empty)

single x = Seq (λu. Insert x ⊥)

Seq g >>= f =
Seq (λu. case g () of Empty ⇒ Empty

| Insert x xq ⇒ Union [f x , xq >>= f]
| Union xqs ⇒ Union (map (λx . x >>= f) xqs))

Seq f t Seq g =
Seq (λu. case f () of Empty ⇒ g ()

| Insert x xq ⇒ Insert x (xq t Seq g)
| Union xqs ⇒ Union (xqs @ [Seq g]))

eval eval (pred P) x ←→ P x x ∈ P

⊥ ⊥ = pred (λx . False) {}
single x single x = pred (λy . y = x) {x}
P >>= f P >>= f = pred (λx . ∃ y . eval P y ∧ eval (f y) x)

⋃
f ‘ P

P t Q P t Q = pred (λx . eval P x ∨ eval Q x) P ∪ Q

Here (‘) :: (α ⇒ β) ⇒ (α ⇒ bool) ⇒ β ⇒ bool is the
image operator on sets satisfying f ‘ A = {y . ∃ x∈A. y = f x}.

Table 1. Abstract operations for predicate enumerations

6

For membership tests we define a further auxiliary constant:

member :: α seq ⇒ α ⇒ bool
member Empty x ←→ False
member (Insert y yq) x ←→ x = y ∨ eval yq x
member (Union xqs) x ←→ list-ex (λxq . eval xq x) xqs

where list-ex :: (α ⇒ bool) ⇒ α list ⇒ bool is existential quantification on lists,
and use it to prove the code equation

eval (Seq f) = member (f ())

From the point of view of the logic, this characterization of the α pred algebra
in terms of unit abstractions might seem odd; their purpose comes to surface
when translating these equations to executable code, e.g. in ML:

datatype ’a pred = Seq of (unit -> ’a seq)
and ’a seq = Empty | Insert of ’a * ’a pred | Union of ’a pred list;

val bot_pred : ’a pred = Seq (fn u => Empty)

fun single x = Seq (fn u => Insert (x, bot_pred));

fun bind (Seq g) f =
Seq (fn u =>

(case g () of Empty => Empty
| Insert (x, xq) => Union [f x, bind xq f]
| Union xqs => Union (map (fn x => bind x f) xqs)));

fun sup_pred (Seq f) (Seq g) =
Seq (fn u =>

(case f () of Empty => g ()
| Insert (x, xq) => Insert (x, sup_pred xq (Seq g))
| Union xqs => Union (append xqs [Seq g])));

fun eval A_ (Seq f) = member A_ (f ())
and member A_ Empty x = false
| member A_ (Insert (y, yq)) x = eq A_ x y orelse eval A_ yq x
| member A_ (Union xqs) x = list_ex (fn xq => eval A_ xq x) xqs;

In the function definitions for eval and member, the expression A_ is the dictio-
nary for the eq class allowing for explicit equality checks using the overloaded
constant eq.

In shape this follows a well-known ML technique for lazy lists: each inspection
of a lazy list by means of an application f () is protected by a constructor Seq.
Thus we enforce a lazy evaluation strategy for predicate enumerations even for
eager languages.

4.3 Compilation scheme for clauses

The central idea underlying the compilation of a predicate P is to generate a
function PM for each mode M of P that, given a list of input arguments, enu-
merates all tuples of output arguments. The clauses of an inductive predicate

7

can be viewed as a logic program. However, in contrast to logic programming
languages like Prolog, the execution of the functional program generated from
the clauses uses pattern matching instead of unification. A precondition for the
applicability of pattern matching is that the input arguments in the conclusions
of the clauses, as well as the output arguments in the premises of the clauses are
built up using only datatype constructors and variables. In the following descrip-
tion of the translation scheme, we will treat the pattern matching mechanism as
a black box. However, our implementation uses a pattern translation algorithm
due to Slind [9, §3.3], which closely resembles the techniques used in compilers
for functional programming languages. The following notation will be used in
our description of the translation mechanism:

x = x1 . . . xl (x) = (x1, . . . , xl)
τ = τ1 . . . τl τ ⇒ σ = τ1 ⇒ · · · ⇒ τl ⇒ σ∏
τ = τ1 × · · · × τl M− = {1, . . . , l}\M

Let P :: τ ⇒ bool be a predicate and M,Mi,1, . . .Mi,ni be a consistent mode
assignment for the clauses Ci of P . The function PM corresponding to mode M
of P is defined as follows:

