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ABSTRACT 1 
Many complex systems are intrinsically stochastic in their 
behavior which complicates their control and optimization. 
Current self-adaptation and self-optimization approaches are not 
tailored to systems that have (i) complex internal behavior that is 
unrealistic to model explicitly, (ii) noisy outputs, (iii) high cost of 
bad adaptation decisions, i.e. systems that are both hard and 
risky to adapt at runtime. In response, we propose to model the 
system to be adapted as black box and apply state-of-the-art 
optimization techniques combined with statistical guarantees. 
Our main contribution is a framework that combines runtime 
optimization with guarantees obtained from statistical testing 
and with a method for handling cost of bad adaptation decisions. 
We evaluate the feasibility of our approach by applying it on an 
existing traffic navigation self-adaptation exemplar. 
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1 INTRODUCTION  
Modern software-intensive systems become more and more 
complex to model, develop, test, and optimize. The major source 
of complexity is the uncertainty that creeps in both at 
development time, in the form of unknown requirements and 
uncertain environment assumptions, and at runtime, in the form 
of runtime conditions that have not been fully anticipated and 
thus specifically designed for. Uncertainty handling is the main 
motivation behind equipping such systems with self-adaptivity, 
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i.e. the ability of a system to observe its own functioning and 
adapt itself at runtime in order to achieve better performance, 
recover from faults, or strengthen itself in face of safety or 
security threats.  

Intuitively, certain systems are both harder and riskier to 
adapt at runtime than others. With current techniques, adapting 
a system with predictable behavior and well-known boundaries, 
such as a web application, is easier than an open-ended system 
with largely stochastic behavior, such as an emergency 
coordination system. Adaptation risk is orthogonal to adaptation 
difficultly and pertains to the magnitude of effect and the 
frequency of bad runtime adaptation decisions: when adapting a 
video encoder at runtime, a bad decision may influence the 
adaptation speed or the quality of the encoding; when adapting a 
live system being used by a large number of users, such as a 
traffic navigation system, bad decisions may incur serious cost in 
terms of business, e.g. dissatisfied customers.    

In this paper, we focus on a class of systems which have (i) 
complex behavior that is unrealistic to model explicitly, (ii) noisy 
outputs, (iii) high cost of bad adaptation decisions; they are, 
therefore, both hard and risky to adapt at runtime. We assume 
that the system-to-be-adapted is abstracted as a black-box model 
of the essential input and output parameters. Noisy outputs refer 
to observations of system metrics that can be observed and used 
for self-adaptation but possess high variance. Cost refers to the 
negative impact of bad adaptation decisions on the system-to-be-
adapted.  

We aim to provide a framework for performing self-
optimization in this challenging class of systems. We are 
focusing on optimizing application-level performance goals. The 
main questions we explore examine (i) how to build system 
models out of observations of noisy system outputs; (ii) how to 
re-use these models to optimize the system at runtime, even in 
the face of newly encountered situations; and (iii) how to 
incorporate the notion of cost, referring to the negative impact 
of adaptation decisions, in the above processes. 

To provide statistical guarantees, our self-optimization 
framework relies upon statistical procedures (t-tests, analyses of 
variance, binomial tests) at different phases. These procedures 
can be configured, e.g. by picking different thresholds for 
statistical significance levels, to increase or decrease the 
statistical guarantees that come in the form of confidence 
intervals and observed effect sizes.  

For runtime optimization, we employ the state-of-the-art 
technique of Bayesian Optimization with Gaussian Processes 
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Figure 1: Overview of the approach.

(BOGP). This technique supports multi-variate optimization of 
input parameters and effectively deals with high noise (variance) 
of system outputs. However, it needs a considerable number of 
iterations to converge when exploring large configuration 
spaces, i.e. large number or value ranges of input parameters. 
We provide a hybrid approach where BOGP is still used but 
applied only on a subset of the configuration space. This subset 
is prescribed by the system models learned from prior 
observations. We also incorporate a technique to handle cost in 
case of a bad configuration choice made by the BOGP optimizer. 

The novel contribution of our work is that it provides the 
first framework, to the best of our knowledge, that combines 
runtime optimization with guarantees obtained from statistical 
testing and with a statistically grounded method for handling 
cost of bad adaptation decisions.  

We have evaluated our framework by implementing it within 
the RTX tool for self-adaptation based on Big Data analytics [18] 
and applying it on a traffic navigation self-adaptation exemplar—
CrowdNav [18]. Our results show that it is possible to exploit the 
knowledge of the target system to inform the self-optimization 
process, assuming that the system resides in an unknown 
situation and that we only have a small total budget for 
experimentation. 

The rest of the paper is organized as follows. Section 2 
provides an overview of the different phases of the approach, 
while Section 3 describes the running example and illustrates the 
challenges of optimizing it. In Section 4, the proposed approach 
is described in full detail, while in Section 5 a validation of the 
main claim is provided. Section 6 discusses important 
assumptions, Section 7 compares our approach to related ones, 
and Section 8 concludes with a summary of contributions. 

2 OVERVIEW OF THE APPROACH  
A self-optimization approach for systems with noisy outputs and 
high cost of bad adaptation decisions needs to be (i) efficient in 
finding an optimal configuration in the least amount of time and 
(ii) safe in not incurring too high cost. To achieve these goals, we 
propose to use prior knowledge of the system (the K in the 
MAPE-K loop for self-adaptive systems) in order to guide the 
exploration of promising configurations. We also propose to 
measure the cost of the individual stages in the self-optimization 
and stop the evaluation of bad configurations. We connect this 
with statistical guarantees, which represents an approach 
beyond the state of the art. 

