Henning Femmer

Requirements Engineering Artifact Quality:
Definition and Control

Technische
Universitat
Mdinchen

Institut fiir Informatik
der Technischen Universitat Miinchen

Requirements Engineering Artifact Quality:
Definition and Control

Henning Femmer

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technischen Universitét

Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Prof. Dr. Susanne Albers
Priifer der Dissertation:
1. Prof. Dr. Dr. h.c. Manfred Broy

2. Prof. Dr. Martin Glinz,
Universitat Zirich

Die Dissertation wurde am 22.02.2017 bei der Technischen Universitét Miinchen eingereicht
und durch die Fakultét fiir Informatik am 20.06.2017 angenommen.

Abstract

Requirements Engineering (RE) artifacts are central entities in the software engi-
neering process. Based on these artifacts, project managers estimate effort, designers
create architectures, developers build the system, and test managers set up a
test-strategy. Consequently, quality defects in RE artifacts can cause expensive
consequences in subsequent software development activities. Therefore, quality
control of RE artifacts is key for successful software development projects.

However, quality control of RE artifacts faces two problems: First, the definition
of RE artifact quality often remains incomplete, inadequate and imprecise. This
problem concerns both the definition of valid quality factors as well as the claimed
impacts of these quality factors onto projects. Second, in addition to the lack of
a precise quality definition, we also struggle to assess any definition of quality in
practice, since finding defects is labor-intensive and error-prone.

In summary, we have a limited understanding of what high quality RE artifacts
are and need more efficient methods to control RE artifact quality in practice.
This thesis makes two contribution regarding these problems: (1) The concept of
activity-based quality models for RE artifacts and (2) a method to detect quality
factors automatically.

(1) Addressing the former part of the problem, the first contribution of this thesis is
a novel concept of artifact quality models for RE artifacts: Activity-based Require-
ments Engineering Quality Models (ABRE-QMs). These models are based on the
assumption that RE artifacts are rarely the ultimate goal of a software project, but
a means for producing software effectively and efficiently. Therefore, ABRE-QMs
define quality factors as properties of RE artifacts with explicit impacts on software
development activities, which enables to define quality in a precise manner. We
show how to create valid ABRE-QMs in multiple studies: Through interviews, we
create an ABRE-QM based on a company’s requirements guidelines; through a case
study, we elicit various quality factors for requirements maintenance; and finally,
through an experiment, we analyze one quality factor in depth at the example of
the quality factor passive voice. In our experiment, we show the negative impact of
this quality factor onto the activity of understanding requirements. During these
studies, practitioners report increased validity and completeness of the quality defi-
nitions through ABRE-QM. Whereas the first study analyzes the applicability of
ABRE-QMs, the latter two studies show how ABRE-QMs support precise reasoning
about quality factors for RE artifacts.

(2) Addressing the latter part of the problem, the second contribution of this thesis
is an efficient method to detect violations of an ABRE-QM in a given project:
Requirements smells are those quality factors that may have negative impacts
on activities, that have a concrete indication, and that have a lightweight (e.g.
automatic) detection mechanism. We provide an analysis to which extent quality
factors can be operationalized as requirements smells and develop an automatic
requirements smell detection in a technical validation. In four case studies, we
evaluate requirements smells and their detection, showing its potential to detect
quality defects and raise the awareness for defects in practice.

This thesis provides academics and practitioners with a more precise understanding
of RE artifact quality. In addition, this thesis indicates that certain violations of
quality factors of RE artifacts can be detected more efficiently through automatic
methods. These contributions enable practitioners to conduct quality control of RE
artifacts more efficiently, and based on a well founded quality definition.

Acknowledgements

I would like to thank everyone who helped me on this journey. First, Prof. Dr.
Dr. h.c. Manfred Broy, who created this special biotope at the chair for Systems
& Software Engineering, where, from the very beginning, I could follow my own
path and drive the topic how I considered sensible. This environment initiated
my interests in research. I would also like to thank Prof. Dr. Martin Glinz for
co-supervising this thesis and especially for helping me to keep up the quality on
the last meters.

Furthermore, I want to thank the various companies who shaped my views and tools
through advice, time and data: The partners from, among others, BMW, CQSE,
Daimler, MAN Trucks and Busses, Munich Re, Siemens, Wacker Chemie, pliXos
and Qualicen made me understand and focus on applicable research.

Many colleagues and students walked with me, partly by supporting me in case
studies, partly by providing ideas, suggestions and, where necessary, headwind. I
also want to thank my friends, who were supporting, even when I could not find the
time. They were there when I needed them. You are awesome.

It is difficult to express how thankful I am for my family. Everything I am, stems
from you.

Lastly, Kristina, you are the best companion I can imagine.

Publication Preface

The contribution of this thesis is based on the following seven papers:

A [FMM15]: Henning Femmer, Jakob Mund, and Daniel Méndez Fernandez. It’s the
activities, stupid! A new perspective on RE quality. In International Workshop
on Requirements Engineering and Testing, RET, pages 13-19. IEEE, 2015

D [FKV14]: Henning Femmer, Jan Kudera, and Antonio Vetro. On the impact of
passive voice requirements on domain modelling. In International Symposium
on Empirical Software Engineering and Measurement, ESEM, pages 21:1-21:4.
ACM, 2014

E [FKSJ14]: Henning Femmer, Marco Kuhrmann, Joerg Stimmer, and Joerg Junge.
Experiences from the design of an artifact model for distributed agile project
management. In International Conference on Global Software Engineering,

ICGSE, pages 1-5. IEEE, 2014

F[FMJ*14]: Henning Femmer, Daniel Méndez Fernandez, Elmar Juergens, Michael
Klose, llona Zimmer, and Jorg Zimmer. Rapid requirements checks with
requirements smells: Two case studies. In International Workshop on Rapid
Continuous Software Engineering, RCoSE, pages 10-19. ACM, 2014

G [FMWE17]: Henning Femmer, Daniel Méndez Fernandez, Stefan Wagner, and Se-
bastian Eder. Rapid quality assurance with requirements smells. Journal of
Systems and Software, 123:190-213, 2017

H [FHEM16]: Henning Femmer, Benedikt Hauptmann, Sebastian Eder, and Dagmar
Moser. Quality assurance of requirements artifacts in practice: A case study and
a process proposal. In International Conference on Product-Focused Software
Process Improvement, PROFES, pages 506-516. Springer, 2016

I [FUG17]: Henning Femmer, Michael Unterkalmsteiner, and Tony Gorschek. Which
requirements artifact quality defects are automatically detectable? A case study.
In Fourth International Workshop on Artificial Intelligence for Requirements
Engineering, AIRE, pages 1-7. IEEE, 2017

Furthermore this publication with major contributions as second author is also

included.

C[BFE™15]: Mohammad R. Basirati, Henning Femmer, Sebastian Eder, Martin
Fritzsche, and Alexander Widera. Understanding changes in use cases: A

case study. In International Requirements Engineering Conference, RE, pages
352-361. IEEE, 2015

Under Review

In addition, these works with contributions are still under review. The author’s
drafts are included.

B [FV17]: Henning Femmer and Andreas Vogelsang. Requirements quality is quality
in use — a novel viewpoint —. Submitted to IEEE Software, 2017

Further related work co-contributed by the author of this thesis

[MMFV14]: Daniel Méndez Fernandez, Jakob Mund, Henning Femmer, and Antonio
Vetro. In quest for requirements engineering oracles: Dependent variables and

measurements for (good) RE. In International Conference on FEvaluation and
Assessment in Software Engineering, EASE, pages 3:1-3:10. ACM, 2014

[MFME15]): Jakob Mund, Henning Femmer, Daniel Méndez Fernandez, and Jonas
Eckhardt. Does quality of requirements specifications matter? combined results
of two empirical studies. In International Symposium on Empirical Software
Engineering and Measurement, ESEM, pages 144-153. ACM, 2015

[EVF16]: Jonas Eckhardt, Andreas Vogelsang, and Henning Femmer. An approach for
creating sentence patterns for quality requirements. In International Workshop
on Requirements Patterns, RePa, pages 1-8. IEEE, 2016

[EVFM16]): Jonas Eckhardt, Andreas Vogelsang, Henning Femmer, and Philipp Mager.
Challenging incompleteness of performance requirements by sentence patterns.
In International Requirements Engineering Conference, RE, pages 1-10. IEEE,
2016

[VFW16]: Andreas Vogelsang, Henning Femmer, and Christian Winkler. Take care
of your modes! an investigation of defects in automotive requirements. In
International Working Conference on Requirements Engineering: Foundation
for Software Quality, REFSQ, pages 161-167. Springer, 2016

[ABBF17]: Luca Allodi, Sebastian Banescu, Kristian Beckers, and Henning Fem-
mer. Identifying relevant information cues for vulnerability assessment using

CVSS. In Submitted to the International Symposium on Empirical Software
Engineering and Measurement, ESEM. ACM, 2017

Contents

1.

Introduction
1.1. The Problems of RE Artifact Quality Control

1.2. Scope

1.3. Contents and Relation to Previous Publications

Fundamentals and Related Work

2.1. Key Terms in Requirements Engineering
2.2. Quality and Requirements Quality Fundamentals
2.3. RE Artifact Quality Defects in the Software Engineering Process . .

2.3.1.
2.3.2.

RE Artifact Quality Defect Sources.
Consequences of Low RE Artifact Quality

2.4. Related Work on Quality Models in Requirements Engineering

24.1.
2.4.2.
2.4.3.

Generic RE Quality Models
Specific RE Quality Models
RE Quality Models in Standards

2.5. Research Gap

2.5.1.
2.5.2.

Research Gap: Quality Definitions for RE artifacts
Research Gap: QA for RE Artifacts

Research Design

3.1. Problem and Thesis Statement
3.2. Research Challenges and Research Questions
3.3. Methods and Contributions
3.4. Results Overview
3.5. Further Related Works Co-Contributed by the Author

Summary of Results

4.1. RQ 1:
4.1.1.
4.1.2.

4.2. RQ 2:
4.2.1.
4.2.2.
4.2.3.
4.2.4.

How Can We Precisely Define Quality for RE Artifacts? . . .
Summary of Approach: ABRE-QMs
Conclusion to RQ 1
How Can We Create Valid Quality Models?
Foundation: Defining Artifact Models
Summary of the Approaches
Summary of Results,
Conclusion to RQ 2

31
31
31
32
38
38

4.3. RQ 3: How Can We Efficiently Ensure Quality Factors? 55
4.3.1. Summary of Approach: A More Efficient Process for RE

Artifact QC L 55
4.3.2. Summary of Approach: Requirements Smells 56
4.3.3. Conclusionto RQ3 60
4.4. RQ 4: What Are the Benefits and Limitations of Requirements Smell
Detection? 61
4.4.1. Summary of Approach 61
4.4.2. Summary of Results L. 62
4.4.3. Conclusionsto RQ4 65
5. Discussion of Results 69
5.1. Strengths and Limitations of ABRE-QM 69
5.1.1. Strengths of an ABRE-QM 69
5.1.2. Limitations of an ABRE-QM 70
5.2. Strengths and Limitations of Automatic Requirements Smell Detection 72
5.2.1. Strengths of Automatic Requirements Smell Detection 72
5.2.2. Limitations of Automatic Requirements Smell Detection . . . 72
5.3. Which Quality Characteristics Can We Detect Automatically? . .. 74
5.3.1. Characteristics for Sets of Requirements 74
5.3.2. Characteristics for Individual Requirements 76
5.4. Relation of Findings to Project Success 78
5.5, SUMINATY . .« o v v v vt e e e e e e e e e 79
6. Conclusions and Outlook 81
6.1. Conclusions L 81
6.1.1. Definition of RE Artifact Quality 81
6.1.2. Efficient Methods for RE Artifact Quality Control 82
6.1.3. Summary of Contributions 83
6.2. Outlook 83
6.2.1. Extending the ABRE-QM Meta Model 83
6.2.2. Extending Research on Requirements Smells 84
6.2.3. Extending Our Studies 85
6.2.4. Extending Applications of Activity-based Quality 87
6.2.5. Extending RE Artifact Quality by Building a Common Body
of Knowledge 88
6.2.6. Extending ABRE-QM Towards Activity-based RE Quality . 89
A. Publications 101

ii

Publication A: It’s the Activities, Stupid! A New Perspective on RE Quality103
Publication B: Requirements Quality is Quality in Use — A Novel Viewpoint111

Publication C: Understanding Changes in Use Cases: A Case Study . .. 118
Publication D: On The Impact of Passive Voice Requirements on Domain

Modelling o e 129
Publication E: Experiences from the Design of an Artifact Model for

Distributed Agile Project Management 134
Publication F: Rapid Requirements Checks with Requirements Smells:

Two Case Studies 140
Publication G: Rapid Quality Assurance with Requirements Smells 151
Publication H: Quality Assurance of Requirements Artifacts in Practice:

A Case Study and a Process Proposal 176

Publication I: Which requirements artifact quality defects are automatically
detectable? A casestudy oL 177

CHAPTER 1

Introduction

Creating high quality software systems is a difficult and complex endeavour. Within
this endeavour, the first step of a software engineering process is Requirements
Engineering (RE). RE can be seen as a means to understand and define the needs of
all relevant stakeholders. Due to its premier role at the beginning of the process, RE
is unequivocally understood to be of high relevance on the quality of the resulting
system and the process reaching it. Central to RE is the concept of a requirement
as a capability or property of a system needed by a stakeholder [Glil4].

RE is eliciting, analyzing, documenting, validating and managing requirements.
RE activities are commonly separated into five core activities with different goals for
each activity [Poh10, pp.48-52|: Elicitation activities search for stakeholders, their
goals and requirements. Analysis activities consolidate these goals and requirements
into one system to be built (this includes negotiation activities). Documentation
activities persist the results of this analysis. Validation activities control the quality
of requirements artifacts and activities [Poh10, p.512]. Finally, management activities
are concerned with planning and controlling requirements artifacts and activities
through the system lifecycle.

Requirements are usually documented. Most projects document their require-
ments in the form of RE artifacts, such as free-text, use cases [JBR99| or user
stories [Coh04]. For example, we reported on a case study [MFME15], in which all
but one project self-reported that they document requirements (see Fig. 1.1). Other
studies, such as by Mendez and Wagner [MW15] and also Mich et al. [MFNI04]
further support this observation. However, the form, amount and tools used in
documentation varies between rather traditional and so-called agile approaches.
Nevertheless, also in agile approaches, such as Scrum [Sch04], the user story is
considered the second-most important artifact next to source code.

RE artifacts are documented in natural language. Since RE artifacts usually serve
as a medium for communication between stakeholders, RE artifacts must be rep-
resented in a form that all stakeholders understand. Therefore, RE artifacts are
predominantly written in natural language (NL): Based on a globally distributed

= None

B < Half

= Half

= > Half

= All
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

% of projects

Figure 1.1.: The figure shows the self-reported extent of requirements documentation in
practice, as reported in [MFME15]. The x-axis shows the share of projects that
self-report to document none, less than half, about half, more than half, or all of
their elicited requirements. The figure shows that less than 20% of the projects
reported to document only half of their elicited requirements or less, and that
more than 80% of projects document more than half, close to 50% document all
of their elicited requirements. Data is taken from [MFME15].

survey with 151 industry participants, Mich et al. [MFNI04] report that 95% of the
participants represent their requirements using natural language. Of these, 16%
use structured natural language, e.g. through templates and forms and 79% apply
“common natural language”’|[MFNI04].

RE artifacts are an important factor for project success. RE artifacts are central
entities in the software engineering process. Based on these artifacts, designers create
an architecture, developers build the system, test managers set up a test-strategy,
etc. Consequently, the effect of a quality defect in an RE artifact multiplies across all
activities that make use of this artifact. This importance is also commonly estimated
to manifest itself in the costs, especially if defects are found late: In an early work,
Boehm [BP88| claims a cost explosion of factor 50 to 200 on fixing defects during
the RE phase against fixing them in the implementation phase (and often it is not
even possible to fix them late, according to Lawrence [LWEO1]).

To understand this impact in more depth, we conducted an experiment that indicated
that defects in RE artifacts propagate to defects in tests. In the experiment, we
could confirm the impact of previously injected requirements defects onto creating
test cases [MFME15]. In our results, roughly every second tester propagated an
injected, obvious RE defect into system tests. Even more drastically, when we
introduced a defect that was more subtle, the defect was propagated by every tester
in the experiment.

RE artifacts need quality control. Hence, projects employ quality control (QC)
to prevent, detect or mitigate defects. However, as Mendez and Wagner [MW15|
found in a large-scale survey, even though requirements engineers consider QC very
beneficial, they find it very challenging at the same time. Furthermore, despite
the importance of RE artifact quality, the status quo of RE artifact quality in
practice is devastating: Practitioners report that many projects suffer from imprecise,
inconsistent, or incomplete artifacts. According to the survey, these defects are major
reasons for project failure, e.g. in terms of a software not fulfilling stakeholder needs

1. Introduction

or projects being out of time or budget, as reported by Mendez and Wagner [MW15]
and also analyzed in more depth in [MMFV14].

1.1. The Problems of RE Artifact Quality Control

Mendez and Wagner [MW15] furthermore report that despite the acknowledged
relevance (i.e. that low-quality requirements are expensive and dangerous for project
success), less than a third of requirements engineers perform dedicated QC of RE
artifacts. We argue that this discrepancy is due to two major problems.

Problem Statement We have a limited understanding of what high quality RE
artifacts are in a specific context, and need more efficient methods to control RE
artifact quality in practice.

In the following, we explain these two problems in detail.

Problem 1: Definitions of RE quality and its characteristics are
incomplete, inadequate and imprecise.

In RE, the definition of high-quality or good RE artifacts is often provided through
normative references, such as quality standards or text books. Taking the currently
most relevant RE standard (according to an analysis by Schneider and Beren-
bach [SB13]), the ISO/IEEE/IEC-29148 [ISO11b| (in the following: ISO-29148), as

an example, one can see the various problems of such a normative reference.’!

1ISO-29148 characteristics are incomplete. 1SO-29148 describes quality through
a set of abstract characteristics (see Ch. 2.4.3.1). When analyzing the characteristics
in detail, we see that there are two different types of characteristics: Some charac-
teristics, such as ambiguity, consistency, completeness and singularity are factors
that describe properties of the RE artifact itself. In the following, we call these
factors artifact-based properties. In contrast, feasibility, traceability and verifiability
state that activities can be performed with the artifact (we call these activity-based
properties, see Fig. 1.2). This is a small, yet important difference: While the for-
mer can be assessed by analyzing just the artifact by itself, the latter describe a
relationship of the artifact in the context of its usage. Yet this usage context is
incompletely represented in the quality model: For example, why is it important
that requirements can be implemented (feasible in the terminology of ISO-29148)
and verified, but other activities, such as maintenance, are not part of the quality
model? Therefore we argue that normative standards do not take all activities into
account systematically, and thus, are missing relevant quality factors.

1IS0-29148 characteristics are not context-dependent and thus inadequate. One
could go even further and ask about the value of some artifact-based properties such
as singularity. What is the purpose and reason behind such a property? In this case,
usually, singularity is considered important especially in regulated environments,
e.g. the medical sector, where regulators put the obligation on software producers to
verify each requirement of the system. Identifiable, singular requirements ease such
a process. But what if the requirements are not used as, e.g. a legal document, and
not tested sentence by sentence? Does the property still benefit to the developers?

1 Please note that while we show the arguments along the ISO-29148 in this section, the same
arguments can be made for other definitions of quality.

1.1. The Problems of RE Artifact Quality Control

Activity-based Properties

Singularity (@
Implementation
Free

..... s T — e T E—
i) i . 1| Implementing . e [
| Reading i Jnderstanding || (Feasibility) || "9 || Verving i Maintaining |
Necessity Impacts of
K Artifact-based
" Consistency Properties onto
] Activity-based
?g Completeness properties
[<}
x . .
% Unambiguity
O e] Vi
gL)
k7]
8
<

1SO-29148 1 Non-1IS0-29148 !
Key Characteristic | |__Characteristic _E Impact |

Figure 1.2.: This figure depicts the schematic relation between artifact-based and activity-
based characteristics in ISO-29148. We argue that 1ISO-29148 both lacks charac-
teristics, and also imprecisely defines why, or in which context, certain character-
istics are important in RE artifacts.

A normative approach does not provide such rationales. This is different for activity-
based properties, such as verifiability, since these properties are defined through
their usage: If we need to verify the requirements, properties of the artifact that
increase verifiability are important. If we do not need to verify this requirement, e.g.
because we use the artifacts only for task management in an agile process, these
properties might not necessarily be relevant.

This example illustrates that the apodictic and normative definition of quality is
inadequate to the context-dependent nature of requirements quality.

1ISO-29148 characteristics lack precise reasoning. For defining most of the afore-
mentioned characteristics, the standard remains abstract and vague. For some
characteristics, such as ambiguity, the standard provides a detailed lists of factors to
avoid, the requirement language criteria. However, these criteria have an imprecise
relation to the abstract characteristics mentioned above, and, consequently, the
harm that they might potentially cause remains unclear. The list is preceded by the
following statement.

"Vague and general terms shall be avoided. They result in requirements
that are often difficult or even impossible to verify or may allow for multiple
interpretations. The following are types of unbounded or ambiguous
terms:" [ISO11b, p.21]

The list contains nine concrete criteria (that we discuss and implement in Ch. 4.3),
but the context and their reasoning remains vague: One example are

"Negative statements (such as statements of system capability not to be
provided) [ISO11b, p.21]

1. Introduction

But when we confronted practitioners with this criterion and examples in their
requirements, they rejected this criterion. To them, negative statements are very
often not ambiguous, nor hard to understand. Especially system constraints have,
by definition, a negative nature and might thus be even easier to define in a negative
manner (see Publication F). For example, some companies define blacklists for certain
libraries (e.g. a product cannot depend on libraries with known vulnerabilities) or
languages (e.g. a product cannot use Adobe Flash). In case such a blacklist is
given by the company, in order to avoid the negative statement, one would need to
transform the blacklist into a whitelist. While this transformation is possible in some
situations (e.g. defining which libraries or languages can be used), it is not practically
maintainable in situation where the list is large or constantly changing, such as the
aforementioned libraries with vulnerabilities. However, there are situations where a
positive formulation is easier to understand than e.g. a double-negative. But was
this the intended quality factor by the authors of the standard?

The given example indicates that discussing quality in this apodictic way disables
both scientists and practitioners to analyze the validity of such a quality factor.

Summary For these reasons, i.e. the question of completeness, the implicit context-
dependency, and the lack of validity, we argue that we need a more precise definition
of RE quality. The quality model must be built upon quality factors and a profound
understanding of their impact onto activities that are conducted with the artifacts.
This way, researchers can falsify underlying assumptions and effects, and practitioners
can objectively analyze whether or not (or in which context) they should enforce or
neglect a certain quality factor.

Problem 2: Manual reviews for RE quality are expensive, slow and
inconsistent.

To minimize the risk of quality defects, projects apply manual quality assurance (QA)
techniques for RE artifacts, e.g. in the form of reviews [Sall3]. In fact, implementing
any kind of reviews for RE artifacts is considered one of the key project success
factors according to Hoffman and Lehner [HLO1]. In most cases, this QA is performed
in a manual fashion. However, this manual approach towards QA comes with three
main challenges.

1. Manual reviews for RE quality are expensive. Manual reviews of RE artifacts
require enormous amounts of manual labor. First and foremost, usually a large
set of reviewers is required, since all stakeholders should be involved. To give an
indication, in an unpublished study we analyzed a set of 74 review protocols showing
that, on average, there were 8 reviewers involved. This problem was also reported
as the core problem by the requirements engineers in interviews that we conducted
in Publication H.

2. Manual reviews for RE quality create long feedback loops. When a require-
ments engineer hands in an RE artifact for manual review, this involves multiple
people who must be coordinated and synchronized, including organization of meet-
ings, the synchronization of results, the discussion of results, and, finally, the check
whether defects were corrected.

In Publication H, we report that for a review it usually takes multiple weeks until
the original author receives feedback. To illustrate just one consequence of these
slow feedback cycles, the practitioners report that when they receive feedback, also
the original authors need time to understand the content of the review again. We

1.2. Scope

argue that this is inefficient and frustrating for the requirements engineers, and
might also lead to misunderstandings.

3. Manual reviews for RE quality lead to inconsistent results. In the current state
of practice, quality definitions are often incorporated into guidelines. However, the
produced RE artifacts very often violate the guidelines in various ways. For example,
many RE artifacts contain passive voice requirements, even though best practice in
literature, standards and also most guidelines discourage this (e.g. [Kof07, Lam09,
ISO11b, Ter13]). We argue that this gap is due to shortcomings in QC: Reviewers
do not constantly have the company guidelines and best practices in mind, but
just review in an ad-hoc manner (see e.g. Katasonov and Sakinnen for a detailed
comparison of reading techniques [KS05]). In order to make QC for a context-specific
quality definition applicable in practice, we need a method that is able to check an
RE artifact against a quality definition consistently.

Summary Manual approaches towards RE artifact QA are expensive, slow and
inconsistent. Therefore, we must find more efficient methods to consistently control
RE artifact quality.

1.2. Scope

The results of this thesis are set in a specific scope. The following assumptions
enable to understand the results in its context.

RE quality: We focus on quality in the domain of RE. Approaches or processes that
are not based on explicit RE phases, such as some agile SE approaches, are
therefore out of scope of this thesis.

RE artifact quality: We focus on the quality of RE artifacts, which implies that the
approach might not detect issues in the RE process. This decision is based on
the assumption that RE quality manifests itself in artifacts, an assumption
that we do not investigate in this thesis. In particular, the relation between
process quality and artifact quality is still not understood in research [Men15].

Furthermore, all results presented here have the more impact on the project,
the more it relies on RE artifacts. Yet, the purpose of RE, as explained in
Fig. 2.2, is to understand the needs and constraints of the customer, to create
agreement between stakeholders, to communicate the derived requirements,
and to structure downstream engineering activities. These goals could be
achieved without RE artifacts. However, RE artifacts support achieving these
goals of RE, especially if a project is difficult to overview, for example because
of its is large or complex in product structure (see e.g. [Kall3] for an analysis
on such project characteristics). In these cases, projects can benefit from
relying on RE artifacts to effectively and efficiently fulfil the purpose of RE.
However, as discussed before, we found that most projects use RE artifacts for
documentation (see Fig. 1.1).

This thesis focusses on projects where these or similar project factors are
present and RE artifacts are considered a useful tool in the project.

RE artifact quality from an activity-based quality viewpoint: We focus on RE artifact
quality from an activity-based quality viewpoint. In consequence, the fo-
cus lies on defects that are visible when using the artifacts. Other defects, e.g.
if a RE artifact does not reflect the stakeholders’ needs adequately, are not in
the focus of this thesis.

1. Introduction

Natural Language (NL) representations: According to Mich et al. [MFNI04], 95% of
the participants of a global industry survey represent their requirements using
natural language. Therefore, we focus on natural language and structured nat-
ural language. Specifically, we analyze natural language requirements captured
in free text sentences, as well as use-cases [JBR99] and user stories [Coh04]. In
terms of AMDIiRE [MP14], we analyze the usage model elements and quality
requirements.

However, we would argue that the concept of requirements smells can easily
be transferred to non-NL and non-RE artifacts. We will discuss these in the
outlook.

Automatic requirements smell detection: For the requirements smells, we focus on
automatically detectable smells as we see the highest benefit-cost ratio here.
This implies that some types of defects (e.g. completeness defects requiring
deep insights into the domain or a strong understanding of the requirements
semantics) are not subject of this thesis. However, we discuss which defects can
and which defects cannot be detected by requirements smells in Chapters 4.4
and 5.

1.3. Contents and Relation to Previous Publications

This work is structured as follows: Chapter 2 summarizes the various notions of
quality in software and requirements engineering, and describes fundamentals and
related work. We conclude this chapter by identifying the existing research gap.

In Chapter 3, we define a thesis statement based on this research gap and derive
research challenges, which we break down into research questions.

In Chapter 4, we summarize the results of this thesis, structured by the research
questions. In Chapter 4.1, we propose Activity-based Requirements Engineering
Artifact Quality Models (ABRE-QMs). In this chapter, we summarize the results
of Publications A and B. Afterwards, in Chapter 4.2, we provide a methodical
overview of different approaches for creating valid ABRE-QMs. In this chapter, we
summarize Publications C, D, and E, as well as the empirical study of Publication A.
In Chapter 4.3, we propose the definition of requirements smells. In Chapter 4.4,
we analyze advantages and limitations of requirements smells by reporting on the
results of our published studies. The results of both of these chapters are based on
the Publications F, G, H, and 1.

Chapter 5 summarizes and discusses strengths and limitations of the proposed
methods in a larger context, before Chapter 6 summarizes this thesis and provides
an outlook into future work.

CHAPTER 2

Fundamentals and Related Work

This chapter discusses the fundamental terms and concepts that we use throughout
this thesis. This chapter furthermore provides an overview over the related work to
identify existing research gaps.

Therefore, this chapter first explains key terms in requirements engineering. Second,
we discuss the concept of quality, quality defects, and quality assurance. Third, we
look into the role of quality defects in software engineering projects. Fourth, we
summarize the current state in defining RE artifact quality. Lastly, based on this
overview and also the overview provided in Publication G, we summarize the state
of the art in QC for RE artifacts and analyze the existing research gaps.

2.1. Key Terms in Requirements Engineering

In the following, we define key requirements engineering terms and concepts and
explain how we use these terms throughout this thesis. As the IREB combines various
state-of-the-art views and is widely applied in industry, we base our definitions on the
IREB Glossary [Glil4]. We extend the IREB view through the views of Pohl [Poh10]
or explicitly adapt them to our own view, where we consider it required for this
work.