PM :: τ〈M〉 ⇒ (
∏
τ〈M−〉) pred

PMx〈M〉 ≡ pred (λ(x〈M−〉). P x)

Given the input arguments x〈M〉 :: τ〈M〉, function PM returns a set of tuples
of output arguments (x〈M−〉) for which P x holds. For modes {1, 2} and {3} of
the introductory append example, the corresponding definitions are as follows:

append{1,2} :: α list ⇒ α list ⇒ α list pred
append{1,2} xs ys = pred (λzs. append xs ys zs)

append{3} :: α list ⇒ (α list × α list) pred
append{3} zs = pred (λ(xs, ys). append xs ys zs)

The recursion equation for PM can be obtained from the clauses characterizing
P in a canonical way:

PMx〈M〉 = C1 x〈M〉 t · · · t Cm x〈M〉

Intuitively, this means that the set of output values generated by PM is the
union of the output values generated by the clauses Ci. In order for pattern
matching to work, all patterns occurring in the program must be linear, i.e.
no variable may occur more than once. This can be achieved by renaming the
free variables occurring in the terms ti, ui,1, . . ., ui,ni , and by adding suitable
equality checks to the generated program. Let t′i, u

′
i,1, . . ., u′i,ni denote these

linear terms obtained by renaming the aforementioned ones, and let θi = {yi 7→
zi}, θi,1 = {yi,1 7→ zi,1}, . . ., θi,ni = {yi,ni 7→ zi,ni} be substitutions such that
θi(t
′
i) = ti, θi,1(u′i,1) = ui,1, . . ., θi,ni(u

′
i,ni) = ui,ni , and (dom(θi) ∪ dom(θi,1) ∪

8

· · · ∪ dom(θi,ni))∩FV (Ci) = ∅. The expressions Ci corresponding to the clauses
can then be defined by

Ci x〈M〉 ≡
single (x〈M〉)>>= (λa0. case a0 of

(t′i〈M〉)⇒ if yi 6= zi then ⊥ else
Q
Mi,1
i,1 (ui,1〈Mi,1〉)>>= (λa1. case a1 of
(u′i,1〈M−i,1〉)⇒ if yi,1 6= zi,1 then ⊥ else

. . .

Q
Mi,ni
i,ni

(ui,ni〈Mi,ni〉)>>= (λani . case ani of
(u′i,ni〈M

−
i,ni
〉)⇒ if yi,ni 6= zi,ni then ⊥ else

single (ti〈M−〉)
| ⇒ ⊥)

| ⇒ ⊥)
| ⇒ ⊥)

Here, M−i,1 = {1, . . . , ki,1}\Mi,1, . . ., M−i,ni = {1, . . . , ki,ni}\Mi,ni denote the sets
of indices of output arguments corresponding to the respective modes. As an
example, we give the recursive equations for append on modes {1, 2} and {3}:

append{1,2} xs ys =
single (xs, ys) >>= (λa. case a of

([], zs) ⇒ single zs
| (z · zs, ws) ⇒ ⊥) t

single (xs, ys) >>= (λb. case b of
([], zs) ⇒ ⊥
| (z · zs, ws) ⇒ append{1,2} zs ws >>= (λvs. single (z · vs)))

append{3} xs =
single xs >>= (λys. single ([], ys)) t
single xs >>= (λa. case a of

[] ⇒ ⊥
| z · zs ⇒ append{3} zs >>= (λb. case b of

(ws, vs) ⇒ single (z · ws, vs)))

Side conditions can be embedded into this translation scheme using the function

if-pred :: α
ifpred b = (if b then single () else ⊥)

that maps False and True to the empty sequence and the singleton sequence
containing only the unit element, respectively.

4.4 Proof of Recursion Equations

We will now describe how to prove the recursion equation for PM given in the
previous section using the definition of PM , as well as the introduction and

9

elimination rules for P . We will also need introduction and elimination rules for
the operators on type pred , which we show in Table 2. From the definition of
PM , we can easily derive the introduction rule

P x =⇒ eval (PM x〈M〉) (x〈M−〉)

and the elimination rule

eval (PM x〈M〉) (x〈M−〉) =⇒ P x

By extensionality (rule =I), proving

PMx〈M〉 = C1 x〈M〉 t · · · t Cm x〈M〉

amounts to showing that

(1)
∧
x. eval (PMx〈M〉) x =⇒ eval (C1 x〈M〉 t · · · t Cm x〈M〉) x

(2)
∧
x. eval (C1 x〈M〉 t · · · t Cm x〈M〉) x =⇒ eval (PMx〈M〉) x

where x ::
∏
τ〈M−〉. The variable x can be expanded to a tuple of variables:

