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Abstract. The paper shows how the code generator of Isabelle/HOL
supports data refinement, i.e., providing efficient code for operations on
abstract types, e.g., sets or numbers. This allows all tools that employ
code generation, e.g., Quickcheck or proof by evaluation, to compute with
these abstract types. At the core is an extension of the code generator to
deal with data type invariants. In order to automate the process of setting
up specific data refinements, two packages for transferring definitions and
theorems between types are exploited.

1 Introduction

Algorithm verification is most convenient at a high level of abstraction, reasoning
about data in terms of sets, functions and other mathematical concepts. However,
when running the verified code we want to replace sets and functions by lists
and trees, to make them efficiently executable. This replacement is called data
refinement, and the ideal theorem prover should do this fully automatically once
we prove that the concrete representation is adequate.

This paper describes a data refinement framework for Isabelle/HOL that
automatically replaces abstract data structures by concrete ones during code
generation. Our main contribution is a lightweight infrastructure and methodol-
ogy that reduces data refinement entirely to code generation, requires zero effort
from the user and is based on a minimal extension of the code generator.

More formally, data refinement replaces an abstract data type A by a more
concrete one C in the generated code. The typical example is the implemen-
tation of sets by lists. The concrete type is also called the implementation or
representation. Refining A by C requires an abstraction function Abs :: C → A
(e.g., mapping [1, 2] to {1, 2}) and an invariant inv :: C → bool (e.g., ruling out
lists with duplicates). The basic picture is shown in Figure 1.

The standard approach is to demand that Abs is a homomorphism: for ev-
ery operation f ∈ Σ (the primitive operations that need implementing) on
the abstract type and its concrete implementation f ′ it must be shown that
f(Abs(x)) = Abs(f ′(x)). A system supporting data refinement on this basis
will require the user to prove the homomorphism property for all operations to
ensure soundness of the refinement step. This means that a new trusted compo-
nent is added to the system, the refinement manager. A typical example for this
approach is the KIV system [17].

We turn the approach on its head: Rather than check that the correct homo-
morphism theorems have been proved before code is generated, the homomor-
phism theorems themselves are the glue code between f and f ′. More precisely,
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Fig. 1. Data refinement

we instruct the code generator to view A as an algebraic data type with the
single (uninterpreted!) constructor Abs :: C → A. Now f(Abs(x)) = Abs(f ′(x))
is a code equation that performs pattern matching on Abs to turn a call of f
into a call of f ′. This is the key point of our approach: We generate code for
the actual function f , not for some other function f ′ for which some additional
theorems show that it implements f in the correct manner. This form of data
refinement is completely automatic: Once a particular refinement of A by C has
been set up, generating code involving functions on A involves no further input
by the user. This works amazingly well and is explained in §2.

Unfortunately it breaks down once we have a non-trivial invariant and can
only prove inv(c) =⇒ f(Abs(c)) = Abs(f ′(c)). This is a conditional equation
and thus unsuitable for generating code. At this point we need to introduce a
minimal extension of the code generator that deals with invariants. This is the
contents of §3, where the correctness of the extension is also proved.

As a final generalization we allow A to be a nested type expression. This
complicates matters and is the subject of §4.

Data refinement is crucial for Isabelle/HOL because it enables code genera-
tion for some of the most important types, namely sets and numbers. The details
follow, but we can already mention that this is essential for two important appli-
cations, in addition to explicit algorithm development by the user: Quickcheck,
Isabelle’s automatic counterexample search facility [2], and proof by evaluation.
Both take advantage of default implementations of sets and numbers to execute
seemingly abstract statements like {1, 1/2} ∩ {1− 1/2, 2} = {1/2}.

1.1 Code Generation

Isabelle/HOL supports code generation for a number of functional program-
ming languages (SML, OCaml, Haskell, Scala). Basically, equational theorems
in HOL, called code equations, are translated into function definitions in the
target languages. A mathematical treatment of this translation process, includ-
ing correctness proofs, can be found elsewhere [5]. We stay on the level of code
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equations here and do not need to worry about the further translation steps.
The key correctness property of the generated code is that any evaluation in the
target language corresponds to an equality provable in HOL. In other words, the
generated code is merely some form of fast rewrite engine which can be used to
derive some equations.