Stakeholder. The central term in requirements engineering is the stakeholder.
Extending the definition by Glinz [Glil4, p.20], we understand a stakeholder as a
role, a person or an organization with a (direct or indirect) influence on a system.
This explicitly includes persons or organizations who are impacted by the system
(such as members of a company’s works council) [GW07].

Requirement and Requirements Engineering Artifact. Using this definition of a
stakeholder, Glinz [Glil4, p.17| defines a requirement as one of the following concepts:

1. A need perceived by a stakeholder.
2. A capability or property that a system shall have.

3. A documented representation of a need, capability or property.

2.1. Key Terms in Requirements Engineering

In order to differentiate between the need or capability itself and the documented
representation thereof, we refer with requirement to only the former two concepts
and with requirements engineering artifact or RE artifact to the last item in
the previous list. This includes commonly used terms such as requirements document
or requirements specification. Examples of RE artifacts are use cases [JBR99] or
user stories [Coh04].

System stakeholder and RE artifact stakeholder. In RE, when discussing the stake-
holder, we usually refer to the stakeholder of the system (as defined above). However,
when we discuss RE quality, we must differentiate between stakeholders of the system
and stakeholders of the RE artifact. Whereas the former usually refers to roles
impacted by the system, the latter refers to roles (or users) that influence the RE
artifact or are impacted by the RE artifact. The latter includes not only the system
stakeholders (who often have to inspect, discuss and accept the RE artifact), but in
addition also testers, requirements engineers, legal departments or any other person,
who, due to the software engineering process applied, has to (potentially) interact
with the RE artifact.

Requirements Engineering (RE). RE can be understood as an approach towards
the creation of RE artifacts. Yet, depending on the viewpoint, RE can be defined
with a focus on process, stakeholders, or risks:

A systematic and disciplined approach to the specification and manage-
ment of requirements with the following goals:

1. Knowing the relevant requirements, achieving a consensus among the
stakeholders about these requirements, documenting them according
to given standards, and managing them systematically,

2. Understanding and documenting the stakeholders’ desires and needs,

3. Specifying and managing requirements to minimize the risk of de-
livering a system that does not meet the stakeholders’ desires and
needs.

[Glil4, p.18|

Please note that these goals are not mutually exclusive.

Requirements Engineer. The requirements engineer is the role which organizes
and executes requirements engineering activities (see next paragraph).

Requirements Engineering Activities. In order to create RE artifacts and to
achieve the goals of RE, as defined before, we usually define a set of required
core activities. The previous definition for RE already hints at these key activ-
ities of RE, as visualized in Fig. 2.1. We extend these with other established
categorizations [DAEEOS, Poh10].

Elicitation: “The process of seeking, capturing and consolidating requirements from
available requirements sources.” ([Glil4, p.17]) Sources in this context include
not only querying or observing stakeholders (in particular users), but also
analyzing existing documents, systems or prototypes, or deriving requirements
from higher level goals. The elicitation activities results in a set of, potentially
contradicting, not necessarily documented, requirements.

Analysis: (including negotiation): The activity of understanding requirements and
their interconnection in order to create an agreement between all stakeholders
one set of non-contradicting requirements for documentation. These activities

10

2. Fundamentals and Related Work

A

»| Elicitation <> Analysis < Documentation |«

Validation

Management

Figure 2.1.: The figure shows the core activities of RE, adapted from Glinz [Gli14], Pohl [Poh10]
and Doerr et al. [DAEEQS].

result in a consolidated, consistent (i.e. not contradicting) set of requirements
for the given system.

Documentation: The documentation activities take this consistent set of requirements
and represent them in RE artifacts. For these activities, the requirements engi-
neer chooses a representation (such as goal models [Lam09|, use cases [JBR99]
or user stories [Coh04]). The documentation phase results in an RE artifact.

In addition, there are further cross-cutting activities that interplay with the previous
activities at various levels:

Validation: Glinz defines validation as “The process of checking whether documented
requirements match the stakeholders’ needs.” (|Glil4, p.23|) In our under-
standing and also in the understanding of Pohl [Poh10], validation is checking
whether the content of the RE artifact matches the system stakeholders’ needs,
as well as whether the content and representation of the RE artifact matches
the RE artifact stakeholders’ needs. As such, validation also contains quality
control activities.

Management: Requirements management, according to Pohl [Poh10], refers to three
areas: First, maintaining the RE artifacts across the life cycle (including
filing RE artifacts, prioritizing requirements, change management, and other
activities). Second, organizing and controlling RE activities. And third,
observing the system context, in order to detect changes that require further
RE activities.

Please note that, although these activities are consecutive in their nature, they are
usually executed iteratively in order to incrementally produce RE artifacts.

This thesis focusses on RE artifact quality, and therefore on the output of the
documentation phase. Since we focus on the improvement of the RE artifact quality,
we consider the activities, techniques and tools that we propose as part of the
validation activities.

2.2. Quality and Requirements Quality Fundamentals

In the following, we dig deeper into notions of quality and specifically, define quality
for RE artifacts. We base these definitions on the works by Deissenboeck [Dei09],
Wagner [Wagl3], and Juran [JB9S§]| .

Quality. Originally, the term qualitas refers back to Aristotle [AriBC] and his work
on categories. Aristotle defines qualities as properties or attributes of entities. This
viewpoint as quality being characteristics free of judgement or evaluation has in

1

2.2. Quality and Requirements Quality Fundamentals

between changed in both common language and engineering into the quality of an
object being a judgement of goodness.

Quality is a complex and multi-faceted concept [Gar84]. To understand the different
facets of this goodness, Garvin [Gar84]| identified five different viewpoints on product
quality. They are translated to software engineering by Kitchenham and Pfleeger
who summarize the views as following [KP96|:

e The transcendental view sees quality as something that can be recognized but
not defined.

e The user view sees quality as fitness for purpose.

e The manufacturing view sees quality as conformance to specification.

e The product view sees quality as tied to inherent characteristics of the product.

e The value-based view sees quality as dependent on the amount a customer is

willing to pay for it.

Depending on the situation, one or multiple of these viewpoints come into play.
All in all; these viewpoints serve as generic concepts of quality, which guide the
understanding and definition of a concrete instance of quality.

A common definition of quality stems from the ISO 9000 [ISO05]. Here quality is
defined as “the degree to which a set of inherent characteristics fulfills requirements”
([ISO05, p.7]). In the remainder, the ISO 9000 family has a process-oriented focus.

In a simpler definition, Juran [JB98, pp.27-28] understands quality as having mainly
two meanings: First, he understands quality as features of products which provide
customer satisfaction. Second, he understands quality as freedom-from-deficiencies
in terms of field errors, customer dissatisfaction, etc. In this sense, high-quality
products lead to less costs than low-quality products. In the following, we will built
upon this understanding of quality, which will lead us to a definition of RE artifact
quality defects.

RE Quality. Following the definitions of the goals of RE as understood by
Glinz [Glil4, p.18], we understand quality in RE as the degree to which the following
goals are sufficiently fulfilled for system stakeholders as well as the project team (see
Fig. 2.2):
(D Understand stakeholders’ needs: In our understanding, high quality in RE is
the degree of correct and complete understanding of the goals, expectations
and constraints of the system stakeholders.

(@ Achieve agreement: In addition, high quality in RE is the degree of agreement
on a system that manifests the consensus of all system stakeholders. To this
end, high quality in RE correctly prioritizes requirements, and ensures that
we derive a best-possible solution for the system stakeholders’ needs (iteration
between problem and solution space, see twin-peaks model [Nus01]).

(3@ Create the same mental model between all system stakeholders: Furthermore,
high quality in RE is the degree to which these system stakeholders’ needs
and the consensus is correctly and completely communicated between involved
system stakeholders in the project.

(@ Structure & manage requirements-based activities: Lastly, many project activ-
ities are structured along the system stakeholders’ needs, e.g. in the form of
requirements. Some exemplary activities are estimating costs and schedule of
the system, developing the system or testing the system. Consequently, high
quality in RE is the degree to which engineers working with the requirements
(i.e. the information) can efficiently and effectively use the requirements to
execute their requirements-based activities. This can include being able to
handle changing requirements over time, if necessary in the project.

12

2. Fundamentals and Related Work

Combining this view with the understanding of Juran [JB9§|, we understand high
quality RE artifacts as RE artifacts that are free of RE artifact quality defects, which
impair the aforementioned goals. Before providing a more precise definition of RE
artifact defects, we first need a notion of activity-based quality and quality models.

Requirements Engineering Engineering
@ rl:::g;stand stakeholders @ Create shared mental
M i —
Understand the problem ;""rg::j' gcc;lmt[r;l;nlcate the
space. g ution.
—
Achieve agreement. Structure & manage —
@ Define solution and RE @ process. Soft
relation to problem artifacts Help further activities, ortware
space. e.g. estimating, testing.

Figure 2.2.: The figure explains quality through the goals of RE in the RE phase and usages
of RE artifacts in the engineering phase of a project.

Quality (Definition) Model. We furthermore need a definition of quality. Usually,
this complex concept is approached through so-called quality models: A quality
model is “a model with the objective to describe, assess and/or predict quality.”
([Wagl3, p.22])

Deissenboeck et al. [DJLW09] differentiate quality models to the DAP classification,
according to the three purposes definition, assessment, and prediction:

e Definition models aim at decomposing quality into characteristics, and specify-
ing these characteristics, usually in some sort of taxonomy. Examples for such
a quality model for software is the ISO/IEC 25010 (SQuaRE) [ISO11a], or the
aforementioned ISO 29148 [ISO11b] for RE.

e Assessment models, in contrast to definition models, not only require a defini-
tion of quality, but aim at measuring this quality in order to provide a metric
for the quality of the object under analysis. An approach towards such quality
models with the focus on source code is the EMISQ approach [PGH'08]. In
RE, the approach by Davis et al. [DOJT93| or the model by Lucassen et
al. [LDBvdW15| represent assessment models.

e Prediction models, extending assessment models, additionally aim at predicting
future characteristics, such as defect proneness etc. of the system. In software
engineering, reliability growth models [Lyu96] or the quality assurance cost
optimization models by Wagner [Wag07] represent such models. However,
their prediction abilities are still limited [FN99, CD09, MK09, Wag13|. To all
our knowledge, there are no prediction models for RE or RE artifact quality.

In addition, Deissenboeck and Wagner [DJLW09, Wagl3| define multi-purpose
models, which serve all three purposes.

Activity-based Quality As we analyze for RE quality in the ISO 29148 in Chap-
ter 1.1, existing quality models often do not differentiate between properties of the
artifact (or product factors) and the activities that are conducted with the artifact.
As Deissenboeck et al. [DWPT07, Dei09] point out, this leads to inadequate quality
models, since the former are objective and the latter depend on the specific context.

13

2.2. Quality and Requirements Quality Fundamentals

As a consequence, Deissenboeck et al. [DWP107] explicitly associate system proper-
ties with the activities carried out during maintenance. This laid the foundation for
the concept of activity-based quality. In this activity-based understanding of quality,
quality is defined as properties of the system, which have a positive or negative
impact onto the activities, e.g. maintenance activities, that are conducted with the
system.

Maintenance

[Analysis | [Implementation|
Concept-|| Impact- . Modifi-
- Location || Analysis Coding cation
g Concurrency b4 b4
é Recursion X X
Z (2] ,ldentifiers b4 b4
S & -
5 — %‘ Cloning X X
F\E 5| “Code Format X
& % Debugger X X
— é Refactoring X

Figure 2.3.: This figure shows the maintainability matrix defined by Deissenboeck et al., taken
from their work [DWP*07].
«enumeration»

*
Entity
AssessmentType

+manual m | t l—)| Activit
type hasimpact mpac on il

« automatic
« semi-automatic

Attribute

Figure 2.4.: This figure shows the meta model as defined by Deissenboeck et al., taken from
their work [DWP*07].

Activity-based Quality Model (AB-QM). Deissenboeck proposed the concept of
model-based quality control [Dei09]. In model-based quality control, a central
stakeholder (the quality engineer) designs a quality model, based on which source
code is created and evaluated.

Deissenboeck et al. [DWP107] then suggest to combine model-based quality control
with the concept of activity-based costing [Dru92, Jon96] in order to define main-
tainability. Activity-based costing is a strategy that enables to define the costs of a
product through the various activities to be performed. As a result, activity-based
costing can be used to optimize these costs. Through this combination of model-
based quality control and activity-based costing, Deissenboeck provides a notion
of the (maintainability) quality through its costs, by use of the impact of various
product factors onto the maintenance activities (see Fig. 2.3). They manifest these
core ideas of AB-QMs in a meta model (see Fig. 2.4). In this meta model, a fact
has a set of impacts onto a hierarchy of activities. Furthermore, the fact is related
to a set of entities (“objects we observe in the real world” ([KP96])) and attributes

14

2. Fundamentals and Related Work

(“the properties that an entity possesses” ([KP96]). Lastly, the facts can be assed
manually, automatically, or semiautomatically.

This idea was generalized by Wagner et al. [WDWO08|. They proposed to integrate
activity-based quality models into RE. The core idea is to be able to more precisely
specify quality requirements through an activity based quality model. This can
then be used to verify that the source code fulfills these requirements. Furthermore,
Lochmann [Locl3| instantiated and extended this idea and provided an activity-
based model for assessing the quality requirements in source code. Please note
that these works define an AB-QM to verifying quality requirements in source code,
whereas we focus on defining the quality of the RE artifact itself.

Wagner et al. summarized these works within the Quamoco project [WLHT12].
Based on an explicit meta model and the ISO 25010 [ISO11a], the Quamoco model
unites over 200 product factors and 600 measures for Java and C# systems. Quamoco
furthermore provides tool support for evaluating code against the Quamoco model.
In an empirical analysis [WLH" 12|, they compare the tool’s assessment of five open
source systems against expert opinions. Their study shows that, at least regarding
maintainability, the tool assessment matches expert opinion.

RE Artifact Quality Defect. This understanding of activity-based quality allows
us to more precisely define quality defects. An RE artifact quality defect (in the
following short: defect) is an instance of a violation of what is defined as high
quality by a quality model. In our understanding, a defect is an instance of a quality
factor that negatively affects one or more activities (see Fig. 4.7 in Chapter 4.3.2.1
for details).

This enables to refine our previous definition of high-quality: A high-quality RE
artifact is free of RE artifact quality defects (similar to Juran [JB98]). RE quality
defects are instances of factors of a concrete system, which negatively affect activities
to be conducted with the artifact. Therefore, a high quality RE artifact is efficient
and effective to use.

Process and Artifact Quality. In engineering, we usually aim at improving the
product or artifact quality (such as the quality of the source code or the RE artifact).
However, there are some approaches that focus on improving the quality of the
process which leads to these artifacts, i.e. improving the process quality. The basic
assumption behind taking this path is that the product quality is determined by the
process quality. Following this line of thought, high quality processes would then
lead to high quality products [Wagl3]. However, as Sommerville [Som11, p.707]
points out, these views stem out of the domain of manufacturing, where the product
follows a straight engineering process. In contrast, software engineering, is much
more of a creative architecture and design process, where other factors, such as
the development technology, people, and project variables, such as cost, time and
schedule, also significantly influence the resulting product quality (see Fig. 2.5).
Jones [Jon00| analyzed the number of defects delivered by companies with various
CMM levels, which is the predecessor of the now widely-distributed process quality
assessment CMMI [CMMO06]. He found that, while the average number of defects
decrease with higher CMM level (i.e. higher process quality), the best of class CMM 1
(worst process quality level), still outperform the worst of CMM class 5 (best process
quality level) [Jon00, Wagl3]. This means that even companies with the worst
process quality can outperform companies with highest process quality.

All in all, the relationship between product and process quality is still unclear.
Therefore, in the following, we focus on product quality itself. However, in the

15

2.2. Quality and Requirements Quality Fundamentals

outlook, we discuss extensions of this work beyond product (or artifact) quality
(see Chapter 6.2).

Cost, Time, and Schedule Development Technology

Product

Process Quality Quality

<— People Quality

Figure 2.5.: This figure shows process quality as one factor deciding product quality. Taken
from Sommerville [Som11, p.707].

Cost, Time, People Requirements
Schedule Quality Tools
RE Process RE Artifact
Quality Quality
RE Quality
Communicate
Understand needs agreement
. Structure & manage
Achieve agreement || activities

Figure 2.6.: This figure shows the relation between various context factors, RE quality, RE
process quality and RE artifact quality.

RE Quality, RE Process Quality, and RE Artifact Quality. Consequently, we assume
that RE process quality influences the quality of RE artifacts, just as do other
context factors, such as cost, time, and schedule, people or tools.

Yet, the goals of RE, as explained in Fig. 2.2 can be achieved without RE artifacts:
We could discuss and create a shared understanding without creating documents!.
After all, some teams successfully develop software with none or only few RE
artifacts.

However, RE artifacts have a supporting role reaching the goals of RE and during
the following engineering activities in a project. RE artifacts force the writer to make
a thought explicit, it enables to persist thoughts and agreements, and it furthermore
enables communication that is dispersed in time and location.

Consequently, various project factors increase the impact and relevance of RE
artifacts. These factors include the size of the project in terms of number of people,
longevity of the created solution, local dispersion of the team, temporal dispersion
of the team, legislative constraints, etc.

1 For a detailed analysis of this, see the analysis by Glinz and Fricker [GF15].

16

2. Fundamentals and Related Work

RE Artifact Quality Assurance. In ISO 24765 defines quality assurance (QA) i.a.
as “a planned and systematic pattern of all actions necessary to provide adequate
confidence that an item or product conforms to established technical requirements”
([ISO10]). More specifically, Wagner notes that QA “includes all technique we use to
build products in a way to increase our confidence as well as techniques to analyse
products” ([Wagl3, p.20]). In consequence, QA can be either analytical (“analysing
the state of the quality of a product” (|[Wagl3, p.20])) or constructive (“constructing

a product in a way so that it meets its quality requirements” ([Wagl3, p.20])).

In ISO 9000, quality assurance (“providing confidence that quality requirements will
be fulfilled” ([ISO05, p.9])) is part of quality management, which is understood as
“coordinated activities to direct and control an organization with regard to quality”
([ISO05, p.9)).

RE Artifact Quality Control. The terms quality assurance and quality control are
difficult to distinct [Wagl3, p.19]. Based on the definition by Deissenboeck [Dei09,
p.64] for software products, we understand quality control (QC) for RE artifacts as
three-faceted: RE artifact quality control is a process to

e analyze the quality of an RE artifact,
e compare it to the quality model, and
e take the necessary actions to correct the difference.

In this regard, both QA and QC discuss analytical assessment of artifacts. Therefore,
some authors, such as Deissenboeck [Dei09] consider QC to be one part of QA.

In the following, we will use the term quality control (QC) when we discuss our RE
artifact quality improvement process or when focussing on the processes of analytical
QA. We will use the terms automatic, manual, analytical or constructive QA, when
we refer to concrete techniques, such as reviews or automatic analyses.

2.3. RE Artifact Quality Defects in the Software
Engineering Process

The sources and consequences of RE quality defects strongly depend on the process
in context. In the following, we want to briefly discuss sources and consequences of
RE artifact quality defects.

2.3.1. RE Artifact Quality Defect Sources

In order to illustrate potential sources for RE artifact quality defects, consider
the idealized and generic SE process depicted in Fig. 2.7. In this process, the
requirements engineer elicits requirements from a previously elicited set of system
stakeholders. The requirements engineer then analyzes these requirements until a
coherent view on the system emerges. The requirements engineer documents the
requirements in the form of an RE artifact. This artifact is used first by the project
team, which creates and ships a product, based on this information. This product
is used by various users. In addition, the product owner? compares the shipped
product against the RE artifact in order to determine whether the shipped product
is indeed what he ordered, i.e. whether the system fulfills the requirements defined
in the RE artifact. The product owner can be the same person as the customer (i.e.
the role that pays the bill at the end), but can also be someone who is put in charge

2 Please note that the product owner role is not the same role as the user role. Whereas the latter
interacts with the system, the former defines its goals and makes scoping decisions.

17

2.3. RE Artifact Quality Defects in the Software Engineering Process

& & & & &

System Requirements Project User Product
Stakeholders Engineer Team Owner
elicit & A
analyse document build compare
use

L om |

Requirements REArtlfact Shipped Sat|sfact|on Acceptance
Product

Figure 2.7.: This figure depicts an idealized model of RE artifacts in the software engineering
process.

by the customer. The idealized process illustrates that the RE artifact can contain
defects from one of the following two sources:

Defects introduced in elicitation & analysis: Either the defect existed independent of
the documentation and the requirements engineer merely documented the
(already existing) defect. Examples of these defects are incorrect or infeasible
requirements or also requirements where functionality, quality requirements
or system constraints are missing (i.e. complete set of requirements in the
terminology of standards, see also Section 2.4.3). These defects root from
issues in the RE elicitation, analysis or, even before, incorrect assumptions of
the system stakeholders.

Defects introduced during documentation: If the defect is not related to the require-
ment itself, it must be related to the RE artifact (its documentation). In this
case, since the only purpose of the RE artifact is usage, we refer to an unusable
requirements artifact. Unusable requirements artifacts can violate a broad set
of activities. In general, some of the common issues are unreadable, ununder-
standable, unverifiable, or unmaintainable requirements artifacts. There can
be many reasons why these artifacts are unusable. Common reasons include
incompleteness of individual requirements (i.e. the information necessary to
execute the activity are not present, see e.g. [EVF16, EVFM16] for details),
ambiguous or inconsistent requirements documentation. We discuss common
forms of usage, and the consequences during usage in more depth in the next
section.

In this work, we mostly focus on the latter type of issues. However, when we face
an issue in an RE artifact, these two categories blur. For example, an incomplete
RE artifact can stem from both the documentation and also elicitation defects.

2.3.2. Consequences of Low RE Artifact Quality

Since RE is inherently a social discipline and involves complex psychologic processes,
the consequences of RE quality defects are also complex and difficult to predict.
In addition, since RE is only a means to an end, we have to understand not the
direct, but the indirect impacts of RE quality, such as project success. Accordingly,
some research [MW15, MMFV14] exists that analyzes and systematizes the complex
cause and effect chains of RE. However, we are still far away from a thorough

18

First-Order Impacts:

Direct Stakeholders of
Requirements Artifacts

Second-Order Impacts:

Stakeholders of
Resulting Product

Third-Order Impacts:
Stakeholders of
Systemic Effects

2. Fundamentals and Related Work

System
Stakeholders
Telicit & analyze
Maintainer Requirements Engineer Reviewer
ldocument
maintain N | | ! P review
RE Artifact
read
& understand
Architect Test Eng. Legal Estimator
& Developer or PM
lcreate create interpret l create
¥ . \/x § S ﬁ"
Code System Tests Obligations Estimations
A
| system test & release
Shipped
Product
use } compare
User Product
Owner
experience accept create
.© . . Change
Satisfaction Acceptance Request
T plan & control T
Public Relations Finance
/" Reputation Profit

s 2

Company Society

Figure 2.8.: This figure depicts potential consequences of defects in an RE artifact, starting
from direct users (first-order impacts), going over indirect users (second-order
impacts), to systemic or third-order impacts.

19

2.3. RE Artifact Quality Defects in the Software Engineering Process

understanding thereof. In the following, we illustrate the potentially devastating
consequences of bad RE artifact quality and also the complexity of the matter,
through an exemplary chain of events. For this, we extend the discussion initiated
by Gorschek and Davis [GDO08§], and also extended by ourselves [MMFV14].

In Fig. 2.8, we detail the activity of building a shipped product from the previous
process in Fig. 2.7 and extended the process beyond the user and product owner.
We can categorize the impact of RE artifact quality into three levels: Based on
the definition by Hilty [HSWO05], we call these impacts first, second- or third-order
impacts, depending on the distance between RE defect and the impact. In addition,
some impacts lead to problems during follow-up activities (impacts on effectiveness)
while other lead to additional efforts (impacts on efficiency).

In the following, we assume that the requirements engineer unknowingly used
ambiguous phrasing during documentation. Thus, in the terminology described
above, this is a defect that hinders using the RE artifact.

First-Order Impacts: The direct impacts of ambiguous phrases in RE artifacts in
an idealized process are Maintainers, Reviewers, and the various users. All
of these are Readers of the artifact. Within this role, the defect impacts
the efficiency of reading the artifact. Regarding effectiveness, Maintainers
(usually requirements engineers themselves) might change the requirements
inconsistently due to the ambiguous phrase. Reviewers of the requirements
could overview an inconsistency or another serious issue because of the defect.
Architects, Developers and Test Engineers could require additional effort,
because they build the wrong system or test the system against the wrong
requirements. This can also lead to and undiscovered invalid tests or an
invalid product. Legal representatives could discover unintended legal bindings
(e.g. no legal binding of requirements) and derive invalid obligations from the
requirements. Lastly, if Estimators (such as the aforementioned roles or project
management) misunderstand the requirement, the estimations resulting can
be flawed (too high or too low).

Second-Order Impacts: The stakeholders of the resulting product are the User and
the Product owner. If tests and requirements mismatch in their misunderstand-
ing (and thus discover their mismatch in interpretation), this might lead to
product delays. On the other hand, if tests and requirements match in their
misunderstanding, the shipped product is invalid, i.e. does not reflect the
stakeholders need. Both options lead to unsatisfied users and an unsatisfied
product owner. If the incorrect product matches the legal obligations, the
product owner still has to accept the product and create (and pay for) change
requests for the mismatches. If the incorrect product mismatches the legal
obligations, the development side of the project has to fix the system (and pay
for fixes and consequences). In both of these cases, one side of the partnership
will be unsatisfied with the result. These consequences might then lead to bad
reputation of either side and mismatch between planned and actual delivery
date and costs might lead to financial risks. All in all, these effects can lead to
a lost customer.

Third-Order Impacts: Lastly, there can be systemic effects from these first and second-
order effects. These third-order effects describe impacts onto the company or
the society, e.g. through the bad reputation or the lost trust. This includes also
impacts on persons that do not directly interact with the system. However,
these effects are very speculative, not only in RE, but in systems theory in
general. Therefore, we will not go into details here.

This discussion of the causes and effects of defects in RE artifact quality aims at
illustrating the following points. First, as we discuss in Section 2.3.1, we can differ-
entiate between defects originated before and within the documentation. Second, as

20

2. Fundamentals and Related Work

we illustrated in this section, small issues in RE artifact quality can have tremendous
impacts onto projects. Third, these impacts come from the complex interplay of
artifacts and stakeholders in the process. Lastly, the further away the defect source
is from its impact, the more vague and imprecise is the cause-and-effect relationship
between source and impact. Therefore, in this thesis, we focus on impacts where
source and consequence are close in order to avoid confounding factors blurring the
analysis.

2.4. Related Work on Quality Models in Requirements
Engineering

Various approaches towards RE quality models exist. In the following, we first show,
from an academic viewpoint, how various authors build models for defining RE
artifact quality. Here, we describe generic quality models and briefly explain more
specific adaptions. We then explain, from a rather industry-focused viewpoint, how
various standards summarize best practices.

S Desired
= T T T T T T = = = =735 Output
3 s . Z/(P
E 7 7 I
o / / .
a Pid Pre |
@ - e |
complete f ———————————— i :
........ |
R . |
oS J|
. : I
e’ ® [
0", - P.Q .. I
Q .
& I s
. common | s
s
. I _
g | - d
opaque| . bersonal _
; %l/ Representation
informal formal

Figure 2.9.: This figure shows the three dimensional quality model as defined by Pohl [Poh93].
Figure taken from [KLS95].

2.4.1. Generic RE Quality Models

Over the years, various researchers have approached the concept of RE quality.
Along the most prominent line of research, Pohl [Poh93] models RE quality along
three fundamental dimensions (see Fig. 2.9). These dimensions are specification
(degree of completeness), representation (degree of formalization), and agreement
(degree to which a common view was obtained). In the understanding of Pohl,
the RE process is then a path within this model, towards a complete, formal and
commonly agreed specification.

21

2.4. Related Work on Quality Models in Requirements Engineering

Around the same time, Lindland, Sindre and Sglvberg [L.SS94| were also discussing
the shortcomings of existing quality definition®. In particular, in RE at the time,
more and more researchers tried to apply various forms of modelling. To deal with
this understanding of RE as conceptual models, and for a more systematic approach
towards quality than a list of characteristics, Lindland et al. developed a novel
framework for the quality of conceptual models. The framework is based on the
following concepts:

Model are all statements made by the conceptual model.
Language are all statements possible with the vocabulary and grammar provided.

Domain are all statements that are “correct and relevant about the problem at hand.”
([KLS95])

Audience interpretation are all statements which the audience perceives to be con-
tained in the model.

appropriateness
Domain PPTop Language
semantic syntactic
quality quality
Model
appropriateness appropriateness
pragmatic
quality
Audience

Interpretation

Figure 2.10.: This figure shows the terminology of the semiotic quality model by Lindland et
al. as defined in [LSS94]. Figure taken from [KLS95].

Based on these basic concepts, the framework defines appropriateness, as well as
three types of quality (see Fig. 2.10):

Appropriateness is degree of fitness between domain, language and audience.

Syntactic quality is the extent to which the model is correct with respect to the
applied language.

Semantic quality is the extent to which the model is correct with respect to the
domain.

Pragmatic quality is the extent to which the model is understood by the audience.

Afterwards, the framework classifies existing quality characteristics into these cate-
gories.