Formally, the self-optimization problem we are considering 
consists of finding the minimum of a response or output 
function 𝑓:	𝕏 → ℝ, which takes 𝑛 input parameters 𝑋),	 𝑋+, …, 
𝑋,,  which range in domains 𝐷𝑜𝑚(𝑋)),  𝐷𝑜𝑚(𝑋+), …, 
𝐷𝑜𝑚(𝑋,) respectively. 𝕏  is the configuration space and 
corresponds to the Cartesian product of all the domains of the 
parameters 𝐷𝑜𝑚(𝑋)) × 𝐷𝑜𝑚(𝑋+) × …×𝐷𝑜𝑚(𝑋,) . A configu-
ration 𝐶 assigns a value to each of the input parameters.  

Based on the above definitions, our approach for self-
optimization consists of the following three phases (Figure 1): 

Generation of system model (Section 4.1), deals with building 
and maintaining the knowledge needed for self-optimization. 
Here we use factorial analysis of variance to process incoming 
raw data and create a statistically relevant model that is used in 
the subsequent phases. This model describes the effect of 
changing a single input parameter on the output, while ignoring 
the effect of any other parameters. It also describes the effects of 
changing multiple input parameters together on the output. This 
phase is run both prior to deploying the system using a 
simulator (to bootstrap the knowledge) and while the system is 
deployed in production using runtime monitoring (to gradually 
collect more accurate knowledge of the system in the real 
settings). The output of this phase is a list of input parameters or 
combinations of input parameters, ordered by decreasing effects 
(and corresponding significance levels) on the output.   

Runtime optimization with cost handling (Section 4.2), 
selects values for the system input parameters to find a 
configuration in which the system performs the best, i.e. the 
output function is minimized. Configurations experimented with 
in this phase are generated by an optimizer that operates in 
several stages. At each stage, only a subset of the configuration 
space is available to the optimizer for generating 
configurations—we start from the subset that corresponds to the 
input parameters or combination of input parameters with the 
highest effect on the output, as reported by the first phase. We 
assume that configurations are rolled out incrementally in the 
system. If there is evidence that a configuration incurs high cost, 
its application stops and the optimizer moves on to evaluate the 
next configuration. To give statistical significance in 
determining if a configuration is not worth exploring anymore 
because of cost overstepping a given threshold, we use binomial 
testing. The outcome of this phase is the best configuration 
found by the optimizer. 

Comparison with baseline configuration (Section 4.3), makes 
sure that a new configuration determined in the second phase is 
rolled out only when it is statistically significantly better than 
the existing configuration (baseline configuration). In order for 
the new configuration to replace the baseline, it has to be 
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Figure 2: Histogram showing the distribution of trip 
overheads in an exemplary data set with 5000 data points.

checked that (i) it indeed brings a benefit to the system (at a 
certain statistical significance level), (ii) the benefit is enough to 
justify any disruption that may result out of applying the new 
configuration to the system. The last point recognizes the 
presence of primacy effects, which pertain to inefficiencies 
caused by a new configuration to the users, as reported in 
controlled experiments on the web [11].    

3 MOTIVATING SCENARIO  
We illustrate our approach on the CrowdNav self-adaptation 
exemplar [18], whose goal is to optimize the duration of car trips 
in a city by adapting the parameters of the routing algorithm 
used for navigating the cars. CrowdNav is part of our previous 
work [18] and released as an open-source project at 
https://github.com/Starofall/CrowdNav.  

In the scenario we considered, a number of cars is deployed 
in the city of Eichstädt with approx. 450 streets and 1200 
intersections. Each car navigates from an initial (randomly 
allocated) position to a randomly chosen destination in the city. 
When a car reaches its destination, it picks another one at 
random and navigates to it. This process is repeated forever. 2 

To navigate from point A to point B, a car needs to ask a 
router for a route (series of streets). There are two routers in 
CrowdNav: (i) the built-in router provided by SUMO (the 
simulation backend of CrowdNav) and (ii) a custom-built 
parametric router developed in our previous work. A certain 
number of cars (“regular cars”) use the built-in router; the rest 
use the parametric router—we call these “smart cars”.   

The parametric router can be configured at runtime; it 
provides the seven configuration parameters depicted in Table 1. 
Each parameter is an interval-scaled variable that takes real 
values within a range of admissible values, provided by the 
designers of the system. Intuitively, certain configurations of the 
router’s parameters yield better overall system performance.   

To measure the overall performance of the system, 
CrowdNav relies on the metric of trip overhead. A trip overhead 
is a ratio-scaled variable whose values are calculated by dividing 
the observed duration of a trip versus the theoretical duration of 
the trip, i.e. the hypothetical duration of the trip if there were no 
other cars, the smart car travelled in maximum speed and did not 
stop in intersections or traffic lights. Only smart cars report their 
trip overheads at the end of their trips. Since some trips will 
have larger overhead than others no matter what the router 
configuration is, the data set of trip overheads exhibits high 
variance (Figure 2)—it can be thus considered a noisy output.  

Together with the trip overhead, each smart car reports at the 
end of each trip a complaint value, i.e. a Boolean value indicating 
whether the driver is annoyed. The complaint value is generated 
based on the trip overhead and a random chance, as depicted in 
the simple logic of Listing 1. To measure the cost of a bad 
configuration in CrowdNav, the metric of complaint rate is used: 

                                                             
2 An explorer in CrowdNav is a car that is instructed to take longer route in order 
to provide information on traffic levels of under-explored streets to the router [18]. 

the ratio of issued complaints to total number of observed (trip 
overhead, complaint) tuples.  