When we want to generate code for some function f , any list of equations
of the form f . . . = . . . (with pattern matching on the lhs) can (in principle)
serve as code equations, not just the original definition of f . Thus we are free
to define a second, more efficient function g, prove f(x) = g(x), and use this
equation (together with the ones for g) as the code equations for f .

Algebraic data types in HOL are turned into equivalent algebraic data types
in the target language. Interestingly, the correctness proof revealed that in fact
any function in HOL can in principle become a constructor function in the target
language (but of course not a defined function at the same time).

1.2 Isabelle/HOL
Isabelle/HOL [16] is based on Church’s simple type theory. Types τ are built
from type variables (denoted by α, β, . . . ) and type constructors κ with a fixed
arity. The function type is → as usual. The notation t :: τ means that term t
has type τ . In concrete examples we use Isabelle/HOL’s syntax:⇒ instead of→
and ’a instead of α. The qualified name A.f refers to function f from theory A.
Besides ∀, we also use this symbol

∧
for universal quantification.

In our examples we employ the usual standard types: lists (’a list), sets
(’a set), booleans (bool), and the type of optional values (’a option) with con-
structors Some and None. The primitive way of introducing new types in Isa-
belle/HOL is the typedef command. It takes a non-empty set comprehension
S = {x :: τ. P x}, defines a new type σ, and axiomatizes two isomorphisms
Abs :: τ → σ and rep :: σ → τ as follows: the image of rep is in S (i.e.,
∀x. rep x ∈ S), Abs is a left-inverse for rep (i.e., ∀x. Abs (rep x) = x), and rep
is a left-inverse for Abs on S (i.e., ∀x ∈ S. rep (Abs x) = x).

2 Basic Data Refinement

We start by considering the situation where there is no invariant. The standard
example is the implementation of sets by lists with no restrictions on the order
or multiplicity of the elements in the lists. More efficient representations are
considered later on, but this one illustrates the basic method well.

The relation between lists and sets is an instance of Figure 1 where C =
’a list, A = ’a set, inv is true everywhere (every list is a valid representation)
and Abs = set, a predefined function that returns the set of elements in a list.
Infinite sets are not representable (but see the end of the section).

As explained in the Introduction, for code generation purposes we will now
consider the abstraction function set as the single constructor of type ’a set. Ar-
bitrary constants (of an appropriate type) can be turned into data type construc-
tors in the generated code (see §1.1). We call such constants pseudo-constructors.
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Like ordinary constructors, they have no defining code equations but other code
equations can use them in patterns on the left-hand side. There are no particu-
lar logical properties that such pseudo-constructors have to satisfy—they do not
have to be injective or exhaust the abstract type. This is how we instruct the
code generator to view set as a constructor:
code datatype set

Thus in the generated code the type ’a set will become a data type whose ele-
ments are in fact lists, but wrapped up in the constructor set. For the primitive
set operations we can easily prove alternative equations that pattern-match on
set. Here are some examples:
lemma [code]: {} = set []
lemma [code]: Set.insert x (set xs) = set (List.insert x xs)
lemma [code]: Set.remove x (set xs) = set (List.removeAll x xs)

The [code] tag tells the code generator that a theorem should be considered a
code equation and used instead of the original definition of the function involved.

The technique allows the replacement of one type by another type with sur-
prising ease, based purely on the equational semantics of the code generator.

We now generalize from the example. We assume that A = (α)κ, where κ is a
type constructor and α a list of type variables, its arguments; C is unrestricted.
We start by defining Abs :: C → A and registering it as a pseudo-constructor
(via code datatype) in order to pattern-match on it in the code equations for
the f ∈ Σ. There are no restrictions per se on the type of f , but in order to
abstract the standard pattern seen in the set/list example we need to make some
assumptions on the argument types.

Definition 1. We call a type τ1 → · · · → τn → τ basic (where τ is not a
function type) iff all τi are either of the form (. . . )κ or do not contain κ.

We assume that all functions in Σ have a basic type, a property that is satisfied
by all our applications. Derived functions can of course have arbitrary types.

Now we must prove for each f ∈ Σ a code equation

f a1 . . . an = t

where ai = Abs(xi) (if τi = (. . . )κ) or ai = xi (otherwise). The free variables of
t must be contained in {x1, . . . , xn}.

Now terms involving type κ can be handled by the code generator: the code
for all primitive functions f has just been proved, and code for derived functions
is generated as always. Hence it must be stressed that the only work we need to
do is to prove the code equations for the f ∈ Σ.