In comparison, despite different terminology, both models address similar issues. As
Krogstie, Lindland, and Sindre [KLS95] analyze, Pohl’s model aims for complete
formalization, which might not necessarily be “always desirable” ([KLS95]). How-
ever, Lindland’s model misses the characteristic agreement. Therefore, Krogstie et
al. [KLS95] include the missing concepts proposed by Pohl into the Lindland model
through the following concepts:

3 The existing quality definitions at that time were lists of characteristics, very similar to what is
still considered best practice in standards.

22

2. Fundamentals and Related Work

Participant Knowledge is understood as the union of the knowledge of the problem
of all actors in the audience (i.e. “all possible statements that would be correct
and relevant for addressing the problem at hand according to the knowledge
of the actor” ([KLS95]).

Perceived semantic quality is analogue to semantic quality: Whereas semantic quality
is the correctness of the model with respect to the domain, the perceived
semantic quality, is the correctness of the interpretation of the model with
respect to the understanding of the domain.

Social quality is defined as the agreement between social actors.

Finally, Krogstie [Kro98| furthermore extends the framework by categorizing the
proposed quality characteristics of Davis et al. [DOJT93] into the framework and
adding a last quality facet:

Physical quality consists of externalization and internalization. Externalization means
that the knowledge of all actors can be contained in the model. Internalization
means that the model is persisted and available to the actors.

Besides this, Krogstie added various characteristics of appropriateness, which we
leave out for the sake of clarity.

2.4.2. Specific RE Quality Models

In addition to these generic models, various authors have introduced specific quality
models, depending on the representation used. For example, Berry et al. [BBGT06]
define a quality model for natural-language specifications combining their previous
works [FFGL00, BKK03, BK04] in this area. For this, they define a set of quality
characteristics, similar to the ones discussed in requirements standards, as well as
a set of manifestations of problems, i.e. lexical, syntactic, structural and semantic.
Afterwards they classify various defects in natural language according to the model.
Similar approaches exist for use case quality [AS02, AS02, FGLMO02] as well as user
story quality [Coh04, LDBvdW15, LDvdWB16]. All these models have in common
to focus on intrinsic properties of artifacts rather than on its usage for the engineering
endeavor.

2.4.3. RE Quality Models in Standards

To explain the status quo of RE quality in standards, in the following we refer to
two of the current standards. First, according to a recent systematic analysis by
Schneider and Berenbach [SB13]), the ISO-29148 [ISO11b| “is actually the standard
that every requirements engineer should be familiar with” ([SB13]). Second, the
International Requirements Engineering Board (IREB) recently received more and
more attention through their certification. Therefore, in the following, we discuss
the perspectives on quality of these two institutions.

2.4.3.1. ISO/IEEE/IEC-29148

The ISO-29148 [ISO11b] is the most current standard applicable to RE. As such, it
replaced the now superseded IEEE Recommended Practice for Software Requirements
Specifications (IEEE-830) [IEE98]. According to Schneider and Berenbach, it can be
considered “the mother of all requirements standards as it gives a rather extensive
description of the domain of requirements engineering” ([SB13]). It is tailored
particularly to systems engineering, but can be applied to various types of software-
intensive systems in various domains.

The standard specifies:

23

2.4. Related Work on Quality Models in Requirements Engineering

Set of Regs. /
Reqgs. Document

(Individual)
Requirements

Requirements
Language Criteria

Consistent Unambiguous Superlatives
Complete Necessary Subjective Language
Affordable Consistent Vague Pronouns
Bounded Complete Amabning)otlez éic\i/\gbs
Unambiguity Traceable egﬁﬁfﬁgﬁémg
Clear Structure Verifiable Comparatives
M%ii{l?gilti)ti)(i@nd Feasible Loopholes
Traceability Implementation Free :{];‘22?1?;:
S
e
Understandable Ogirﬁi%czer
Key: ISO 29148 & IREB

Characteristics

ISO 29148
Characteristic

IREB Characteristics

Figure 2.11.: This figure depicts the quality characteristics of ISO 29148 and the IREB syllabus

in comparison. Blue characteristics are shared characteristics, orange and green
characteristics appear only in one of the standards. Please note that, as we
discuss in the text, some characteristics are shared between the standards by
their name, but vary in the precise meaning of the characteristics.

24

2. Fundamentals and Related Work

Definitions for the most important concepts in RE

Processes for software and systems requirements

Required information items to be produced during these processes

Content of these information items

Guidelines for information items through templates and rules for natural
language

Relations to other software lifecycle standards

For this thesis, we are especially interested in the understanding of quality, according
to the standard.

RE artifact quality according to 1S0-29148. According to the ISO-29148 standard,
a good RE artifact is one that follows its templates and formats. Regarding the
content, the standard defines a set of quality characteristics, which we depicted in
blue and orange in Fig. 2.11. The ISO 29148 defines the characteristics on three
levels: In the level of a set of requirements, individual requirements, and requirements
language.

At the highest level, according to ISO 29148, a set of requirements should be [ISO11b,
pp.11-12]:

Consistent: The ISO 29148 subsumes three aspects under this category.
No individual requirements is contradictory, no individual requirements is
duplicated, and the same term is used for the same concept throughout the
whole set of requirements.

Complete: The ISO 29148 understand as complete that “the set of require-
ments needs no further amplification because it contains everything pertinent
to the definition of the system or system element being specified.” ([ISO11b,
p.11]) In addition, the set does not contain any TBx’s, such as to be defined
(TBD).

Affordable: The ISO 29148 requires that the “set of requirements can be
satisfied by a solution that is obtainable/feasible within life cycle constraints”
(ISO11b, p.12]).

Bounded: Lastly, ISO 29148 requires that the specified requirements stay
within the identified scope.

At the second level, ISO 29148 defines nine characteristics for each individual
requirement [ISO11b, p.11]:

Unambiguous: This combines two aspects: First, requirements can be only
interpreted in one way, and, second, requirements are easy to understand.

Necessary: This combines the following aspects: First, a removal of the
requirement leads to a deficiency. Second, the requirement is not obsolete and,
last, planned expiration is clearly identified.

Consistent: An individual requirement is consistent if it is free of conflicts.

Complete: An individual requirement is complete if it needs no further
amplification. In particular, “it is measurable, and sufficiently describes the
capability and characteristics to meet the stakeholder’s need.” ([ISO11b, p.11])

Traceable: An individual requirement is traceable if it is both upward-
traceable to its source, and downward-traceable to derived requirements or
implementation artifacts.

Verifiable: An individual requirements is verifiable if, based on the requirement,
it is possible to prove that the system satisfies the requirement. The standard
furthermore states that “Evidence may be collected that proves that the system
can satisfy the specified requirement.” ([ISO11b, p.11])

25

2.4. Related Work on Quality Models in Requirements Engineering

e Feasible: An individual requirement is feasible if it is technically achiev-
able without major technology advances and within system constraints and
acceptable risks.

e Implementation Free: An individual requirement is implementation free if
it does not add unnecessary constraints to the design.

e Singular: An requirements statement® is singular if it only contains one
requirement. In particular, it is not singular if it contains conjunctions.
Lastly, at the lowest level, the standard defines a set of requirements language
criteria®. This set defines various grammatical and lexical critera which should
be avoided. In particular, the list contains comparatives, superlatives and vague
pronouns as grammatical features to avoid, and subjective language, ambiguous
adverbs and adjectives, loopholes, and negative statements as lexical phrases to avoid.

Lastly, it mentions incomplete references.

Issues in 1IS0-29148. In addition to the general critique motivated in Chapter 1.1,
the details of the standard reveal a broader list of issues in the details of the
ISO 29148’s quality definition. In the following, we briefly list a subset of the
problems:

e The characteristic traceable is defined in a recursive manner.

e The characteristic verifiability requires that a requirement is provable. Assum-
ing a proof to be a formal verification, we argue that for most requirements
this definition is hardly achievable in practice. Hence, the definition adds that
“evidence may be collected that proves that the system can satisfy the (...)
requirement.” ([ISO11b, p.11]) However, this latter definition is a significant
weakening of the former. The ISO 29148 leaves it to users of the standard to
interpret which definition to use and how to interpret it.

e However, the list requirements language criteria is only part of the recom-
mendations for natural language. Throughout the document, the standard
provides further implicit or explicit suggestions for higher quality, such as the
usage of active voice [ISO11b, p.10].

e The characteristic consistency is not defined consistently. While for an individ-
ual requirement, it just refers to freedom of conflicts, for a set of requirements,
it also refers to duplication and consistent usage of terminology.

e One could discuss to which extent necessary and implementation free refer to
the same criterion. Every violation of implementation free, is also a violation of
necessity. The same holds for unambiguity and verifiability. Every ambiguous
requirement is by definition not verifiable.

2.4.3.2. IREB

The IREBS is a nonprofit organization, which was founded in 2006, and which is
the provider of the CPRE (Certified Professional for Requirements Engineering)
certification scheme. As such, IREB is not a standardization authority such as ISO,
IEEE or others. Instead, it provides certifications for requirements engineers in
practice. All in all, more and more companies make use of this certification authority.
IREB announced that, over the last years, over 27,000 practitioners in 66 countries
have passed their examination”.

4 Please note that in contrast to the remaining characteristics, ISO 29148 defines singularity based
on a requirement statement, instead of a requirement.

5 Please note that, in the following, we will use the term characteristics on the abstract quality
definition level, and criteria for concrete (e.g. language) guidelines.

6 http://www.ireb.org

7 https://www.ireb.org/service/statistics/

26

http://www.ireb.org
https://www.ireb.org/service/statistics/

2. Fundamentals and Related Work

Therefore, IREB does not standardize RE or RE artifacts. However, due to their
widespread acceptance, the course material of IREB serves as a standard commonly
accepted in industry. The following discussion of IREB’s understanding of quality
builds upon two sources: The definitions, provided by Glinz [Glil4], and the current
syllabus for the certification [Int15]. In the following, we assume that the official
IREB syllabus is based on the official IREB glossary provided by Glinz®.

RE artifact quality according to IREB. In the IREB Glossary, quality is described
in an abstract manner, instead of a concrete quality model: “Quality: The degree
to which a set of inherent characteristics of an entity fulfills requirements.” (|Glil4,
p-16]) Therefore, in order to understand RE artifact quality, IREB asks us to define
the requirements to an RE artifact.

In the syllabus |[Int15], this is broken down into concrete characteristics?. Again the
characteristics are differentiated through three levels: the requirements document
level, the requirements level, and some rules for natural language [Int15, p.16]. In
the following, we describe these characteristics, in relation to the ISO 29148 (see
Fig. 2.11).

For the requirements document level, IREB describes 6 characteristics, 2 of which
are shared with the ISO 29148 (i.e. consistency and completeness). IREB adds
unambiguity, clear structure, modifiability and extensibility, and traceability.

e Consistency: Just as the 29148, IREB defines consistency as being free
of contradicting statements [Glil4, p.11]. However, this does not include
redundancy or specific references to terminology.

e Completeness: Completeness is defined as the degree to which all information
is present that is required for developing the correct system [Glil4, p.10]. As
such, the definition of completeness in IREB is very similar to the definition
in 29148.

e Unambiguity: Glinz defines unambiguity as the degree to which a require-
ment cannot be understood in multiple ways. It is not explicated in either
document, but we assume this is the same definition applied also for a require-
ments document.

e Clear Structure: This term remains undefined in [Glil4] and [Int15].

e Modifiability and Extensibility: These terms remain undefined in [Glil4]
and [Int15]. However, changeability is defined as the degree to which an artifact
can be modified [Glil4, p.10].

e Traceability: Glinz only defines traceability at the level of individual require-

ments. It remains undefined for a requirements document.

For each requirement, IREB defines the following 9 characteristics. It contains
7 characteristics shared with 29148 (namely unambiguous, necessary, consistent,
complete, traceable, verifiable, feasible, and adds two (agreed and understandable;
see Fig. 2.11).

e Unambiguous: (see above).

e Necessary: Remains undefined.

8 Please note that as required by ISO/IEC 17024:2012 [ISO12], IREB is not involved in the
certification process. Hence, IREB provides neither the training, nor the certification themselves.
As such, in contrast to the syllabus, the training material can vary between training facilities.
Therefore, we refrained from using additional resources such as mandatory training material,
since these are not obligatory for practitioners taking the training.

9 IREB refers to these characteristics as quality criteria. To maintain consistency, we will use the
term characteristics.

27

2.4. Related Work on Quality Models in Requirements Engineering

e Consistent: Consistency is only defined at the level of a set of requirements,
see above.

e Complete: Glinz defines completeness for a single requirement as the degree
to which the requirement contains all necessary information [Glil4, p.10].

e Traceable: According to Glinz, traceability relates requirements with its
origins, with its implementation, and with requirements it depends on [Glil4,
p.22|.

e Verifiable: Glinz defines verifiability as “the degree to which the fullfillment
of a requirement (...) can be checked” ([Glil4, p.23]).

e Feasible: Remains undefined.
e Agreed: Remains undefined.

e Understandable: Remains undefined.

For natural language, the IREB syllabus provides few guidance. At the respective
location, it advices only short sentences and singularity. One could argue that
the transformational processes of language effects [Int15, p.18] could further be
interpreted as such language guidance. For the rest, the syllabus promotes sentence
patterns.

All in all, the IREB’s understanding of quality remains unsatisfying. As mentioned
above, the syllabus just names the characteristics and does not provide definitions.
While the terms that are defined in the glossary provide rather clear and sensible
definitions (except maybe for the recursive definition of traceability), many terms
are not defined at all. Therefore, we argue that there is a need for more consistency
between glossary and syllabus.

2.4.3.3. Discussion: Comparison between the ISO and IREB Standard

The IREB and ISO 29148 views on quality agree on some parts, but differ all in all.
We first discuss the agreements, before the differences. Afterwards, we describe our
conclusions from the discussion.

The standards both define a quality model through a simple list of characteristics.
According to the standards, good requirements documents are those in which the
characteristics are fulfilled. The standards share nine of the characteristics (see
Fig. 2.11), mostly those characteristics that were defined in earlier literature and
standards, such as the IEEE 830 [IEE9S|.

However, the standards disagree on more characteristics than they agree on. In
particular, the standards completely disagree when it comes to concrete language
criteria. And even when the standards agree on the characteristics, as soon as they
define the characteristics, their interpretations differs significantly. Take, for example,
consistency. While the IREB takes only disagreeing requirements into account, the
29148 also understands issues with duplication and terminology under this definition.
In addition, the definitions of Glinz take the characteristics as continuous variables,
wheres the definitions of the standard are binary.

In summary, while the two standards take the same approach towards quality, as
soon as they get more concrete, they differ tremendously. This is especially true for
the concrete, assessable language criteria. We argue that these differences indicate
two problems. First, the missing agreement at the level of concrete language criteria
indicates that we do not yet know what is good or bad quality, and that we have
little to no established understanding of the impacts of concrete language criteria.
Second and even more problematic, the missing agreement at the level of abstract
quality characteristics indicates there is no established understanding and approach
towards quality for RE artifacts as a whole. Although Glinz’ [Glil4] proposed

28

2. Fundamentals and Related Work

definition of quality could be such an approach, the concrete definitions in the
syllabus unfortunately does not follow this definition.

2.5. Research Gap

In the following, we summarize the research gaps. We look at quality definitions
first, before discussing QA afterwards.

2.5.1. Research Gap: Quality Definitions for RE artifacts

To summarize this section, there are various viewpoints onto quality, namely:

Generic theories: Various authors have worked on approaches to define RE quality
in a systematic way. While these approaches are helpful to define quality
factors, their generic approach does not take into account that requirements
engineering is just a means and not an end. For one example, Pohl [Poh93|
assumes that formalization is a goal of the RE process. We disagree with this
view, since a formal model that is never used nor understood has no purpose
in a software engineering project.

Standards and generic quality characteristics: Unfortunately, the current standards for
RE quality are rather a list of characteristics than a structured approach
towards quality. Although IREB contains some hints towards thinking about
RE artifact usage, this is not yet reflected in the quality model. In particular,
the strong differences between the currently most relevant standards show how
arbitrary the existing characteristics are, and that we do not have a systematic
approach for deciding which characteristics are relevant, when and why. In
addition, the meaning of various characteristics is too abstract and unclear.

Specific quality factors: The same holds for approaches for specific, more concrete
quality factors, such as negative statements. Existing approaches are defining
lists of characteristics without an adequate concept of quality as a foundation.
In consequence, the reasoning behind quality factors remains unclear, which
makes the question whether or not to make use of the quality factors dubious
in practice.

All in all, we have generic theories, sets of characteristics, and concrete quality
factors. While some approaches provide a holistic view on quality, none of these
takes the usage of the RE artifacts and the context into account. Therefore, we
still have a limited understanding of what high quality RE artifacts are in its usage
context.

2.5.2. Research Gap: QA for RE Artifacts

In order to assure that RE artifacts are of high quality in practice, various QA
techniques can be applied. A detailed analysis of existing methods for QA of
RE artifacts can be found in Publication G. As explained, we can differentiate
into constructive and analytical, and automatic and manual approaches. Of these,
automatic analytical methods have the potential to address the problem described
in Section 1.1. In the following, we summarize the state of the art in application of
automatic methods for analytical quality assurance and describe open research gaps.
For this, we summarize related work from an evaluation, a quality definition, and a

technical perspective!®.

10 Please refer to Publication G for the detailed analysis of existing methods for QA of RE artifacts
that lead to this summary.

29

2.5. Research Gap

First, one gap in existing automatic QA approaches is the lack of empirical evidence,
especially under realistic conditions. Only few of the introduced contributions were
evaluated using industrial requirements artifacts. Those who do apply their approach
on such artifacts, focus on quantitative summaries explaining which finding was
detected and how often it was detected. Some authors also give examples of findings,
but only few works analyze the accuracy of their automatic approaches in depth,
especially in the vague domain of ambiguity. When looking at the characteristics
that are described in ISO 29148, we have not seen a quantitative analysis of precision
and recall. Furthermore, reported evidence does not include qualitative feedback
from engineers who are supposed to use the approach, which could reveal many
insights that cannot be captured by numbers alone. However, we postulate that the
accuracy of quality violations very much depends on the respective context. This
is especially true for the vague domain of natural language where it is important
to understand the (context-specific) impact of a finding to rate its detection for
appropriateness and eventually justify resolving the issue.

Second, the existing approaches are based on proprietary definitions of quality,
based on experience or, sometimes, simply on what can be directly measured. The
ARM tool [WRH97] is loosely based on the IEEE 830 [IEE98| standard. However,
as the recent literature survey by Schneider and Berenbach [SB13] states: “the
ISO/IEC/IEEE 29148:2011 is actually the standard that every requirements engineer
should be familiar with”. We are not aware of an approach that evaluates the current
ISO 29148 standard [ISO11b] in this respect. As the analysis of existing works in
Publication G shows, for most language quality defects of ISO 29148, there has not
yet been a tool to detect these quality defects. To all our knowledge, for neither
of these factors, there is an differentiated empirical analysis of precision and recall.
Yet, many other quality models (most notably from the ambiguity handbook by
Berry et al. [BKKO03]) and quality violations could lead to Requirements Smells, as
far as they comply with the definition given in the next section.

Finally, taking a more technical perspective, our Requirements Smell detection
approach does not fundamentally differ from existing approaches. Similar to previous
works, we apply existing NLP techniques, such as lemmatization and POS tagging, as
well as dictionaries. For the rules of the ISO 29148 standard, no parsing or ontologies
(as used in other approaches) were required. However, to detect superlatives and
comparatives in German, we added a morphological analysis, which have not yet
seen in related work.

In summary, we need more evidence on automatic QA for requirements artifacts via
systematic studies in terms of distribution, precision, recall, and relevance, as well
as by means of a systematic evaluation with practitioners under realistic conditions.

30

CHAPTER 3

Research Design

This chapter outlines the design of this thesis. In particular, based on the problems
described in Chapters 1 and 2, we derive a thesis statement and research goals.
Afterwards, we detail these goals into research questions. For each research question,
we design applicable methods and summarize the contributions. Lastly, we explain
how these contributions relate to other works, to which the author also co-contributed.

3.1. Problem and Thesis Statement

In the introduction, we described the problems of incompleteness, inadequacy and
imprecision of the current state of the practice in RE artifact quality. In the previous
chapter, we described that the state of the art in RE artifact quality research is
not able to address this problem. We summarized this in the following problem
statement:

Problem Statement: We have a limited understanding of what high quality RE
artifacts are and need more efficient methods to control RE artifact quality in
practice.

Thesis Statement: In our work, we address these problems through an activity-
based understanding of quality and automatic detection of quality factors. In
summary, we argue that an activity-based quality model enables to more precisely
and completely model RE artifact quality for a given context. Moreover, to apply
these quality models and therefore to improve RE artifact quality in practice, a
combination of automatic and manual methods can help to increase efficiency, speed
and consistency of RE artifact quality control.

3.2. Research Challenges and Research Questions

The problem and thesis statements raise two challenges, which we refine into two
research questions each (see also Fig. 3.1). The first part sets the theoretical basis,
whereas the second part targets more efficient solutions for quality control.

31

3.3. Methods and Contributions

Challenge 1: We need a precise and valid understanding of what high quality RE
artifacts are in a specific context.

RQ 1: How can we precisely define quality for RE artifacts? To precisely discuss
what high quality requirements are, and to have a basis for quality assurance,
we need a model to systematically reason about RE artifact quality. In other
words, we need a model that explains which factors of an RE artifact define it as
a high-quality artifact. This model must be adaptable to various contexts, and
must allow to accept or refute a factor, based on an systematic argumentation.

RQ 2: How can we create valid quality models? The language to define such a
quality model is not sufficient. We furthermore need applicable methods to
verify that the models are valid. We need approaches that enable to either
build valid models from scratch or differentiate the correct from the wrong
factors.

However, as explained in Chapter 1.1, to just understand and define quality in a
precise manner is not sufficient since manual QA lacks efficiency in practice.

Challenge 2: We need more efficient methods to control RE artifact quality in prac-
tice.

RQ 3: How can we efficiently ensure quality factors? In practice, even if there
is an established quality model, projects struggle to ensure that their RE
artifacts adhere to this quality model. Therefore, we furthermore need an
efficient method to support requirements engineers keeping the desired goal
of artifact quality. To answer this, we propose an approach called automatic
requirements smell detection.

RQ 4: What are the benefits and limitations of requirements smell detection? To
validate that the requirements smells approach in fact achieves the stated
goals, we validate the advantages and limitations of such an approach. In
particular, we are interested to understand in which cases automatic smell
detection cannot support requirements engineers.

3.3. Methods and Contributions

In Fig. 3.1 we provide an overview of the approaches and contributions of this
thesis. The contributions are structured along the two aforementioned problems.
Each problem is addressed through first, an analysis and design phase leading to a
constructive approach (RQ 1 and 3), and, subsequently, the approach’s evaluation
phase (RQ 2 and 4). Each research question is answered by one or multiple
contributions, which we explain in depth in the following. Furthermore, Fig. 3.1
shows how the contributions relate to the Publications.

RQ 1: How can we precisely define quality for RE artifacts?

Method: We suggest activity-based RE artifact quality models (ABRE-QMs) to
precisely define quality in a given context. Based on a quality-in-use viewpoint,
an ABRE-QM defines quality as a set of quality factors of entities that have an
impact on activities in the software development process. We furthermore provide
an approach to define ABRE-QMs and discuss a research roadmap.

Contribution 1. The notion of Activity-based RE artifact Quality: RE artifact QA requi-
res a precise understanding of quality. As explained in Chapter 1.1, to this
end, quality models are often incomplete, inadequate and imprecise in their

32

3. Research Design

Analysis & Design Evaluation
RQ 1: How can we RQ 2: How can we
precisely define quality create valid
Tco for RE artifacts? quality models?
s2< |
o5 Q. Approach: — R !
- ® £05 Activity-based RE Artifact N Validation in !
g 356 E Quality Models (ABRE-QM) | —— Expert Interviews !
é g 2F ; | _IC_ Maintainability of | |
& 2s8s | 7 Req.Artifacts !
O 5 s 3 | : l . |
gezo| | _I_A/B ABRE-QM | : _I_D Impact Analysis of | |
gg g | i ! _— Passive Voice !
s | |
i B Applications and ! LE Creating !
e — Roadmap i | —— an Artifact Model !
____________________ lecccccccccccccccaaa=d
RQ 3: How can we RQ 4: What are the
efficiently ensure benefits and limitations
. quality factors? of req. smell detection?
Euw Approach:
0w ~ ApPp :
° 5 § Requirements Smells for
N "-5 = 2- Quality Assurance
o .=
2 g © > [~ TTTommmm———-—- | FTT TS TT oo mmmm———-—- |
= E23 \ Def. of Re | ! |
S 585 ! F/G I 9 | ! F/G Case Studies |
S g =4 i ——— Smells Concept X p— X
cC%w O I | | l
v 2 8 ' F/G Req. Smell ! ' F/Gy) Limit. of Automatic | |
= = | —— Detection ! | Detection !
S |
| "= Efficient RE .
I H cp I
| QC Process !
L e e e e e e e e e e e e e = 1
Research Question
B
| |
Key: 1 PIUDb. Contribution :
| e — |

Figure 3.1.: This figure provides an overview of the contributions of this thesis. The figure
relates the research challenges (on the left), research questions (RQ 1-4) and
contributions (in boxes), together with the related publications (A-)

33

3.3. Methods and Contributions

reasoning. We present an approach that enables to define quality of RE artifacts
in a specific context by applying activity-based quality models. Activity-based
RE artifact quality models (ABRE-QMs) define quality through properties
of artifacts (i.e. quality factors) and the impact of these properties onto
the activities that are conducted in a specific software development context.
Thereby, ABRE-QMs can define requirements quality precisely and thus enable
to adjust the quality definition specifically to the corresponding context. This
contribution furthermore enables to discuss and define quality in a common
language.

Results: We define a meta-model for ABRE-QMs, and show that ABRE-QMs
enable to precisely model quality characteristics in practice. Practitioners
indicate the potential of an ABRE-QM to check the definition of quality (e.g.
in the form of guidelines) in terms of completeness and correctness.

Contribution 2. A research roadmap for RE artifact quality: The aforementioned defini-
tion of RE artifact quality has various implications onto RE artifact quality,
both in terms of applications and research to be conducted.

Results: We contribute an analysis of existing applications of RE artifact
quality models. Furthermore, we outline a research roadmap that defines
research objectives along the content of this model.

RQ 2: How can we create valid quality models?

Method: To create valid quality models, we need to validate the defined quality
factors. This thesis discusses interviews, case studies, and experiments as three
different approaches for empirical validation of the impact of quality factors. Based on
the design and execution of two industrial studies and one experiment, the approaches
are compared and evaluated, leading to three different applications. Regarding
requirements quality, the studies revealed various quality factors for requirements
maintenance and the risks of passive voice for understanding of requirements. In
addition, we contribute an approach to refine existing artifact models, which is a
basic necessity for ABRE-QMs.

Contribution 3. Expert interviews for model validation: In an interview study, we vali-
dated an ABRE-QM as a whole by translating a company’s guidelines into
a quality model and discussing the resulting model as well as the benefits of
such a model in contrast to the existing guidelines.

Results: The experts reported that ABRE-QMs can increase validity and
completeness of the company guidelines. Regarding the validation method,
expert interviews show advantages in terms of validation speed, since it is pos-
sible to quickly discuss even a large number of impacts. However, this method
comes with the risks of various types of personal bias of the interviewees. We
therefore suggest to choose interviews to validate a quality model as a whole
and, whenever impacts result in discussion, formulate a set of hypotheses that
can afterwards be analyzed in depth with case study research or experiments.

Contribution 4. Case study research on maintaining RE artifacts In a case study, we an-
alyzed quality factors for maintenance activities. By classifying 14 months of
changes in a project’s RE artifacts, we aimed at understanding which parts of
RE artifacts are most affected by maintenance activities and how.

Results: The study revealed that use cases evolved mostly in alternative
flows. The study also indicated that changes that must be conducted in
multiple locations are among the most difficult and error prone changes and
that terminology and descriptions of user interfaces are among the most often
changed content. Regarding the validation method, case studies are less prone
to personal bias, however, the selection of cases can heavily influence the

34

3. Research Design

results. We therefore suggest to choose case studies for activities and quality
factors that are still unknown ground.

Contribution 5. An experiment on the impact of passive voice: In an experiment, we in-

spected one quality factor in depth, namely passive voice, and its impact on
understanding requirements. For this, we provided subjects with real-world
passive voice requirements sentences and measured the number of errors they
produced when modelling their understanding. We compared the results to a
control group, which we provided with the same requirements written in active
voice.
Results: The subjects that we provided with passive voice requirements
showed significant problems in understanding relations between the described
domain objects. Regarding the validation method, experiments seems to reveal
the most substantiated impacts. However, we must carefully evaluate external
validity, since experiments usually inspect variables in a very isolated setting.
In addition, experiments require high effort in both experiment setup and
experiment execution. We therefore suggest to choose experiments for very
specific, but unclear quality factors.

Contribution 6. Creating an agile artifact model: In order to create activity-based qual-
ity models, we need artifact models to define quality factors on. Not always is
such a model present in practice. In this contribution, we needed an artifact
model for distributed agile project management, largely focussing on require-
ments. To derive such an artifact model, we refined an existing artifact model
in a cooperation with plixos GmbH and analyzed the results.

Results: We contribute an artifact model to support the construction of tools
for managing distributed projects. For this, we use a previously defined refer-
ence artifact model for agile methods and enhance it for the use as a real-world
data exchange model. The study indicates customization that is required in
specific cases and shows an approach for defining customized artifact models.