Finally, CrowdNav resides in different situations depending 
on two environment parameters that can be observed, but not 
controlled: the number of regular (non-smart) cars and the 
number of smart cars. At each situation, a different configuration 
might be optimal. The task of self-optimizion in CrowdNav then 
becomes one of quickly finding the optimal configuration for the 
situation the system resides in and applying it.    

Table 1: Configurable parameters in CrowdNav’s 
parametric router. 

 

Id Name Range Description 

1 route 
randomization 

[0-0.3] 
Controls the random noise 
introduced to avoid giving 

the same routes 

2 exploration 
percentage 

[0-0.3] 
Controls the ratio of smart 

cars used as explorers2 

3 static info 
weight 

[1-2.5] 

Controls the importance of 
static information (i.e. max 

speed, street length) on 
routing 

4 dynamic info 
weight 

[1-2.5] 
Controls the importance of 
dynamic information (i.e. 

observed traffic) on routing 

5 exploration 
weight 

[5-20] 
Controls the degree of 

exploration of the explorers 

6 data freshness 
threshold 

[100-
700] 

Threshold for considering 
traffic-related data as stale 

and disregard them 

7 re-routing 
frequency 

[10-70] 
Controls how often the 

router should be invoked to 
re-route a smart car 

 
 

1. def generate_complaint(trip_overhead): 
2.     if trip_overhead > 2.5 and random.random() > 0.5: 
3.         return True 
4.     return False 

Listing 1: Generation of complaints in CrowdNav. The 
threshold for overhead values that may warrant a 

complaint is empirically set to 2.5. 
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Figure 3: Main effects in Example 1.  

In this context, quickly finding a configuration of parameters 
that minimizes the trip overhead in a situation, while keeping 
the number of complaints in check, entails understanding the 
effect a parameter change has on the trip overhead and 
evaluating the effect a configuration has on the complaint rate.    

Generalizing from this scenario, the problem to solve is: 
“Given a set of input system parameters X, an output system 
parameter O with values exhibiting high variance, an 
environment situation S, and a cost parameter C, find the values 
of each parameter in X that optimize O in S without exceeding C, 
in the least number of tries.”  

Having been in a number of similar situations the system 
should ideally learn from them in order for the optimization 
process to become faster over time. In the simplest case, 
returning to a known situation, for which an optimal 
configuration has been found in the past, should not trigger the 
optimization process, but just apply the optimal configuration.  

In the next section, we detail on our approach for cost-aware 
self-optimization with statistical guarantees. 

4 APPROACH 

4.1 Generation of system model 
Generating a system model to be used in self-adaptation involves 
observing the (i) situation the system resides in, (ii) its 
configuration—values of input parameters, (iii) the output of the 
system. For each situation, a model is built that ranks input 
parameters according to their effect on the output, from highest 
to lowest. To build such a model, we use a statistical procedure 
called factorial ANOVA, which we describe below.  

Factorial ANOVA.  The between-subjects factorial analysis of 
variance (ANOVA) is a parametric test employed with interval- 
or ratio-scaled data [20]. It is used for evaluating a factorial 
design, i.e. an experimental design employed to simultaneously 
evaluate the effect of two or more independent variables on a 
dependent variable. An independent variable is called a factor; a 
factor takes two or more values called levels. Factorial design and 
the associated factorial ANOVA method offer the opportunity to 
evaluate the effect of several factors on a dependent variable. 
Concretely, for each factor, factorial ANOVA evaluates the 
hypothesis of whether at least two of the factor’s levels represent 
populations of the dependent variable with different mean values 
(i.e. the populations are significantly different at a significance 
level a). This hypothesis evaluates the presence or absence of so-
called main effects of the factors on the dependent variable. In 
addition to analyzing main effects, factorial ANOVA also 
evaluates the hypothesis of whether a significant interaction 
(again, at a significance level a) exists between any combination 
of factors. An interaction is present for a combination of factors 
when the values of the dependent variable corresponding to the 
levels of one factor are not consistent across the levels of another 
factor. The result of factorial ANOVA contains one F value—the 
test statistic—for each of the independent variables and their 
possible combinations. The F values are compared against tabled 
critical F values for different significance levels (e.g. 0.05, 0.01); if 

the obtained F value is larger than the critical one, there is a 
significant effect. The main effects are linear regression models 
and thus can be graphically depicted in linear plots (Figure 3).  

Example 1: Consider an experiment where two pills, P1 and P2, 
are evaluated on the treatment effect they have on a disease D. 
Each pill is a factor which can take two levels, low and high 
dosage; the independent variable is the treatment effect. In this  
setting, three different hypotheses can be evaluated with factorial 
ANOVA: (i) the effect of P1 in curing D, (ii) the effect of P2 in 
curing D, (ii) the combined effect or interaction of P1 and P2. 
Assuming the resulting F-values are FP1=48, FP2=27, and FP1P2=3, 
the corresponding probabilities of accepting the null hypotheses 
(taking into account the degrees of freedom per case) are 0.000121, 
0.000826, and 0.121503, respectively. Thus, we conclude that, at 
significance level 0.05, there is significant difference in means for 
each of the factors (since 0.05>0.000121 and 0.05>0.000826) and no 
significance interaction between the factors (since 0.05<0.121503). 
Graphically, the main effects are depicted in Figure 3. The stronger 
effect of P1 is illustrated by the higher slope of the dashed line. 