(1)
∧
x〈M−〉. eval (PMx〈M〉) (x〈M−〉) =⇒

eval (C1 x〈M〉 t · · · t Cm x〈M〉) (x〈M−〉)
(2)

∧
x〈M−〉. eval (C1 x〈M〉 t · · · t Cm x〈M〉) (x〈M−〉) =⇒

eval (PMx〈M〉) (x〈M−〉)

Proof of (1). From eval (PMx〈M〉) (x〈M−〉), we get P x using the elimination
rule for PM . Applying the elimination rule for P

P x =⇒ E1 x =⇒ · · · =⇒ Em x =⇒ R

Ei x ≡
∧
bi. x = ti =⇒ Qi,1 ui,1 =⇒ · · · =⇒ Qi,ni ui,ni =⇒ R

yields m proof obligations, each of which corresponds to an introduction rule.
Note that bi consists of the free variables of ui,j and ti. For the ith introduction

⊥E eval ⊥ x =⇒ R

singleI eval (single x) x
singleE eval (single x) y =⇒ (y = x =⇒ R) =⇒ R

>>=I eval P x =⇒ eval (Q x) y =⇒ eval (P >>= Q) y
>>=E eval (P >>= Q) y =⇒ (

∧
x . eval P x =⇒ eval (Q x) y =⇒ R) =⇒ R

tI1 eval A x =⇒ eval (A t B) x
tI2 eval B x =⇒ eval (A t B) x
tE eval (A t B) x =⇒ (eval A x =⇒ R) =⇒ (eval B x =⇒ R) =⇒ R

ifpredI P =⇒ eval (ifpred P) ()
ifpredE eval (ifpred b) x =⇒ (b =⇒ x = () =⇒ R) =⇒ R

=I (
∧

x . eval A x =⇒ eval B x) =⇒ (
∧

x . eval B x =⇒ eval A x) =⇒ A = B

Table 2. Introduction and elimination rules for operators on pred

10

rule, we have to prove eval (C1 x〈M〉 t · · · t Cm x〈M〉) (x〈M−〉) from the as-
sumptions x = ti and Qi,1 ui,1, . . ., Qi,ni ui,ni . By applying the rules tI1 and
tI2 in a suitable order, we select the Ci corresponding to the ith introduction
rule, which leaves us with the proof obligation eval (Ci ti〈M〉) (ti〈M−〉). By the
definition of Ci and the rule >>=I , this gives rise to the two proof obligations

(1.i) eval (single (ti〈M〉)) (ti〈M〉)
(1.ii) eval (case ti〈M〉 of

(t′i〈M〉)⇒ if yi 6= zi then ⊥ else
Q
Mi,1
i,1 (ui,1〈Mi,1〉)>>= (λa1. case a1 of . . .)

| ⇒ ⊥) ti〈M−〉

Goal (1.i) is easily proved using singleI . Concerning goal (1.ii), note that (t′i〈M〉)
matches (ti〈M〉), so we have to consider the first branch of the case expression.
Due to the definition of t′i, we also know that yi = zi, which means that we have
to consider the else branch of the if clause. This leads to the new goal

eval (QMi,1
i,1 (ui,1〈Mi,1〉)>>= (λa1. case a1 of . . .)) ti〈M−〉

that, by applying rule >>=I , can be split up into the two goals

(1.iii) eval (QMi,1
i,1 (ui,1〈Mi,1〉)) (ui,1〈M−i,1〉)

(1.iv) eval (case ui,1〈M−i,1〉 of
(u′i,1〈M−i,1〉)⇒ if yi,1 6= zi,1 then ⊥ else . . .

| ⇒ ⊥) ti〈M−〉

Goal (1.iii) follows from the assumption Qi,1 ui,1 using the introduction rule for
Q
Mi,1
i,1 , while goal (1.iv) can be solved in a similar way as goal (1.ii). Repeating

this proof scheme for QMi,2
i,2 , . . ., QMi,ni

i,ni
finally leads us to a goal of the form

eval (single (ti〈M−〉)) (ti〈M−〉)

which is trivially solvable using singleI .