RQ 3: How can we efficiently ensure quality factors?

Method: To bring such ABRE-QMs into practice, we need a more efficient method
for RE artifact QA. Therefore, we propose to detect violations of specific quality
factors of such an ABRE-QM automatically. For this, we transfer the concept of code
smells to RE as requirements smells. Based on ABRE-QM, we define requirements
smells as well as requirements smell detection approaches. We validate the approach
technically in a prototype and discuss various usage scenarios. In addition, we
conduct interviews to understand the shortcomings of existing manual QA and
create a QA process that combines manual and automatic QA for a more efficient
approach towards RE artifact QA.

Contribution 7. Requirements Smells: We define quality assurance with requirements
smells, a method for automatically checking a natural language RE artifact
against certain quality factors. A Requirements Smell is an indicator of a
quality violation (based on an ABRE-QM), which may lead to a defect, with
a concrete indication and a concrete detection mechanism. We furthermore
provide a taxonomy for requirements smells.

Results: We define requirements smells for automatically checking an RE
artifact against certain quality factors.

Contribution 6. Requirements Smell Detection and Tool Support: We provide a technical
validation for requirements smell detection through a prototype that detects
requirements smells in various types of RE artifacts.

Results: The approach shows that various requirements smells can be auto-
matically detected through approaches in natural language processing.

35

3.3. Methods and Contributions

Contribution 8. A Process for Efficient QA: We analyze the problems of QA in a case

study at a company in industry. In this case study, we conduct interviews with
practitioners at Munich Re on challenges of existing QA processes. Based on
these interviews, we propose a combined approach of manual and automatic
QA.

Results: The data analysis of the interviews resulted in 8 main problems. We
define a set of principles and proposals to address these problems, which result
in a flexible review process that includes both manual and automatic QA.
The results extend the existing framework of Katasonov and Sakkinen [KS05],
among others, by automatic requirements smell detection and the concept of
activity-based requirements engineering quality.

RQ 4: What are the benefits and limitations of requirements smell
detection?

Method: We apply requirements smell detection in a series of cases provided by
three industrial and one university context. Based on qualitative and quantitative
data, we show the potential of requirements smells to detect quality defects, but
also the varying precision of such an approach. In addition, we provide an analysis
that explains which types of quality defects can be assured with requirements smells
and which cannot.

Contribution 9. Practical Evaluation of Requirements Smells: We evaluate the require-

ments smells in terms of

1. precision and recall of requirements smell detection,
2. practical relevance of requirements smell findings,
3. awareness of found defects to practitioners, and

4. applicability of the process for practitioners.

The evaluation is performed in multiple case studies in three industrial contexts
with Daimler AG, Wacker Chemie AG, and TechDivision GmbH and an aca-
demic context at the University of Stuttgart. The cases are distributed across
various software development processes and various forms of requirements
representation.

Results: Requirements smells are present over all methods and domains.
We can detect requirements smells with a reasonable precision and produce
findings that are relevant to practitioners. Practitioners from different domains
and contexts state that the approach can be successfully integrated into the
QA process.

Contribution 10. Limitations of Automatic Detection: In the previous contributions, we

36

focused on automatic requirements smell detection. In this contribution, we
analyze to what extent RE quality defects can be automated. Based on results
of RE artifact reviews, we analyze the scope of what is possible in automatic
smell detection.

Results: The studies show five main reasons for undetectable quality criteria:
Stakeholder or domain knowledge, requirement of deep natural language
understanding, knowledge of system scope or goal, knowledge of process
information, and vaguely or subjectively defined criteria. In an analysis of a
large, industrial RE artifact guideline, we estimate that 52% of the criteria
can be checked either perfectly or with a good heuristic. For detection of
violations, most criteria require just simple heuristics. The main reason why
criteria cannot be automatically detected are imprecise or unclear definitions.

3. Research Design

‘Aljenb 3y paseqg-AlAioe .
d ainbiy siyy :"g°€ ainbi4
: 1 9Y1 JO MBIAIBAO UB SBpIAO
1ejaJ ainbly 8yl "sIsayl Siyl Jo s}nsd
- eolignd paie[al oyl Yum synsal ayy sa
0 s1deou09 a8y} ol (| -) suon

| e T ———— 1| solpnis ase) ul - !
| $5990id 0D H ' sppws-beyjo 1/9/4
| 3dsous 1| Snwrt g sBIApY — !
jonuog Ayenp T~ 7T —— RSy P g g !
" "|" uollo9la("
“ o llows ‘sbay ! .-
“ = mm | “ _ " | 19O 10B4ILY 3 !
" @ ! " s|lows ‘sbay | ! a|1by painqgusiq |
! ey T
| | X] - _
deduy t------------oo- S tooIIIooIIIIooo i [T !
mkwwmn_B__aso ST T TS TTTTI oo fTTTT TS o [m>>m_>5mc_.w w. | m !
1 r | | wouy an | ! : I !
! aAIsSE I s10efiLie 3Y I sauiepin Toors oon
" oo_wwg_e_ a a | Jo Aunqeureueny 2 I - —— ! "_ ¢ : !
R hh========" I 5
e === _) L[e veid 0ol]
| 1 L X —!
! adlopamssed |, [[¢ |[¢ ! |
| : .I_ o L
_ . _||_ L] B "
IS | " | % [sannu3
_ | ! s10BIIY
SIMARIY \ Buipueisiepun | ! Buiurerurey ! ! ! 3 sjoey
B siopjoyaxers ! o= 1 R
|'|l'|"llll|lll—-‘ llllllllllllll |
| dewpeoy g L1 jopo e1om |
| _suoneoyddy 8 1 woauav v
| "D paseg-AuAnoy by T ——— |
_ [}
|
Auend _ !
3y paseq-Auanoy | "
0 1dasuo) |
o ! =]
|
[}
- Bj0Y
o ___ ot Lle=l 4

37

3.5. Further Related Works Co-Contributed by the Author

3.4. Results Overview

Fig. 3.2 shows the results of the aforementioned contributions within the concepts
of an ABRE-QM. Publications A and B answer RQ 1 by defining the basic concepts
of this thesis, namely ABRE-QM. Different instances of ABRE-QMs are analyzed
throughout answering RQ 2: Publication E explains how to define an artifact
and entity model. Publications A, C, and D show different impacts and their
validation: In Publication A, we create a complete ABRE-QM from guidelines and
interviews, in Publication C we execute case study research to detect quality factors
for maintainability, and in Publication D we study the impact of passive voice onto
understanding activities in experiments. Lastly, in RQ 3 and RQ 4, we focus on more
efficient methods for quality assurance, through the development and evaluation
of requirements smells in Publications F, G and I, and the development of a more
efficient RE quality control process in Publication H.

3.5. Further Related Works Co-Contributed by the
Author

In addition to the included publications, we contributed to various further pub-
lications that are related to these aforementioned contents, but not included in
this thesis (see Preface). In the following, we briefly go over the content of each
publication and explain how it is related to this work.

In [MFME15], we first analyze in a given context whether or not RE artifacts are

created and used. The study answers this in the affirmative. Second, we design
an experiment, based on an ABRE-QM, and similar to our Publication D, yet
for other quality factors and for the activity creating test cases. The results
showed that incorrect information in RE artifacts leads to worse test cases. It
could not show a significant effect of negative statements (a quality factor from
the ISO-29148 standard [ISO11b], see also Chapter 2.4.3.1) on the created
test cases. This provides evidence for a similar hypothesis stated by domain
experts in our study in Publications F and G.
Relation to this work: These studies have two implications for this thesis.
First, the results serve as motivation and indicate that RE artifacts are created
and used in practice. Second, the experiment provides further evidence that
we can use ABRE-QMs to increase our understanding of RE artifact quality
through experiments.

In [VFW16], we analyze reports of manual reviews in the automotive domain. Inspect-
ing a sample of these reports indicates, among other aspects, that completeness
and ambiguity are the main defects in this context, as reported by practitioners.
Relation to this work: The study provides further motivation for improving
quality control for RE artifacts. In particular, an activity-based quality view-
point enables a more precise definition of defects, and our smells particularly
address ambiguity and completeness issues.

In [MMFV14], based on survey research, we define variables for RE artifacts and
model the relations between these variables both inside and outside RE. The
study indicates the complexity of this endeavour and shows that these variables
can only partly be observed and measured.

Relation to this work: The approach gives a first glance on how to under-
stand second and third-order impacts in RE (see also the discussion and future
work section of this thesis).

38

3. Research Design

In [EVF16], and [EVFM16], we make use of the activity-based paradigm to define com-

pleteness for RE artifacts. In addition, the works provide constructive support
in the form of sentence patterns to improve RE artifacts.
Relation to this work: The contributions of these works are twofold: First,
they enable to precisely define the quality factor completeness, based on RE
artifact use. Second, these works show how ABRE-QMs can also help in
constructive QA, in contrast to the rather analytical QA approaches presented
in this thesis.

In [ABBF17], we transfer the concept of requirements smell detection to vulnerability
descriptions. For this, we created a tool that enables the author to identify
missing content in vulnerability descriptions through detection of keywords.
The study indicates that the approach can easily be transferred to quality
factors of other artifacts.

Relation to this work: The study strengthens our confidence into the broad
applicability of requirements smells and our requirements smell detection.

39

cHAPTER 4

Summary of Results

In this chapter, we summarize the results of the appended publications and describe
their interrelation. Following the methodology explained in Chapter 3.3, we go
through the results of each research question. We start from the question of how
to precisely model RE artifact quality in RQ 1 and analyze the question of how to
ensure validity of these models in RQ 2. In RQ 3, we then propose a method to
efficiently ensure certain parts of the quality model, before we empirically evaluate
strengths and limitations of such a method in RQ 4.

4.1. RQ 1: How Can We Precisely Define Quality for RE
Artifacts?

Even though it is widely acknowledged that the quality of RE artifacts is an
important factor for project success or failure (see e.g. [Bro06]), there is not yet a
common agreement on what the term RE artifact quality really means. Requirements
standards, such as the IEEE-830 Recommended Practices [IEE98]| or its successor
the ISO/TEEE/IEC-29148 [ISO11b|, give normative guidelines. However, as we
describe in Chapter 1.1, we argue that these standards provide only incomplete,
inadequate and imprecise definitions of RE artifact quality.

Therefore, we contribute a novel view on requirements engineering artifact quality,
which defines RE artifact quality from a quality-in-use perspective. The proposed
model defines quality based on the explicit impact of a quality factor on certain
activities and therefore enables to express RE artifact quality in a more precise,
adequate and potentially also complete manner. This section summarizes and partly
extends the results of Publication A and B

4.1.1. Summary of Approach: ABRE-QMs

To precisely define RE artifact quality, we designed activity-based RE artifact quality
models (ABRE-QMs). In the following, we describe the concepts behind ABRE-QMs,
before reporting our experiences on validation of ABRE-QMs in the next research
question (Section 4.2).

1

4.1. RQ 1: How Can We Precisely Define Quality for RE Artifacts?

4.1.1.1. ABRE-QM Meta Model

ABRE-QMs are based on a quality-in-use paradigm in RE: We postulate that creating
an RE artifact is rarely an end in itself, but just a means to understand and reach
the project’s goals. Following this line of thought, the purpose of the requirements
artifact is to support the stakeholders in the activities they are performing in the
project!.

To describe the structure of ABRE-QMs, we provide an ABRE-QM meta model that
introduces the concepts needed to describe an ABRE-QM. The ABRE-QM meta
model adapts and extends the QUAMOCO meta model [DJLW09, Dei09, WLHT12].
The QUAMOCO meta model is used to explicitly define quality-in-use characteristics
of source code, such as maintainability [DWPT07, Loc13|. We simplify, but also
extend the meta model to adapt it to RE artifact quality.

includes generic role

Stakeholder

Role

performs consists of

Artifact Activity]

¢ contains
contains
Entity impacts [-—-———————1 Impact
influenced by
is Quality Context
present Factor Factor
evaluated by
Assessment

Figure 4.1.: This figure shows the ABRE-QM meta model. The model consists of artifacts and
their decomposition into entities, quality factors and their impact onto activities,
which are performed by certain stakeholder roles. Impacts are influenced by
context factors. Lastly, quality factors are evaluated by assessments.

ABRE-QMs define quality as an instance of the following elements (see Figure 4.1):

An artifact is a documented collection of requirements entities, which is produced
during an RE process. An example for an artifact is a use case document.

Anentity is a coherent documented information. An entity can be a content
item [MPKB10], but can also be further decomposed, e.g. into the linguistic
components of such a content item (see Section 4.3.2.2 for an instance of such
a decomposition). Examples for entities are a use case, an alternative flow
or a step within the flow.

A stakeholder role is the role of someone with an interest in the RE artifact [Poh10],
such as the tester. Each role can include more generic roles. For example, both

1 Obviously, some projects exist, in which only a certain RE artifact is created and therefore the
requirements artifact itself is the project goal. However, even in these cases there is a larger
goal for which the RE artifact is just a means. The project is just scoped in a manner that this
higher goal is outside of the project scope. In the following, we assume that this is not the case.

42

4. Summary of Results

test engineers and developers are also readers of the requirements artifact.
Therefore, quality factors that affect the activity read oder understand, affect
all readers of the artifact, including test engineers and developers through
their included generic role reader. This allows combining shared activities that
multiple stakeholders must execute.

An activity is an invested effort, which involves one or more of the aforementioned
artifacts, such as creating test cases, and one or more of the aforementioned
stakeholder roles, such as the test engineer. An activity can be broken
down into subactivities. For example, the testing activity is decomposed into
creating, running, and maintaining test cases.

A quality factor is a property that is or is not present in an entity. This property must
be objectively assessable through a measure to be used for quality control?.
Depending on the abstraction level of the referred entity, we can differentiate
five types of quality factors (extending the definition of Berry et al. [BBGT06],
see also Section 4.3.2.2 for more details):

e Domain-semantic are quality factors that define properties of the system
with reference to the domain (outside the specification). Examples for
this quality factors are in the direction of validity or feasibility, such as
the quality factor whether use cases have business-value or also whether
an RE artifact contains contradictions between the described system and
the domain.

e Language-semantic are quality factors that define properties of the system
as it is described. One example is a quality factor whether an RE artifact
contains contradictions within the text.

e Structural-syntactic are quality factors that describe properties of syntac-
tic relations within the artifact and content model. Examples here are
fields to be filled out (under certain conditions) or required and forbidden
references between parts of the content model.

e Grammatical-syntactic are quality factors that describe properties of the
grammar of a description. A well-known example for this quality factor
is passive voice.

e Lexical-syntactic are quality factors that describe properties of one or
more single elements of the language, such as words or phrases not to be
used in the RE artifact.

However, these boundaries are often fuzzy as quality factors can refer to
multiple levels. An example for this is a grammatical ambiguity that hints
at an semantic incompleteness. As such, a passive voice requirement (as a
grammatical-syntactic quality factor) might imply that we do not know yet
who is performing a certain action in the system (a language or even domain
semantic quality factor).

An impact is an explicit relation between a quality factor and an activity. The impact
influences either effectiveness or efficiency of that activity. This impact is
explicitly discussed through: First, a reason, i.e. an argumentation why the
presence of a specified characteristic (the quality factor) of an artifact impacts
the associated activity; second, consequences on costs, schedule or quality of
the developed system; and third, a source from which this impact was derived
and which can provide further information, i.e. a requirements quality standard
or corporate guidelines.

2 Please note, that for this notion, continuous properties must be transformed into binary values.
E.g. in order to use continuous properites such as business value, we have to transform the factor
into a binary factor, such as business value is higher than expected effort.

43

4.1. RQ 1: How Can We Precisely Define Quality for RE Artifacts?

A context factor influences the impact of a quality factor. For example, the problem-
atic impact of a passive voice requirement varies, depending on the background
of the reader. If the reader has no or few domain knowledge, the passive voice
has a stronger impact. In contrast, in cases where the reader is well aware
of the domain and the ideas of the system, the impact can be less problem-
atic. Please note that the usage context is already partly represented through
stakeholder roles and activities. These context factors can be understood as
an extension of this usage context onto individual quality factors. Context
factors are of the following types:

e Human and team context factors refer to the knowledge or situation of
an individual stakeholder or a team of stakeholders.

e Process context factors refer to the process within which the activities
are conducted.

e Tool context factors refer to the tooling through which’s means the
stakeholder role uses an RE artifact.

An assessment is a description for evaluating an entity against a quality factor. The
application of a assessment against an entity (analogue to Deissenboeck [Dei09])
results in a (potentially empty) set of quality defects. Just as Deissenboeck
describes, we see three potential categories of assessments: manual, automatic,
and semi-automatic assessments.

4.1.1.2. Exemplary Quality Factor: Explicit Steps in Use Cases

To foster understanding, this section provides an exemplary excerpt of an ABRE-QM
(see Fig. 4.2). The example shows the definition of one quality factor, which are the
presence of explicit steps in a use case flow.

1. Artifacts and entities: A use case document (e.g. [Coc98]) is a common artifact for
specifying functional requirements to software systems. A use case document
contains one or multiple use cases, which usually contain a basic flow, which
is a sequence of steps that describes how the user interacts with the system.

2. Stakeholder roles: For the sake of simplicity, in this example, we consider only
test engineers.

3. Activities: When we analyze how a test engineer processes the use case document
in a specific project, we find out that among other activities the test engineers
goes through the use case steps and creates test step(s) for the use case’s
basic flow.

4. Quality factors: It is considered good practice in use cases to explicitly separate
each step instead of describing the whole basic flow in one text block. With
the aforementioned context and activity in mind, we understand why a use
case with this quality factor is considered higher quality: The test engineer can
directly translate the use case steps to test steps. Therefore, the test engineer’s
task of creating a test sequence can be executed more effectively (and maybe
also more efficiently) when the factor is present in the use case. Fig. 4.2
explicates this reasoning through a positive (’+’) impact in an ABRE-QM.
Please note, that for simplicity, we only discuss one of the impacts of this
quality factor here.

5. Context factors: One could consider the applied tool to be a context factors. De-
pending on the concrete tool in use, the translation is more or less efficient.

6. Assessment: One could discuss various types of assessments, depending on the
tool used. A easy-to-apply assessment is a manual review, which can spot
this quality defect. In addition, for various requirements management tools,

44

4. Summary of Results

Use Case Test Engineer
Document (T.E.)
containsL \l,performs
Use Case Create Test
Steps
¢
contains
+
Basic Flow) Rationale: T.E. can translate
'y impacts steps
contains [influenced by
is is explicitly 3
Step present separated Tool-Features
evaluated by

Manual Review

Figure 4.2.: This figure shows a simple example excerpt of a quality factor in an ABRE-QM.
The excerpt discusses why explicitly separated steps in basic flows of use cases
are considered good quality. In this example, we discuss the impact onto creating
test steps, i.e. explicitly separated steps in basic flows allow more efficient and
effective creation of test steps through reuse.

one could discuss automatic (or at least semi-automatic) methods through
automatic analysis of the use case’s structure.

This example shows the definition of one quality factor. An ABRE-QM is a com-
position of a set of such quality factors with their respective relations. RE artifact
quality is thus defined through an ABRE-QM.

4.1.2. Conclusionto RQ 1

So far, we have a limited understanding of what the term high quality RE artifacts
means in a specific context. Existing definitions of RE quality define quality in an
apodictic manner, but the defined characteristics remain incomplete, inadequate
and imprecise. To address this shortcoming, we propose activity-based RE artifact
quality models (ABRE-QMSs). Through explicit modelling of the impact of quality
factors onto activities, the method enables to define RE artifact quality from a
quality-in-use viewpoint.

Quality is thus defined as a set of quality factors. Each quality factor explicitly
defines its impact onto a stakeholder role’s activities in the project. This ensures
that each quality factor comes with a precise reasoning of consequences. In addition,
since impacts are related to activities, such an understanding of quality takes the
context into consideration. Furthermore, we can discuss completeness of such a
model by iterating through the stakeholder roles and activities: The quality model
is complete if it defines all quality factors required to ensure that all stakeholder
roles can execute all their activities efficiently and effectively.

This contribution enables researchers to provide practitioners with a precise definition
of what they consider to be low quality, why (i.e. because of which consequences)
and in which context (i.e. which activities are performed). Practitioners can then
use such a precise quality model and, based on artifacts, activities and impacts,
decide which quality characteristics are relevant for their context.

45

4.2. RQ 2: How Can We Create Valid Quality Models?

However, defining quality through precise quality factors does not ensure that these
quality factors correctly reflect the true impacts in practice. We also have to ensure
that we create valid quality models in the sense that the claimed impacts, in fact,
hold. In the next section, we report on three studies that we executed to analyze the
validity of ABRE-QMs. In addition, also ABRE-QMs can be incomplete through the
lack of certain quality factors. We discuss this aspect together with other limitations
and extensions in Chapter 5.

4.2. RQ 2: How Can We Create Valid Quality Models?

The contributions for RQ 1 show how to create an ABRE-QM based on explicit
quality factors and impacts. The resulting model reflects explicit reasoning behind
each aspect of the model. However, reasoning can easily be invalid and impacts can
vary by contexts. Therefore, it is essential that impacts are validated.

Currently, since there is no structured and explicit definition of RE artifact quality,
there is also no systematic approach to evaluate whether quality characteristics
hold or not. In general, there are three approaches to empirically test hypothesis
(c.f. Wohlin et al. [WRH'12]): We contribute validation of quality factors based
on expert’s experience through interviews, based on in-depth analysis of individual
projects in case studies, and, lastly, based on controlled manipulation of variables in
artificial settings in experiments. In addition, based on three individual studies, we
discuss in which situation which approach helps to validate quality factors.

This contribution enables researchers to evaluate whether certain quality factors in
fact hold for their activities. However, while we built upon the ABRE-QM meta
model, the approaches base on a quality-in-use viewpoint and thus can also be used
outside of an ABRE-QM to reason about quality in RE.

This section is based on and summarizes the results of Publications A, D, and C.

4.2.1. Foundation: Defining Artifact Models

The ABRE-QM takes as a prerequisite an artifact model, on which the quality
factors are based. However, not always do we have these generic artifact models, as
we require in the ABRE-QM (see Section 4.1.1). In case we do not, we need to find
ways to create such a model. In the following, we report on the results of such a
study. This section summarizes the results of Publication E.

In a cooperation with industry partners, we create such a model in the context of
globally distributed teams in agile software projects. The model focusses on agile
project management, with a particular focus on agile requirements. In the study,
we extending an existing reference models together with our industry partners, and
analyzed the differences. Our study shows that large parts of the artifact model
must be refined, either by creating new classes or by adding attributes to existing
classes. However, the study also shows that even though refinements are necessary,
the original model provides enough material to start with. Lastly, our study also
raises questions on the dissemination of one specific concept in practice. This could
indicate that, for RE artifact quality models, it might not be sufficient to just rely
just on reference models.

4.2.2. Summary of the Approaches

To validate the model, we must validate all elements and their relationships. This
means that for a specific quality model, we must validate artifacts, entities, stake-
holders, activities, quality factors and impacts. Of these, the core of the model are

46

4. Summary of Results

quality factors and impacts. Therefore, in the following, we largely focus on these
two elements during the evaluation?.

In empirical software engineering, researchers often differentiate three general ap-
proaches (see e.g. [WRHT12]): surveys, case studies, and controlled experiments.
In the following, we describe each method on its own, providing a description how
this technique can be applied to validate a quality factor.

4.2.2.1. Validation of Quality Factors in Expert Interviews

The first approach to validate quality factors are surveys, e.g. in the form of expert
interviews?. Surveys allow collecting information from people describing their
knowledge or behaviour [IWRH'12|. Given a certain context, such as a domain, a
field, or a specific company, we can employ interviews to validate a large set of quality
factors by collecting this information from adequate, knowledgable stakeholders.

Our approach consists of four steps:

1. Select experts: The first step, subject selection, aims at selecting a representative
set of experts for each of the potential stakeholders.

2. Inspect artifacts & entities: The second step validates the artifacts and entities,
e.g. by iterating through project artifacts. Since in practice this can reveal
a plethora of artifacts and entities (see e.g. [MWL'12] for such studies),
reduction of artifacts together with local experts can clarify the scope and
greatly reduce the required effort.This involves questioning which artifacts
exist, which artifacts are in fact used, and how they relate to each other.

3. Inspect stakeholders & processes: The third step aims at understanding the role
and process model of the project. Therefore, the goal of this step is to develop
a complete list of stakeholders and their most important activities.

4. Validate impacts: The goal of the fourth step is to validate the quality factors
and their impacts. In particular, in this step, we must evaluate the following
questions:

o Are all relevant quality factors and their impacts present? If not, we need
to extend the quality model and consider also extending the survey.

o Are all quality factors and their impacts relevant? A quality factor and its
impacts are relevant if it measurably affects the activities of a stakeholder.
In case we have irrelevant factors, we must remove them from the model.

o Are all quality factors and their impacts accurate? A quality factor and
its impacts are accurate if the presence of the quality factor at the entity
has the described effect on the activities. When answering this question,
we could find counter-examples, in which an impact does not hold. In
these cases, we can decide to either remove the quality factor completely,
or correct it by splitting up the entities, activities, or even the quality
factors. For an example of such an analysis, see the Ul design details
excerpt in Publication A.

Please note that this process may not necessarily be executed sequentially, but rather
iteratively. For example, Step 3 could reveal new stakeholders, which need new
expert selection etc.

3 Even though stakeholder analysis itself can be a difficult and sometimes cumbersome activity.
For further details, Pacheco and Garcia [PG12| summarize the state of the art in stakeholder
identification in their systematic literature review.

4 Surveys can come in the form of interviews or questionnaires [WRH'12]. Even though each of
these two methods enables to apply a different set of techniques, the advantages and disadvantages
for validating quality factors largely apply for both. In the following, we focus on interviews,
since it allows more fine-grained discussion and analysis.

47

4.2. RQ 2: How Can We Create Valid Quality Models?

4.2.2.2. Validation of Quality Factors in Case Studies

A case study investigates a certain study object in real life in its original context
and in detail, usually applying multiple techniques [WRH'12]. Consequently, one
can apply case studies in a constructive manner to understand a quality factor in
context or discover new quality factors. Again, the approach follows the elements of
the quality model:

1. Select a field and one or multiple cases: As a first step, we need to select the field
under analysis and cases, where the data (see Step 4) is available.

2. Inspect artifacts & entities: (See expert interviews).
3. Inspect stakeholders & processes: (Sec expert interviews).

4. Validate or mine quality factors: In this step, we analyze which problems or defects
in the case originated from artifacts and caused negative consequences for
corresponding activities. To observe these, one can look through the produced
artifacts, e.g.:

e Review protocols that indicate the effort that was invested during QA of
the RE artifacts

e Incorrect test cases or incorrect test results that show that the test
engineer misunderstood the RE artifacts

e Requirements change requests or defects in bug tracking systems that can
be traced back to RE artifacts, to understand defects in the RE artifact
that are discovered during development or further activities

e Changes that have been performed on the RE artifacts in order to under-
stand maintenance efforts

Lastly, in line with the suggestions by Wohlin et al. [WRH'12|, we suggest to
triangulate the results with further sources, such as interviews.

4.2.2. 3. Validation of Quality Factors in Controlled Experiments

As a third approach, we can analyze quality factors and their impacts in (controlled)
experiments. In experiments, we systematically manipulate individual variables
to understand the impact of a certain treatment on further variables [WRH*12].
Consequently, we can apply experiments to analyze the hypotheses we have about
a single quality factor and its impacts on activities. Following the terminology
of [WRH'12|, the experiment design is as follows:

Define treatment: The treatment consists of the different aspects of the quality factor.
Therefore, we usually compare specifications where a quality factor is present
(Treatment group, e.g. passive voice requirements) against those where a factor
is not present (Control group, e.g. active voice requirements).

Select dependent variables and metrics: The dependent variables are metrics V' of the
activities (e.g. understanding a specification), according to the impact. This
means, that for impacts on effectiveness, we measure the number of errors
made, for efficiency we measure the time that is required to execute the activity.

Select subjects: Since the quality model builds upon the quality in use, and the
dependent variables are the number of errors or the time required for a certain
task, we need human subjects to execute this task. We argue that, as far as
possible, the subjects should resemble the real stakeholders of the artifact to
prevent confounding factors skewing the resulting data.

Define hypothesis: For the independent variable V and the groups {Treatment, Con-
trol}

Hy : V(Treatment) < V(Control)
H, : V(Treatment) > V(Control)

48

4. Summary of Results

Select data analysis: Hypothesis testing can then be performed according to standard
testing procedures (see e.g. [WRH'12| or [WMMY12]).

All in all, experiments allow analyzing single quality factors in detail.

4.2.3. Summary of Results

We executed each of the aforementioned methods in a different case. In the following,
we report on the individual results. We start with a summary of the validation of
a quality model in interviews. Afterwards, we briefly explain the results of a case
study on quality factors for RE artifact maintenance. Finally, we summarize our
experiment on the impact of the quality factor passive voice on understanding RE
artifacts.

4.2.3.1. Case 1: Validation through Expert Interviews

This section summarizes the results reported in Publication A.

Goal. The goal of this study, as formally described in Tab. 4.1, was to evaluate
whether an ABRE-QM representation of requirements quality definitions helps team
members in a software project.

Table 4.1.: Research Goal of Case 1
Evaluate an activity-based quality model
with respect to the validity of impacts, as well as benefits and drawbacks
to validate a company-specific quality definition
from the point of view of project team members
in the context of use cases in a industrial business information system
development setting.