Using factorial ANOVA.  Viewing the system that we want to 
optimize as a black box, factorial ANOVA is employed to 
determine the input parameters that have the largest effect on 
the system output. Input parameters, in this setting, correspond 
to the independent variables or factors of the factorial design, 
while the system output corresponds to the dependent variable. 
This way, we treat different values of input parameters, resulting 
in different configurations, as “treatments” to the system we 
want to optimize.  

We also define environment variables that work as blocking 
factors in our approach. A combination of values of environment 
variables prescribes a situation the system resides in. For each 
such situation, we build a system model using factorial ANOVA. 
The model is used in two places: (i) to set the default 
configuration for a situation, (ii) to inform the self-optimizer 
(Section 4.2) with the input parameters or combinations of input 
parameters that have the largest effect on the system output and 
thus are the most promising to explore first.     

Importantly, the generation of system models in our 
approach works in an incremental way: the more situations are 
encountered and configurations are tried out, the more 
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(a) Situation: 0 regular cars, 750 smart cars 

 

 
(b) Situation: 400 regular cars, 350 smart cars 

 

 
(c) Situation: 0 regular cars, 350 smart cars 

 
Figure 4: Main effects resulting from applying factorial 

ANOVA in three situations of CrowdNav. 

knowledge the system builds up that can be used in self-
optimization. We assume that this knowledge is built both before 
deployment (e.g. in simulations), by performing a systematic 
application of factorial design on the configuration space, and 
while the system is in production.  

Finally, note that knowledge can be transferred from one 
situation to another (a concept known as transfer learning [17]). 
This is important in case the system resides in a situation for 
which not enough data have been gathered. If the new situation 
is similar (according to certain similarity metrics) with one or 
more situations that are already encountered, a model for it can 
be built by applying factorial ANOVA on the raw data from all 
the similar situations. We come back to this point in Section 5. 

Illustration on CrowdNav. In CrowdNav, the input parameters 
are the seven parameters depicted in Table 1. These become the 
factors of factorial ANOVA. This means that when applying a 
full factorial design with two levels per factor (minimum and 
maximum value for each factor) in CrowdNav, 27=128 different 
configurations need to be evaluated. The output of CrowdNav is 
the trip overhead function, which becomes the dependent 
variable of factorial ANOVA. Environment variables are the 
number of regular cars and the number of smart cars.  

For illustration, Figure 4 depicts the main effects retrieved 
from applying factorial ANOVA to three different situations in 
CrowdNav, while Table 2 depicts the three most significant 
effects for each situation at significance level 0.0005. Key 
takeaways from inspecting both are the following: (i) at each 
situation, different factors have the most significant effects; (ii) 
the level of statistical guarantees that can be provided depends 
on the situation. For example, the values of the probabilities of 
accepting the null hypotheses (last column in the table), are far 
lower in the last situation than in the first one and thus provide 
greater guarantees in the last situation than in the first one. 
Finally, (iii) apart from main effects, interactions between two or 
even three parameters are also significant (see e.g. line 3 on 
Table 2 for an example of a significant three-way interaction).   

Default values for the parameters of a CrowdNav situation 

can be determined by taking into account the positive or 
negative slope of each line in the main effects plots. For example, 
for the situation in Figure 4(a), default values for exploration 
weight and re-routing frequency should be the minimum ones, 
owing to the positive slope of the respective lines. 

4.2 Runtime optimization 
When viewing the general problem of optimizing a system 
output as the mathematical problem of minimizing a function f 
(with or without constraints), a number of different algorithms 

Table 2: Results of applying factorial ANOVA in three 
situations of CrowdNav. Results are sorted by significance. 

 
Situation Parameter(s) Prob (>F) 

0 regular 
cars, 750 

smart cars 

1 
exploration percentage, 
data freshness threshold 

0.000002 

2 re-routing frequency 0.000004 

3 
exploration percentage, 

static info weight, 
data freshness threshold 

0.000007 

400 
regular 

cars, 350 
smart cars 

1 exploration percentage 0.000029 
2 static info weight 0.000029 

3 exploration weight 0.000085 

0 regular 
cars, 350 

smart cars 

1 data freshness threshold 𝟒.𝟐𝟏 × 𝟏𝟎:𝟐𝟓 
2 exploration percentage 𝟏.𝟐𝟐 × 𝟏𝟎:𝟏𝟒 

3 
data freshness threshold, 

static info weight 
𝟐.𝟐𝟓 × 𝟏𝟎:𝟏𝟎 
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and methods can be readily employed, such as variants of the 
Simplex algorithm [13] or the BFGS algorithm [16]. Each 
algorithm or method works under certain assumptions. In our 
approach, reflecting the realistic applicability, we assume the 
following:  

1. f is a black-box for which no closed form is available, nor 
its derivatives; 

2. evaluations of f are noisy; 
3. evaluations of f are expensive (in terms of time or other 

application-specific cost metric). 
The above assumptions are also the minimal assumptions of 

the Bayesian optimization framework, a sequential model-based 
approach to global optimization we have incorporated in our 
approach. We provide an overview of this framework and its 
Gaussian-Process-based specialization next.       