As described above, all occurrences of type κ are refined by the same type.
However, our infrastructure does not by itself enforce this: Lochbihler [12] gen-
eralizes our approach to multiple representations. He exploits the fact that there
can be multiple pseudo-constructors for any type. In fact, Isabelle’s default
refinement of sets supports cofinite sets, too, by means of a second pseudo-
constructor coset :: ’a list ⇒ set where coset xs = − set xs (“−” is complement).
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3 Data Refinement with Invariants

3.1 Motivation and Example

Implementing sets by lists with possibly repeated elements, as in the previous
section, is inefficient. Therefore we now impose the invariant that all elements of
the representing lists are distinct and call such lists distinct lists. The situation is
again the one in Figure 1 with C = ’a list, A = ’a set, Abs = set, but now inv =
distinct, a predefined function that tests if all elements of a list are distinct.

But now there is the problem that our pseudo-constructor set can also be
applied to lists that are not distinct. As a consequence, some equations for the
primitive set operations only hold conditionally, for example

distinct xs =⇒ Set.remove x (set xs) = set (List.remove1 x xs)

This conditional theorem will be rejected as a code equation by the code gen-
erator. For soundness reasons the precondition cannot simply be dropped, but
without it the theorem does not hold because List.remove1 removes at most one
occurrence of x from xs and not all of them like List.removeAll. Our solution is
to introduce an intermediate type ’a dlist for distinct lists (see Figure 2). Thus

’a list

distinct lists

’a dlist ’a set

finite sets

Fig. 2. Sets by distinct lists using ’a dlist

we split the implementation into two steps: the new subtype step from ’a list to
’a dlist, where ’a dlist is a new type that is isomorphic to a subset of ’a list, the
distinct lists, followed by the basic data refinement of ’a set by ’a dlist which
does not involve an invariant anymore and can be dealt with by the method of
the previous section.

The new subtype with an invariant is defined by typedef (see §1.2):

typedef ’a dlist = {xs::’a list. distinct xs}
morphisms list Dlist

The morphisms directive just renames the canonical rep and Abs functions to
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list :: ’a dlist ⇒ ’a list
Dlist :: ’a list ⇒ ’a dlist

The axiomatization of rep and Abs in §1.2 can also be presented like this:

Dlist (list dxs) = dxs (1)
distinct xs ←→ list (Dlist xs) = xs, (2)

Using the two isomorphisms we can define all primitive operations on dlist
by lifting corresponding operations on list. For example, this is the definition of
Dlist.remove :: ’a ⇒ ’a dlist ⇒ ’a dlist:

Dlist.remove x dxs = Dlist (List.remove1 x (list dxs)) (3)

Then we bridge the gap between ’a set and ’a dlist by a new pseudo-constructor
dset :: ’a dlist ⇒ ’a set:
dset dxs = set (list dxs)

If we assume that we already have all primitive operations on the type ’a dlist
together with the necessary properties, it is again straightforward to prove code
equations implementing set operations, for example for Set.remove:
lemma [code]: Set.remove x (dset xs) = dset (Dlist.remove x xs)

Therefore we turn to the problem of how to implement dlist operations by list
operations. Using Dlist as a pseudo-constructor as in the previous section runs
into the same problem as before:

distinct xs =⇒ Dlist.remove x (Dlist xs) = Dlist (List.remove1 x xs) (4)

is only provable under the assumption distinct xs. Therefore we try the definition
of Dlist.remove (3) itself as a code equation. Now we need to execute list on the
rhs and face the same problem:

list (Dlist xs) = xs (5)

is only provable if distinct xs. Therefore we extend the code generator for this
special case as follows. Attaching attribute [code abstype] to property (1)
lemma [code abstype]: Dlist (list dxs) = dxs

instructs the code generator to make Dlist a pseudo-constructor and to turn the
composition around and make (5) a code equation, although it is not a theorem.
The justification is a meta-theoretic one: we ensure that in code equations, Dlist is
only applied to distinct lists, for which (5) is provable. This property of Dlist will
be guaranteed by a check that Dlist is only applied to the result of operations
on lists that have been proved to preserve the invariant. That is, we ensure
that the implementations of the dlist operations on lists preserve distinct. For
List.remove1, the implementation of Dlist.remove, we need to show

distinct xs =⇒ distinct (List.remove1 x xs) (6)