Study Design. We performed the study at the insurance company Munich Re. As
study subjects, we identified a leading requirements engineer and an experienced
developer. To create the model, we took the company’s 28-pages use case guidelines
and translated each of the roughly 50 rules into an ABRE-QM representation. In a
first workshop with the experts, we validated artifacts, entities, stakeholders and
activities present in their software development environment. In a second workshop,
we iterated through each quality factor and impact and discussed the validity of
this impact. After the validation, we openly discussed the benefits and drawbacks of
such a representation.

Results. For most of the impacts, the translation was straightforward to conduct.
However, for a few quality factors, such as presence of Ul details as well as the
use of subflows, the explication of arguments revealed tradeoffs for quality factors.
For example, the presence of Ul details in RE artifacts has various impacts on
the further activities. Fig. 4.3 shows a summary of the impacts, both positives
impacts on understanding and testing, but also negative impacts on maintenance
and use case execution. In Publication A, we discuss this tradeoff in depth. In
another example, Munich Re enables the reuse of flows in use cases through subflows,
a construct that is equivalent to a function call in programming languages. The
validation explicated that this concept has advantages during maintaining and
reuse-activities, but disadvantages in reading and understanding-activities. The

49

4.2. RQ 2: How Can We Create Valid Quality Models?

Stakeholder & Acti

—{ Preconditions

> Postconditions

> Basic Flow

A visual representation of a
Ul supports the stakeholder
in understanding, because it
makes the Use Case more
concrete.

Visual elements change
more often than the way
how a user interacts with
the system. Therefore, UC
with Ul detail must be
changed more often.

Rationale:

easier.

The tester can associate the
UC directly to the Ul which
makes running the test case

All Stakeholders Req. Engineer Implementer Tester User
Artif & Entiti Find Understand Create Maintain Implement Derivate Run Perform
rtifacts & Entities uc uc uc uc uc Testldea | Test uc
Use Case t 4 4 »|
1 —
Impacts
\+u P \.v
— Name
Rationale: Rationale:

Rationale:

A user might have to use a
suboptimal Ul, because it
was determined early in
the process.

_, Step

Ul Design Details

through its impacts.

Figure 4.3.: This figure shows an ABRE-QM excerpt for Ul Design Details. The excerpt shows how ABRE-QM can be used to systematically analyze quality factors

50

4. Summary of Results

quality model thus shows this tradeoff and could enable a cost-based evaluation,
as is known from activity-based quality models in other disciplines such as source
code [DJLW09, Dei09, WLH*12| or system tests [HJE*14, Haul6].

After the workshops, the experts expressed that they see two advantages of such an
approach: First, making the impacts explicit and discussing tradeoffs serves as a
validation of their own implicit quality understanding, as well as their guidelines.
Debating the tradeoffs, in their opinion, could help improving the guidelines. Second,
the experts mentioned that the ABRE-QM could help improve the completeness of
the guidelines: Since very few of the impacts lead directly to testing, they discussed
whether their use cases were optimized for testers or if additional rules are required.

In summary, the results indicate that interviews enable to discuss a larger set of
quality factors. For example, in this case, we could discuss a whole quality model in
two workshops. This method also enables us to explicate some of the arguments
and counter arguments for or against some quality factors. However, when facing
unknown or contradicting quality factors, we need more precise and less subjective
methods.

4.2.3.2. Case 2: Generating Factors for Maintainability through Change Analysis

The majority of costs in the life cycle of a project do not go into the creation of
software, but into its maintenance [Boe81, Gla98]. While quality factors for software
maintenance have been studied for source code [DJLW09, Loc13], quality factors for
maintenance of RE artifacts is less known. This section summarizes Publication C.

Goal. For this study, we differentiate between semantic changes of RE artifacts,
which change the system described, and syntactic changes, which change the de-
scription of the system. The goal of the study (as formally described in Tab. 4.2)
is to analyze these changes to gain a deeper understanding of maintenance in RE
artifacts. This allows us to derive quality factors for unnecessary, cumbersome, and
risky activities during RE maintenance.

Table 4.2.: Research Goal of Case 2
Analyze changes in contents of use case artifacts
with respect to frequency, location, change types, and level of risk
from the point of view of requirements engineers in practice
in the context of a large business information system in maintenance.

Study Design. In order to understand how to design RE artifacts for good main-
tainability, we analyze: How many of the changes in maintenance are semantic
changes (i.e. changes of the system described) versus syntactic changes (i.e. changes
how the system is described)? In addition, we analyzed, during these changes, what
were quality factors of the RE artifact that made changing the artifact (subjectively)
difficult?

To answer these questions, we analyzed 15 months of changes in the use cases of
an industrial software project in maintenance phase. We developed a typology of
changes, based on the differentiation between semantic and syntactic changes and
quantified the distribution within this typology. We furthermore identified and
quantified related changes. We discussed the results with practitioners and analyzed
their perception of difficult changes.

51

4.2. RQ 2: How Can We Create Valid Quality Models?

Results. The study shows that roughly every second change in the RE artifact did
not change the functionality of the system itself, but only the documentation of
the system within the RE artifacts. Since at least the syntactic changes could be
avoided if carefully designed upfront, we argue that these efforts show the relevance of
maintainability for RE artifacts. Furthermore, certain use cases were especially prone
to changes, due to their unfortunate structural organization. We discovered that the
maintenance of alternative flows in use cases is of special relevance for maintenance,
since these are the parts that frequently change. Lastly, a qualitative and quantitative
analysis aiming at a deeper understanding of problematic changes identified the
quality factor of a changing terminology as well Ul design details causing many
changes. Practitioners reported that interconnected use cases negatively influenced
maintenance, since keeping consistency in these use cases makes their changes
particularly difficult and risky.

All in all, the results indicate the potential of case study research to identify previously
unknown quality factors in a relatively unknown field. However, we have to carefully
analyze whether the results are specific to this individual project. In addition, in
case study research, we cannot control the variables, thus preventing us to draw
conclusions about what would have happened if the project had documented their
RE artifacts differently. Therefore, this method enables us to explore on unknown
territory, but we have to take results with a grain of salt.

4.2.3.3. Case 3: Experimental Validation of a Quality Factor

In a third case, we analyzed a very common quality factor for RE artifacts in depth:
passive voice. Passive voice is widely considered a problem in RE [Kof07, ISO11b,
Wie05]. Nevertheless, passive voice is widespread in RE artifacts in practice (for
examples see [MoD11, Bos07, BHHT03, MCH'12]). Consequently, the question
arises: Does passive voice really cause problems in understanding RE artifacts?
Therefore, we inspected passive voice as one quality factor, in order to understand
its impact on understanding activities (see Fig. 4.4). This section summarizes the
results of Publication D.

Stakeholders & Activities

Reader
Understand

Artifacts & Entities . Identify Domain || Identify Domain

Identify Actors Objects Object Relations
Artifact
[2
?
Sentence (R
Passive Voice Quality Factors
& Impacts

Figure 4.4.: In our experiment we analyzed the impact of passive voice sentences in RE
artifacts onto the reader. This figure shows the corresponding ABRE-QM.

52

4. Summary of Results

Goal. The goal of this study, as formally described in Tab. 4.3, is to understand
whether passive voice in RE artifacts causes problems for readers in understanding.

Table 4.3.: Research Goal of Case 3
Characterize the impact of passive voice sentences in RE artifacts on un-
derstanding
with respect to the quality of the artifacts produced from the activities
find actors, identify domain objects, identify domain object relations
from the point of view of the reader of an RE artifact
in the context of an analysis of requirements from real projects by graduate
and undergraduate students in computer science.

Study Design. For this study, we took a set of industrial RE artifacts and extracted
requirements that contained sentences in passive voice without agents (by-phrase).
We then asked our study subjects to provide us with information about the sentence,
including the main actor, the main domain objects and their relations (in form of
a domain model). We then compared the results of the treatment group with the
results of a control group, who received the same requirements translated into active
voice.

Results. The results were inconclusive regarding whether or not passive voice
hinders identification of actors: Although the active voice group performed better,
these results were not statistically significant. The identification of domain objects
was equally difficult for both groups. However, the passive voice group performed
significantly worse when asked to identify how the domain objects relate. Many
participants in the treatment group were even unable to relate objects at all (see
Fig. 4.5).

This experiment indicates that taking a quality-in-use perspective allows us to more
precisely reason about quality factors. In addition, experiments can be used to
inspect effects of certain quality factors in depth. However, experiments are a very
costly endeavour, both in terms of time and personell. In addition, it might not be
possible to study all effects (e.g. long-term-effects) in such an artificial environment
with reasonable time and money.

4.2.4. Conclusion to RQ 2

In this section, we contribute three approaches to analyze and increase the validity
of an ABRE-QM.

The three studies provide a picture of the strengths and limitations of the three
approaches: Expert interviews enable to validate a large set of well-known quality
factors in the domain and experience of the expert. The biggest threat here is
that all acquired evidence is based on the (potentially biased) knowledge of experts.
However, expert interviews might be difficult in rather unknown fields, such as
RE artifact maintenance. In these cases, exploratory studies, such as case studies,
provide valuable knowledge. However, they require significantly more effort to
conduct, and might also not be generalizable to other cases. Lastly, for specific
quality factors, experiments can analyze their impact in artificial contexts, yet only
with considerable effort. Although this is the most precise of the methods since it
allows controlling of many variables, this comes with the risk that results might not
generalize to an industrial setting. In addition, conducting experimental analysis

53

4.2. RQ 2: How Can We Create Valid Quality Models?

Number of Errors

10 —

Actors (A) —
Domain Objects (A) — *_
Domain Objects (P) — *--
Object Relations (A) —
Object Relations (P) —

Figure 4.5.: This figure shows the boxplot graph of the results of our experiment. It compares

54

the number of errors of participants with active voice RE artifacts (A, white) with
passive voice RE artifacts (P, orange). Our experiment showed a non-significant
impact onto identifying actors, no impact onto identifying domain objects and a
significant impact onto identifying domain object relations.

4. Summary of Results

might not always be possible for the complex activities that a software engineering
project comprises.

In summary, the studies indicate the benefits of ABRE-QM for both industry and
academia: For industry, our interviews revealed the potential benefits in terms of
validity and completeness of existing quality models. Furthermore the model can
support to weigh the different quality factors through quantification of the activities.
ABRE-QM shows how to create a quality model that motivates each quality factor
in a precise manner, which enables employees to understand and discuss each factor,
depending on the project context. For academia, the model can establish a common
language to compare and combine studies and, in the long term, built a common
theory of RE artifact quality. The falsifiability of quality factors can lead to a more
fact-based discussion of quality in RE.

In future, we envision that knowledge in RE artifact quality is encapsulated in a
common theory. ABRE-QM provides the language, as well as the theoretical basis
for such a theory. We furthermore show three approaches how hypotheses in such
a theory can be evaluated. However, other quality factors in future work might
require variations of these approaches (e.g. in the direction of global, instead of local
surveys [MW15]).

4.3. RQ 3: How Can We Efficiently Ensure Quality
Factors?

ABRE-QMs enable to model quality from an activity-based perspective. However,
such an understanding of quality forms just one side of the medal. When we analyse
widely accepted quality factors in industrial RE artifacts, we see that violations of
these quality factors are widespread (to give just one example, see the number of
passive voice requirements in [MoD11, Bos07, BHHT03, MCH™*12]). To understand
this phenomenon, we contribute an analysis of challenges of RE artifact QC at
Munich Re in Publication H. One of the results in this study is that pracitioners
need faster and more efficient methods to control RE artifact quality in practice. To
takle the inefficiencies in RE artifact QC, we contribute an approach for automatic
detection of a set of quality factors in natural language RE artifacts. We call this
approach requirements (bad) smells.

This section provides definitions, relates the approach with ABRE-QM, and gives a
taxonomy of requirements smells and requirements smell detection approaches.

4.3.1. Summary of Approach: A More Efficient Process for RE
Artifact QC

To understand the challenges of RE artifact QC, we conduct a case study at
Munich Re in which we analyze the challenges in practice. Based on this case study,
we propose an RE artifact QC process that combines manual with automatic QA.
This section summarizes Publication H.

Goal. QC of RE artifacts struggles in practice. Mendez and Wagner [MW15] report
that less than a third of requirements engineers perform analytical QA of RE artifacts.
However, the concrete challenges of RE artifact QC remains an open question: We
lack knowledge on the challenges of real-world requirements QC processes, and
efficient processes for RE (artifact) QC.

55

4.3. RQ 3: How Can We Efficiently Ensure Quality Factors?

Problem 1: Problem 2: Problem 3: Problem 4: Problem 5: Problem 6: Problem 7: Problem 8:
Time-consuming Meetings Long feedback QA decays Quality decays QAin Introduce QA in | Quality definition
& expensive inefficient loops maintenance? later phase? varies
Principle 1: L . . Principle 3: Principle 4:
Review efficiently Pr;g:gﬂ:czk' r:ei((:jellve Sustain QA Understand
pidly quality in context
Proposal: Proposal: L \L Proposal:
Use_ meetings Phasgd Proposal: Proposal: Proposal: Proposal: Proposal: Company USPT"S
f(_)r important Inspections QA every Measure Boy-Scouts Embed Add a pr_ovu:jes decu':ie
issues only modified part clean-up rule QA tools into QA role guidelines - quality

working tools

Figure 4.6.: This figure visualizes the resulting challenges and proposals for a more efficient
QC process.

Study Design. To understand these problems, we report on an first exploratory
case study, in which we analyze the challenges at Munich Re, one of the largest
reinsurance companies world-wide, to understand the individual problems of require-
ments engineers in practice. Based on the outcomes, we develop a process that aims
at controlling these challenges to enable a sustaining QC process for RE artifacts.

Results. In our case study, we found that the main problems in QC for RE artifacts
in this case were a missing common quality understanding, the low feedback speed,
low efficiency in the QC process, and, consequently, the lack of creating a sustaining
QC processes. Based on these challenges, we make nine proposals to increase the
efficiency of the RE artifact QC process (see Fig. 4.6). To combine the proposals,
we contribute a process for requirements artifact QC that is designed to address
these problems through various techniques. We discuss feasibility and impact of the
process with industry, who acknowledge its potential to increase efficiency and to
provide a more sustaining QC process in practice.

4.3.2. Summary of Approach: Requirements Smells

In the previous study, we argue that two of the main challenges of RE artifact QC
today is that manual QA is inefficient and slow. We furthermore motivate to combine
manual with automatic QA to ensure certain quality factors already during the time
of writing, similar to a spell-checker. In the following, we explain the concept of
requirements smells and give a taxonomy of requirements smells.

This section is based on Publications F and G, and extends them through the relation
to ABRE-QM and a taxonomy of requirements smells.

4.3.2.1. Defining Requirements Smells

A requirements smell is an indicator of a quality violation, which may lead to a
defect, with a concrete indication and a concrete detection mechanism.

In detail, we consider a requirements smell as having the following characteristics:

1. A requirements smell is an indicator for a quality violation of a RE artifact. For
this definition, we understand requirements quality in terms of quality-in-use,
meaning that bad RE artifact quality is defined by its (potential) negative
effects on activities in the software lifecycle that rely on these RE artifacts.

56

4. Summary of Results

2. A requirements smell does not necessarily lead to a defect and, thus, has to
be judged by the context (supported e.g. by (counter-/)indications). Whether
a requirements smell is or is not a problem in a certain context must be
individually decided for that context and is subject to reviews and other
follow-up quality assurance activities.

3. A requirements smell has a concrete indication (symptoms) in an entity of
the RE artifact itself, e.g. a word or a sentence. Requirements smells always
provide a pointer to a certain location that QA must inspect. In this regard, it
differs from general quality characteristics, e.g. completeness, that only provide
abstract criteria.

4. A requirements smell has a concrete detection mechanism®. Due to its concrete
nature, requirements smells offer techniques for detection of the smells. These
techniques can, of course, be more or less accurate.

Furthermore, we define a quality defect as a concrete instance or manifestation of
a quality violation in the artifact, in contrast to a finding as instances of a smell.
However, like a requirements smell indicates for a quality violation, the finding
indicates for a defect. Fig. 4.7 visualizes the relation of these terms as well as the
given definition of requirements smells.

Activity-based Stakeholder
RE Artifact Quality Model Role
(ABRE-QM)
performs
Artifact Activity
contains .
contains IMpacts |- - - - -4 Impact
Entity Is present Quality Factor ?
A A instance of
instance of

Requirements |
Smells present in _indicates for | Quality

Scope Smell Problem

Definition [r | [f

evaluated by

instance of | instance of
Smell
Detector
Instance Level |
detects
Location located at Finding _ indicates for] Quality Defect

Figure 4.7.: This figure shows terminology of requirements smells. In this terminology, we
define requirements smells as specific quality factors of ABRE-QMs.

5 An instance of an Assessment in the terms of ABRE-QM in RQ 1.

57

4.3. RQ 3: How Can We Efficiently Ensure Quality Factors?

In the following, we focus on natural language requirements smells, since, as we
discussed in the introduction, requirements are mostly written in natural lan-
guage [MFNIO4]. Furthermore, as motivated by our study in Publication H, the
best benefits of requirements smell detection come with automation. Therefore, the
remainder of the thesis discusses requirements smells where the detection mechanism
can be executed automatically (i.e. it requires no manual creation of intermediate or
supporting artifacts).

4.3.2.2. Defining a Requirements Smell Taxonomy

Various natural language requirements smells exist (see the appendix to Publication G
for an overview). In the following, we present a classification of these smells according
to their scope (see Fig. 4.7). This classification allows to understand which types of
requirements smells exist.

As defined above, each smell has a detection mechanism, is indicator for a quality
problem, and has a scope on which a requirements smell can potentially exist. In
each scope, different quality problems exist, and for each scope, different detection
mechanisms are required. In the following, we detail these scopes, before explaining
our requirements smell taxonomy.

Scopes for Requirements Smells Entities, as defined in the ABRE-QM, can be
broken down deeper than just the level of artifact model (e.g. use case documents, use
case steps, etc.) but also into what we call the language model. The language model
reflects the state of the art natural language processing and includes information on
sentence boundaries and other grammatical features, such as the parse tree [JM14,
SK13| or Part-of-Speech (POS) tags [JM14, GE09, HEZ15]. An excerpt of such
a resulting model, including the language model, is depicted in Fig. 4.8. In this
figure, we can see the artifact model with entities on top, where each element that
is built on natural language text, e.g. Step is a Textltem containing one or more
text chunks. These text chunks are broken down into its grammatical features.
The features included in this language model represent the grammatical features of
state-of-the-art NLP (based on the popular collection of NLP methods Stanford Core
NLP [MSB*14] and DKPro [dCG14]) and might grow with research progressing in
NLP.

Requirements Smell Types Based on the scopes provided above and the definition
by Berry et al. [BBGT06], we suggest the following classes of requirements smells.
Structural Smells refer to smells within the artifact model. These can be of either of
three typical types:
1. {min,max} Number of content items, e.g. a use case must have between 5
and 9 steps. This includes also the presence or absence of content items.

2. Naming conventions: E.g. that all use cases are two-digits, numbered
and preceeded by a project abbreviation.

3. Coordination of elements, i.e. each element at a certain location must
have an identical element at another location. One example is the factor
that each referenced step in a flow must be defined elsewhere.

Grammatical Smells refer to smells that have a grammatical feature as the scope®.
Grammatical smells are mostly in the form of counting of a grammatical

6 This is strongly related to the class of syntactic manifestations of Berry et al. [BBGT06].
Berry refers to the meaning of syntax as defined by Chomsky [Cho57]. However, we consider
grammatical smells a more fitting category, due to the different meanings of syntax in the
linguistic and computer science world: In computer science, every automatic requirements smell

58

4. Summary of Results

Sentence -_
Requiremert
]
©
§ User Story Feature
° Reason
S
=
) UseGase |+
Postcondition
— Basic Flow |—>] Flow lo——
: —| Alternative FI. entry pont_V
‘ —] Step
v exit point
——————— Textltem f-------------"---"--"-"-"-"-““~—-——— -
¢
TextUnit |
% parts | 4 |
% Chunk e—— Constituent Word
g Syntactic Label Part-of-Speech
> Sentiment Lemma
s Stem
- Flexion compounds
references Word Sense -

Named-entity-t.
Semantic Role
Spelling Correct
Grammar Corr.

I—

Figure 4.8.: This figure visualizes a detailed view on the entities of an ABRE-QM in the context
of requirements smells. It shows the interplay between artifact model on the top
and language model on the bottom. For simplicity, we omitted relations between
textual entities of the artifact model and their parent class Text Item.

59

4.3. RQ 3: How Can We Efficiently Ensure Quality Factors?

feature (e.g. number of subclauses), including the presence of absence of a
grammatical feature (such as superlatives or passive voice).

Lexical Smells refer to smells where a word or phrase in itself is problematic in RE
artifacts, e.g. due to ambiguity. Lexical smells are mostly in the form of
presence or absence of certain combinations of words.

Semantic Smells are those smells that aim at detecting problems in the content that
is described. For example, the smell UI Design Elements in Use Cases is
able (based on word lists) to understand that a use cases probably describes
something that is considered a problem in maintenance (see also Section 4.2.3.2
and Publication C for further details on this quality factor). Since the semantics
can only be detected automatically if it is reduced to syntactic features,
semantic smells must be broken down into syntax (such as the other smells)
to automatically detect findings.

Please note, that these are the basic types of requirements smells. The concrete
smells often form a mixture of these elements, e.g. the naming convention requires
that the use case starts with a verb, and thus needs some grammatical information.

This smell definition allows to classify different types of requirements smells. Further-
more, this taxonomy might allow future work to define requirements smell detection
languages, as well as false positive filters for each type of requirements smell.

4.3.3. Conclusion to RQ 3

Even when practitioners widely agree on quality definitions, the quality of RE
artifacts in practice often does not live up to these definitions. In this section,
we first contribute an analysis of problems in today’s RE artifact QC as well as
the concept of requirements smells which allow to detect certain quality factors
automatically and thus, faster and more efliciently.

The case study shows eight problems in RE artifact QC, which can be summarized
in four challenges: RE artifact QC must be more efficient, provide faster feedback,
must sustain in projects over time, and must reflect the quality definition in the
respective context.

For the latter, RQ 1 and RQ 2 provide ABRE-QM to define quality from a quality-
in-use viewpoint. For the former two, we argue that through a combinations of
automatic and manual QA techniques, RE artifact QC can provide feedback quicker
and more efficiently. Therefore, we contribute a definition and a taxonomy of
requirements smells, and explain how requirements smells relate to ABRE-QMs.
Furthermore, in Publication G, we contribute a technical validation of requirements
smell detection by means of a prototype. However, to understand whether such
a combination of techniques leads to a more sustainable QC process is subject to
longitudinal studies, which we leave to future work.

In order to understand the benefits of requirements smell detection in practice, we
need to empirically analyze to which extent requirements smells are present in RE
artifacts, as well as which defects we can find, and which defects we cannot find. We
focus on these questions in the next section.

detection must be syntactical, since computers only work on syntactical elements. Therefore, we
refer to the smells of this category as grammatical smells.

60

4. Summary of Results

4.4. RQ 4: What Are the Benefits and Limitations of
Requirements Smell Detection?

In the previous section, we described requirements smells, an approach for automatic
support in RE artifact QA. Yet, so far it is open how widespread the problem is
in practice, whether the approach produces relevant findings for practitioners, how
accurate the findings are, and also which issues the approach is able and which issues
the approach is not able to find.

To build this understanding of smells in requirements artifacts, we conducted an
exploratory multi-case study with both industrial and academic cases.

This section summarizes the empirical studies of Publications F, G, and I.

4.4.1. Summary of Approach

In the following, we briefly summarize the research questions as well as the cases
that we analyzed in Publication G.

4.4.1.1. Research Questions

The research objective, to analyze whether automatic detection of requirements
smells helps in RE artifact quality assurance, can be broken down into four research
questions:

RQ 4.1: How many requirements smell findings are present in RE arti-
facts? To see if the automatic detection of requirements smells in RE artifacts
could help in QA, we first need to verify that requirements smells exist in the real
world. The answer to this question fosters the understanding how widespread the
requirements smells under analysis are in industrial and academic RE artifacts.

RQ 4.2: How many of these findings are relevant? Not only the number of
detected requirements smells is important. If many of the detected requirements
smells are false positives and not relevant for the requirements engineers and devel-
opers, it would hinder QC more than it would help. As relevancy is a rather broad
concept, we break down RQ2 into two sub-questions.

RQ 4.2.1: How accurate is the requirements smell detection? The
first sub-question looks at the more technical view on relevance. We want to
find false positives and determine the precision of the analysis in terms of correct
detection of the defined requirements smell.

RQ 4.2.2: Which of these findings are practically relevant in which
context? This second sub-question is concerned with practical relevance. We
investigate whether practitioners would react and change the requirement when
confronted with the findings.

RQ 4.3: Which requirements quality defects can be detected with re-
quirements smells? After we understood how relevant the analyzed requirements
smells are, we want to understand their relation to existing quality defects in RE
artifacts. Hence, we need to check whether, and if so, which defects in RE artifacts
correspond to requirements smells, as we understand requirements smell findings as
indicators for defects.

RQ 4.4: How could requirements smells help in the QC process? Finally,
we collect general feedback from practitioners whether (and how) requirements smell
detection could be a useful addition to QC for RE artifacts and whether as well as
how they would integrate the requirements smell detection into their QC process.

61

4.4. RQ 4: What Are the Benefits and Limitations of Requirements Smell Detection?

4.4.1.2. Case Description

We performed a multi-case study with four different cases. Three of these were
industrial cases from 12 projects of three different companies. In addition, one of
the cases was academic, where we analyzed RE artifacts of 51 different teams. In
total, we analyzed RE artifacts of the size of more than 265,000 words.

The first three cases contain requirements produced in different industrial contexts:
embedded systems in the automotive industry (Daimler AG), business information
systems for the chemical domain (Wacker Chemie AG) and agile development of
web-based systems (TechDivision). While the first two represent rather classical
approaches to Requirements Engineering, the third case applies the concept of user
stories, as it is popular in agile software development. The fourth case has an
academic background (University of Stuttgart) and employs use cases and textual
requirements. Regarding subject selection, for each industrial case we selected
practitioners involved in the company, domain and specification.

For practical reasons, we could not evaluate each research question in each case:
For example, RQ 4.3 depends on the existence of reviews with documented results,
which often not exists in practice. Furthermore, depending the answers of RQ 4.4
on the potentially less experienced students from Case D would introduce a threat
to the validity of our evaluation.

4.4.2. Summary of Results

We empirically analyzed whether or not the concept of requirements smells also
holds in practice. In the following we shortly report on the results.

RQ 4.1: How many requirements smell findings are present in RE artifacts?

The number of findings in RE artifacts strongly correlates with the size of the artifact
(see Fig. 4.9, Spearman correlation of 0.9). There are roughly 44 findings per 1,000
words and some contexts show a striking similarity in the number of findings for
their artifacts. In our cases, the automotive requirements had a lower number of
findings whereas student artifacts contained a higher number of findings relative to
the size of the artifacts. The most common findings are for the smells loopholes and
vague pronouns.

RQ 4.2: How many of these findings are relevant?

Precision A manual classification of a set of more than 600 findings resulted in an
deeper understanding of the precision of requirements smell detection. As shown in
Fig. 4.10, the precision is on average around 59% but varies between requirements
smells. We consider this reasonable for a task that is usually performed manually.
However, this also depends on the relevance of findings to practitioners, which we
also analyze in RQ 4.2. The study also reveals improvements for future work through
the application of deeper NLP.

Recall When analyzing the accuracy of an automatic detection, we must look not
only at precision, but also at recall, i.e. the ratio of all detected findings to all defects
of a certain type in an artifact. To this end, we inspected one artifact of each case,
in total a set of roughly 16,200 words, and manually identified the findings in each
artifact. The manual inspection revealed 200 findings in this artifact sample and an
average recall of 0.82. Fig. 4.10 shows the summary of the results: The comparison

62

4. Summary of Results

Jo sq| Ajuo (an|q) saseo 1eblinls sy} Joy ‘suoseal Aljigepeal 104 Jo.jILE JO 9ZIS YIm Sale|a110d AjBuols sbuipuly Jo Jaquinu ayi moy smoys ainbiy siy| :*6°y a4nbig

000¢T

101y Ul SPIOAA JO JaquinN

0000T 0008 0009
_ _ _

000v

‘pahe|dsip aie s1oejilie Buie[.1100 SS9

M SQ

Hebnnms
uolsiAiayoaL
e ¢ —
lBlwreqg =

0(0)7 00¢€ 00¢ 00T

00S

108)1IUY Ul sBuipui Jo JaquinN

63

4.4. RQ 4: What Are the Benefits and Limitations of Requirements Smell Detection?

o
- .
Ambiguous
¢ Comﬁ‘arative Non- Adverbs
; verifiable and
Vague Requirements Terms Adjectives
Pronouns P + &
¢ Loopholes Subjective
© | Negative Language
o Words
© |
o
T
i &
© Superlative
Requirements
<
o
N
o
o |
o
T T T : ‘ :
0.0 0.2 0.4 0.6 0.8 1.0

Precision

Figure 4.10.: This figure shows the precision and recall of various requirements smells.

shows a recall between 0.84 and 0.95 for four of the five investigated smells. The
highest recall was achieved by the comparative smell, with 0.95, which means that
the smell detection missed one in 20 findings. The fifth smell, with the lowest recall,
is superlative smell with a recall of 0.5. However, this smell is one of the rarest of
the smells, as one can also see in the results to RQ 4.1. Therefore our analysis of
the recall of this smell is based on few data points. Hence, we suggest to take the
recall of this smell with care, and suggest that future studies should investigate this
issue in more depth.

