
Local theory specifications in Isabelle/Isar

Florian Haftmann? and Makarius Wenzel??

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

http://www.in.tum.de/~haftmann/

http://www.in.tum.de/~wenzelm/

Abstract. The proof assistant Isabelle has recently acquired a “local
theory” concept that integrates a variety of mechanisms for structured
specifications into a common framework. We explicitly separate a local
theory “target”, i.e. a fixed axiomatic specification consisting of parame-
ters and assumptions, from its “body” consisting of arbitrary definitional
extensions. Body elements may be added incrementally, and admit local
polymorphism according to Hindley-Milner. The foundations of our local
theories rest firmly on existing Isabelle/Isar principles, without having
to invent new logics or module calculi.

Specific target contexts and body elements may be implemented within
the generic infrastructure. This results in a large combinatorial space
of specification idioms available to the user. Here we introduce targets
for locales, type-classes, and class instantiations. The available selection
of body elements covers primitive definitions and theorems, inductive
predicates and sets, and recursive functions. Porting such existing defi-
nitional packages is reasonably simple, and allows to re-use sophisticated
tools in a variety of target contexts. For example, a recursive function
may be defined depending on locale parameters and assumptions, or an
inductive predicate definition may provide the witness in a type-class
instantiation.

1 Introduction

Many years ago, Isabelle locales were introduced [12] as a mechanism to orga-
nize formal reasoning in a modular fashion: after defining a locale as a context of
fixed parameters (fixes) and assumptions (assumes), theorems could be proved
within that scope, while an exported result (with additional premises) would be
provided at the same time. Such “theorem (in locale)” statements have become
popular means to organize formal theory developments. A natural extension of
results within a local context is “definition (in locale)”. Traditional locales
would support defines elements within the axiomatic specification, essentially

? Supported by DFG project NI 491/10-1.
?? Supported by BMBF project Verisoft XT (grant 01 IS 07008).

http://www.in.tum.de/~haftmann/
http://www.in.tum.de/~wenzelm/


simulating definitions by equational assumptions, but this turned out to be un-
satisfactory. It is not possible to add further definitions without extending the
locale, and there is no support for polymorphism. Moreover, Isabelle/HOL users
rightly expect to have the full toolbox of definitional packages available (e.g.
inductive predicates and recursive functions), not just primitive equations.

These needs are addressed by our local theory concept in Isabelle/Isar. A local
theory provides an abstract interface to manage definitions and theorems relative
to a context of fixed parameters and assumptions. This generic infrastructure
is able to support the requirements of existing module concepts in Isabelle,
notably locales and type-classes. Thus we integrate and extend the capabilities
of structured specifications significantly, while opening a much broader scope for
alternative module mechanisms.

Implementing such local theory targets is a delicate task, but only experts
in module systems need to do it. In contrast, it is reasonably easy to produce
definitional packages for use in the body of any local theory. Here we have been
able to rationalize the traditional theory specification primitives of Higher-Order
Logic considerably, such that the local versions are both simpler and more general
than their global counterparts.

Overview. We examine the flexibility of the local theory concept by an example
of type class specification and instantiation (§2). After a careful exposition of
the relevant foundations of Isabelle/Pure and Isabelle/Isar (§3), we introduce
the main local theory architecture (§4) and describe some concrete target mech-
anisms (§5).

2 Example: Type Classes

The following example in Isabelle/HOL [14] uses type-classes to model general
orders and orders that admit well-founded induction. Earlier [11] we integrated
traditional axiomatic type-classes with locales, now both theory structuring con-
cepts are also fitted into the bigger picture of local theories.

Basic Isabelle notation approximates usual mathematics, despite some bias
towards λ-calculus and functional languages like Haskell. The general syntax for
local theory specifications is “target begin body end”, where body consists of
a sequence of specification elements (definitions and theorems with proofs), and
target determines a particular interpretation of the body elements relative to a
local context (with parameters and assumptions).

The most common targets are locale and class. These targets are special
in being explicitly named, and allow further body additions at any time. The
syntax for this is “context name begin body end”, with the abbreviation of
“specification (in name)” for “context name begin specification end”. The
latter also integrates the existing “theorem (in locale)” into our framework.

Other targets, like the instantiation shown later, demand that the body is
a closed unit that provides required specifications, finishes proof obligations etc.

2



General Orders. We define an abstract algebra over a binary relation less-eq
that observes the partial ordering laws.

class order =
fixes less-eq :: α ⇒ α ⇒ bool (infix � 50)
assumes refl : x � x

and trans: x � y =⇒ y � z =⇒ x � z
and antisym: x � y =⇒ y � x =⇒ x = y

begin

This class context provides a hybrid view on our abstract theory specification. The
term less-eq :: α ⇒ α ⇒ bool refers to a fixed parameter of a fixed type; the parameter
less-eq also observes assumptions. At the same time, the canonical type-class interpre-
tation [11] provides a polymorphic constant for arbitrary order types, i.e. any instance
of less-eq :: β::order ⇒ β ⇒ bool. Likewise, the locale assumptions are turned into
theorems that work for arbitrary types β::order.