However, we can do better and combine (3) and (5) like this:

6



lemma list remove[code abstract]:
list (Dlist.remove x dxs) = List.remove1 x (list dxs)

The attribute [code abstract] instructs the code generator to derive the actual
code equation (3) from it (this is a direct consequence of (1)). The lemma also
entails (5): if distinct xs then

list (Dlist (List.remove1 x xs)) = list (Dlist.remove x (Dlist xs))
= List.remove1 x (list (Dlist xs)) = List.remove1 x xs,

i.e., distinct (List.remove1 x xs) (by (4), list remove, (2)). Thus lemma list remove
also certifies that distinct is preserved by List.remove1.

This concludes the presentation of code generation for dlist. The advantage
of our approach is that we have relaxed the principle to only ever generate code
from theorems in only one place, equation (5). Above we sketched why this is
admissible. In the next subsection we explain our approach in its general form
and give a formal correctness proof.

3.2 Subtype Step: The General Case

Now we look at the general form of the subtype step from ’a list (now C) to
’a dlist (now A = (α)κ). We have functions Abs : C → A (Dlist) and rep :
A→ C (list) such that Abs(rep(y)) = y and inv : C → bool (distinct) such that
inv(x)←→ rep(Abs(x)) = x. We assume that the result type of all functions in
Σ contains κ at most at the very outside, e.g., ’a dlist is allowed but ’a dlist list
is not. We discuss this restriction (which does not apply to derived functions) at
the end of this section. The format for the code equations is now

ψ(f y) = t

where ψ is rep (if τ = (. . . )κ) or the identity (otherwise). The free variables of
t must be contained in y. The code generator turns this into f y = φ(t) (by a
proof step), where φ is Abs (if τ = (. . . )κ) or the identity (otherwise). The only
liberty that the code generator takes is that it turns the theorem Abs(rep y) = y
into the non-theorem rep(Abs x) = x. Of course the latter is implied by inv(x),
and we will show that inv(s) holds for all terms Abs(s) that may arise during a
computation. But this requires a careful proof (see below). The following table
summarizes the behavior of the code generator.

E E′

rep(f y) = t f y = Abs(t)
Abs(rep y) = y rep(Abs x) = x

Let E be the set of all code equations at the point when the code generator is
invoked and let E′ be the result of the translation shown in the table above. That
is, most equations are moved from E to E′ unchanged, but rep(f y) = t and
Abs(rep y) = y are translated as above. Moreover, the code generator enforces
that Absmust not occur on the rhs of any equation in E. (This is not a restriction
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because if one really needed an operation that behaved like Abs one could define
it separately from Abs to avoid confusion.)

In [5] correctness of the code generation process is shown by interpreting
code equations as higher-order rewrite rules and proving that code generation
preserves the reduction behavior. Our translation from E to E′ is a first step
that happens before the steps considered in [5]. We will now prove correctness of
that first step by relating the equational theory of E (written E ` u = v) with
reduction in E′. Notation E′ ` u→ v means that there is a rewrite step from u
to v using either a rule from E′ or β-reduction.

We call a term t invariant iff (i) E ` rep(Abs s) = s for all subterms (Abs s)
of t and (ii) every occurrence of Abs in t is applied to an argument.

Lemma 1. If u is invariant and E′ ` u→∗ v, then v is invariant.

Proof. By induction on the length of the reduction sequence. In each step, we
need to check invariance of newly created Abs terms. Because user-provided code
equations with Abs on the rhs are forbidden, only the derived code equation
f y = Abs(t) can introduce a new Abs term, namely Abs(t) itself, where Abs
is applied and for which we have E ` rep(Abs(t)) = rep(Abs(rep(f y))) =
rep(f y) = t. Invariance is preserved by β-reduction because it cannot create
new Abs terms because all Abs must already be applied to arguments.

Lemma 2. If u is invariant and E′ ` u→∗ v, then E ` u = v.

Proof. By induction on the length of the reduction sequence. In each step, either
β-reduction, or an equation from E, or f y = Abs(t) (which is a consequence of
E), or rep(Abs x) = x is used. Only the last case needs special consideration. By
the previous lemma, the subterm Abs(t) of the lhs of the reduction rep(Abs(t))→
t is invariant, and hence E ` rep(Abs(t)) = t.