Practical Relevance Publication F indicated that requirements smell detection is
able to find relevant defects. In Publication G, we analyzed this in more detail in the
Case TechDivision. In summary, the practitioners in Case TechDivision expressed
that 65% of the discussed findings were relevant, as they lead to lengthy discussions
and unnecessary iterations in estimation. They also saw the problem of legal binding,
but in contrast to the practitioners of Case Daimler and Wacker, they considered
these findings less relevant due to their Agile software development approach. Based
on these results, they expressed their strong interest in exploring smell detection for
projects; we explain the results of this discussion in RQ 4.4.

64

4. Summary of Results

RQ 4.3: Which requirements quality defects can be detected with smells?

The comparison of smell detection results and review findings revealed that auto-
matic smell detection can point to issues in both representation and content (see
Figure 4.11). The defects, as reported from the reviews, indicate that more defects
can be automatically detected. Just as for static code analysis, however, we see that
automatic analysis can only indicate some defects and thus must be accompanied
by reviews [WJKTO05|. In particular, we identified three types of defects that are
hardly detectable automatically: First, subjective and fuzzy defects, that even the
reviewer cannot clearly specify. Second, defects in which deep semantic understand-
ing of the text is required. Third, defects that require common-sense reasoning,
domain knowledge or other additional information that is not documented in the
RE artifacts.

In-depth Analysis In Publication I, we deepened our understanding of the relation
of defects that can and defects that cannot be detected automatically. Therefore,
we analyzed a complete set of 166 rules from the RE artifact guideline used at a
large Swedish company. The analysis brought three key insights: First, we estimate
that a substantial share of the rules can be automatically checked: Only 25% of the
rules cannot be checked automatically, 41% of the rules could be deterministically
detected, 12% can be checked with good accuracy heuristics, 11% with medium and
low-accuracy heuristics, respectively (see Fig. 4.12). Second, the techniques that
are needed for checking these rules are usually simple techniques, such as regular
expressions or lemmatization [JM14]. And third, the main reason why a rule could
not be automatically checked, was not a need for better NLP, but a need for more
precisely defined rules in RE artifact guidelines.

RQ 4.4: How could requirements smells help in the QC process?

The qualitative study with three industrial cases could show a general agreement
on potential benefits of using smell detection a quality assurance context. When
asked how they would integrate the requirements smell detection, they see possibility
for both analytical and constructive QA, provided, however, this integration would
not increase the required effort, e.g. by integrating the detection into existing tool
chains.

4.4.3. Conclusions to RQ 4

These results indicate that requirements smell detection can detect findings that
are relevant to practitioners. It shows that requirements smells are present across
various domains and approaches, yet with varying density. The requirements smell
detection’s precision and recall varies between the approaches, but has a high
potential to improve based on the false positives detected in the study. The study
furthermore provides a map of which kind of issues can and which cannot be detected.
Lastly, a further analysis of guideline rules indicates that a substantial share of
quality factors can be checked automatically.

65

4.4. RQ 4: What Are the Benefits and Limitations of Requirements Smell Detection?

Language semantics

! “
|
| | .
| I Spelling
! Sentence not understandable \ Grammar Wrong word (language) Wrong word (domain)
I | Language mixture
|
|
S | Terminology
L |
S ! - - -
- | -
5 ! c::m.om.wm.mQ ﬁ.m::m in @_o.mme c:a%:ma domain-specific terms Underspecified terms
@ ! Naming violating convention Inconsistent usage of terms
=
Q. . . |
e Improper legal binding ! Presentation and Structure
|
I _ Encodin Unnatural itemizations Unintuitive structure of table
_ _ g
! \ Singularity in UC Unreadable image Unappealing image
|
|
IIIIIIIIIIIIIIIIIIIIIIIIIII e e e e e e e e e e e e e — — ——— — —— — ——— — ——————————
|
|
£ | I Missing mandatory items i i
S |) ! 9 y) Semantically contradicting information Incomplete information
g Unspecified/unmeasurable NFRs | Structural redundancy / Cloning Semantic clones Incorrect information
o ! ! Structurally inconsistent diagrams Unintuitive Use Case flow or diagrams
IIIIIIIIIIIIIIIIIIIIIIIIIII S
|
|
| Detected I Detectable Rather not detectable
" I <€ >
| |

by Requirements Smells by Requirements Smells by Requirements Smells

Figure 4.11.: This figure shows findings in requirements reviews, classified by content/representation and estimated detection accuracy.

66

4. Summary of Results

60 -
50

40

of rules

30

20

10

Not Detectable
Heuristic (1)
Heuristic (m)
Heuristic (h)
Deterministic

Figure 4.12.: This figure summarizes the estimated detection accuracy of RE artifact guideline
rules used in a large company.

67

CHAPTER D

Discussion of Results

After proposing and evaluating ABRE-QM and requirements smells, we discuss the
strength and limitations of both of these approaches. This section summarizes the
experiences that we collected in the studies of Publications A to I. In the following,
we first we discuss strength and limitations of ABRE-QM, then of requirements
smell detection. Afterwards, we go back to the quality criteria as discussed by
current standards and analyze to which extent these quality criteria can be covered
by automatic requirements smell detection. Lastly, we discuss whether the number
of findings produced by requirements smell detection can predict the success or
failure of projects.

5.1. Strengths and Limitations of ABRE-QM

The ABRE-QM meta model defines RE artifact quality as a set of quality factors,
i.e. properties of an RE artifact entity with a defined impact onto activities of RE
artifact stakeholders. This approach comes with several advantages which we want
to discuss, before analyzing limitations of such a viewpoint.

5.1.1. Strengths of an ABRE-QM

We argue that ABRE-QM improves the status quo of RE artifact quality along the
following paths.

ABRE-QM provides a more precise quality definition. We argue that ABRE-QM
enables both researchers and practitioners to reason more precisely about RE artifact
quality. For researchers, ABRE-QM provides a defined view onto RE artifact quality
by taking activities into the focus of quality. This provides a simple rule whether
something is of higher or lower quality: If it hinders a user of the artifact, it is of low
quality; if it makes an activity more efficient or effective, it is of high quality. For
example, in Fig 4.3, we could show how an ABRE-QM enables to reason whether
requirements engineers should or should not avoid UI design details in their use
case steps. This allows practitioners, as reported in Publication A, to question and
validate their existing quality models in a simple and comprehensible manner.

69

5.1. Strengths and Limitations of ABRE-QM

ABRE-QM provides a more adequate quality definition. In many projects, the
activities differ. Therefore, some activities, such as conducting impact analysis,
might not be required in an iterative, short-cycled project. We consider this to
be a strength of the ABRE-QM, to be able to taylor the quality model along the
activities: If an activity is especially important, the quality factors of this activity
should be taken more care of than others. Equally, if teams consider some activities
irrelevant, the quality factors for these activities can be dropped. We can also see
this in the aforementioned example in Fig 4.3, where it depends whether the RE
artifacts are going to be maintained or not. In summary, we argue that the model
takes the context (i.e. the activities in the project) into account and thereby models
quality more adequately.

ABRE-QM provides a first notion of completeness of the quality definition. The
quality model provides a guideline for understanding whether a given set of quality
factors is complete. Through ABRE-QM, we can reason along the stakeholders and
activities to understand if all relevant quality factors are covered. This means that
if we consider all stakeholders, as well as all their activities with an artifact and
understand what makes their activities efficient and effective, our quality model is
complete. For example, in RQ 2 practitioners realized through an ABRE-QM that
their use case guidelines did not take testers into account.

ABRE-QM provides a unified understanding and language. We argue that ABRE-
QM provides a unified understanding, as well as a novel language to combine
different pieces of knowledge for RE artifact quality. This could enable researchers
and practitioners to collect, compare and combine hypothesis in this field. Steering
the work in the community into the same direction, it would allow in the long run
to build a combined theory of artifact quality in RE.

5.1.2. Limitations of an ABRE-QM

Projects in software development are based on human interaction. Thus, real
processes are usually not straight, clean and defined, but instead iterative, complex
and intertwined. This makes it hard to understand the dependencies and causalities
in projects. This difficulty is also reflected in the limitations of ABRE-QM, which
we describe in the following.

ABRE-QM does not provide a common quality definition. In this thesis, we do
not provide a complete, widely applicable quality model. This is outside the scope
of this work, since each quality factor and its impacts must be studied with care.
Instead, we provide a language and show exemplarily how quality factors can be
validated in RQ 2. In this direction, a large open question is whether such a widely
applicable quality model exists or whether projects are too different to create a
shared understanding of RE artifact quality. ABRE-QM and survey-like approaches
as explained in RQ 2 enable future research to systematically study this question.

ABRE-QM requires trade-offs between precision and complexity. During our
work for RQ 2, we often discussed how deep we should decompose entities, ac-
tivities and quality factors. The question is very difficult to answer up-front, since it
reflects the trade-off between the two purposes of the model. We can either detail
the elements, which enables to explain more exactly where and why something is
a quality defect. While this increases the validity and preciseness, it comes at a
cost: We would argue that complex and detailed models are harder to communicate

70

5. Discussion of Results

and more difficult for practitioners to grasp and use. Section 4.3.2.2 shows this
complexity, where we detail entities further and further down into single words of a
language model. We argue that at this level of detail, the model could be difficult
to be used company-wide (e.g. through guidelines in RQ 2).

Yet, when we started developing quality models based on guidelines, this trade-off
was less problematic than expected. Whenever possible, we stayed on the abstract
level, e.g. the testing activity. Yet, when discussions arose, we solved the conflicts by
detailing the activities and quality factors. Therefore, the model remains abstract,
unless validity is violated or questioned. However, the extent to which this trade-off
between precision and complexity is a problem, remains an open question.

ABRE-QM does not model human compensation. Sometimes, impacts that exist
on the paper, are solved through the individual human that performs the task. For
example, if a requirement is hard to understand, the person might reflect on how
the product was built last time. Or the person could ask for clarification in direct
conversation. However, both examples also indicate that this compensation comes
at cost and risk. Accordingly, the extent to which defects can be compensated (and
at which cost and risk) is still an open question for future research. This also relates
to the question of the relation between artifact and process quality: Under which
circumstances does a low quality process lead to low quality artifacts and vice versa?
This question is, unfortunately, still unanswered [Men15].

ABRE-QM struggles with transitive, feedback and non-linear impacts. Some im-
pacts do not cause problems for the direct user of RE artifacts, but impacts stake-
holders later in the process. For example, if the artifact contains requirements that
do not reflect the customer’s needs, this is not a problem for the developer or the
tester. Unless confronted with the user, their activities are just as easy to perform.
However, the product of their work is given to the user and will cause problems.
Therefore, an issue in the RE artifact may cause problems only transitively. Such
transitive effects are called second- or third-order effects, depending on the distance
between cause and effect [HSWO05].

We integrated second-order impacts into the model. For instance, the stakeholder
Customer in Fig. 4.3 does not read the RE artifact, but uses the software that was
built by someone else, who used the RE artifact. For an idea how to model these
effects in more detail, see our discussions on second- and third-order effects in
sustainable software engineering [PF13]. However, the real difficulties would become
visible if we tried to evaluate such an impact, similar to the experiments in RQ 2.
To take this thought further, systemic or third-order effects (such as changes in
behavior, changes in the socio-economic environment), are even harder to reflect and
study in such a model. The same holds for feedback and non-linear impacts. The
open question remains: How can we study these types of effects of quality factors in
RE artifact quality?

ABRE-QM does not solve limitations for empirical validation of impacts and lim-
ited knowledge in RE. This thesis shows a general approach how to validate quality
factors in an ABRE-QM. However, empirical validation in RE has its own limita-
tions and constraints, including, but not limited to, unmeasurable quality factors,
generalization from instances to the whole, and further confounding factors. Related
to this, we still have very limited knowledge about the impact of quality factors
and the existing causalities. The quality model can steer future research through a
common understand of quality, and structure future research through a common
model.

71

5.2. Strengths and Limitations of Automatic Requirements Smell Detection

5.2. Strengths and Limitations of Automatic
Requirements Smell Detection

To bring QC of ABRE-QMs into practice, we propose requirements smells in order
to more efficiently conduct RE artifact QC. At the core of our approach is automatic
requirements smell detection, which enables cheap, fast and consistent QC of quality
factors. In this section, we summarize strength and limitations of such an automatic
approach, based on the results of RQ 4 in general, and RQ 4.3 in particular.

5.2.1. Strengths of Automatic Requirements Smell Detection

As discussed in Chapter 1.1, several arguments suggest to apply automation in QC
tasks:

Automation is cheap. As we analyze in Publication H, Reviewing plus its coordi-
nation is an effective, yet time-consuming task. In contrast, after the initial setup,
automatic tasks are cheap to execute (cf. the cost model for automatic versus manual
system testing by Hauptmann et al. [HJET 14, Haul6]).

Automation is fast. Reviews can take multiple weeks until an author receives
feedback (see our work in Publication H). In contrast, automatic feedback depends
only on the runtime of the system. NLP tasks, such as part-of-speech tagging or
syntactic parsing, are usually the most time-consuming part of requirements smell
detection and take far below a second to execute per sentence [GE09, HEZ15].

Automationis consistent. If reviews are performed by using an ad-hoc reading tech-
nique (i.e. no checklists or similar as classified by Katasonov and Sakkinen [KS05]),
they do not systematically evaluate RE artifacts against each quality factor. Since
human reviewers are not good at simple, repetitive tasks, we argue that they tend
to make more mistakes than automatic algorithms for these types of quality factors.
Therefore, for certain quality factors, such as passive voice, we argue that automation
is more consistent than reviews.

5.2.2. Limitations of Automatic Requirements Smell Detection

Based on the results of RQ 4.3 in Section 4.4.2 (see Publication G for more details),
we see the following limitations to automating requirements smell detection. Some
of the results are engineering problems that can be dealt with through development
of more sophisticated solutions, yet others are logical boundaries that cannot be
overcome.

Automatic requirements smell detection requires an explicit quality definition.
First of all, in order to be able to detect a quality factor automatically, the factor
must be known and defined. This is not the case when quality factors are subjective
or fuzzy. Yet, as we describe in RQ 4.3 in Chapter 4.4.2, sometimes quality factors
are fuzzy even to the reviewers themselves. For example, it can be hard to explain
why a certain design is not appealing to certain users, but an experienced reviewer
can still see this issue.

72

5. Discussion of Results

Automatic requirements smell detection struggles with noise in industrial data.
Industrial data often comes with noisy data. For example, in our studies we had
to deal with wrong grammar and incomplete sentences (see qualitative results in
Publication G). Our approach is based on NLP, therefore the accuracy of the
approach cannot be better than the accuracy of NLP. Yet NLP and therefore also
our requirements smell detection is trained and based on the assumption that the
RE artifact is in a solid, readable state, which produces unavoidable errors.

But even when confronted with correct grammar, NLP approaches often have their
shortcomings. For example, we experienced low accuracy when we confronted our
NLP libraries with short sentences (< 3 words). However, depending on the use
case, one can circumvent some problems this with heuristics and combination with
non-NLP methods, such as ontologies.

Automatic requirements smell detection has no deep semantic understanding of
text. So far, deep automatic semantic parsing of text, such as understanding
contradictions between sentences and understanding a sentence in its context, is still
out of reach [CW14]. However, shallow semantic! parsing [PWH'04], takes a very
first, but promising step in that direction. To this end, our automatic understanding
of texts is limited to grammatical information and heuristics (e.g. the actor of a
passive voice sentence is indicated through a by-phrase).

Automatic requirements smell detection has no knowledge of domain and com-
mon sense. Some issues in RE artifacts origin from semantic defects (What system
is described?) instead of syntactic defects (How is the system described?). For
example, a practitioner reported on an issue where the engineers had created a
deployment plan, in which a certain device needed to be relocated into a different
region. Under review, the domain expert explained that the proposed solution would
not work, since the device was too large to be transported in the regular manner.
Here, the reviewer found a conflict between his domain knowledge of the existing
devices in the system and his understanding of the physical world.

But without further input, an algorithm cannot know the domain semantics. There-
fore, to detect issues involving domain knowledge would need to include further
information. For simple cases one option could be to include glossaries into the
detection mechanism as it is presented by Hauptmann et al. [HJET13] for test cases.
For more complex examples, future work must assess whether there are rules that,
one the one side, can be detected with semantic technologies in NLP, but, on the
other side, are also widely applicable across projects.

Automatic requirements smell detection does not know the goal of the system and
the current project status. It is not an engineering task, but a conscious decision
to define which goals a system should fulfil, and accordingly which requirements must
and must not be part of the system. Very often these goals are not explicitly stated
in the RE artifact. Therefore an algorithm cannot understand missing requirements
or requirements that are semantically correct, but are against the stakeholders goals.
The same holds for the current project status. The status is a matter outside of the
RE artifact and usually not accessible by automatic requirements smell detection.

1 Please note that in the field of natural language processing the term semantic refers to the
understanding of words of a sentence and their relation to each other.

73

5.3. Which Quality Characteristics Can We Detect Automatically?

5.3. Which Quality Characteristics Can We Detect
Automatically?

When discussing the question which defects can be detected automatically, we have
to define the population of defects. There are two approaches towards defining
this population: Either we take definitions of quality as the population, or we refer
to their instances in the form of defects in RE artifacts. In Publication G, we
performed the latter type of analysis, in Publication I, we performed the former (see
Section 4.4.2). In the following, we want to further discuss the former view.

For the sake of the argument, we assume quality to be defined with the quality
models of the ISO 29148 and the IREB curriculum, as displayed in Fig. 2.11 and
discussed in depth in Section 2.4.3. In the following, for each characteristic, we
provide a brief definition and discuss which types of defects cannot and which can
be found automatically. We base the analysis upon the results to RQ 4.3 and the
discussion in the previous section.

For those defects that cannot be automatically detected, we provide five reasons
that make it hard or even impossible to develop an automatic requirements smell
detection (see Section 5.2.2):2

R1: Requires more explicit or precise quality definition.

R5: Requires semantic understanding of text.

R3: Requires domain knowledge.

Ry: Requires knowledge of the system’s scope (e.g. goal).

Rs5: Requires knowledge of the project’s process and progress.

For those defects that can be automatically detected, automatic requirements smell
detection requires a quality factor to be broken down to or approximated at the
syntactic level. Therefore, as discussed in Section 4.3.2.2, we have to break down
the problem (and also semantic aspects) to one or multiple of the three levels:

S1: Lexical smells
So: Grammatical smells
S3: Structural smells.

We start analyzing the characteristics on the RE artifact level (i.e. for a set of
requirements), before looking at characteristics for individual requirements, as
proposed by IREB and IEEE 29148.

5.3.1. Characteristics for Sets of Requirements

In the following, we discuss the characteristics at the RE artifact level (i.e. for a set
of requirements) as proposed by IREB and IEEE 29148.

Consistency. A consistent RE artifact is free of redundancy and contradictions.
What we cannot detect: In general, consistency requires understanding the semantics
of a text, including the semantics in context, e.g. pragmatics [CW14], or discourse
analytics [JM14]. Unfortunately, existing technologies that could provide such
information do not yet provide appropriate accuracy [CW14| (Ry).

What we can detect: However, to some extent, we can detect redundancy through
clone detection and information retrieval: As discussed by Juergens et al. [JDFT10],
clone detection can find consistent and to a certain extent also inconsistent reuse,

2 We drop the reason of data noise, since this analysis is performed on the definition level, not on
the instance, i.e. data, level.

74

5. Discussion of Results

if it stems from copy-and-paste reuse. Furthermore, Falessi et al. [FCC13] present
a systematic analysis that shows the potential to detect equivalent requirements
with approaches based on information retrieval. Some approaches leveraging shallow
semantic parsing [RMDP16] also show promising results in first examples. These
approaches work on the lexical (S1) or structural level (Ss).

Completeness. A complete RE artifact includes all relevant stakeholders, goals,
and requirements, as well as all information necessary for the RE artifact stakehold-
ers>.

What we cannot detect: Completeness cannot generally be detected for three reasons:
First, it is a matter of the system scope which stakeholders, goals etc. are in scope of
the project (R4). Second, if we knew the system scope, we would have to understand
the semantics of the text to know whether the description is complete (Rs). Third,
we would need a more precise definition of completeness for different types of artifact
stakeholders (Ry, cf. [EVF16, EVFM16]).

What we can detect: However, if we can break down the completeness to a structural
completeness, e.g. if a company sets up specific templates, one can detect whether all
sections contain content. In addition, heuristics can check whether certain expected
terms in this section are used or not (S7,S3).

Affordability. In an affordable RE artifact, the team members can create a system
fulfilling all requirements within life cycle constraints (e.g. time and budget).
What we cannot detect: Affordability requires unambiguity and completeness, but
is more than this. For automatic detection of violations to affordability, we would
need an automatic approach to estimate the time required to create a system (such
as an automatic version of use case point methods [ADSJ01]) including the project
and system constraints and context. By judging from the current state of the even
simpler problem of use case points, we argue that, currently, such an automatic
detection is still far from reality (Rs, R4).

What we can detect: However, an ambiguous or incomplete requirement inherently
cannot be estimated either, which is the basis for affordability. Therefore, existing
automatic approaches to improve unambiguity and incompleteness, also serve to
improve affordability (see Ambiguity and Incompleteness in Characteristics for
Individual Requirements, S1,S2).

Boundededness. In a bounded RE artifact, all requirements are within an identi-
fied scope, and within user goals and needs.

What we cannot detect: Boundedness refers to an externally identified scope (R4).
Therefore, there is no generic approach to detect unbounded requirements without
adding external information.

What we can detect: Yet, some terms such as including or etc., can generally hint
for some types of scope creeps, i.e. imprecise definitions of the scope (S1).

Clear Structure. This IREB criterion is not properly defined by IREB. We assume
it contains two factors: In a clearly structured RE artifact, the artifact follows a
common structure, and this structure can be understood efficiently and effectively
by the readers.

What we cannot detect: We cannot automatically detect whether a structure can be
understood efficiently and effectively. This requires structured, empirical analyses,
as we describe in RQ 2 (R;).

3 Please note that, according to our quality paradigm, an absolutely complete RE artifact is not
necessarily advisable. It might not even be possible, as discussed by Glinz [Glil6].

75

5.3. Which Quality Characteristics Can We Detect Automatically?

What we can detect: However, if a structure is defined, we can automatically detect
whether an artifact follows this structure (S3).

Modifiability. A modifiable RE artifact allows that RE artifact changes can be
performed quickly and error-free.

What we cannot detect: Modifiability, is an activity-based property and as such, its
definition depends on the activity, i.e. the modification. In Publication C, we analyzed
executed changes to clarify this quality characteristic. In our study, we found locally
dispersed information, Ul details and improper references to be particularly difficult
to maintain. Another large set of changes was related to the taxonomy. We cannot
give a perfect accuracy for detecting whether two parts of the document are related.
However, information retrieval approaches (cf. Falessi et al. [FCC13]) can help us in
this task. Furthermore, we cannot foresee future taxonomy changes and therefore it
is difficult to judge whether an existing taxonomy will change in future (Ry).
What we can detect: To some extent we can detect locally dispersed information
(see consistent), as well as UI details and improper references. However, all of these
approaches are limited to syntactic aspects (57, S3).

Traceability. In a traceable RE artifact, each requirement correctly defines its links
to the origin, implementation and related requirements.

What we cannot detect: Whether two items should be linked, ultimately depends
on the domain of the system (Rj3) and, therefore, cannot be perfectly predicted in
general. In addition, understanding the correctness of existing links requires also
semantic understanding of texts (Rg).

What we can detect: However, if this traceability is part of the requirements structure,
and every requirement must have certain types of traces, we can structurally detect
whether these traces exist (S3). To analyze whether links are missing, or whether
the existing links are correct, various heuristics exist, mostly drawing on information
retrieval methods (S7). The current state of traceability is discussed, i.a. by De
Lucia et al. [DFOTO07], or more recently by Eder [Edel6].

Unambiguity. Ambiguity is the degree to which a document can be understood in
multiple ways. We discuss this in Characteristics for Individual Requirements.

5.3.2. Characteristics for Individual Requirements

In the following, we discuss the characteristics on level of individual requirements as
proposed by IREB and IEEE 29148.

Unambiguity and understandability. Ambiguity is the degree to which a document
can be understood in multiple ways. We will discuss this factor on the individual
requirements level. Berry et al. [BKKO03] differentiate between lexical, syntactic,
semantic and pragmatic ambiguity.

What we cannot detect: In contrast to lexical and syntactic ambiguity, semantic and
pragmatic ambiguity refer to the meaning of the word, or even the meaning of the
word in context. For both of these types of ambiguity, we are constrained by the
current state in NLP (Rs).

What we can detect: Yet, for the other two levels, various approaches exist. For lexical
ambiguity, such as synonyms [BKKO03], we can make use of existing thesauri (S7).
For syntactic ambiguity (which Berry defines as a sentence having more than
one parse |BKK03, p.10]), NLP can detect if multiple parses of a sentence are
(grammatically, not semantically) possible (S2).

76

5. Discussion of Results

Necessity. An individual requirement is necessary, if the removal leads to a de-
ficiency, the requirement is not obsolete, and the planned expiration is clearly
identified [ISO11b, p.11].

We cannot detect: To detect whether something is necessary is a question of the
system scope and is therefore, in general, impossible to automate without additional
input (R4).

We can detect: However, it is possible to detect whether a requirement structurally
contains information on a planned expiration (S3). In addition, existing approaches
(e.g. AQUSA [LDBvdW15]) aim at detecting additional, unnecessary information,
such as fill words (S7).

Completeness and verifiability. A complete individual requirement contains all
information necessary for this requirement to be used in the consecutive process.
Therefore, verifiability is one aspect of completeness of individual requirements. We
detail this aspect in our related publications [EVF16, EVFM16].

What we cannot detect: As we detail [EVF16, EVFM16]|, completeness is very
subjective to the usage context. Therefore, which information makes an RE artifact
complete must be more precisely specified (R;) and also depends on the context (R3).
What we can detect: However, certain phrases and grammatical structures are
inherently incomplete. Many of our smells address this aspect and can therefore be
considered improving completeness or verifiability, such as the unverifiable terms
smell or the superlatives smell (S7, S3).

Freedom from implementation. An implementation free specification is defined
on the right level of abstraction. However, since RE is often an iterative process
between the problem and the solution domain (according to, e.g. the twin-peaks-
model [Nus01]), the right level of abstraction varies.

What we cannot detect: What is the right level of abstraction, what is problem
and what is solution domain, cannot be generally detected since it depends on
the context (R3) and on the project scope (R4). In addition, sometimes, e.g. for
system constraints, we constrain the implementation. On this level, we intentionally
dive down into the solution domain. Therefore, whether this level of abstraction is
intentional or not, depends on the context (R3).

What we can detect: However, if we know the intended level of abstraction, e.g. in
use cases, or through the definition in company templates or guidelines, we can often
identify certain violations. Common examples for this are references to the user
interface, or also references to variables or signals (S7).

Singularity. According to ISO 29148, an individual requirements statement is
singular if it contains no more than one requirement [ISO11b, p.11].

What we cannot detect: It is still unclear what an individual requirements is (unless
it is structurally defined) and consequently, how to separate individual requirements
in general (Ry).

What we can detect: As proposed in the standard, we can detect conjunctions,
nominalizations or other grammatical smells for violations of singularity (see e.g.

Koerner et al. [KB09]).

Agreement. Although this characteristic remains undefined in the IREB glos-
sary [Glil4], we assume that agreed requirements are accepted by all stakeholders.
What we cannot detect: There can be known and unknown disagreements. Unknown
disagreements are part of the mental model, and therefore usually not manifested in
the artifact, but a matter of the context (R3).

77

5.4. Relation of Findings to Project Success

What we can detect: However, the known disagreements are often denoted in the
artifact in the form of open issue markers, such as todos, tbd’s, etc. These can be
detected on the lexical level (S7).

Feasibility. See affordable in Characteristics for Sets of Requirements.

Consistency and traceability. See Characteristics for Sets of Requirements.

5.4. Relation of Findings to Project Success

As we discuss in Section 2.3.2, the impact of RE artifact defects onto projects
are indirect and nondeterministic. This is due to RE’s nature as a social process,
which strongly depends on the individual’s background and context. Consequently,
the further away an effect is from the RE artifact defect, the harder it is to draw
causal conclusions. Therefore, in our work, we focused on immediate effects, such
as understanding or maintenance of RE artifacts (see RQ 2 in Section 4.2). In the
following, we want to go beyond these limitations, and discuss whether the number
of findings produced by automatic requirements smell detection provides indication
for the project success and whether the introduction of requirements smell detection
improves the probability of project success.

Smells as predictors for project success. To use smells as a predictor for project
success requires that projects with fewer findings (or lower findings density) are more
successful (to an operationalized definition of success) than projects with a larger
number of findings (or higher findings density). If an RE artifact has few or no
findings, this only reflects the automatically detectable quality factors. Consequently,
the RE artifact could have a number of not-automatically detectable defects (see
previous section). Since in RE any single defect can have tremendous consequences,
any defect that the requirements smell detection missed could potentially decide
about project success or failure (consider e.g. a forgotten stakeholder). The same
holds for RE artifacts with many findings. One could imagine projects in which
none of the findings turns out to be a serious RE defect, or in which all RE defects
are compensated in the project. Therefore, any relationship between smells and
any variable for project success can only be a fuzzy one, depending on the project,
people, smells, and other context factors. Therefore, the potential of findings as an
predictor are inherently limited.