Our class target augments the usual Isabelle type-inference by a separate type
improvement stage, which identifies sufficiently general occurrences of less-eq with the
locale parameter, while leaving more specific instances as constants. By handling the
choice of locale parameters vs. class constants within the type-checking phase, we
also avoid extra syntactic ambiguities: the above mixfix annotation (infix � 50) is
associated with the class constant once and for all. See §5.3 for further details.

end

Back in the global context, less-eq :: α::order ⇒ α ⇒ bool refers to a global
class operation for arbitrary order types α; the notation x � y also works as
expected. Global class axioms are available as theorems refl, trans, antisym.

The old axclass [17] would have achieved a similar effect. At this point we
could even continue with further definitions and proofs relative to this polymor-
phic constant only, e.g. less :: α::order ⇒ α ⇒ bool depending on the global
less-eq :: α::order ⇒ α ⇒ bool. But then the resulting development would be
more special than necessary, with the known limitations of type-classes of at
most one instantiation per type constructor. So we now continue within the hy-
brid class/locale context, which provides type-class results as expected, but also
admits general locale interpretations [2].

context order
begin

We now define less as the strict part of less-eq, and prove some simple lemmas.

definition less :: α ⇒ α ⇒ bool (infix ≺ 50)
where x ≺ y ↔ x � y ∧ ¬ y � x

lemma irrefl : ¬ x ≺ x 〈proof 〉
lemma less-trans: x ≺ y =⇒ y ≺ z =⇒ x ≺ z 〈proof 〉
lemma asym: x ≺ y =⇒ y ≺ x =⇒ C 〈proof 〉

end

Again this produces a global constant less :: α::order ⇒ α ⇒ bool, whose defini-
tion depends on the original class operation less-eq :: α::order ⇒ α ⇒ bool. The

3



additional variant order .less (rel :: α ⇒ α ⇒ bool) (x :: α) (y :: α) stems from
the associated locale context and makes this dependency explicit. The latter is
more flexible, but also slightly more cumbersome to use.

Well-founded Induction and Recursion. Next we define well-founded orders
by extending the specification of general orders.

class wforder = order +
assumes less-induct : (

∧
x ::α. (

∧
y . y ≺ x =⇒ P y) =⇒ P x ) =⇒ P x

begin

With this induction rule available, we can define a recursion combinator by means of
an inductive relation that corresponds to the function’s graph, see also [16].

inductive wfrec-rel :: ((α ⇒ β) ⇒ α ⇒ β) ⇒ α ⇒ β ⇒ bool
for F :: (α ⇒ β) ⇒ α ⇒ β
where rec: (

∧
z . z ≺ x =⇒ wfrec-rel F z (g z )) =⇒ wfrec-rel F x (F g x )

definition cut :: α ⇒ (α ⇒ β) ⇒ α ⇒ β
where cut x f y = (if y ≺ x then f y else undefined)

lemma cuts-eq : cut x f = cut x g ↔ (∀ y . y ≺ x −→ f y = g y) 〈proof 〉

definition adm-wf :: ((α ⇒ β) ⇒ α ⇒ β) ⇒ bool
where adm-wf F ↔ (∀ f g x . (∀ z . z ≺ x −→ f z = g z ) −→ F f x = F g x )

lemma adm-lemma: adm-wf (λf x . F (cut x f ) x ) 〈proof 〉

definition wfrec :: ((α ⇒ β) ⇒ α ⇒ β) ⇒ α ⇒ β
where wfrec F = (λx . (THE y . wfrec-rel (λf x . F (cut x f ) x ) x y))

lemma wfrec-unique: adm-wf F =⇒ ∃ !y . wfrec-rel F x y 〈proof 〉
theorem wfrec: wfrec F x = F (cut x (wfrec F )) x 〈proof 〉

This characterizes a polymorphic combinator wfrec that works for arbitrary types β,
relative to the locally fixed type parameter α. Thus wfrec (λf :: α ⇒ nat . body) or
wfrec (λf :: α ⇒ bool . body) may be used in the current context. THE is the definite
choice operator, sometimes written ι in literature; undefined is an unspecified constant.

end

Back in the global context, we may refer either to the exported locale operation
wforder .wfrec (rel :: α ⇒ α ⇒ bool) (F :: (α ⇒ β) ⇒ α ⇒ β) or the overloaded
constant wfrec (F :: (α::wforder ⇒ β) ⇒ α ⇒ β). Here α and β are again
arbitrary, although the class constraint needs to be observed in the second case.

Lexicographic Products. The product α × β of two order types is again an
instance of the same algebraic structure, provided that the less-eq operation is
defined in a suitable manner, such that the class assumptions can be proven. We
shall establish this in the body of the following instantiation target.

instantiation ∗ :: (order , order) order
begin

4



We now define the lexicographic product relation by means of a (non-recursive) induc-
tive definition, depending on hypothetical less-eq on fixed order types α and β.

inductive less-eq-prod :: α × β ⇒ α × β ⇒ bool
where less-eq-fst : x ≺ v =⇒ (x , y) � (v , w)
| less-eq-snd : x = v =⇒ y � w =⇒ (x , y) � (v , w)

This definition effectively involves overloading of the polymorphic constant less-eq on
product types, but the details are managed by our local theory target context. Here we
have even used the derived definitional mechanism inductive, which did not support
overloading in the past.