Bayesian optimization with Gaussian Processes (BOGP). 
Optimization in the BOGP framework works in the following 
way [19]. At each execution step, BOGP builds a probabilistic 
model of the uni- or multi-variate function-to-be-minimized 
(called objective function) f, based on the so-far observed 
valuations of f. The model represents an approximation of the 
real function using a Gaussian process (called posterior). 
Equipped with this model, BOGP induces acquisition functions 
that leverage the uncertainty in the model to guide exploration. 
In particular, an acquisition function is maximized in order to 
find the next point for sampling. In our experiments, we used the 
“expected improvement” acquisition function for BOGP [19], 
which measures the expected amount of improvement of a 
configuration w.r.t. the so-far best observed configuration. After 
determining the next point (configuration) p for sampling and 
evaluating f(p), the algorithm moves to the next execution step. 
Every BOGP works under a budget, which is the number of steps 
it is allowed to perform before it reports the so-far best value of 
f, together with the parameter values that induce it. 

Using Bayesian optimization with Gaussian Processes. 
BOGP is employed in our approach in order to traverse a 
configuration space in an effective way when trying to optimize 
(minimize) the main system output. Instead of providing the 
BOGP the whole configuration space, we split the configuration 
space into subspaces that correspond to the parameter 
combinations outputted in the previous phase (Section 4.1). The 
optimization phase then executes BOGP in several stages, each 
of which takes as input a parameter combination.  We define as 
total budget of the optimization phase the total number of BOGP 
steps across all BOGP executions. The total budget is allocated 
uniformly across all BOGP executions. For instance, assuming a 
total budget of 12 and 4 BOGP executions, each execution will be 
invoked with a budget of 3.  By splitting the executions of BOGP 
and optimizing only along orthogonal (i.e. non-interacting 
subspaces), which were identified by ANOVA to have the largest 
effect on the system’s output, we are able to find a meaningful 
minimum with even extremely small total budgets. Our results 
validating this claim are reported in Section 5.    

Illustration on CrowdNav. When optimizing CrowdNav, the 
optimization phase takes the list of the input parameters or 

combinations of input parameters generated by ANOVA. This 
list is ordered by having the most significant factors (i.e. 
configuration parameters) first. For example, for CrowdNav in 
the situation of (0 regular cars, 750 smart cars), the two most 
significant sets of parameters are [exploration percentage, data 
freshness threshold], and re-routing frequency (Table 2). If 
CrowdNav resides in a situation (e.g. (0 regular cars, 500 smart 
cars)) for which there are not enough data, we reuse data from 
similar situations or we reuse data regardless of a situation. The 
latter strategy naturally lowers the guaranteed significance of 
input parameters generated by ANOVA, but still provides a best 
guess equipped with statistical significance based on the 
behavior of the system in other situations.  

Assuming a total budget of 12 split into 4 stages, the first 
optimization stage uses BOGP to optimize the parameters 
[exploration percentage, data freshness threshold] in 3 
iterations. In the second optimization stage, the best parameters 
from the previous stage are fixed and BOGP is used to optimize 
the second set of parameters (re-routing frequency) in 3 more 
BOGP iterations; the same process applies for the remaining two 
stages. In all stages, the objective function of BOGP is the 
average value of a specific number of observed trip overheads. In 
our experiments, we routinely used 5000 for such a number. 

4.3 Cost handling in runtime optimization 
At each optimization step, BOGP selects a configuration to try 
out, applies it on the system, and collects values of system 
outputs. We assume that the application of an experimental 
configuration is rolled out incrementally. This means that, at any 
point in time, only a fraction of the users experience the system 
under the experimental configuration, whereas the rest view the 
system in a default configuration. In CrowdNav, this means that 
only a fraction of the cars (e.g. 10%) use the router that is 
configured with the experimental configuration, and trip 
overheads are analyzed only from this fraction of cars. As time 
passes, the percentage of users exposed to experimental 
configuration increases (e.g. from 10% to 20%, then 30%, and so 
on). This incremental rollout allows to control the number of 
users that are exposed to a potentially bad configuration, i.e. a 
configuration that incurs a high cost to the system.  

In order to identify such a bad configuration, we propose to 
observe the cost metric of the system under experimentation and 
interrupt the evaluation of a configuration (experiment) if the 
cost oversteps a certain level that is user-defined. To make sure 
that there is enough evidence that the high cost occurs 
consistently, we propose to use statistical testing to test the 
alternative hypothesis that the cost is larger than the threshold 
at a given statistical significance level. The choice of a particular 
statistical test to ensure statistically grounded decision heavily 
depends on how the cost is measured. We illustrate the usage of 
binomial test in the case of CrowdNav, where cost is a 
proportion of values of a binomial distribution, however, other 
tests can also be used in case of differently scaled cost metric. 
For instance, multinomial test can be used in case of multinomial 
distributions or t-test in case of interval- or ratio-scaled costs.  
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Illustration on CrowdNav. Cost in CrowdNav is measured by 
the ratio of issued complaints on the total number of observed 
(trip overhead, complaint) tuples. The threshold for the complaint 
ratio is empirically set to 12%. This means that, if there is 
sufficient evidence that the complaint ratio will overstep 12%, we 
abort a running experiment. In this case, the optimization will 
continue to the next step. To provide such evidence with 
statistical means, we perform a binomial test.  

A binomial test is a statistical procedure that tests whether, 
in a single sample representing an underlying population of two 
categories, the proportion of observations in one of the two 
categories is equal to a specific value [20]. In our case, we use a 
one-tail binomial test employing the directional alternative 
hypothesis that predicts the underlying population proportion of 
issued complaints (complaints with value True) is above a 
specific value—our complaints threshold. We perform this test 
every ten (trip overhead, complaint) tuples that we receive. If we 
predict that, in the next checkpoint, the complaint ratio is 
expected to be larger than 12% (assuming that the complaint 
ratio at the next checkpoint remains the same as the current one) 
at a significance level α (we used 0.05), we abort the running 
experiment. This logic is illustrated in Listing 2. This test 
provides the necessary statistical backing to ensure that any 
overstepping of the threshold did not happen by accident (which 
should not be reason enough to abort an experiment).  