However, there are two aspects why findings could be used as a predictor: First, if
findings, such as instances of passive voice, have a certain probability to lead to a
defect, as our studies indicate, this means that (in cases in which the probability
is independent, i.e. not depending on the context etc.) the more smells we have,
the higher is the probability that any of these leads to a defect. In addition, the
more findings we have, the more do impacts of these defects culminate. For example,
in RQ 4.4. in Publication G, a practitioner reports that removing smell findings
from user stories could reduce the time spent on effort estimations. Therefore, the
projects with more findings culminate more extra time spent on these activities,
which increases the risk of a failing project. The second reason why findings could be
used as a predictor is relating the visible findings with the invisible characteristics. It
is reasonable to believe that the number of findings, which are detected by automatic
requirements smell detection, correlates with quality of the general engineering of
the project team, such as precision, structuredness, and professionalism. In this
case, smells are just the visible predictor of a larger problem, which is a predictor

78

5. Discussion of Results

for project success. If any of these is the case, findings could be used as a predictor
for project success.

Impact of smell detection. In addition to the passive application of smells as a
predictor, we also have to consider the impact of introducing a technique, such as
requirements smell detection, to a project. One could argue that the introduction of
requirements smell detection has multiple effects on the team: First, the number
of findings would decrease. Following the argumentation above, this should reduce
the risk that any of the detectable defects impairs with the project. Second, the
cumulating effects, such as the impact on readability, are decreased, which directly
reduces efforts and costs. However, the introduction of a new quality control
mechanism might also help the team by fostering discussions on quality. This should
improve the quality awareness and, consequently, also the quality in general. Lastly,
findings make people look again. When working with practitioners and requirements
smell detection tools, we repeatedly found that, only after the tool indicated a
finding, the practitioner started consciously rethinking the RE artifacts. This trigger
then sometimes made the pracitioner discuss an issue that was not related to the
issue that the requirements smell detection discovered. In this way, introducing
requirements smell detection could have multiple side-effects to improve quality in
general, and thereby increase the chances for project success.

However, in our opinion, these aspects should be empirically analyzed in order
to derive conclusions. Future work should develop studies with a broad set of
projects, as well as longitudinal and qualitative studies to understand whether these
relationships in fact hold.

5.5. Summary

We argue that an activity-based viewpoint allows to create a shared understanding
as well as a common language for RE artifact quality. Furthermore, we argue that
ABRE-QMs enable to precisely reason about which quality factors exist and to
precisely evaluate the consequences of a quality factor. We also argue that ABRE-
QMs enable to more adequately define RE artifact quality and provide a first notion
of a complete quality model.

However, open questions exist towards the existence of one common quality definition,
the right granularity of model elements, human compensation, transitive, feedback
and non-linear impacts, and, more fundamentally, the extent to which we (are able
to) know about the impact of quality factors in RE artifacts.

Regarding automatic requirements smell detection, automatic approaches have
their advantages, namely effort, speed, and consistency. However, they assume the
existence of an explicit quality definition. They furthermore struggle compensating
for noise and the limitations of the state-of-the-art NLP methods. In addition,
automatic approaches lack the knowledge about the project scope (what do the
stakeholders want?), as well as the domain knowledge that is not captured in RE
artifacts.

Automatic requirements smell detection can detect violations of various quality
criteria. However, for all of the criteria, there are also aspects that are not covered.
This, again, suggests the need for combining automatic with manual approaches, as
we propose in RQ 3. In addition, the question whether the number of findings is a
accurate predictor of project success is still an open question.

79

CHAPTER 6

Conclusions and Outlook

Looking back at the problem statement, we summarize our results and provide an
outlook to future work.

6.1. Conclusions

RE artifacts play a central role in software development. Their quality can be crucial
for the project success. But, as discussed in Chapter 1, we currently have a limited
understanding of what high quality RE artifacts are and need more efficient methods
to control RE artifact quality in practice. This thesis approaches these two problems
in two directions: First, we contribute a novel model to define RE artifact quality,
and second, we present a more efficient method to execute QC for RE artifacts. In
the following, we come back to the research questions and summarize our results.

6.1.1. Definition of RE Artifact Quality

As we argue in Chapter 1, existing definitions for RE artifact quality lack precise
reasoning and adequacy for various contexts. In addition, whether existing sets of
quality characteristics are complete is an open question.

We refined this problem into two research questions. To precisely define RE artifact
quality in RQ 1, we contribute a meta model for RE artifact quality from a quality-in-
use perspective. To create valid quality models for RQ 2, we contribute a validation
framework and three applications thereof.

RQ 1: How can we precisely define quality for RE artifacts? This thesis contributes
Activity-based RE Quality Models (ABRE-QM), an approach to define RE artifact
quality, based on the understanding that high quality RE artifacts are those that
are efficient and effective to use.

Based on this notion of quality-in-use, ABRE-QMs enable to precisely reason about
quality factors and their impact on a stakeholder’s activities. In addition, the
quality-in-use perspective enables to model quality for a given context. Lastly, this

81

6.1. Conclusions

thesis provides a first understanding of completeness for an RE artifact quality
model.

In summary, this thesis answers RQ 1 through a meta model that defines RE artifact
quality from a quality-in-use perspective.

RQ 2: How can we create valid quality models? We argue that the main advantage
of the ABRE-QM is its precise reasoning. In RQ 2, we contribute a framework for
creating valid ABRE-QMs and show its use in an interview, a case study, and an
experiment.

We also contribute a brief discussion of advantages and disadvantages according to
our experience during these studies. We argue that interviews are best suited for
validating a large set of known quality factors in a given context. For example, we
contribute an interview study to validate an existing use case guideline. In contrast,
case studies enable to study more unknown fields. In our case, we contributed a
case study to better understand quality factors for maintenance of RE artifacts.
Lastly, experiments can study individual quality factors in depth. However, due to
their artificial setting and expensive setup, we argue to use this method for subtle,
unclear quality factors. For example, we contributed an experiment that analyzed
the effects of passive voice in RE artifacts.

In summary, this thesis answers RQ 2 through providing a framework for interviews,
case studies and experiments. In addition, we discuss advantages, disadvantages and
applications based on a set of contributing studies.

6.1.2. Efficient Methods for RE Artifact Quality Control

As a second problem, we argued that quality control of RE artifact quality struggles
in practices, even when agreed upon quality factors. To more efficiently detect quality
factors for RQ 3, we contribute requirements smells and automatic requirements smell
detection. To understand benefits and limitations of requirements smell detection in
RQ 4, we study the accuracy, the applicability, the benefits and the limitations of
such an approach.

RQ 3: How can we efficiently ensure quality factors? We contribute a case study
on RE artifact quality, indicating that besides a precise quality definition, the core
problems lie in efficiency, speed and sustainability of the QC process. To address the
issues, we furthermore contribute a definition of requirements smells as automatically
detectable quality factors. In order to make QC more efficient we propose automatic
requirements smell detection, for which we also provide a prototype as a technical
validation. In addition, we contribute a smell taxonomy and a method that combines
manual and automatic QA.

In summary, this thesis answers RQ 3 through combining efficient automatic require-
ments smell detection with manual detection of quality factors.

RQ 4: What are the benefits and limitations of requirements smell detection? To
understand the precision, applicability, benefits and limitations, we contribute the
results of a multi-case study with 12 industrial projects from three companies and
an academic case, where we analyzed requirements of 51 different teams. In total,
we analyzed requirements of the size of more than 265,000 words. To determine,
how reliably the detected smells indicate quality problems, we measure the precision
of our analysis. The requirements smell detection precision varies strongly between
0.26 and 0.96, averaging around 0.6. Furthermore, to understand the number of

82

6. Conclusions and Outlook

undetected findings, we also analyzed the recall, leading to an average recall of 0.82.
Practitioners report that several of the findings not only indicated quality problems,
but were relevant for practitioners. We furthermore discuss potential applications
with practitioners.

Based on analyzing review reports, we identified the following needs as main areas
where automation is limited: stakeholder or domain knowledge, deep natural language
understanding, knowledge of system scope or goal, knowledge of process information,
and vaguely or subjectively defined criteria. Lastly, in an analysis of a large,
industrial RE artifact guideline, we estimate that 52% of the criteria can be checked
either perfectly or with a good heuristic. For detection of violations, most criteria
require just simple heuristics. The main reason why criteria cannot be automatically
detected are imprecise or unclear guideline definitions.

In summary, this thesis answers RQ 4 through a detailed analysis in multiple case
studies and quality definitions. Based on a discussion of benefits and limitations,
the results indicate that a combination of automatic and manual QA techniques is
required, in which a requirements smell detection helps to solve simpler issues and
leaves in-depth QA to reviews.

6.1.3. Summary of Contributions

We argue that this thesis provides practitioners with: a) a language to precisely
and adequately define RE artifact quality, b) an efficient approach to detect quality
factors, as well as ¢) a method to combine automatic with manual reviews.

Furthermore, this thesis provides researchers with a) an actionable notion of RE
artifact quality, b) a framework to validate quality factors, and c) first evidence for
quality factors for maintenance of RE artifacts and the negative impact of passive
voice requirements onto understanding.

6.2. Outlook

This thesis is a first step into the direction of RE artifact quality and automatic
requirements smell detection. In the following, we want to outline the various
directions for future work and the questions that this thesis raises.

We see four directions for future work: First, extensions of details within our proposed
approaches, namely extensions of the ABRE-QM meta model and extensions of
requirements smells. Second, extensions of our empirical studies and our applications
of the activity-based quality paradigm, which may lead to a common body of
knowledge for RE artifact quality. Finally, one could extend the concept beyond RE
artifact quality to RE quality in general.

6.2.1. Extending the ABRE-QM Meta Model

The first path of changes are extensions to the ABRE-QM meta model, which would
allow usage of ABRE-QMs in activities further than requirements smell detection.

Combining ABRE-QMs with existing artifact and process models. In the pre-
sented studies, we created artifact and process models in an ad-hoc manner as
far as required for defining the ABRE-QM.

Another option would be to combine ABRE-QMs with existing and comprehensive
process models (e.g. as known from the V-Modell XT, see [BRO5]|), which would

83

6.2. Outlook

enable to relate the quality models to the process. Similarly, one could reuse existing
artifact models for ABRE-QMs, which would allow to resort to existing content
items as entities (as described e.g. in [MPKB10, MF11, MWL"12, PEM13, MP14]).

These combinations enable to integrate process and artifact models with quality
models. This would not only enable to reuse the models and therefore save time
during the creation of the ABRE-QM, a fine grained modelling of, for example,
activities enables to reason as precisely in the ABRE-QM.

Extending the ABRE-QM meta model with criticality and probability. To keep the
model simple and also as widely applicable as possible, the ABRE-QM meta model
provides only rough guidance for defining positive and negative impacts.

However, whether a quality factor makes the reading activity less efficient or less
effective, can potentially have vast differences on the overall project costs. And even
there, known issues in effectiveness (i.e. misunderstandings) might be less risky than
implicit, unknown misunderstandings. To address this, future work should extend
impacts, as well as activities, with cost or risk models to express such aspects.

The model could be extended to serve such requirements through additional attributes
of the impact element. This would allow for structured analysis through the quality
model, e.g. in cost or risk models (see e.g. [Dei09, WLHT 12, HJE*14, Haul6]). In
consequence, practitioners could use such a model to, i.a. precisely argue which
quality factors to focus on. It would finally enable to define the costs and risks of
bad quality. However, it is still a very open question whether we can elicit valid
costs and probabilities given the complex domain of RE, as we also discuss in the
limitations to ABRE-QM in Chapter 5.1.2.

6.2.2. Extending Research on Requirements Smells

In the second part of this thesis, we propose and discuss requirements smells.
These requirements smells could be further extended in terms of requirements smell
detection, but also further requirements smell definitions.

Improving precision of requirements smell detection. For accuracy, other ap-
proaches by Krisch and Houdek [Kril3, KH15] have shown the potential to increase
precision of automatic detection mechanisms. Future work could develop further
heuristics to understand to which extent the precision can be improved, based on
the false positives that we detected in Chapters 4.4. In this field, we see strong appli-
cability for artificial intelligence and machine learning, similar to the approaches by
Yang et al. [YRGT11, YRGT12], yet based on a detailed analysis of word, sentence
and document context.

In addition, we understand the smells that we presented in Publication G as first
steps towards a catalogue. The taxonomy described in Chapters 4.3 provides a
framework for this endeavor. Also, natural language processing is continuously
advancing [CW14]. So far, approaches towards understanding semantics of unstruc-
tured natural language texts still lack precision. However, in future, we should
discuss which smells exist that can detect quality problems through deeper under-
standing of the semantics of a text. The same holds for understanding discourse
semantics, i.e. a stateful understanding of sentences in their linear context [CW14].
This would allow for more precise analysis, e.g. of the smell vague pronouns.

Together, all of these will change what can and what cannot be detected through
requirements smells, as well as our understanding thereof.

84

6. Conclusions and Outlook

Smells for other natural language artifacts. Besides RE, the proposed require-
ments smell detection techniques could be also applied to further similar artifacts
such as legal texts, or various types of specifications. For example, in the area
of security (requirements) engineering, engineers create vulnerability descriptions.
Just as with RE artifacts, these descriptions are used as an input in the software
engineering process and therefore, their quality has similar impacts on the process.

In a first step into this direction, we analyzed missing content in vulnerability
description in a work with Allodi et al. [ABBF17] (see Fig. 6.1). Future work should
analyze in how far our results also hold in this domain.

root/CVSS.xisx/C-High (H)
Number of impact 2

loss (1x)
access (1x)

List of impact

| I—FLF |

Figure 6.1.: This figure shows a tree map resulting from the analysis of vulnerability descrip-
tions. Each box represents one Common Vulnerability Scoring System (CVSS)
description. Red boxes contain one or more keywords describing the impact.
White boxes lack impact descriptions. See [ABBF17] for a detailed explanation.

Smells for semi-formal or formal RE artifacts. In this work, all smells are generic
and can be applied to various types of RE artifacts, such as sentence requirements,
use cases or user stories. With the exception of user stories in RQ 4, we do not
analyze the different types specifically.

However, the more structured an RE artifact is documented, the more we can analyze
automatically. This holds not only for user stories, for which we analyzed whether
or not a user story contained a rationale in RQ 4, but also for requirements that are
created through sentence patterns (e.g. [EVF16]). In a first step in this direction,
we define and detect specific requirements smells for use cases together with Munich
Re. Further requirements smells could be defined for other representations than
natural language, such as UML diagrams.

6.2.3. Extending Our Studies

In this thesis, we not only propose new approaches, but also empirically evaluate
these approaches. To increase internal and external validity, and to extend their
scope, we suggest to replicate and extend our studies.

Conducting further studies on quality factors. In this work, we evaluate quality
factors for maintenance, passive voice, and a first set of requirements smells. However,
as we discuss in the publication in depth, these studies come with their threats

85

6.2. Outlook

to validity. Therefore, future work should analyze these quality factors in other
contexts with other methods to further increase the validity of the results.

Conducting longitudinal studies for RE QC approaches. In our contributions, we
analyze the quality of RE artifacts at a given point in time. Ideally, we assume that
if a team receives constant feedback from an approach such as requirements smell
detection, we should see a trend in quality of the artifacts.

To analyze this aspect in depth, we need longitudinal studies with steady academic
supervision to understand the consequences of RE artifact QC, of requirements
smells, and of requirements smell detection. These longitudinal studies come with
additional technical requirements towards requirements smell detection, e.g. the
tracking of findings over time (as is known, e.g. from source code [HHS14, Stel6]).

Conducting studies on second and third-order effects of RE artifact quality. In
our contributions, we focused mainly on direct effects of RE artifact quality. How-
ever, as explained in Chapter 2.3.2 and discussed in Chapter 5.1.2, impacts of RE
artifact quality can produce effects also on further artifacts, which can have serious
consequences on the project. For example, a missing performance requirement in an
RE artifact does not have negative consequences on understanding, developing and
testing directly, but only on the produced output (i.e. test and code). The negative
consequences only turn out as a so-called second order effect [HSWO05]. Along this
line of reasoning, even more difficult are systemic or third-order effects. For example,
a badly maintainable RE artifact might impact the reputation of the company and
thus have long term consequences out of the scope of an individual project. Our
work on cause and effect relation for RE variables [MMFV14] is a first step in that
direction (see Fig. 6.2).

lame
Company

Actionable (A)

\ CM°5 Measurable (on aRtefacts, on aCtivities,
i on aRtefacts & aCtivities)

7 b«

POT 2

N f/
/ i 2
ST ST
=
v T~
=

é\‘ié

/[
\g

N

i

Figure 6.2.: This figure shows an excerpt of the variable relations. Each item is one variable
in one of the four dimensions (RE, engineering, project, company). Each arrow
means that n>1 participants of the survey argued that one of variable is a con-
sequence of the others. On the side of the variables we denoted whether or not
these variables are measurable. Figure taken from [MMFV14].

86

6. Conclusions and Outlook

6.2.4. Extending Applications of Activity-based Quality

We have applied the proposed meta model for different purposes. The meta model
proved beneficial in several contexts that are discussed in the following.

1.

Activity-based understanding of RE artifact quality: First and foremost,
the concept of activity-based RE artifact quality enables to systematically
understand the so-far fuzzy concept of RE artifact quality. For this, ABRE-
QMs help to structure the argumentation why and in which context a quality
factor is problematic, as we show in Publication A. In addition, the activities
can be used to systematically analyze quality factors in their consequences, as
we show in Publications D and C.

. Activity-based RE guidelines: Many companies nowadays have guidelines to

help employees improve their requirements and to create a baseline for quality.
However, as stated before, these guidelines are often incomplete and imprecise.

We argue that guidelines that are defined in an activity-based manner could
help to make these guidelines more complete and precise. In Publication A,
practitioners reported that a translated guideline helps to both discuss validity
of the existing rules and to create more complete guidelines.

. Activity-based requirements elicitation and documentation: Requirements

templates are blueprints that determine the syntactic structure of a single
requirement. One reported advantage of requirements templates is that they
facilitate more complete specifications of requirements. However, what com-
plete actually means depends on how the requirement is used: The information
that needs to be provided in a requirement is determined by the activities that
are performed based on the requirement. For example, when performance tests
will be conducted for the system, the requirement templates must enforce to
augment requirements with detailed information about the desired reaction
times and assumed conditions [EVF16]. In a recent paper [EVFMI16], we
used activity-based models to tailor requirements templates in a way that the
information they demand for a requirement fit the actual usage in a specific
development context. The result is a set of requirements templates that are
more specific and expressive than the general templates that are proposed to
fit every situation.

. Activity-based quality control: The presented paradigm also has strong im-

plications on quality control. This is both for constructive aspects, such
as tailoring guidelines to requirements use, but also analytical approaches,
such as requirements smells (see Publications F and G), where ABRE-QMs
could enable us to decide which quality aspects should hold in a certain con-
text. In addition, techniques, such as manual reviews, can benefit from an
activity-based understanding, as we point out in Publication H and as is also
discovered through perspective-based reading, by, inter alia, Basili, Shull and
He [BGL196, SRB00, HCO06].

. Activity-based decision making: We used the proposed meta model to de-

velop cost models to enable an informed decision making process: In a recent
study [VFJ16], we used an instance of the meta model to characterize the
cost and benefits of refactoring functional parts that reoccur in several func-
tions of a system specification. The decision whether a refactoring pays off
heavily depends on the context in which the respective system specification is
used. Therefore, we identified activities that are performed with the system
specification, and we identified cost factors that affect these activities in the
original and the refactored version. Cost factors are a specific form of quality
factors as apparent in the meta model. As a result, the decision whether to
refactor a specification or leave it as it is can be assessed with respect to the

87

6.2. Outlook

usage context. For one context, the refactoring pays off because functions must
be tested frequently and recurring parts in the functions makes testing more
expensive. For another context, the refactoring does not pay off because the
responsibility for implementing the refactored parts is in a different department
and, thus, we need to consider costs for knowledge transfer. A similar approach
is taken by Hauptmann et al. [HJE114, Haul6| to decide when and if test step
automation pays off.

We assume that these are only the first of many applications. We argue that in future
work, activity-based viewpoints can show benefits in many further applications, in
particular when requirements engineers must decide in a trade-off.

6.2.5. Extending RE Artifact Quality by Building a Common Body of
Knowledge

In this work, we provide a syntax for defining and reasoning about RE artifact
quality. In addition, we provide first insights into RE artifact maintenance and the
impact of passive voice in RE artifacts.

But these are just small pieces of the puzzle. Future work should collect existing
evidence in the RE community and translate the existing knowledge into an ABRE-
QM. This could require extensions to the ABRE-QM impacts in the meta model as
discussed in this chapter. However, based on such a theory, we could identify blind
spots in this domain and extend the existing knowledge. It is an open question,
however, to which extent such a generic quality definition exists.

If the research continues along this theory, the community can, together, create a
generic ABRE-QM, which resembles the existing knowledge on RE artifact quality.
The precision of such a theory would allow researchers to systematically discuss
results in the field and its focus on activities would enable practitioners to understand
and weigh consequences of bad quality in a structured manner. In the long run, this
paradigm could even be extended beyond artifacts to create a general RE quality
theory. For this goal, we must take five steps:

1. We must understand users and their usage of RE artifacts. Activity-based RE
artifact quality is based on the idea that good quality is defined by RE artifact users
and their usage. However, these aspects are not yet precisely understood in RE. In
particular, we found that in practice RE artifact usages vary, depending on the goal
of RE in the respective context (see goals of RE in Section 2.2).

2. We need detailed artifact and language models for different RE approaches.
We must additionally validate the artifacts and entities, as described in the model:
This involves questioning which artifacts exist, which artifacts are used, and how
they relate to each other. One could extend this step into a comprehensive artifact
model, which would allow us to model quality factors and their relationships in depth
(as described i.a. in [MPKB10, MF11, MWL*12, PEM13, MP14|). In addition to
artifact models, we must also extend the language model (see Chapter 4.3.2.2) with
improvements in NLP.

3. We must understand existing quality factors and their impacts. After we un-
derstood how stakeholders use the RE artifacts, and with detailed artifact and
language models, we can then conduct systematic literature reviews to understand
all existing work in this area. We can then frame their studies within an ABRE-QM,

88

6. Conclusions and Outlook

which will lead to a first draft of the existing quality factors and their impacts. Fur-
ther literature reviews in the area of psycholinguistics (see Rayner et al. [RPACJ11]
for an introduction) and related fields should supplement this research.

4. We must understand context factors and how they confound the impacts of
quality models. In the ABRE-QM meta model, we assume that impacts take place
depending on the context (i.e. human, tool, or process context, see Chapter 4.1.
In the remaining work, to a large extent, we left the context out of scope. Future
work must understand to which extent these context factors are tangible enough to
be measured, understood, and taken into account. Alternatively, we could model
impacts in a more probabilistic manner and thus abstract from the detailed contexts.
This discussion will then also answer the next question that is raised by this thesis,
which is: To which extent is quality project-, company-, or process dependent.

There are two options towards this problem: On the one hand, stakeholder roles,
activities, and artifacts enable to tailor the quality model. In this case, tailoring
means just taking the relevant quality factors and leaving out the irrelevant. Tailoring
would not impact the general body of knowledge. On the other hand, if the impacts
and context factors themselves change between projects, and thus, if we need to
manually adapt the model, this would render the application cumbersome. However,
based on the results from Chapter 4.2, we would estimate that many aspects,
especially those based on linguistic understanding of texts, are to a large extent
generic and thus hold for most contexts.

5. We must maintain this body of knowledge. Over time, the existing body of
knowledge will change. This includes removal of unused artifacts, addition of new
artifacts and quality factors, and new activities and stakeholders, in case processes
change.

6.2.6. Extending ABRE-QM Towards Activity-based RE Quality

Lastly, the topic of this thesis is RE artifact quality. Therefore, we model RE artifact
quality instead of RE quality in general (see Fig 6.3). In order to be able to draw
more generic conclusions about RE quality, we should leverage the activity-based
quality paradigm from artifacts to all activities that are conducted based on RE
results. As a first step into this direction, we must try to understand which of the
context factors as described in the ABRE-QM influence which activities directly
(i.e. independent from any artifacts). Examples for this could be team factors,
background knowledge, or also tool quality factors, such as important tool features.

This would enable us to also reflect quality in both document centric, but also rather
agile projects, which do not depend as thoroughly on RE artifacts for communications.
We think that the resulting theory could help understanding the complex reality of
RE quality in more depth.

89

6.2. Outlook

requires generic roles

{
Stakeholder
Role
performs consists of
e
Activity —
Artifact
Factor
impacts| - - — — — - - Impact
Tool P P
Factor
Process > Quality
Factor Factor influenced by
Team measured
Factor by
Human Measurement
Factor Mechanism

Figure 6.3.: This figure shows an extension of the meta model for RE quality in general. In
this case both artifact and context factors have an impact on the activity.

90

Bibliography

[ABBF17]

[ADSJO1]

[AriBC]

[AS02]

[BBG+06]

[BFE*+15]

[BGL*96]

[BHH*03]

[BK04|

Luca Allodi, Sebastian Banescu, Kristian Beckers, and Henning Fem-
mer. Identifying relevant information cues for vulnerability assessment
using CVSS. In Submitted to the International Symposium on Empir-
ical Software Engineering and Measurement, ESEM. ACM, 2017.

Bente Anda, Hege Dreiem, Dag IK Sjgberg, and Magne Jgrgensen. Es-
timating software development effort based on use cases—experiences
from industry. In International Conference on the Unified Modeling
Language, UML, pages 487-502. Springer, 2001.

Aristotle. Categories. Edghill, E. M., The University of Adelaide,
2013 edition, 350 B.C.

Bente Anda and Dag I. K. Sjgberg. Towards an inspection technique
for use case models. In International Conference on Software Engi-
neering and Knowledge Engineering, SEKE, pages 127-134. ACM,
2002.

Daniel M. Berry, Antonio Bucchiarone, Stefania Gnesi, Giuseppe
Lami, and Gianluca Trentanni. A new quality model for natural
language requirements specifications. In Requirements Engineering:
Foundation for Software Quality, REFSQ, pages 1-12. Springer, 2006.

Mohammad R. Basirati, Henning Femmer, Sebastian Eder, Martin
Fritzsche, and Alexander Widera. Understanding changes in use cases:
A case study. In International Requirements Engineering Conference,
RE, pages 352-361. IEEE, 2015.

Victor Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile,
Forrest Shull, Sivert Sgrumgard, and Marvin V. Zelkowitz. The em-
pirical investigation of perspective-based reading. Empirical Software
Engineering Journal, 1:133-164, 1996.

K. Buhr, N. Heumesser, F. Houdek, H. Omasreiter, F. Rothermel,
R. Tavakoli, and Zink T. DaimlerChrysler demonstrator: System
specification. Technical report, EMPRESS Project, 2003.

Daniel M. Berry and Erik Kamsties. Ambiguity in requirements
specification. In Julio Cesar Sampaio do Prado Leite and Jorge Horacio
Doorn, editors, Perspectives on Software Requirements, chapter 2,
pages 7—44. Springer, 2004.

91

Bibliography

[BKKO3]

[Boe&1]
[Bos07]

[BPsS]

[BRO5|

[Bro06]

[CDO9)

[Chob7]

[CMMO6]

[Coc98]
[Coh04]

[CW14]

[DAEEOS]

[dCG14]

[Dei09)]

[DFOTO07]

[DIJLW09)

92

Daniel M. Berry, Erik Kamsties, and Michael M Krieger. From contract
drafting to software specification: Linguistic sources of ambiguity.
Technical report, University of Waterloo, 2003.

Barry W. Boehm. Software Engineering Economics. Prentice Hall
PTR, 1st edition, 1981.

Boston Scientific. Pacemaker system specification. Technical report,
Boston Scientific, 2007.

Barry W. Boehm and Philip N. Papaccio. Understanding and con-
trolling software costs. IEEE Transactions on Software Engineering,
14(10):1462-1477, 1988.

Manfred Broy and Andreas Rausch. Das neue V-Modell®) XT (in
German). Informatik-Spektrum, 28(3):220-229, 2005.

Manfred Broy. Requirements engineering as a key to holistic software
quality. In Computer and Information Sciences, ISCIS, pages 24-34.
Springer, 2006.

Cagatay Catal and Banu Diri. A systematic review of software fault
prediction studies. Ezpert Systems with Applications, 36(4):7346-7354,
20009.

Noam Chomsky. Syntactic structures. Walter de Gruyter, 2nd edition,
1957.

CMMI Product Team. CMMI®) for development, version 1.2. Tech-
nical report, Carnegue Mellon Software Engineering Institute (CMU /-
SEI), 2006.

Alistair Cockburn. Basic use case template. Technical report, Humans
and Technology, 1998.

Mike Cohn. User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

Erik Cambria and Bebo White. Jumping NLP curves: A review of nat-
ural language processing research. IEEE Computational Intelligence
Magazine, 9(2):48-57, 2014.

Joerg Doerr, Sebastian Adam, Michael Eisenbarth, and Michael Ehres-
mann. Implementing requirements engineering processes: using coop-
erative self-assessment and improvement. IEEE Software, 25(3):71-77,
2008.

Richard Eckart de Castilho and Iryna Gurevych. A broad-coverage
collection of portable NLP components for building shareable anal-
ysis pipelines. In Workshop on Open Infrastructures and Analysis
Frameworks for HLT, OTAF4HLT, pages 1-11, 2014.

Florian Deissenboeck. Continuous Quality Control of Long-Lived
Software Systems. Dissertation, Technische Universitdt Miinchen,
2009.