The above specification mentions various type instances of less-eq, for α, β, and α ×
β. All of these have been written uniformly with the � notation. This works smoothly
due to an additional improvement stage in the type-inference process.

The outline of the corresponding instantiation proof follows. The instance element
below initializes the class membership goal as in the existing global instance command
[17], but the type arity statement is not repeated here.

instance
proof

fix p q r :: α × β
show p � p 〈proof 〉
{ assume p � r and r � q then show p � q 〈proof 〉 }
{ assume p � q and q � p then show p = q 〈proof 〉 }

qed

end

By concluding the instantiation, the new type arity becomes available in the
theory, i.e. less-eq (p :: α::order × β::order) (q :: α × β) can be used for arbitrary
α, β in order.

3 Foundations

Isabelle consists of two main layers: the logical framework of Isabelle/Pure for
higher-order Natural Deduction, and the architectural framework of Isabelle/Isar
for organizing logical and extra-logical concepts in a structured manner.

Our local theory concepts rely only on existing foundations. We refrain from
inventing new logics or module calculi, but merely observe pre-existent properties
carefully to employ them according to our needs. This principle of leaving the
logical basis unscathed is an already well-established Isabelle tradition. It enables
implementation of sophisticated tools without endangering soundness. This is
Milner’s “LCF-approach” in its last consequence, cf. the discussion in [19, §3].

3.1 The Pure Logical Framework

The logic of Isabelle/Pure [15] is a reduced version of Higher-Order Logic ac-
cording to Church [8] and Gordon [9]. This minimal version of HOL is used as
a logical framework to represent object-logics, such as the practically important
Isabelle/HOL [14].

5



Logical Entities. The Pure logic provides three main categories of formal
entities: types, terms, and theorems (with implicit proofs).

Types τ are simple first-order structures, consisting of type variables α or
type constructor applications (τ1, . . ., τn) κ, usually written postfix. Type prop
represents framework propositions, and the infix type α ⇒ β functions.

Terms t are formed as simply-typed λ-terms, with variables x :: τ , constants c
:: τ , abstraction λx :: τ . t [x ] and application t1 t2. Types are usually left implicit,
cf. Hindley-Milner type-inference [13]. Terms of type prop are called propositions.
The logical structure of propositions is determined by quantification

∧
x :: α.

B [x ] or implication A =⇒ B ; these framework connectives express object-logic
rules in Natural Deduction style. Isabelle/Pure also provides built-in equality t1

≡ t2 with rules for αβη-conversion.
Theorems thm are abstract containers for derivations within the logical en-

vironment. Primitive inferences of Pure operate on sequents Γ ` ϕ, where ϕ is
the main conclusion and Γ its local context of hypotheses. There are standard
introduction and elimination rules for

∧
and =⇒ operating on sequents.

This low-level inference system is directly implemented in the Isabelle infer-
ence kernel; it corresponds to dependently-typed λ-calculus with propositions
as types, although proof terms are usually omitted. It is useful to think of the-
orems as representing full proof terms, even though the implementation may
omit them: the formal system can be categorized as “λHOL” within the general
setting of Pure Type Systems (PTS) [3]. This provides a unified view of terms
and derivations, with terms depending on terms λx :: α. b[x ], proofs depending
on terms

∧
x :: α. B [x ], and proofs depending on proofs A =⇒ B.

Object-logic inferences are expressed at the level of Pure propositions, not
Pure rules. For example, in Isabelle/HOL the modus ponens is represented as
(A −→ B) =⇒ A =⇒ B, implication introduction as (A =⇒ B) =⇒ A −→ B.
Isabelle provides convenient (derived) principles of resolution and assumption
[15] to back-chain such object rules, or close branches within proofs, respectively.

This second level of Natural Deduction is encountered by Isabelle users most
of the time, e.g. when doing “apply (rule r)” in a tactic script. Thus the first
level of primitive inferences remains free for internal uses, to support local scopes
of fixed variables and assumptions. Both Isar proof texts [18] and locales [12,1,2]
operate on this primitive level of Pure, and the Isabelle/Isar framework ensures
that local hypotheses are managed according to the block structure of the text,
such that users never have to care about the Γ part of primitive sequents.

The notation 〈ϕ〉 shall refer to some theorem Γ ` ϕ, where Γ is clear from
the context. The cIsabelle syntax ‘ϕ‘ references facts the same way but uses
ASCII back-quotes in the source instead of the funny parentheses.

Theories. Derivations in Isabelle/Pure depend on a global theory environment
Θ, which holds declarations of type-constructors (α1, . . ., αn) κ (specifying the
number of arguments), term constants c :: τ (specifying the most general type
scheme), and axioms a: A (specifying the proposition). The following concrete
syntax shall be used for these three theory declaration primitives:

6



type ∀α. (α) κ — type constructor κ
const c :: ∀α. τ [α] — term constant c
axiom a: ∀α. A[α] — proof constant a

These primitives support global schematic polymorphism, which means that type
variables given in the declaration may be instantiated by arbitrary types. The
logic provides admissible inferences for this: moving from Γ ` ϕ[α] to Γ ` ϕ[τ ]
essentially instantiates whole proof trees.