Proof of (2). The proof of this direction is dual to the previous one: rather
than splitting up the conclusion into simpler formulae, we now perform for-
ward inferences that transform complex premises into simpler ones. Eliminating
eval (C1 x〈M〉 t · · · t Cm x〈M〉) (x〈M−〉) using rule tE leaves us with m proof
obligations of the form

eval (Ci x〈M〉) (x〈M−〉) =⇒ eval (PMx〈M〉) (x〈M−〉)

By unfolding the definition of Ci and applying rule >>=E to the premise of the
above implication, we obtain a0 such that

(2.i) eval (single (x〈M〉)) a0

(2.ii) eval (case a0 of
(t′i〈M〉)⇒ if yi 6= zi then ⊥ else
Q
Mi,1
i,1 (ui,1〈Mi,1〉)>>= (λa1. case a1 of . . .)

| ⇒ ⊥) x〈M−〉

11

From (2.i), we get x〈M〉 = a0 by rule singleE . Since a0 must be an element of
a datatype, we can analyze its shape by applying suitable case splitting rules.
Of the generated cases only one case is non-trivial. In the trivial cases, a0 does
not match (t′i〈M〉), so the case expression evaluates to ⊥, and the goal can be
solved using ⊥E . In the non-trivial case, we have that a0 = (t′i〈M〉). Splitting
up the if expression yields two cases. In the then case, the whole expression
evaluates to ⊥, so the goal is again provable using ⊥E . In the else branch, we
have that yi = zi, and hence a0 = (ti〈M〉) by definition of t′i, which also implies
x〈M〉 = ti〈M〉. Assumption (2.ii) can thus be rewritten to

eval (QMi,1
i,1 (ui,1〈Mi,1〉)>>= (λa1. case a1 of . . .)) x〈M−〉

By another application of >>=E , we obtain a1 such that

(2.iii) eval (QMi,1
i,1 (ui,1〈Mi,1〉)) a1

(2.iv) eval (case a1 of
(u′i,1〈M−i,1〉)⇒ if yi,1 6= zi,1 then ⊥ else . . .

| ⇒ ⊥) x〈M−〉
The assumption (2.iv) is treated in a similar way as (2.ii). A case analysis over
a1 reveals that the only non-trivial case is the one where a1 = (u′i,1〈M−i,1〉). The
only non-trivial branch of the if expression is the else branch, where yi,1 = zi,1.
Hence, by definition of u′i,1, it follows that a1 = (ui,1〈M−i,1〉), which entitles us to

rewrite (2.iii) to eval (QMi,1
i,1 (ui,1〈Mi,1〉)) (ui,1〈M−i,1〉), from which we can deduce

Qi,1 ui,1 by applying the elimination rule for QMi,1
i,1 . By repeating this kind of

reasoning for QMi,2
i,2 , . . ., QMi,ni

i,ni
, we also obtain that Qi,2 ui,2, . . ., Qi,ni ui,ni

holds. Furthermore, after the complete decomposition of (2.iv), we end up with
an assumption of the form

eval (single (ti〈M−〉)) (x〈M−〉)
from which we can deduce ti〈M−〉 = x〈M−〉 by an application of singleE . Thus,
using the equations gained from (2.i) and (2.ii), the conclusion of the implication
we set out to prove can be rephrased as

eval (PM ti〈M〉) (ti〈M−〉)
Thanks to the introduction rule for PM , it suffices to prove P ti, which can
easily be done using the introduction rule

Qi,1 ui,1 =⇒ · · · =⇒ Qi,ni ui,ni =⇒ P ti

together with the previous results.

4.5 Animating equations

We have shown in detail how to derive executable equations from the specifica-
tion of a predicate P for a consistent mode M . The results are always enumer-
ations of type α pred. We discuss briefly how to get access to the enumerated
values of type α proper.

12

Membership tests. The type constructor pred can be stripped using explicit
membership tests. For example, we could define a suffix predicate using append :

is-suffix zs ys ←→ (∃ xs. append xs ys zs)

Using the definition of append{2,3} this can be reformulated as

is-suffix zs ys ←→ (∃ xs. eval (append{2,3} ys zs) xs)

from which follows

is-suffix zs ys ←→ eval (append{2,3} ys zs >>= (λ-. single ())) ()

using introduction and elimination rules for op �= and single. This equation
then is directly executable.