4.4 Comparison with baseline configuration 
Once the total budget of the optimization phase is exhausted, the 
so-far best configuration is outputted. The third phase of our 
approach compares this configuration to the baseline 
configuration of the system. The reason for this is twofold: (i) to 
ensure that the so-far best configuration is indeed better than the 
baseline one at a specific statistical significance level a, (ii) to 
ensure that the effect size of the improvement is enough to 
justify the cost of applying the new configuration to the system. 
The cost of applying the configuration refers to any disruption 
that may result from changing the system. Such disruptions may 
even appear when the new configuration is actually better, since 
e.g. users are more used to the old configuration and need some 
time to adjust to the new one [11]. 

This phase takes thus as input two application-specific 
parameters, a statistical significance level a and a minimum 
effect size e, and performs a statistical test to determine whether 
the so-far best configuration induces system outputs that are 
better than the ones induced by the baseline configuration. If a 
(positive) statistical significant difference is observed at the 
provided level a, the effect size of the difference is calculated and 
compared to e. If the observed effect is larger than e, then the so-
far best configuration is applied to the system, meaning that it is 
rolled out to all the users of the system.  

In the following, we describe the use of t-test for this phase, 
however, other parametric or non-parametric tests for two 
independent samples can also be used (e.g. Mann-Whitney U), 
depending on the scale of the main system output and the 
assumption on its distribution (normal or not).  

Illustration on CrowdNav. System output in CrowdNav is 
measured via the trip overhead metric, a ratio-scaled variable. To 
measure whether the output is better (smaller) with statistical 
means we perform t-test.  

  A t-test for two independent samples is a statistical test 
evaluating whether the samples represent two populations with 
different mean values [20]. The result of a t-test is a p-value, 
which is compared to a (pre-selected) statistical significance level 
a; if the p-value is less or equal to a, the test concludes that there 
is statistical significance difference in the means. Effect size in t-
tests is typically computed by the Cohen’s d metric, which is 
defined as the difference of the means of the two samples 
divided by their pooled standard deviation. A value of 1 for 
Cohen’s d indicates that the two means differ by one standard 
deviation, a value of 0.5 by half standard deviation, and so on.   

In our case, we are using a one-tailed test evaluating whether 
the mean of trip overheads derived from applying the so-far best 
configuration is smaller than the mean of trip overheads derived 
from applying the baseline configuration. T-test assumes that the 
distribution of data in the underlying populations is normal, 
which does not hold for the original data set of trip overheads 
(Figure 2). We therefore perform a logarithmic transformation 
on the trip overhead data that results in a distribution that is 
closer to normal, and thus allows us to perform t-test without 
compromising its reliability. Also, apart from the standardized 
Cohen’s d effect size, we also provide an unstandardized 
measure of effect size by calculating the difference in the means 
of the samples (which is a more natural way to think about the 
actual difference at the application level). 

To illustrate the result of this phase, consider comparing two 
CrowdNav configurations C1 and C2, where C1 is the so-far best 
and C2 is the baseline configuration. The results are reported as: 

p value:   0.000048 
Cohen’s d:   0.078039 
difference in means:  0.024358 

Assuming that we have requested, prior to performing the 
test, a significance level of 0.05 and a difference in means of at 
least 0.01, these results show both statistical significant 
difference (p value < 0.05) and significant effect (difference in 
means > 0.01). This provides statistical evidence for our 
approach to apply the so-far best configuration to CrowdNav 
(which then becomes the new baseline for the situation). 

1.   complaints_ratio = issued_complaints / observed_tuples 
2. next_observed_tuples = observed_tuples + step   # step=10 
3. estimated_complaints = next_observed_tuples * complaints_ratio 

 
4. p_val = binom_test(estimated_complaints, next_observed_tuples,    

                                p = 0.12, alternative=”greater”) 
 

5. if p_val < binom_test_alpha:   # binom_test_alpha = 0.05 
6.     raise StopIteration(“Too costly to continue this experiment”) 
 

Listing 2: Binomial test for cost handling in CrowdNav 
(Python snippet). 
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Figure 5: Box plots of BOGP results in the baseline 
scenario.

 

Figure 6: Main effects when applying factorial ANOVA in 
data from all three situations of CrowdNav.

5 EVALUATION  
To evaluate our approach, we have implemented the three 
different phases in Python and used it to optimize the CrowdNav 
exemplar. Our implementation is part of the RTX tool for self-
optimization based on Big Data analytics [18]. In particular, we 
use RTX for observing the data produced by CrowdNav (our 
testbed) and for applying different configurations to it. Both 
interactions are mediated via Kafka3, a distributed messaging 
system. To persist the raw data and enable also a posteriori 
analysis we have used Elasticsearch4, a distributed document 
database tailored for time series data. For all the statistical 
procedures and the Bayesian optimization method, we used 
existing Python libraries5. We have open-sourced all the code 
and the data; more information is provided in the online 
Appendix at https://github.com/Starofall/RTX/tree/seams18.      

After implementing the different phases of the approach and 
performing several curiosity-driven experiments to acquire 
domain expertise with CrowdNav that would allow us to set 
meaningful values to parameters such as significance levels for 
the various statistical procedures, we ventured into validating 
one of our major claims, namely:  

“Can we exploit the knowledge of our generated system 
models in informing the self-optimization process, when 
assuming that the system resides in an unknown situation and 
that we only have a small total budget for experimentation?” 