Thus we know that if we start with an invariant term, reduction with E′ only
produces equations that are already provable in E. Invariance of the initial term
is enforced by Isabelle very easily: the initial term must not contain Abs.

We have already mentioned that we cannot register a code equation for a
basic operation by [code abstract] if the abstract type κ occurs inside the result
type rather than at the top level. A workaround is to introduce for each such
result type a new abstract type with appropriate projection functions. For ex-
ample, · · · → (α)κ× (α)κ becomes · · · → (α)κ′, where κ′ is a new abstract type,
a copy of (α)κ× (α)κ with two projection functions of type (α)κ′ → (α)κ. This
leads to simultaneous refinement, which is covered by our approach. Sometimes
the workaround can be avoided because the offending operation can be split
up into different functions. For example, a function of type · · · → (α)κ × (α)κ
is replaced by two separate functions of type · · · → (α)κ. We believe that the
limitation on the result type can be lifted, but it requires a generalization of the
correctness proof by employing map functions for each container type involved.
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3.3 Using Lifting/Transfer

Building a theory library that implements a new abstract type like ’a dlist can
take a bit of work. The main reason is that the type system requires us to convert
between values of the concrete and the abstract type with the isomorphisms. This
happens in all definitions, for example of Dlist.remove (3). For more complicated
types involving higher-order types or other type constructors, more complex
combinations of the isomorphisms are required. Then we need to prove the code
equations for [code abstract], e.g., lemma list remove, from those definitions. And
finally we need to transfer properties from the concrete to the abstract type. Thus
the manual construction of such an abstract type is at least tedious. If one is
unfamiliar with the details of the type definition facility, it is not just tedious but
cryptic. Hence the success of our approach to invariants depends on the amount
of automation we are able to provide for this task.

To automate the construction of abstract types we use the Lifting and Trans-
fer packages [8], which were implemented as general tools but also with the mo-
tivation of data refinement in mind. These tools provide automation for build-
ing abstract types (subtypes and quotients) in Isabelle/HOL and were inspired
by [10]. The Lifting package defines new constants on the abstract level, which
is done by lifting terms from the concrete level to the abstract level, and proves
transfer rules relating a term on the concrete level and the newly defined con-
stant. The Transfer package helps to prove theorems on the abstract level (mainly
properties of the lifted constants), which is done by transferring the goals on the
abstract level to goals on the concrete level by using the provided transfer rules.

How to use Lifting/Transfer for implementation of a data structure with an
invariant? First of all, we have to set up the lifting infrastructure, which is done
by a theorem generated by typedef for ’a dlist:

setup lifting type definition dlist

This canonical boilerplate command already registers ’a dlist as an abstract
datatype with a constructor Dlist (via [code abstype]).

Then each operation can be lifted by lift definition command:

lift definition remove :: ’a ⇒ ’a dlist ⇒ ’a dlist is List.remove1

This command opens a proof environment with the following goal:∧
a list. distinct list =⇒ distinct (List.remove1 a list)

The goal merely expresses that the operation on the concrete level preserves the
invariant. After the proof is finished, a new constant remove is automatically
defined via the correct combination of isomorphisms and also the corresponding
code equation list remove is proved (from the definition and the above goal) and
registered in the code generator via [code abstract].

Transfer helps us to prove properties of operations on ’a dlist, in particular
code equations:

lemma [code]: Set.remove x (dset dxs) = dset (Dlist.remove x dxs)
apply transfer
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Command transfer turns the goal into∧
x dxs. distinct dxs =⇒ Set.remove x (set dxs) = set (List.remove1 x dxs),

which talks about lists rather than distinct lists and can thus be proved easily.
Note that dxs is now universally quantified and has type ’a list.

We will now give an abstract description of what the Lifting package does
in our setting of data refinement and building subtypes. Let us assume we have
for each abstract type A = (α)κ two morphisms Absκ :: A→ C, repκ :: C → A
and an invariant inv :: A→ bool and we want to lift a function f ′ to a function
f whose type should be τ .