We take the notational liberty of explicit type quantification ∀α. A[α], even
though the Pure logic is not really polymorphic. Type quantifiers may only occur
in global theory declarations and theorems, but never in hypothetical statements,
or the binding position of a λ-abstraction. This restricted type quantification
behaves like schematic type variables, as indicated by question marks in Isabelle:
results ∀α.

∧
x :: α. x ≡ x and

∧
x :: ?α. x ≡ x are interchangeable.

Unrestricted declarations of types, terms, and axioms are rarely used in prac-
tice. Instead there are certain disciplined schemes that qualify as definitional
specifications due to nice meta-theoretical properties. In the Pure framework,
we can easily justify the well-known principle of constant definition, which re-
lates a polymorphic term constant with an existing term:

constdef c :: ∀α. τ [α] where ∀α. c[α] ≡ rhs[α]

Here the constant name c needs to be new, and rhs needs to be a closed term
with all its type variables already included in its type τ . If these conditions hold,
constdef expands to corresponding const c :: ∀α. τ [α] and axiom ∀α. c[α] ≡
rhs[α].

This constant definition principle observes parametric polymorphism. Isabelle
also supports ad-hoc polymorphism (overloading) which can be shaped into a
disciplined version due to Haskell-style type-classes on top of the logic, see also
[17] and [11]. The latter concept of “less ad-hoc polymorphism” allows us to
reconstruct overloading-free definitions and proofs, via explicit dictionary terms.

We also introduce an explicit definition scheme for “proof constants”, which
gives proven facts an explicit formal status within the theory context:

thmdef ∀α. b = 〈B [α]〉

Moreover, the weaker variant of thm b = 〈B 〉 shall serve the purpose of casual
naming of facts, without any impact on the internal structure of derivations.

3.2 Isar Proof Contexts

The main purpose of the Isabelle/Isar infrastructure is to elevate the underlying
logical framework to a scalable architecture that supports structured reasoning.
This works by imposing certain Isar policies on the underlying Pure primitives. It
is important to understand, that Isar is not another calculus, but an architecture
to organize existing logical principles, and enrich them by non-logical support

7



structure. The relation of Pure vs. Isar is a bit like that of a CPU (execution
primitives) and an operating system (high-level abstractions via policies).

Isabelle/Isar was originally motivated by the demands for human-readable
proofs [18]: the Isar proof language provides a structured walk through the text,
maintaining local facts and goals, all relative to a proof context at each position.
This idea of Isar proof context has turned out a useful abstraction to organize
various advanced concepts in Isabelle, with locales [12,1,2] being the classic ex-
ample. A more recent elaboration on the same theme are LCF-style proof tools
that work relative to some local declarations and may be transformed in a con-
crete application context later; [7] covers a Gröbner Base procedure on abstract
rings that may get used on concrete integers etc.

Subsequently we briefly review the main aspects of Isar proof contexts, as
required for our local theory infrastructure.

Logical Context Elements. The idea is to turn the Γ part of the primitive
calculus (§3.1) into an explicit environment, consisting of declarations for all
three logical categories: type variables, term variables, and assumptions:

type α — type variable α
fix x :: τ [α] — term variable x
assume a: A[α][x] — proof variable a

Strictly speaking there is no explicit type element in Isabelle/Isar, because type
variables are handled implicitly according to Hindley-Milner discipline [13]: when
entering a new term (proposition) into the context, its type variables are fixed;
when exporting results from the context, type variables are generalized as far as
possible, unless they occur in the types of term variables that are still fixed.

Exporting proven results from the scope of fix and assume corresponds to∧
/=⇒ introduction rules. In other words, the logical part of an Isar context may

be fully internalized into the Pure logic.
Isar also admits derived context elements, parameterized by a discharge rule

that is invoked when leaving the corresponding scope. In particular, simple (non-
polymorphic) definitions may be provided as follows:

vardef x :: τ [α] where x ≡ rhs[α]

Here the variable name x needs to be new, and rhs needs to be a closed term,
mentioning only previously fixed type variables. If these conditions hold, vardef
expands to corresponding fix and assume elements, with a discharge rule that
expands a local result 〈B [x ]〉 to 〈B [rhs]〉, thanks to reflexivity of ≡.

Although vardef resembles the global constdef, it only works for fixed types!
In particular, vardef id :: α ⇒ α where id ≡ λx :: α. x merely results in
context elements type α fix id :: α ⇒ α assume id ≡ λx :: α. x, for the fixed
(hypothetical) type α. There is no let-polymorphism at that stage, because the
logic lacks type quantification.

8



Generic Context Data. The Isar proof context is able to assimilate arbi-
trary user-data in a type-safe fashion, using a functor interface in ML (see also
[19, §3]). This means almost everything can be turned into context data. Com-
mon examples include type-inference information (constraints), concrete syntax
(mixfix grammar), or hints for automated reasoning tools.