To answer this question, we performed a comparative 
experimental study (controlled experiment). The goal of the 
study was to compare the end result of our approach (the best 
configuration found) to a baseline scenario in which the state-of-
the-art BOGP is used in its vanilla form. In both cases, we apply 
self-optimization in the CrowdNav situation of (300 regular cars, 
300 smart cars), for which we have no prior knowledge. In both 
cases, the total budget for experimentation is 5 steps of BOGP, 
and the objective function of BOGP is the average value of each 
configuration evaluated on 5000 samples of the trip overhead 
function. We first explain the baseline scenario and show its 
results, then describe how our approach led to different results 
and finally compare the two. 

Baseline scenario. In this scenario, we let the BOGP optimizer 
run once with the full budget (all 5 steps) and with the whole 
configuration space (all 7 CrowdNav parameters and their 
ranges as depicted in Table 1). This corresponds to a standard 
usage of the BOGP optimizer, which is one of the most powerful 
tools in performing optimization of noisy functions. BOGP 
terminates after 5 steps, plotted in Figure 5, by reporting the best 
configuration found, Cbaseline (Table 3). 

Our approach. When applying our approach, we first need to 
build a system model for the CrowdNav situation. Since we do 
not have any data (it is a new situation), we use the data from all 
the other situations we have observed so far, in particular from 

                                                             
3 https://kafka.apache.org/  
4 https://www.elastic.co  
5 scipy.stats, statsmodels, skopt  

Table 3: Best values of CrowdNav parameters. 
 

 Cbaseline Capproach 
route randomization 0.11615 0 

exploration percentage 0.19508 0 
static info weight 2.36432 1.22184 

dynamic info weight 1.20810 1 
exploration weight 15 5 

data freshness threshold 359 700 
re-routing frequency 63 10 

 
 

Table 4: Results (sorted by significance) of applying ANOVA 
in data from all three situations of CrowdNav.  

 

Parameter(s) Prob (>F) 
1 static info weight 𝟑. 𝟏𝟏 × 𝟏𝟎:𝟏𝟎 
2 data freshness threshold 𝟔. 𝟖𝟏 × 𝟏𝟎:𝟎𝟖 
3 exploration weight 𝟐. 𝟕𝟎 × 𝟏𝟎:𝟎𝟕 
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Figure 7: Box plots of BOGP results in our approach: The 
first 3 steps belong to the first execution stage, the last 2 

to the second.

 

Figure 8: Mean values of trip overhead during the 
optimization in the baseline scenario and our approach.

the three situations depicted in Figure 4. The results are depicted 
in Table 4 (3 most significant effects); the main effects are also 
graphically depicted in Figure 6. Based on these results, the 
approach sets the baseline configuration (not to be confused 
with the baseline scenario) according to the slopes of the lines in 
Figure 6 and proceeds to perform BOGP in several stages. Since 
the overall budget is 5, and a BOGP execution needs at least 2 
steps, only two stages are prescribed: the first stage takes a 
budget of 3 steps and explores the subspace of static info weight 
(indicated as the parameter with the highest effect—Table 4); the 
second stage takes a budget of 2 steps and explores the subspace 
of data freshness threshold. The best observed configuration of 
the first stage (static info weight: 1.22184) is applied in all 
subsequent experiments of the second stage. The result of the 
second stage (data freshness threshold: 700), together with the 
result of the first one and the default values for the rest of the 
parameters form the best configuration returned by our 
approach, Capproach (Table 3). The results of 5 steps (divided into 2 
stages) of BOGP in our approach are plotted in Figure 7.     

Results and Interpretation. To compare the end result of our 
approach against that of the baseline, we performed a t-test 
evaluating whether the mean overhead of Capproach is smaller, at a 
statistically significance level 0.05, than the mean overhead of 
Cbaseline. (In particular, we applied the test after applying 
logarithmic transformation to trip overhead values to normalize 
their distribution.) The result from the t-test indicated that such 
a difference indeed exists (p value: 0.013, power: 72%). 

Comparing the runs of the BOGP optimizer for each setting 
side by side (Figure 8), we observe that the most plausible reason 
why our approach outperformed the baseline is that the BOGP in 
the baseline case did not have enough budget (5 steps) w.r.t. the 
number of parameters it needed to experiment with (7 
parameters). In comparison, BOGP in our approach, even though 
it operated in an even more constrained budget (3 and 2 steps), it 
also operated always with only a single parameter, which made 
overshooting less probable and traversing the configuration 
space feasible even under such “starvation” settings.          

Limitations. It has to be mentioned that we did not observe the 
same superiority of our approach in experiments where the 
overall budget is relatively large. For instance, we experimented 
with an overall budget of 20 steps, which we divided in our 
approach into 5 stages of 4 steps each. Under this setting, the 
baseline performed slightly better than our approach (albeit not 
statistically significant better). The reason for this is that the 
BOGP in the baseline had enough budget to effectively traverse 
the configuration space consisting of all the seven parameters. 
The 20 steps budget is however more than we usually assume in 
our approach, where we specifically target systems where 
experiments are costly or lengthy and the budget is tight (e.g. 5 
steps in CrowdNav).  