Let us assume that τ = τ1 → · · · → τn+1, then the Lifting package will ask
us to prove the following correctness condition

Inv(τ1) x1 =⇒ . . . =⇒ Inv(τn) xn =⇒ Inv(τn+1) (f ′ x),

where Inv(τi) :: τi → bool is a compound predicate that checks if all values
of the concrete type C stored in a “container” of type τi meet the invariant.
Inv(τi) is built from the invariant function inv and predicators1 for corresponding
types involved in τ by traversing τ . For example, for τ = A = ’a dlist, we have
Inv(τ) = inv = distinct; for τ = ’a dlist list, we have Inv(τ) = list all distinct.
More details are beyond the scope of this paper.2

If we prove the correctness condition, the Lifting package will produce the
following definition of f

f = Def+(τ) f ′,

where Def is a function that builds a compound morphism by traversing the
given type τ . The polarity superscript + (or −) encodes if an abstraction (or a
representation) function should be generated. Defp(τ) is defined by two recursive
equations:

– If τ = (σ)κ is not an abstract type, then

Defp(τ) = mapκ DefP
1
κ(p)(σ1) . . . DefP

n
κ (p)(σn),

where mapκ is a map function3 for κ and P iκ encodes which type arguments
of κ are co-variant or contra-variant: if the i-th type argument is co-variant
then P iκ is the identity; if contra-variant, P iκ yields − for + and + for −.

– If τ = (σ)κ is an abstract type, then

Defp(τ) = Morphp(κ) ◦Defp((σ′)ϑ),

1 A predicator predϑ for (α)ϑ is a function of a type (α → bool) → (α)ϑ → bool
lifting a predicate inv operating on α’s to a predicate predϑ inv operating on (α)ϑ.

2 The Lifting package is more general than we present here, e.g., the concrete type is
also a parameter of lifting; full details will be published in a forthcoming paper.

3 if κ does not have any type arguments, then mapκ = id
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where (α)κ is defined as a subtype of (β)ϑ and θ = match(σ, α) and σ′ =
θ β. 4 Function Morphp gives us the concrete morphism according to the
polarity: Morph+(κ) = Absκ and Morph−(κ) = repκ.

In general, if corresponding morphisms, map functions and predicators are
known to the system, the Lifting package will produce a correct definition for any
combination of abstract and concrete types including higher-order and nested
types. The only limitation is that currently the Lifting package does not pro-
vide strong enough transfer rules for constants with nested abstract types, which
means that the Transfer package would not be able to transfer some goals con-
taining such constants. The current workaround is to provide the stronger trans-
fer rules manually. This limitation is work in progress. A formal description of
the Transfer package is the subject of a forthcoming paper.

Except for proving that an operation on the concrete level preserves the
invariant, and this proof is in general unavoidable, everything is fully automatic.

4 From Type Constructors to Type Expressions

4.1 Motivation and Example

The limitation of the code generator is that the type that is being refined has
to be of the form (α)κ. The type of maps ’a ⇒ ’b option does not have this
form, yet one would still like to refine it by some efficient type of tables. Because
’a ⇒ ’b option is not a plain type constructor, a new type (’a, ’b) mapping has
to be introduced. This type is merely a copy of ’a ⇒ ’b option for code gener-
ation purposes. It can be refined further, for example, by red-black trees using
the techniques from §2 and §3. See Figure 3 for the complete picture. The im-
plementation type rbt-impl is just a plain datatype of binary trees with a color
in each node; on top of it the subtype rbt of well-shaped trees satisfying the
invariant of red-black trees is defined. This example represents the most general
form of data refinement discussed in this paper.

But now all definitions using ’a ⇒ ’b optionmust be lifted to (’a, ’b) mapping.
Of course, it has to be done for primitive operations on maps like a lookup or an
update only once for all. But it also has to be done for all other definitions using
these primitive functions. The reason is that one has to provide for such derived
operations new code equations that use primitive operations of (’a, ’b) mapping
and not ’a ⇒ ’b option. On the other hand, no code equations have to be provided
for the primitive operations on (’a, ’b) mapping in this phase because these will
be provided later on in the phase described in §2 and §3. Of course, it is also
possible to base the formalization on the lifted type (’a,’b) mapping from the
beginning but this contradicts the very idea of data refinement.