The global theory is only extended monotonically, but Isar contexts support
opening and closing of local scopes. Moving between contexts requires replacing
references to hypothetical types, terms, and proofs within user data accordingly.
The Isar framework cannot operate on user data due to ML’s type-safety, but a
slightly different perspective allows us to transform arbitrary content, by passing
through an explicit morphism in just the right spot, cf. [7, §3–4].

So instead of transforming fully abstract data directly, the framework trans-
forms data declarations, i.e. implementation specific functions that maintain
the data in the context. The interface for this is the generic context element
“declaration d”, where d : morphism → context → context is a data operation
provided by some external module implementing context data. The morphism is
provided by the framework at some later stage, it determines the differences of
the present abstract context wrt. the concrete application environment, by pro-
viding mappings for the three logical categories of types, terms, and theorems.
The implementation of d needs to apply this morphism wherever logical entities
occur in the data; see [7, §2] for a simple example.

Using the Isabelle/Isar infrastructure on top of the raw logic, we can now
introduce the concept of constant abbreviations that are type-checked like global
polymorphic constants locally, but expanded before the logic ever sees them:

abbrev c :: ∀β. τ [α, β] where ∀β. c[β] ≡ rhs[α, β]

Here the type variables α need to be fixed in the context, but β is arbitrary.
In other words, we have conjured up proper let-polymorphism in the abstract
syntax layer of Isabelle/Isar, without touching the Pure logic.

4 Local Theory Infrastructure

We are now ready to introduce the key concept of local theory, which models the
general idea of interpreting definitional elements relatively to a local context.

Basic specification elements shall be explicitly separated into two categories:
axiomatic fix/assume vs. definitional define/note. Together with our implicit
treatment of types, this achieves an orthogonal arrangement of λ- and let-
bindings for all three logical categories as follows:

λ-binding let-binding
types fixed α arbitrary β
terms fix x :: τ define c ≡ t
theorems assume a: A note b = 〈B 〉

A local theory specification is divided into a target part, which is derived from
the background theory by adding axiomatic elements, and a body consisting

9



of any number of definitional elements. The target also provides a particular
interpretation of definitional primitives. Concrete body elements are produced
by definitional packages invoked within corresponding begin/end blocks (cf.
§2).

The key duality is that of background theory vs. target context, but there is
also an auxiliary context that allows to hide the effect of the target interpretation
internally. So the general structure of a local theory is a sandwich of three layers:

auxiliary context target context background theory

This allows one to make define appear like vardef and note like thm (cf. §3.2),
while the main impact on the target context and background theory is exposed
to the end-user only later. By fixing the body elements and their effect on the
auxiliary context once and for all, we achieve a generic programming interface
for definitional packages that work uniformly for arbitrary interpretations.

Canonical Interpretation via λ-Lifting. Subsequently we give a formal ex-
planation of local theory interpretation by the blue-print model of λ-lifting over
a fixed context type α fix x :: τ [α] assume a: A[α][x ]. Restricting ourselves
to a single variable of each category avoids cluttered notation; generalization to
multiple parameters and assumptions is straightforward.

The idea is that define a ≡ b[α, β][x ] relative to fixed α and x :: τ [α]
becomes a constant definition with explicit abstraction over the term parameter
and generalization over the type parameters; the resulting theorem is re-imported
into the target context by instantiation with the original parameters. The illusion
of working fully locally is completed in the auxiliary context, by using hidden
equational assumptions (see below).

The same principle works for note a = 〈B [α, β][x ]〉, but there is an additional
dependency on assumption a: A, and the lifting over parameters is only partially
visible, because proof terms are implicit.

The following λ-lifting scheme works for independent define and note ele-
ments, in an initial situation where the target and auxiliary context coincide:

specification define a ≡ b[α, β][x ]
1. background theory constdef ∀α β. thy .a ≡ λx . b[α, β][x ]
2. target context abbrev ∀β. loc.a ≡ thy .a[α, β] x
3. auxiliary context vardef a ≡ thy .a[α, β] x
local result 〈a ≡ b[α, β][x ]〉

specification note a = 〈B [α, β][x ]〉
1. background theory thmdef ∀α β. thy .a = 〈

∧
x . A[α][x ] =⇒ B [α, β][x ]〉

2. target context thm ∀β. loc.a = 〈B [α, β][x ]〉
3. auxiliary context thm a = 〈B [α, β][x ]〉
local result 〈B [α, β][x ]〉

This already illustrates the key steps of any local theory interpretation. Step (1)
jumps from the auxiliary context right into the background theory to provide

10



proper foundation, using global primitives of constdef and thmdef. Step (2)
is where the particular target view is produced, here merely by applying fixed
entities to revert the abstractions; other targets might perform additional trans-
formations. Note that β is arbitrary in the target context. Step (3) bridges the
distance of the target and auxiliary context, to make the local result appear
literally as specified (with fixed β).