Enumeration queries. When developing inductive specifications it is often
desirable to check early whether the specification behaves as expected by enu-
merating one or more solutions which satisfy the specification. In our framework
this cannot be expressed inside the logic: values of type α pred are set-like,
whereas each concrete enumeration imposes a certain order on elements which
is not reflected in the logic. However it can be done directly on the generated
code, e.g. in ML using

fun nexts [] = NONE
| nexts (xq :: xqs) = case next xq

of NONE => nexts xqs
| SOME (x, xq) => SOME (x, Seq (fn () => Union (xq :: xqs)))

and next (Seq f) = case f ()
of Empty => NONE
| Insert (x, xq) => SOME (x, xq)
| Union xqs => nexts xqs;

Wrapped up in a suitable user interface this allows to interactively enumerate
solutions fitting to inductive predicates.

5 Extensions to the base framework

5.1 Higher-order modes

A useful extension of the framework presented in §4.3 is to allow inductive pred-
icates that take other predicates as arguments. A standard example for such a
predicate is the reflexive transitive closure taking a predicate of type α ⇒ α ⇒
bool as an argument, and returning a predicate of the same type:

inductive rtc :: (α ⇒ α ⇒ bool) ⇒ α ⇒ α ⇒ bool
for r :: α ⇒ α ⇒ bool where

rtc r x x
| r x y =⇒ rtc r y z =⇒ rtc r x z

13

In addition to its two arguments of type α, rtc also has a parameter r that stays
fixed throughout the definition. The general form of a mode for a higher-order
predicate P with k arguments and parameters r1, . . . , rρ with arities k1, . . . , kρ
is (M1, . . . ,Mρ,M), where Mi ⊆ {1, . . . , ki} (for 1 ≤ i ≤ ρ) and M ⊆ {1, . . . , k}.
Intuitively, this mode means that P r1 · · · rρ has mode M , provided that ri
has mode Mi. The possible modes for rtc are ({}, {1}), ({}, {2}), ({}, {1, 2}),
({1}, {1}), ({2}, {2}), ({1}, {1, 2}), and ({2}, {1, 2}). The general definition of
the function corresponding to the mode (M1, . . . ,Mρ,M) of a predicate P is

P (M1,...,Mρ,M) ::
(τ1〈M1〉 ⇒ (

∏
τ1〈M−1 〉) pred)⇒ · · · ⇒

(τρ〈Mρ〉 ⇒ (
∏
τρ〈M−ρ 〉) pred)⇒ (

∏
τ〈M−〉) pred

P (M1,...,Mρ,M) s1 . . . sρ x〈M〉 ≡ pred (λ(x〈M−〉). P
(λx1. eval (s1 x1〈M1〉) (x1〈M−1 〉)) . . .
(λxρ. eval (s1 xρ〈Mρ〉) (xρ〈M−ρ 〉)) x)

Since P expects predicates as parameters, but si are functions returning sets,
these have to be converted back to predicates using eval before passing them to
P . For rtc, the definitions of the functions corresponding to the modes ({1}, {1})
and ({2}, {2}) are

rtc({1},{1}) :: (α ⇒ α pred) ⇒ α ⇒ α pred
rtc({1},{1}) s x ≡ pred (λy . rtc (λx ′ y ′. eval (s x ′) y ′) x y)

rtc({2},{2}) :: (α ⇒ α pred) ⇒ α ⇒ α pred
rtc({2},{2}) s y ≡ pred (λx . rtc (λx ′ y ′. eval (s y ′) x ′) x y)

The corresponding recursion equations have the form

rtc({1},{1}) r x =
single x >>= (λx . single x) t
single x >>= (λx . r x >>= (λy . rtc({1},{1}) r y >>= (λz . single z)))

rtc({2},{2}) r y =
single y >>= (λx . single x) t
single y >>= (λz . rtc({2},{2}) r z >>= (λy . r y >>= (λx . single x)))

5.2 Mixing predicates and functions

When mixing predicates and functions, mode analysis treats functions as predi-
cates where all arguments are input. This can restrict the number of consistent
mode assignments considerably.

The following mutually inductive predicates model a grammar generating all
words containing equally many as and bs. This example, which is originally due
to Hopcroft and Ullman, can be found in the Isabelle tutorial by Nipkow [8].