The complications of this general setting are as follows. For a start, you do not
obtain code for f but for some f ′. This means in particular that none of the tools
4 In our setting it is guaranteed that all type variable in β are present in α and thus
σ uniquely determines σ′.
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(’a,’b) rbt-impl

well-shaped trees

(’a,’b) rbt (’a, ’b) mapping

finite mappings

’a ⇒ ’b option

Fig. 3. Maps implemented by red-black trees

that build on code generation, e.g., Quickcheck profit from such refinements.
Moreover you have to refine every function f to some f ′, not just the primitive
ones, and you have to look carefully at the definition of f ′ that lift definition
actually produced and at the abstraction relations involved to convince yourself
that f and f ′ are in the desired relationship. But it is not quite as bad as this.
As soon as you define a derived function h where ’a ⇒ ’b option is no longer
present in the type of h, but which still uses maps inside its body, you no longer
need to lift h to some h′, but you still have to prove a code equation for h itself
that uses mappings internally. This is done again by transfer.

4.2 Using Lifting/Transfer

We can again use the Lifting and Transfer packages to automate the lifting.
First, (’a, ’b) mapping is defined as a copy of ’a ⇒ ’b option and all primitive
operations on maps are lifted:

typedef (’a, ’b) mapping = UNIV :: (’a ⇒ ’b option) set ..
setup lifting(no code) type definition mapping

lift definition empty :: (’a, ’b) mapping is (λ . None) .
lift definition lookup :: (’a, ’b) mapping ⇒ ’a ⇒ ’b option is λm k. m k .
lift definition update :: ’a ⇒ ’b ⇒ (’a, ’b) mapping ⇒ (’a, ’b) mapping
is λk v m. m(k 7→ v) .

We showed only 3 such operations here but in reality there are more of them.
Notice that we do not have to prove anything in the lift definition command
because the formal invariant preservation theorem is proved automatically if we
work with type copies.

Now let us assume we used maps in our formalization to implement a special
data type that behaves like a multiset and the multiplicity of elements is limited.
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Now we can implement an insert for this data structure that ensures that if the
limit is reached, the map is not changed.
definition insert lim :: (’a ⇒ nat option) ⇒ ’a ⇒ nat ⇒ ’a ⇒ nat option
where insert lim m k lim = (case m k of
Some n ⇒ if n < lim then m(k 7→ n + 1) else m
| None ⇒ m(k 7→ 1))

We use lift definition to define a copy of insert lim that operates on the code
generation type (’a, nat) mapping.
lift definition insert lim′ :: (’a, nat) mapping ⇒ ’a ⇒ nat ⇒ (’a, nat) mapping
is insert lim .

Function insert lim′ is defined in terms of the original function insert lim with
the help of the morphisms between maps and mappings. In contrast to the
situation in §3, we cannot use this definition as a code equation because it goes
in the wrong direction: it reduces a computation on mappings to maps. The
desired code equation for insert lim′ is proved by transfer from the definition of
the original function.
lemma [code]: insert lim′ m k lim = (case Mapping.lookup m k of
Some n ⇒ if n < lim then Mapping.update k (n + 1) m else m
| None ⇒ Mapping.update k 1 m)

by transfer (fact insert lim def)
It is inconvenient that one has to write down the lifted code equation even

if the proof is trivial thanks to Lifting/Transfer. In principle we can use the
Transfer package to transfer goals in the other direction, i.e., from the concrete
level to the abstract level and thus we would not have to write down the lifted
code equation at all. But there is the problem that if we go in this direction, it is
not clear which parts of a term should really be transferred. The transfer method
can eagerly transfer all terms from the ’a ⇒ ’b option to the (’a, ’b) mapping level
according to the transfer rules. But maybe the user would want some subterms to
remain maps. This would require some mechanism that allows users to annotate a
term and say which parts should not be transferred. This is work in progress and
we intend to profit from the heuristics developed by Lammich [11]. Transferring
from (’a, ’b) mapping to ’a ⇒ ’b option instead is unambiguous: all occurrences
of mapping are replaced.

5 Applications

The following examples are the most important applications of data refinement
in the Isabelle distribution.

Sets are implemented by lists by default. There is also an efficient implemen-
tation by red-black trees (in Library/RBT_Set.thy). In a recent application [18]
a decision algorithm for MSO formulas was unusable with the default implemen-
tation of sets, but when theory RBT_Set.thy was loaded (no change of the client
code is necessary!), it allowed us to decide small MSO formulas.
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Mappings were described in §4. The distribution provides two implementa-
tions: red-black trees (as in §4) and association lists (’a × ’b) list.