Extra care is required when mixing several define and note elements, as sub-
sequent terms and facts may depend on the accumulated auxiliary parameters
introduced by vardef. Export into the background theory now involves defini-
tional expansion, and import into the auxiliary context folding of hypothetical
equations. Here is the interpretation of note a = 〈B [α, β][c, x ]〉 depending on
a previous define c ≡ b[α, β][x ]:

note a = 〈B [α, β][c, x ]〉
1. thmdef ∀α β. thy .a = 〈

∧
x . A[α][x ] =⇒ B [α, β][thy .c[α, β] x , x ]〉

2. thm ∀β. loc.a = 〈B [α, β][thy .c[α, β] x , x ]〉
3. thm a = 〈B [α, β][c, x ]〉

〈B [α, β][x ]〉

Each define element adds another vardef to the auxiliary context, to cater
for internal term dependencies of any subsequent define/note within the same
specification package (e.g. inductive). Thus package implementors need not care
about term dependencies, but work directly with local variables (and with fixed
types). Whenever a package concludes, our infrastructure resets the auxiliary
context to the current target context, so the user will continue with polymorphic
constant abbreviations standing for global terms. Only then, types appear in
most general form according to the Hindley-Milner discipline, as expected by
the end-user.

5 Common Local Theory Targets

5.1 Global theories

A global theory is a trivial local theory, where the target context coincides with
the background theory. The canonical interpretation (§4) is reduced as follows:

define a ≡ b[β]
1. constdef ∀β. thy .a ≡ b[β]
2. (omitted)
3. vardef a ≡ thy .a[β]

〈a ≡ b[β]〉

note a = 〈B [β]〉
1. thmdef ∀β. thy .a = 〈B [β]〉
2. (omitted)
3. thm a = 〈B [β]〉

〈B [β]〉

Here we trade a fixed term variable a (with fixed type) for a global constant thy .a
(with schematic type). The auxiliary context hides the difference in typing and
name space details. This abstract view is a considerable advantage for package
implementations, even without using the full potential of local theories yet.

11



The Isabelle/Isar toplevel ensures that local theory body elements occurring
on the global level are wrapped into a proper target context as sketched above.
Thus a local theory package like inductive may be invoked seamlessly in any
situation.

5.2 Locales

Locales [12] essentially manage named chunks of Isabelle/Isar context elements
(§3.2), such as locale loc = fixes x assumes A[x ], together with declaration
elements associated with conclusions. Locale expressions [1] allow to combine
atomic locales loc, either by renaming loc y or merge loc1 + loc2 of the underly-
ing axiomatic specifications. Results stemming from a locale expression may be
interpreted later, giving particular terms and proofs for the axiomatic part [2].

The key service provided by the locale mechanism is that of breaking up
complex expressions into atomic locales. Down at that level, it hands over to the
generic local theory infrastructure, by providing a target context that accepts
define and note according to the canonical λ-lifting again (§4). There is only
one modification: instead of working with primitive fixes and assumes of the
original locale definition, there is an additional indirection through a global
predicate definition constdef thy .loc ≡ λx . A[x ].

The Isabelle/Isar toplevel initializes a locale target for “context loc begin
body end” or the short version “specification (in loc)”; the latter generalizes the
traditional “theorem (in loc)” form [12] towards arbitrary definitions within
locales, including derived mechanisms like “inductive (in loc)”.

5.3 Type Classes

Type-class Specification. Logically a type class is nothing more than an
interpretation of a locale with exactly one type variable α, see [11]. Given such
a locale c[α] with fixed type α, class parameters g [α] and predicate thy .c, the
corresponding type class c is established by the following interpretation, where
the right column resembles the traditional axclass scheme [17]:

locale specification class interpretation
locale c = classdecl c =

fixes g :: τ [α] const c.g :: τ [γ::c]

assumes thy .c g :: τ [α] axiom thy .c c.g [γ::c]

The class target augments the locale target (§5.2) by a second interpretation
within the background theory where conclusions are relative to global constants
c.g [γ::c] and class axiom thy .c c.g [γ::c], for arbitrary types γ of class c.

12



specification define f ≡ t [α, β][g]
1. background theory constdef ∀α β. thy .f ≡ λx. t [α, β][x]
2a. locale target abbrev ∀β. loc.f ≡ thy .f [α, β] g
2b. class target constdef ∀ γ::c β. c.f ≡ thy .f [γ, β] c.g

3. auxiliary context vardef f ≡ thy .f [α, β] g
specification note a = 〈B [α, β][g]〉
1. background theory thmdef ∀α β. thy .a = 〈

∧
x. A[α][x] =⇒ B [α, β][x]〉

2a. locale target thm ∀β. loc.a = 〈B [α, β][g]〉
2b. class target thmdef ∀ γ::c β. c.a = 〈B [γ, β][c.g]〉
3. auxiliary context thm a = 〈B [α, β][g]〉

The interpretation (2b) of fixes and define f [α, β] establishes a one-to-one
correspondence with class constants c.f [γ::c, β], such that f [α, β] becomes
c.f [γ::c, β]. When interleaving define and note elements, the same situation
occurs as described in §4 — hypothetical definitions need to be folded:

note a = 〈B [α, β][f , g]〉
1. thmdef ∀α β. thy .a = 〈

∧
x. A[α][x] =⇒ B [α, β][thy .f [α, β] g, g]〉

2a. thm ∀β. loc.a = 〈B [α, β][thy .f [α, β] g, g]〉
2b. thmdef ∀ γ::c β. thy .a = 〈B [γ, β][c.f [γ, β], c.g]〉
3. thm a = 〈B [α, β][f , g]〉