6 DISCUSSION  
Scalability of model generation phase. When using a full-
factorial design, the number of configurations to evaluate grows 

exponentially due to combinatorial explosion. In the case of 
CrowdNav, 7 parameters with 2 values per parameter resulted in 
128 configurations to evaluate. To reach a significance level a of 
0.0005 for three effects (our stopping criterion), we had to collect 
less than 100 output (trip overhead) values per configuration. 
Increasing a reduces the number of observations needed, but also 
reduces the obtained statistical guarantees. This nevertheless 
allows us to collect only as many observations as we are 
realistically able to at this phase. Another way to speed up this 
phase is to reduce the number of configurations that need to be 
evaluated by employing a fractional factorial design (e.g. 
Plackett-Burman design [20]). This can reduce the number of 
configurations to half or quarter of the full factorial case; it 
typically allows, however, to examine for main effects and only 
for some of the interactions. Finally, a third way to speed up the 
model generation phase, is to examine multiple configurations in 
parallel (given the necessary infrastructure), as already done in 
web experimentation [11]. 

Assumptions on statistical methods. In our approach we use 
several statistical methods: analysis of variance (ANOVA), 
binomial test, and t-test. These methods have several 
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assumptions. In particular, they assume that observations are 
independent. Furthermore, the ANOVA and t-test assume 
normality and homogeneity of variances across samples. 
ANOVA and t-test (due to the central limit theorem) are quite 
robust against violating the normality assumption, which makes 
them usable for data coming from real systems where the 
normality assumption does not fully hold. The assumption on 
independence is more important because its violation makes the 
tests more confident than they should be, given the collected 
observations. If there is a reason to assume that data are 
dependent, it is necessary to adapt the statistical methods to 
work with dependent observations. This typically requires 
assumption on bounded length 𝑛 of the dependency (formally, 
absolute summability of the autocovariance function is required 
[12]). With this assumption, it is possible to obtain independent 
data by taking every 𝑛-th item from observations. Alternatively, 
a statistical method specifically aiming at dependent data can be 
used instead—e.g. block bootstrap—to determine test quantiles. 

7 RELATED WORK  
Self-adaptation and self-optimization has been a topic of active 
research the past years. Most of the proposed approaches rely on 
some form of white-box analytical model of the system-to-be-
adapted, i.e. a model of the internal structure of the system that 
relates the impact of adaptation decisions of the system’s goals 
[2]. Such model can be an architectural model [1, 5], a timed 
automaton [8], a Markov process [6], or a mathematical model 
used in feedback-based control [4]. In our approach, we assume 
that such models are difficult and error-prone to build and 
maintain for the class of large complex software-intensive 
systems that we target. We thus rely on black-box models as 
system abstractions and try to perform self-optimization in this 
setting. We review here other self-adaptation approaches that do 
the same and compare against them.      

 One of the first approaches of black-box adaptation was 
proposed with the FUSION framework [2, 3]. FUSION employs 
feature modeling to model dependencies between the 
architectural elements in a system and online learning to induce 
the impact of selecting a feature configuration on the system’s 
goals. When a situation that warrants adaptation is detected, the 
system switches to the configuration that best satisfies the 
system’s goals. FUSION employs a learning cycle in which a 
configuration is applied and values of goal metrics are observed. 
For each goal metric, a linear regression model is learned (via the 
M5 model tree algorithm) that associates tunable parameters 
(Boolean feature selection variables) and their interactions with 
the goal metric. Learning stops when a learning accuracy 
threshold is reached. Our approach also generates linear 
regression models via factorial ANOVA to capture the 
dependencies between tunable parameters and system output 
(similar to the work in [22]) and relies on statistical thresholds 
for controlling the amount of learning uncertainty that can be 
tolerated. However, we assume tunable parameters to be scalar 
variables and we use the result of the learning phase to inform a 
subsequent cost-aware black-box optimization phase. 

Black-box optimization is the task of optimizing an objective 
function with a limited budget for evaluations [7]. A powerful 
type of black-box optimization because of its ability to tolerate 
noisy objective functions is Bayesian optimization with Gaussian 
Processes (BOGP) [21]. We are not the first to employ BOGP in 
self-optimization. BOGP has been recently successfully used in 
configuration optimization of Big Data stream processing 
systems [10]. Also, Gaussian Processes have been recently 
proposed for building performance models in the context of 
transfer learning for self-adaptation [9].      

Finally, our work is related to recent attempts towards an 
architectural framework for automated experimentation, which 
focus on identifying the principle software architecture qualities 
and design decisions underlying such framework [14, 15]. Our 
approach, and the corresponding implementation on top of the 
RTX engine, can be seen as an instantiation of such framework 
which also allows to (i) deal with noisy outputs, (ii) provide 
statistical guarantees, (iii) deal with experimentation cost.   

8 CONCLUSION  
In this paper, we have focused on a class of systems that is both 
hard and risky to self-optimize. The reason is that complex 
software-intensive systems are difficult to model a priori, have 
considerable variation in their outputs (noisy outputs) and incur 
high cost of bad adaptation decisions. We have detailed on an 
instance of such systems which pertains to traffic navigation in a 
city. We have described our framework for self-optimization 
which consists of three phases: generation of system model, 
runtime optimization with cost handling, and comparison with 
baseline configuration. At each phase, we have employed 
statistical procedures to back up our analysis with statistical 
guarantees. Our prototype implementation and results prove 
that it is possible to exploit the knowledge of the target system 
to inform the self-optimization process, assuming that the 
system resides in an unknown situation and that we only have a 
small total budget for experimentation. We believe these results 
can be generalized to other systems of the same class.   

In the future, we intend to investigate the application of 
transfer learning (similar to [9]) to reuse knowledge from similar 
situations. We also intend to investigate how to make the 
Bayesian optimization method aware of application-level risk so 
that configuration selection is based not only on maximizing the 
expected improvement but also on minimizing the expected risk. 
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