14

inductive
S :: alfa list ⇒ bool and
A :: alfa list ⇒ bool and B :: alfa list ⇒ bool

where
S []
| A w =⇒ S (b · w)
| B w =⇒ S (a · w)
| S w =⇒ A (a · w)
| A v =⇒ A w =⇒ A (b · v @ w)
| S w =⇒ B (b · w)
| B v =⇒ B w =⇒ B (a · v @ w)

By choosing mode {} for the above predicates (i.e. their arguments are all out-
put), we can enumerate all elements of the set S containing equally many as and
bs. However, the above predicates cannot easily be used with mode {1}, i.e. for
checking whether a given word is generated by the grammar. This is because of
the rules with the conclusions A (b · v @ w) and B (a · v @ w). Since the append
function (denoted by @) is not a constructor, we cannot do pattern matching
on the argument. However, the problematic rules can be rephrased as

append v w vw =⇒ A v =⇒ A w =⇒ A (b · vw)
append v w vw =⇒ B v =⇒ B w =⇒ B (a · vw)

The problematic expression v @ w in the conclusion has been replaced by a new
variable vw. The fact that vw is the result of appending the two lists v and w is
now expressed using the append predicate from §3. In order to check whether a
given word can be generated using these rules, append first enumerates all ways
of decomposing the given list vw into two sublists v and w, and then recursively
checks whether these words can be generated by the grammar.

6 Conclusion and future work

We have presented a definitional translation for inductive predicates to equa-
tions which can be turned into executable code using existing code generation
infrastructure in Isabelle/HOL. This is a fundamental contribution to extend the
scope of code generation from functional to functional-logic programs embedded
into Isabelle/HOL without compromising the trusted implementation of the code
generator itself. We have applied our translation to two larger case studies, the
µJava semantics by Nipkow, von Oheimb and Pusch [7] and the ς-calculus by
Henrio and Kammüller [5], resulting in simple interpreters for these two pro-
gramming languages. Further experiments suggest the following extensions:

– Successful mode inference does not guarantee termination. Like in Prolog,
the order of premises in introduction rules can influence termination. Using
termination analysis built-in in Isabelle/HOL, we can guess which modes
lead to terminating functions. The mode analysis can use this and prefer
terminating modes over possibly non-terminating ones.

15

– Rephrasing recursive functions to inductive predicates, as we apply it in
§5.2, possibly results in more modes for the mode analysis. But applying the
transformation blindly could lead to unnecessarily complicated equations.
The mode analysis should be extended to infer modes using the transforma-
tion only when required.

– The executable model for enumerations we have presented is sometimes inap-
propriate: it performs depth-first search which can lead to a non-terminating
search in an irrelevant but infinite branch of the search tree. It has to be fig-
ured out how alternative search strategies (e.g. iterative depth-first search)
can provide a solution for this.

We plan to integrate our procedure into the next Isabelle release.

References

1. Berghofer, S., Nipkow, T.: Executing higher order logic. In: P. Callaghan, Z. Luo,
J. McKinna, R. Pollack (eds.) Types for Proofs and Programs (TYPES 2000),
Lecture Notes in Computer Science, vol. 2277. Springer-Verlag (2002)

2. Delahaye, D., Dubois, C., Étienne, J.F.: Extracting purely functional contents from
logical inductive types. In: TPHOLs, pp. 70–85 (2007)

3. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. Tech.
Rep. 364/07, Department of Computer Science, University of Kaiserslautern (2007)

4. Hanus, M.: A unified computation model for functional and logic programming. In:
Proc. 24st ACM Symposium on Principles of Programming Languages (POPL’97),
pp. 80–93 (1997)

5. Henrio, L., Kammüller, F.: A mechanized model of the theory of objects. In:
9th IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), LNCS. Springer (2007)

6. Mellish, C.S.: The automatic generation of mode declarations for prolog programs.
Tech. Rep. 163, Department of Artificial Intelligence (1981)

7. Nipkow, T., von Oheimb, D., Pusch, C.: µJava: Embedding a programming lan-
guage in a theorem prover. In: F. Bauer, R. Steinbrüggen (eds.) Foundations of
Secure Computation. Proc. Int. Summer School Marktoberdorf 1999, pp. 117–144.
IOS Press (2000)

8. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer-Verlag (2002)

9. Slind, K.: Reasoning about terminating functional programs. Ph.D. thesis, Institut
für Informatik, TU München (1999)

10. Somogyi, Z., Henderson, F.J., Conway, T.C.: Mercury: an efficient purely declara-
tive logic programming language. In: In Proceedings of the Australian Computer
Science Conference, pp. 499–512 (1995)

11. Wasserrab, D., Nipkow, T., Snelting, G., Tip, F.: An operational semantics and
type safety proof for multiple inheritance in C++. In: OOPSLA ’06: Proceedings
of the 21st annual ACM SIGPLAN conference on Object-oriented programming
languages, systems, and applications, pp. 345–362. ACM Press (2006)

16

	Turning inductive into equational specifications
	Stefan Berghofer and Lukas Bulwahn and Florian Haftmann