Type-class Instantiation. The instantiation target integrates type classes
and overloading by providing a Haskell-like policy for class instantiation: each
arity κ :: (s) c is associated with a set of class parameters c.g [(δ::s) κ] for
which specifications are given which respect the assumes of c. As auxiliary
means, at the begin of an instantiation, each of these c.g [(δ::s) κ] is associated
with a corresponding shadow variable κ.g [δ::s]. These are treated specifically in
subsequent define elements:

define κ.g [δ::s] ≡ t
1. constdef ∀ δ::s. c.g [(δ::s) κ] ≡ t
2. (omitted)
3. vardef κ.g [δ::s] ≡ c.g [(δ::s) κ]

In other words, define is interpreted by overloaded constdef. Further occur-
rences of define or note, unrelated to the class instantiation, are interpreted as
in the global theory target (§5.1). As an additional policy the instantiation tar-
get requires all class parameters to be specified before admitting the obligatory
instance proof before the end.

Target Syntax. As seen in §2 both the class and instantiation context allows
us to refer to whole families of corresponding constants uniformly. The idea is to
let the user write c.f unambiguously, and substitute this internally according to
the actual instantiation of the class type parameter [γ::c]. This works by splitting
conventional order-sorted type inference into three phases:

13



phase class target instantiation target
1. type inference with class constraint γ::c on c.f disregarded
2a. type improvement c.f [?ξ] ; c.f [α] c.f [?ξ] ; c.f [(δ::s) κ]
2b. substitution c.f [α] ; f [α] c.f [(δ::s) κ] ; κ.f [δ]
3. type inference with all constraints, fixing remaining inference parameters

To permit writing terms c.f [α] for α even without a class constraint, first
the class constraint γ::c on c.f is disregarded in phase (1) and is re-considered
in phase (3); in between, types left open by type inference are still improvable
type inference parameters ?ξ.

Whenever c.f is used with a characteristic type parameter (α in class case,
(δ::s) κ in instantiation case), it is substituted by the appropriate parameter
(f for class or κ.f for instantiation) in phase (2b); more general occurrences
c.f [γ] are left unchanged. This allows to write c.f uniformly for both local and
global versions.

To relieve the user from cumbersome type annotations, a type improvement
step is carried out (2a): if c.f carries a type inference parameter ?ξ, this is
specialized to the characteristic type parameter. This step will hand over c.f
with completely determined type information.

As a particularity of the instantiation target, the substitution c.f [(δ::s) κ]
; κ.f [δ] is only carried out while no define κ.f [δ::s] ≡ t has occurred yet;
afterwards, occurrences of c.f [(δ::s) κ] are taken literally.

When printing terms, substitutions are reverted: f [α] ; c.f [α] for class,
and κ.f [δ] ; c.f [(δ::s) κ] for instantiation. Thus the surface syntax expected
by the end-user is recovered.

6 Conclusion

Related Work. Structured specifications depending on parameters and assump-
tions are closely related to any variety of “modular logic”, which may appear
in the guise of algebraic specification, little theories etc. Many module systems
for proof assistants have been developed in the past, and this is still a matter
of active research. Taking only Coq [4] as example, there are “structures” (a
variety of record types), “sections” (groups of definitions and proofs depending
on parameters and assumptions), and “modules” that resemble ML functors.

Our approach of building up specification contexts and the canonical inter-
pretation of body elements by λ-lifting is closely akin to “sections” in Coq. Here
we continue the original locale idea [12], which was presented as a “sectioning
concept for Isabelle” in the first place. There are two main differences to Coq
sections: our axiomatic target needs to be fixed once and for all, but the defini-
tional body may be extended consecutively. In Coq both parts are intermingled,
and cannot be changed later. Note that Coq sections vanish when the scope is
closed, but a local theory may be recommenced.

14



Beyond similarities to particular module systems our approach is different
in providing a broader scope. Acknowledging the existence of different module
concepts, we offer a general architecture for integrating them into a common
framework. After implementing a suitable target mechanism, a particular module
concept will immediately benefit from body specification elements, as produced
by existing definitional packages (inductive, primrec, function, etc.).

Fitting a module system into our framework requires a representation of its
logical aspects within Isabelle/Pure, and any auxiliary infrastructure as Isabelle/
Isar context. The latter is very flexible thanks to generic context data (covering
arbitrary ML values in a type-safe fashion), and generic “declarations” for main-
taining such data depending on a logical morphism. The Pure framework [15]
supports higher-order logic, but only simple types without type quantification
[8]. The particular targets presented here demonstrate that non-trivial modular
concepts can indeed be mapped to the Pure logic, including an illusion of local
type-quantification (for definitions) according to Hindley-Milner [13].