Integers (type int) are defined as a total quotient of pairs of natural numbers
nat × nat by the Lifting and Transfer packages. Two pairs of natural numbers
(x, y) and (u, v) represent the same integer if x+ v = u+ y. We do not use this
definition for execution of integers because of efficiency reasons but we execute
them by binary numerals num defined as a datatype:

datatype num = One | Bit0 num | Bit1 num

Operations on num are just usual binary arithmetic. Then, all integers are in-
terpreted as binary numerals by employing three pseudo-constructors 0 :: int,
Pos :: num ⇒ int and Neg :: num ⇒ int. The last step is to implement common
integer operations by pattern-matching on these three pseudo-constructors and
using corresponding operations on num.

Rationals (type rat) are defined as a partial quotient of pairs of integers
int × int, again with the help of Lifting and Transfer. The quotient is partial
because we do not include pairs ( ,0) with a zero denominator. This is a logical
definition of rational numbers used for formalizations but because the quotient
is partial, we cannot use it directly for execution. Instead we interpret type
rat as a subtype of int × int based on an observation that each rational num-
ber can be represented by a pair of co-prime integers with a non-zero denom-
inator. Given the pseudo-constructor Frct :: int × int ⇒ rat, the rep function
quotient of :: rat ⇒ int × int is defined as follows

quotient of r = (THE (n, d). r = Frct (n, d) ∧ d > 0 ∧ coprime n d)

and allows us to use the invariant mechanism described in §3 and execute rational
numbers.

Reals (type real) are executed by rationals using the pseudo-constructor
Ratreal :: rat ⇒ real and code equations for +, −, ∗, /, but not much more be-
cause only the rational reals are representable in this manner. But it is still
useful. For example, it enables Quickcheck to find rational counterexamples to
conjectures involving polynomials.

Basic arithmetic on complex numbers is executable without data refinement.
Outside the Isabelle distribution, data refinement has found a number of

applications, too. For example, five entries in the Archive of Formal Proofs
http://afp.sf.org define their own data abstractions, some of which are also
discussed in the literature [13].

6 Related work

Data refinement is a perennial topic that was first considered by Hoare more
than 40 years ago [7], who already introduced abstraction functions and invari-
ants. This principle of data refinement became an integral part of the model
oriented specification language VDM [9] (and was later generalized to nonde-
terministic operations [14,6]). In the first-order context of universal algebra it
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was shown that there are always fully abstract models such that any concrete
implementation can be shown correct with a homomorphism [15].

The infrastructure presented in this paper has been available in Isabelle for
a few years but has never been published properly: [5] merely shows an example
(similar to §2); the core of the present paper, the treatment of invariants as in
§3, was not available at that time. Nevertheless the infrastructure has already
been used in many places (see §5). Based on this infrastructure, Lochbihler [12]
has recently overcome some limitations of our approach (e.g., see the end of §2).

Lammich [11] has implemented a new framework for data refinement that has
some similarity with §4: you do not obtain code for f but for some f ′ that is in a
certain relationship to f . As a result he can work with a more general notion of
refinement supporting (for example) nondeterministic operations and multiple
implementations of the same type. Of course he also faces the complications
explained in §4.1. A difference is that his system proves invariance preservation
for derived functions as an explicit theorem whereas for us the type checker
does the work. In a nutshell, his is a general framework for heavy duty data
refinement, ours is a lightweight infrastructure for completely transparent but
more limited data refinement.

ACL2 also seems to provide for data refinement based on invariants [4], but
the exact relationship is unclear. In Coq [1], parametrized modules support a
form of data refinement [3]: perform your development inside the context of
a specification of finite sets (or whatever abstract type you have), and later
instantiate the module with some implementation of finite sets that has been
proved to satisfy the finite set axioms. The drawback is that you do not really
work with the actual abstract type (e.g., sets), but some axiomatization of it,
which may not have the same nice syntax and proof support.

7 Conclusion

We have presented Isabelle/HOL’s infrastructure for a lightweight approach to
data refinement. Its distinctive feature is the tight integration with the code
generator and hence also any tool that builds on it. The key principle is that when
you want to execute function f , you really execute f , which in turn calls a more
efficient implementation f ′ that was proved equivalent to f . As a result, data
refinement is completely transparent to the user: just load a specific refinement
theory and the code generator does the rest. This completely automatic approach
assumes that refinement happens on a per type constructor basis. To remove
this assumption we presented a more general approach that sacrifices some of
the above advantages. It relies strongly on two packages for lifting definitions
and theorems from one type to another automatically.
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