In fact, there is no need to stay within our canonical interpretation of λ-
lifting at all. This template may be transcended by using explicit proof terms in
Pure, to enable more general “admissible” principles in the interpretation. For
example, the AWE tool [6] applies theory interpretation techniques directly to
global type constructors, constants and axioms. This allows one to operate on
polymorphic entities, as required for an abstract theory of monads, for example.
In AWE, definitions and theorems depending on such global axiomatizations
are transformed extra-logically by mapping the corresponding proof objects,
and replaying them in the target context. The present implementation needs to
redefine some common specification elements. Alternatively, one could present
this mechanism as another local theory target, enabling it to work with any local
definitional package, without requiring special patches just for AWE.

Implementation and Applications. Since Isabelle2008, local theories are the of-
ficial interface for implementing derived specification mechanisms within the
Isabelle framework. The distribution includes the general framework, with a cou-
ple of targets and definitional packages for the new programming interface. We
already provide target mechanisms for global theories, locales, type classes and
class instantiations as described above. There is another target for raw overload-
ing without the type-class discipline. Moreover, the following body specifications
are available:

– definition and theorem as wrappers for the define and note primitives
– primrec for structural recursion over datatypes
– inductive and coinductive for recursive predicates and sets (by Stefan

Berghofer)
– function for general recursive functions (by Alexander Krauss)
– nominal-inductive and nominal-primrec for specifications in nominal

logic (by Christian Urban and Stefan Berghofer)

Experience with such “localization” efforts of existing packages indicates that
conversion of old code is reasonably easy; package implementations can usually

15



be simplified by replacing primitive specifications by our streamlined local theory
elements. Some extra care is required since packages may no longer maintain
“global handles” on results, e.g. the global constant name of an inductively
defined predicate. Such references to logical entities need to be generalized to
arbitrary terms. Due to interpretation of the original specification in a variety
of targets, one cannot count on particular global results, but needs to work with
explicit Isar contexts and morphisms on associated data.

Acknowledgments. Tobias Nipkow and Alexander Krauss greatly influenced
the initial “local theory” design (more than 2 years ago), by asking critical
questions about definitions within locales. Early experiments with inductive def-
initions by Stefan Berghofer showed that the concept of “auxiliary context” is
really required, apart from the “target context”. Amine Chaieb convinced the
authors that serious integration of locales and type-classes is really needed for
advanced algebraic proof tools. Clemens Ballarin helped to separate general local
theory principles from genuine features of locales. Norbert Schirmer and other
early adopters helped to polish the interfaces.

References

1. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: S. Berardi, et al.
(eds.) Types for Proofs and Programs (TYPES 2003), LNCS, vol. 3085. Springer-
Verlag (2004)

2. Ballarin, C.: Interpretation of locales in Isabelle: Theories and proof contexts. In:
J.M. Borwein, W.M. Farmer (eds.) Mathematical Knowledge Management (MKM
2006), LNAI, vol. 4108. Springer-Verlag (2006)

3. Barendregt, H., Geuvers, H.: Proof assistants using dependent type systems. In:
A. Robinson, A. Voronkov (eds.) Handbook of Automated Reasoning. Elsevier
(2001)

4. Barras, B., et al.: The Coq Proof Assistant Reference Manual, v. 8.1. INRIA (2006)
5. Bertot, Y., et al. (eds.): Theorem Proving in Higher Order Logics (TPHOLs 1999),

LNCS, vol. 1690. Springer-Verlag (1999)
6. Bortin, M., Broch Johnsen, E., Lüth, C.: Structured formal development in Isabelle.

Nordic Journal of Computing 13 (2006)
7. Chaieb, A., Wenzel, M.: Context aware calculation and deduction — ring equal-

ities via Gröbner Bases in Isabelle. In: M. Kauers, et al. (eds.) Towards Mech-
anized Mathematical Assistants (CALCULEMUS and MKM 2007), LNAI, vol.
4573. Springer-Verlag (2007)

8. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic (1940)
9. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press (1993)
10. Gunter, E.L., Felty, A. (eds.): Theorem Proving in Higher Order Logics (TPHOLs

1997), LNCS, vol. 1275. Springer-Verlag (1997)
11. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: T. Altenkirch,

C. McBride (eds.) Types for Proofs and Programs (TYPES 2006), LNCS, vol.
4502. Springer-Verlag (2007)

16



12. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales: A sectioning concept for
Isabelle. In: Bertot et al. [5]

13. Milner, R.: A theory of type polymorphism in programming. J. Computer and
System Sciences 17(3) (1978)

14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer-Verlag (2002)

15. Paulson, L.C.: Isabelle: the next 700 theorem provers. In: P. Odifreddi (ed.) Logic
and Computer Science. Academic Press (1990)

16. Slind, K.: Function definition in higher-order logic. In: Gunter and Felty [10]
17. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter and

Felty [10]
18. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof

documents. In: Bertot et al. [5]
19. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar frame-

work. In: K. Schneider, J. Brandt (eds.) Theorem Proving in Higher Order Logics
(TPHOLs 2007), LNCS, vol. 4732. Springer-Verlag (2007)

17


	Local theory specifications in Isabelle/Isar
	Florian Haftmann and Makarius Wenzel