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa
Tortora. Recovering traceability links in software artifact management
systems using information retrieval methods. Transactions on Software

Engineering and Methodology, 16(4):13:1-13:50, 2007.

Florian Deissenboeck, Elmar Juergens, Klaus Lochmann, and Stefan
Wagner. Software quality models: Purposes, usage scenarios and
requirements. In International Workshop on Software Quality, WoSQ,
pages 9-14. IEEE, 2009.

[DOJ*93]

[Dru92|

[DWP+07]

[Edel6]

[EVF16]

[EVFM16]

[FCC13)

[FFGLO0]

[FGLMO2]

[FHEM16]

[FKSJ14]

[FKV14]

[FMJ*14]

Bibliography

Alan M. Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso,
Fatma Dandashi, Anhtuan Dinh, Gary Kincaid, Glen Ledeboer, Patri-
cia Reynolds, Pradip Sitaram, Anh Ta, and Mary Theofanos. Identify-
ing and measuring quality in a software requirements specification. In
International Software Metrics Symposium, METRICS, pages 141-152.
IEEE, 1993.

Colin Drury. Activity-based costing. In Management and Cost Ac-
counting, pages 273-288. Springer, 1992.

Florian Deissenboeck, Stefan Wagner, Markus Pizka, Stefan Teuchert,
and Jean-Francois Girard. An activity-based quality model for main-

tainability. In International Conference on Software Maintenance and
Evolution, ICSM, pages 184-193. IEEE, 2007.

Sebastian Eder. Ezploiting FExecution Profiles in Software Maintenance
and Test. Dissertation, Technische Universitdt Miinchen, Miinchen,
2016.

Jonas Eckhardt, Andreas Vogelsang, and Henning Femmer. An ap-
proach for creating sentence patterns for quality requirements. In
International Workshop on Requirements Patterns, RePa, pages 1-8.
IEEE, 2016.

Jonas Eckhardt, Andreas Vogelsang, Henning Femmer, and Philipp
Mager. Challenging incompleteness of performance requirements
by sentence patterns. In International Requirements Engineering
Conference, RE, pages 1-10. IEEE, 2016.

Davide Falessi, Giovanni Cantone, and Gerardo Canfora. Empirical
principles and an industrial case study in retrieving equivalent require-
ments via natural language processing techniques. IEEFE Transactions
on Software Engineering, 39(1):18-44, 2013.

Fabrizio Fabrini, Mario Fusani, Stefania Gnesi, and Guiseppe Lami.
Quality evaluation of software requirements. In Software and Internet
Quality Week Conference, pages 1-18, 2000.

Alessandro Fantechi, Stefania Gnesi, Guiseppe Lami, and Alessandro
Maccari. Application of linguistic techniques for use case analysis.
Requirements Engineering Journal, 8(3):161-170, 2002.

Henning Femmer, Benedikt Hauptmann, Sebastian Eder, and Dagmar
Moser. Quality assurance of requirements artifacts in practice: A
case study and a process proposal. In International Conference on
Product-Focused Software Process Improvement, PROFES, pages 506—
516. Springer, 2016.

Henning Femmer, Marco Kuhrmann, Joerg Stimmer, and Joerg Junge.
Experiences from the design of an artifact model for distributed agile
project management. In International Conference on Global Software
Engineering, ICGSE, pages 1-5. IEEE, 2014.

Henning Femmer, Jan Kucera, and Antonio Vetro. On the impact
of passive voice requirements on domain modelling. In International
Symposium on Empirical Software Engineering and Measurement,
ESEM, pages 21:1-21:4. ACM, 2014.

Henning Femmer, Daniel Méndez Ferndndez, Elmar Juergens, Michael
Klose, Ilona Zimmer, and Jérg Zimmer. Rapid requirements checks
with requirements smells: Two case studies. In International Workshop
on Rapid Continuous Software Engineering, RCoSE, pages 10-19.
ACM, 2014.

93

Bibliography

[FMM15]

[FMWE17]

[FN99]

[FUG17]

[FV17]

[Gar84]

[GDOg]

[GE09]

[GF15]

[Gla98|

[Gli14]

[Gi16]
[GW07]

[Haul6]

[HCO6]

[HEZ15]

94

Henning Femmer, Jakob Mund, and Daniel Méndez Fernandez. It’s the
activities, stupid! A new perspective on RE quality. In International
Workshop on Requirements Engineering and Testing, RET, pages
13-19. IEEE, 2015.

Henning Femmer, Daniel Méndez Fernandez, Stefan Wagner, and
Sebastian Eder. Rapid quality assurance with requirements smells.
Journal of Systems and Software, 123:190-213, 2017.

Norman E. Fenton and Martin Neil. A critique of software defect
prediction models. IEEE Transactions on Software Engineering,
25(5):675-689, 1999.

Henning Femmer, Michael Unterkalmsteiner, and Tony Gorschek.
Which requirements artifact quality defects are automatically de-
tectable? A case study. In Fourth International Workshop on Artificial
Intelligence for Requirements Engineering, AIRE, pages 1-7. IEEE,
2017.

Henning Femmer and Andreas Vogelsang. Requirements quality is
quality in use — a novel viewpoint —. Submitted to IEEE Software,
2017.

David A. Garvin. What does "product quality" really mean? Sloan
Management Review, pages 25—43, 1984.

Tony Gorschek and Alan M. Davis. Requirements engineering: In
search of the dependent variables. Information and Software Technol-
ogy, 50(1-2):67 — 75, 2008.

Eugenie Giesbrecht and Stefan Evert. Is part-of-speech tagging a
solved task? An evaluation of POS taggers for the German web as
corpus. In Web as Corpus Workshop, WACS5, pages 27-35, 2009.

Martin Glinz and Samuel A. Fricker. On shared understanding in
software engineering: an essay. Computer Science - Research and
Development, 30(3):363-376, 2015.

Robert L. Glass. Maintenance: Less is not more. IEEFE Software,
15(4):67-68, 1998.

Martin Glinz. A glossary of requirements engineering terminology.
Technical report, International Requirements Engineering Board and
University of Zurich, 2014.

Martin Glinz. How much requirements engineering do we need?
Softwaretechnik-Trends, 36(3):19-21, 2016.

Martin Glinz and Roel J Wieringa. Stakeholders in requirements
engineering. IEEFE Software, 24(2):18-20, 2007.

Benedikt Hauptmann. Reducing System Testing Effort by Focusing on
Commonalities in Test Procedures. PhD thesis, Technische Universitét
Miinchen, 2016.

Lulu He and Jeffrey Carver. PBR vs. checklist: A replication in the
n-fold inspection context. In International Symposium on Empirical
Software Engineering, ISESE, pages 95-104. ACM, 2006.

Tobias Horsmann, Nicolai Erbs, and Torsten Zesch. Fast or accurate?
— a comparative evaluation of pos tagging models. In International
Conference of the German Society for Computational Linguistics and
Language Technology, pages 22-30. German Society for Computational
Linguistics and Language Technology, 2015.

[HHS14]

[HIE+13)

[HIET14]

[HLO1]

[HSWO5]

[IEE9S]

[Int15]

[1S005]

[1SO10]

[ISO114]

[ISO11b]

[1SO12]

[JB9S]

[JBROY]

[JDF+10)

[TM14]

[Jon96]

Bibliography

Lars Heinemann, Benjamin Hummel, and Daniela Steidl. Teamscale:
Software quality control in real-time. In International Conference on
Software Engineering, ICSE, pages 592-595. ACM, 2014.

Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Lars Heine-
mann, Rudolf Vaas, and Peter Braun. Hunting for smells in natural
language tests. In International Conference on Software Engineering,

ICSE, pages 1217-1220. IEEE, 2013.

Benedikt Hauptmann, Maximilian Junker, Sebastian Eder, Christian
Amann, and Rudolf Vaas. An expert-based cost estimation model for
system test execution. In International Conference on Software and
System Process, ICSSP, pages 159-163. Springer, 2014.

Hubert F. Hofmann and Franz Lehner. Requirements engineering as a
success factor in software projects. IEEE Software, 18(4):58-66, 2001.

Lorenz M. Hilty, Eberhard K. Seifert, and Jennifer Wetzel, editors.
Information Systems for Sustainable Development. Idea Group Pub-
lishing, 2005.

IEEE Computer Society. IEEE recommended practice for software
requirements specifications. Technical report, IEEE Computer Society,
1998.

International Requirements Engineering Board. IREB certified pro-
fessional for requirements engineering - foundation level - syllabus -
version 2.2. Technical report, International Requirements Engineering
Board e.V., 2015.

ISO 9000:2005. Quality management systems— fundamentals and
vocabulary. Technical report, ISO, 2005.

ISO/IEC/IEEE 24765:2010. Systems and software engineering - Vo-
cabulary. Technical report, ISO/IEC/IEEE, 2010.

ISO/IEC 25010:2011. Systems and software engineering — systems
and software quality requirements and evaluation (square) — system
and software quality models. Technical report, ISO/IEC, 2011.

ISO/IEC/IEEE 29148:2011. Systems and software engineering -
life cycle processes - requirements engineering. Technical report,
ISO/IEC/IEEE, 2011.

ISO/IEC 17024:2012 . Conformity assessment — general require-
ments for bodies operating certification of persons. Technical report,
ISO/IEC, 2012.

Joseph M. Juran and A. Blanton Godfrey. Juran’s Quality Handbook.
McGraw-Hill, 5th edition, 1998.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified
Software Development Process. Addison-Wesley Reading, 1st edition,
1999.

Elmar Juergens, Florian Deissenboeck, Martin Feilkas, Benjamin
Hummel, Bernhard Schaetz, Stefan Wagner, Christoph Domann, and
Jonathan Streit. Can clone detection support quality assessments of
requirements specifications? In International Conference on Software
Engineering, ICSE, pages 79-88. ACM, 2010.

Daniel Jurafsky and James H. Martin. Speech and Language Processing.
Pearson Education, 2nd edition, 2014.

Capers Jones. Activity based software costing. IEEE Computer,
29(5):103-104, 1996.

95

Bibliography

[Jon00]
[Kal13]

[KB09)

[KH15]

[KLS95]

[Kof07]

[KP96]

[Kril3]

[Kro98]

[KS05]

[Lam09]

[LDBvdW15]

[LDvAWB16]

[Loc13]

[LSS94]

[LWEO1]
[Lyu96]

[MCH*12]

96

Capers Jones. Software Assessments, Benchmarks, and Best Practices.
Addison-Wesley Longman Publishing Co., Inc., 2000.
Georg Kalus. Projektspezifische Anpassung von Vorgehensmodellen.
Dissertation, Technische Universitdt Miinchen, 2013.

Sven J. Korner and Torben Brumm. Natural Language Specification
Improvement With Ontologies. International Journal of Semantic
Computing, 3(4):445-470, 2009.

Jennifer Krisch and Frank Houdek. The myth of bad passive voice and
weak words: An empirical investigation in the automotive industry.

In International Requirements Engineering Conference, RE, pages
344-351. IEEE, 2015.

John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Towards a
deeper understanding of quality in requirements engineering. In Inter-
national Conference on Advanced Information Systems Engineering,
CAiSE, pages 82-95. Springer, 1995.

Leonid Kof. Treatment of passive voice and conjunctions in use case
documents. Natural Language Processing and Information Systems,
4592:181-192, 2007.

Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality:
The elusive target. IEEE Software, 13:12-21, 1996.

Jennifer Krisch. Identifikation kritischer Weak-Words aufgrund ihres
Satzkontextes in Anforderungsdokumenten. Diploma thesis, Univer-
sitat Stuttgart, 2013.

John Krogstie. Integrating the understanding of quality in require-
ments specification and conceptual modeling. ACM SIGSOFT Soft-
ware Engineering Notes, 23(1):86-91, 1998.

Artem Katasonov and Markku Sakkinen. Requirements quality control:

a unifying framework. Requirements Engineering Journal, 11(1):42-57,
2005.

Axel Van Lamsweerde. Requirements Engineering. John Wiley &
Sons, 2009.

Garm Lucassen, Fabiano Dalpiaz, Sjaak Brinkkemper, and J.M.E.M.
van der Werf. Forging high-quality user stories: Towards a discipline
for agile requirements. In International Requirements Engineering

Conference, RE, pages 126-135. IEEE, 2015.

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E. M. van der Werf,
and Sjaak Brinkkemper. Improving agile requirements: the quality
user story framework and tool. Requirements Engineering Journal,
21(3):383-403, 2016.

Klaus Lochmann. Defining and Assessing Software Quality by Quality
Models. PhD thesis, Technische Universitat Miinchen, 2013.

Odd Ivar Lindland, Guttorm Sindre, and Arne Solvberg. Under-
standing quality in conceptual modeling. IEEE Software, 11:42—49,
1994.

Brian Lawrence, Karl Wiegers, and Christof Ebert. The top risks of
requirements engineering. IEEE Software, pages 62-63, 2001.
Michael R Lyu, editor. Handbook of Software Reliability Engineering.
McGraw-Hill, 1996.

T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhan. The promise repository of empirical software engineering
data. http://promisedata.googlecode.com, 2012.

http://promisedata.googlecode.com

[Men15|

[MF11]

[MFME15]

[MFNI04]

[MK09]

[MMFV14]

[MoD11]

[MP14]

[MPKB10]

[MSB™14]

[MW15]

[MWL*12]

[Nus01]

[PEM13]

Bibliography

Daniel Mendez Fernandez. Artefact-based Requirements Engineer-
ing Improvement. Concluding essay of the habilitation procedure,
Technische Universitat Miinchen, 2015.

Daniel Méndez Fernandez. Requirements Engineering: Artefact-Based
Customisation. PhD thesis, Technische Universitdt Miinchen, 2011.

Jakob Mund, Henning Femmer, Daniel Méndez Fernédndez, and Jonas
Eckhardt. Does quality of requirements specifications matter? com-
bined results of two empirical studies. In International Symposium
on Empirical Software Engineering and Measurement, ESEM, pages
144-153. ACM, 2015.

Luisa Mich, Mariangela Franch, and Pier Luigi Novi Inverardi. Market
research for requirements analysis using linguistic tools. Requirements
Engineering Journal, 9(1):40-56, 2004.

Thilo Mende and Rainer Koschke. Revisiting the evaluation of defect

prediction models. In International Conference on Predictor Models
in Software Engineering, PROMISE, pages 1-10. ACM, 2009.

Daniel Méndez Fernandez, Jakob Mund, Henning Femmer, and Anto-
nio Vetro. In quest for requirements engineering oracles: Dependent
variables and measurements for (good) RE. In International Confer-
ence on Fvaluation and Assessment in Software Engineering, EASE,
pages 3:1-3:10. ACM, 2014.

MoDRE2011. Case study: Canal monitoring and control system
(cmces). Technical report, Model-Driven Requirements Engineering
(MoDRE) workshop, 2011.

Daniel Méndez Fernandez and Birgit Penzenstadler. Artefact-based
requirements engineering: the AMDIRE approach. Requirements
Engineering Journal, 20(4):405-434, 2014.

Daniel Méndez Fernandez, Birgit Penzenstadler, Marco Kuhrmann,
and Manfred Broy. A meta model for artefact-orientation: fundamen-
tals and lessons learned in requirements engineering. In International
Conference on Model Driven Engineering Languages and Systems,
MODELS, pages 183-197. Springer, 2010.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven J. Bethard, and David McClosky. The Stanford CoreNLP
natural language processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations, pages 55-60, 2014.

Daniel Méndez Fernédndez and Stefan Wagner. Naming the pain in
requirements engineering: A design for a global family of surveys
and first results from germany. Information and Software Technology,
57:616-643, 2015.

Daniel Méndez Fernandez, Stefan Wagner, Klaus Lochmann, Andrea
Baumann, and Holger de Carne. Field study on requirements engi-
neering: Investigation of artefacts, project parameters, and execution
strategies. Information and Software Technology, 54(2):162-178, 2012.

Bashar Nuseibeh. Weaving together requirements and architectures.
IEEE Computer, 34(3):115-119, 2001.

Birgit Penzenstadler, Jonas Eckhardt, and Daniel Méndez Fernandez.
Two replication studies for evaluating artefact models in re: Results
and lessons learnt. In International Workshop on Replication in
Empirical Software Engineering Research, RESER, pages 66-75. IEEE,
2013.

97

Bibliography

[PF13]

[PG12]

[PGH*08]

[Poh93]

[Poh10]

[PWH04]

[RMDP16]

[RPACJ11]

[Sall3]

[SB13]

[Sch04]

[SK13]

[Som11]

[SRBOO]

[Stel6]

[Ter13]

98

Birgit Penzenstadler and Henning Femmer. A generic model for
sustainability with process- and product-specific instances. In Inter-
national Workshop on Green In Software Engineering and Green By
Software Engineering, GIBSE, pages 3-8. ACM, 2013.

Carla Pacheco and Ivan Garcia. A systematic literature review of
stakeholder identification methods in requirements elicitation. Journal
of Systems and Software, 85(9):2171-2181, 2012.

Reinhold Plésch, Harald Gruber, Anja Hentschel, Christian Kérner,
Gustav Pomberger, Stefan Schiffer, Matthias Saft, and Stephan Storck.
The EMISQ method and its tool support-expert-based evaluation
of internal software quality. Innovations in Systems and Software
Engineering, 4(1):3-15, 2008.

Klaus Pohl. The three dimensions of requirements engineering. In In-
ternational Conference on Advanced Information Systems Engineering,

CAIiSE, pages 275-292. Springer, 1993.

Klaus Pohl. Requirements Engineering: Fundamentals, Principles,
and Techniques. Springer, 2010.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and
Daniel Jurafsky. Shallow semantic parsing using support vector ma-
chines. Human Language Technology Conference/North American
chapter of the Association for Computational Linguistics annual meet-
ing, pages 233-240, 2004.

Alejandro Rago, Claudia Marcos, and J. Andres Diaz-Pace. Identify-
ing duplicate functionality in textual use cases by aligning semantic
actions. Software & Systems Modeling, 15(2):579-603, 2016.

Keith Rayner, Alexander Pollatsek, Jane Ashby, and Charles
Clifton Jr. Psychology of Reading. Taylor & Francis Ltd, 2nd edition,
2011.

Frank Salger. Requirements reviews revisited: Residual challenges and
open research questions. In International Requirements Engineering
Conference, RE, pages 250-255. IEEE, 2013.

Florian Schneider and Brian Berenbach. A literature survey on interna-
tional standards for systems requirements engineering. In Conference
on Systems Engineering Research, CSER, pages 796-805. Elsevier,
2013.

Ken Schwaber. Agile Project Management with Scrum. Microsoft
Press, 2004.

Wolfgang Seeker and Jonas Kuhn. Morphological and syntactic case
in statistical dependency parsing. Computational Linguistics, 39(1):23—
55, 2013.

Tan Sommerville. Software Engineering. Addison-Wesley, 9th edition,
2011.

Forrest Shull, Toana Rus, and Victor Basili. How perspective-based
reading can improve requirements inspections. IEEE Computer,
33(7):73-79, 2000.

Daniela Steidl. Cost-Effective Quality Assurance For Long-Lived
Software Using Automated Static Analysis. PhD thesis, Technische
Universitdat Miinchen, 2016.

John Terzakis. The impact of requirements on software quality across

three product generations. In International Conference on Require-
ments Engineering, RE, pages 284-289. IEEE, 2013.

[VFJ16]

[VEW16]

[Wag07]

[Wagl3|
[WDWOS|

[Wie05]

[WJIKTO5]

[WLH*12]

[WMMY12|

[WRH97]

[WRHT12]

[YRGH11]

[YRG112]

Bibliography

Andreas Vogelsang, Henning Femmer, and Maximilian Junker. Char-
acterizing implicit communal components as technical debt in au-
tomotive software systems. In Working IEEE/IFIP Conference on
Software Architecture, WICSA, pages 31-40. IEEE, 2016.

Andreas Vogelsang, Henning Femmer, and Christian Winkler. Take
care of your modes! an investigation of defects in automotive re-
quirements. In International Working Conference on Requirements
Engineering: Foundation for Software Quality, REFSQ, pages 161-167.
Springer, 2016.

Stefan Wagner. Cost-Optimisation of Analytical Software Quality
Assurance. PhD thesis, Technische Universitdt Miinchen, 2007.

Stefan Wagner. Software Product Quality Control. Springer, 2013.

Stefan Wagner, Florian Deissenboeck, and Sebastian Winter. Man-
aging quality requirements using activity-based quality models. In
International Workshop on Software Quality, WoSQ, pages 29-34.
IEEE, 2008.

Karl Wiegers. More About Software Requirements: Thorny Issues and
Practical Advice. Microsoft Press, 2005.

Stefan Wagner, Jan Jiirjens, Claudia Koller, and Peter Trischberger.
Comparing bug finding tools with reviews and tests. In Testing of
Communicating Systems, TestCom, pages 40-55. Springer, 2005.

Stefan Wagner, Klaus Lochmann, Lars Heinemann, Michael Klas,
Adam Trendowicz, Reinhold Plésch, Andreas Seidl, Andreas Goeb,
and Jonathan Streit. The quamoco product quality modelling and
assessment approach. In International Conference on Software Engi-
neering, ICSE, pages 1133-1142. IEEE, 2012.

Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying
Ye. Probability € Statistics for Engineers & Scientists. Prentice Hall,
9th edition, 2012.

William M. Wilson, Linda H. Rosenberg, and Lawrence E. Hyatt.
Automated analysis of requirement specifications. In International
Conference on Software Engineering, ICSE, pages 161-171. ACM,
1997.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjérn
Regnell, and Anders Wesslén. Experimentation in Software Engineer-
ing. Springer, 2012.

Hui Yang, Anne De Roeck, Vincenzo Gervasi, Alistair Willis, and
Bashar Nuseibeh. Analysing anaphoric ambiguity in natural language
requirements. Requirements Engineering Journal, 16(3):163-189, 2011.

Hui Yang, Anne De Roeck, Vincenzo Gervasi, Alistair Willis, and
Bashar Nuseibeh. Speculative requirements: Automatic detection
of uncertainty in natural language requirements. In International
Requirements Engineering Conference, RE, pages 11-20. IEEE, 2012.

99

APPENDIX A

Publications

101

Table A.1.: Author publications included this thesis

Ref.

Publication

A:
[FMM15]

B:
[FV17]
C.

[BFE*+15]

D:
[FKV14]

E:
[FKSJ14]

F:
[FMJ*14]

G:
[FMWE17]

H:
[FHEM16]

I:
[FUG17]

Henning Femmer, Jakob Mund, and Daniel Méndez Fernédndez.
It’s the activities, stupid! A new perspective on RE quality.
In International Workshop on Requirements Engineering and
Testing, RET, pages 13-19. IEEE, 2015

Henning Femmer and Andreas Vogelsang. Requirements quality
is quality in use — a novel viewpoint — Submitted to IEEE
Software, 2017

Mohammad R. Basirati, Henning Femmer, Sebastian Eder, Mar-
tin Fritzsche, and Alexander Widera. Understanding changes
in use cases: A case study. In International Requirements Engi-
neering Conference, RE, pages 352-361. IEEE, 2015

Henning Femmer, Jan Kudera, and Antonio Vetro. On the
impact of passive voice requirements on domain modelling. In
International Symposium on Empirical Software Engineering
and Measurement, ESEM, pages 21:1-21:4. ACM, 2014
Henning Femmer, Marco Kuhrmann, Joerg Stimmer, and Joerg
Junge. Experiences from the design of an artifact model for
distributed agile project management. In International Confer-
ence on Global Software Engineering, ICGSE, pages 1-5. IEEE,
2014

Henning Femmer, Daniel Méndez Fernandez, Elmar Juergens,
Michael Klose, Ilona Zimmer, and Jorg Zimmer. Rapid require-
ments checks with requirements smells: Two case studies. In
International Workshop on Rapid Continuous Software Engi-
neering, RCoSE, pages 10-19. ACM, 2014

Henning Femmer, Daniel Méndez Fernédndez, Stefan Wagner,
and Sebastian Eder. Rapid quality assurance with requirements
smells. Journal of Systems and Software, 123:190-213, 2017
Henning Femmer, Benedikt Hauptmann, Sebastian Eder, and
Dagmar Moser. Quality assurance of requirements artifacts in
practice: A case study and a process proposal. In International
Conference on Product-Focused Software Process Improvement,
PROFES, pages 506-516. Springer, 2016

Henning Femmer, Michael Unterkalmsteiner, and Tony
Gorschek. Which requirements artifact quality defects are
automatically detectable? A case study. In Fourth Interna-
tional Workshop on Artificial Intelligence for Requirements
Engineering, AIRE, pages 1-7. IEEE, 2017

102

A. Publications

Publication A: It's the Activities, Stupid! A New
Perspective on RE Quality

Authors Henning Femmer, Jakob Mund, Daniel Méndez Fernandez

Venue 2nd International Workshop on Requirements Engineering and Testing
(RET) at the 37th International Conference on Software Engineering (ICSE), 2015

Abstract [Context] Requirements Engineering (RE) artifacts are central items in
software development: Their quality is of essential importance for development,
testing and other software engineering activities. However, as requirements arti-
facts are used differently in different processes, the proper definition of what is
good quality depends on the context under consideration. [Problem| So far, no
methodology exists that enables to define context-specific RE artifact quality in a
precise manner. [Principle Idea] We define context-specific RE artifact quality by
how quality attributes of an RE artifact impact on the activities of the software
development process in which this artifact is used. [Contribution| In this paper, we
introduce a methodology to define RE artifact quality specifically to a project- or
process context. Furthermore, we provide a preliminary technical validation as well
as an industrial validation on the application of our approach. Our studies indicate
that the activity-based approach enables defining and validating RE quality in a
precise and systematic manner. The industrial validation furthermore suggests the
applicability of the approach in practical use.

Results This paper is summarized in Sections 4.1.1 and 4.2.3.1.

Authors Contributions I co-designed the meta-model, designed and conducted the
empirical validation, as well as the provided examples. I reported on the results.

Copyright (© 2015 IEEE. Reprinted, with permission, from Henning Femmer,
Jakob Mund, Daniel Méndez Fernandez, It’s the Activities, Stupid! A New Perspec-
tive on RE Quality, Conference Proceedings of 2015 IEEE/ACM 2nd International
Workshop on Requirements Engineering and Testing, May 2015

103

2015 IEEE/ACM 2nd International Workshop on Requirements Engineering and Testing

It’s the Activities, Stupid!
A New Perspective on RE Quality

Henning Femmer, Jakob Mund, Daniel Méndez Fernandez
Technische Universitdt Miinchen, Germany,
Email: {femmer,mund,mendezfe} @in.tum.de

Abstract—|[Context] Requirements Engineering (RE) artifacts
are central items in software development: Their quality is of
essential importance for development, testing and other software
engineering activities. However, as requirements artifacts are
used differently in different processes, the proper definition of
what is good quality depends on the context under consideration.
[Problem] So far, no methodology exists that enables to define
context-specific RE artifact quality in a precise manner. [Principle
Idea] We define context-specific RE artifact quality by how
quality attributes of an RE artifact impact on the activities of
the software development process in which this artifact is used.
[Contribution] In this paper, we introduce a methodology to
define RE artifact quality specifically to a project- or process
context. Furthermore, we provide a preliminary technical val-
idation as well as an industrial validation on the application
of our approach. Our studies indicate that the activity-based
approach enables defining and validating RE quality in a precise
and systematic manner. The industrial validation furthermore
suggests the applicability of the approach in practical use.

I. INTRODUCTION

Requirements engineering (RE) artifacts are a basis for
communicating the stakeholders’ demands. Based on these
artifacts, developers produce source code, testers create test
cases and customers accept or reject the result. Consequently,
RE artifact quality can be crucial for the success of the
software engineering endeavor.

Various proposals define a concept of RE artifact quality,
most prominently standards such as the IEEE-830 family [1]
or its successor, the ISO/IEC/IEEE-29148 [2]. These stan-
dards provide a set of characteristics that define a notion
of good RE artifacts, e.g. artifacts need to be unambiguous,
implementation-free, verifiable, etc. We can classify the char-
acteristics into two types:

First, some characteristics, such as unambiguity and
implementation-free!, describe properties of the RE artifacts.
These characteristics can, after further definition and clari-
fication, be diagnosed directly in the artifact. However, the
rationale (where does this cause which problems in which
situation?) remains implicit and, thus, imprecise. Second, some
characteristics, such as verifiability, name activities to be
performed with the artifacts [2]. Although in this case the
rationale behind this characteristic is clear (e.g. a violation has
negative consequences on verification activities), the concrete
property of the artifact remains fuzzy, since it strongly depends

mplementation-free refers to the rule that requirements specifications
should report on the problem- and not the solution domain.

978-1-4673-7073-8/15 $31.00 © 2015 IEEE
DOI 10.1109/RET.2015.11

13

on the process; for instance, how suited the requirements are
for testing also depends on whether the project applies either
in-house, explorative testing or a formal testing process.
Consequently, in quality assurance (QA) for RE artifacts
we face the problem of a missing guidance of why and
how particular characteristics should be inspected in a certain
context.
Problem Statement: We are lacking a methodology for defin-
ing RE artifact quality for a specific project- or process context
in a precise manner. Contribution: In this paper, we suggest to
analyze how RE artifacts are used in order to define RE artifact
quality. To define quality in a certain context, we propose
the concept of activity-based RE quality models (ABRE-QM).
Quality engineers can use such models to define a context-
specific notion of quality. In this work, we define an approach
towards the development of such a quality model, and provide
a technical validation as well as an empirical evaluation in an
industrial setting. Impact: Our results support researchers to
foster the discussions on how to precisely capture RE quality.
In addition, our proposed notion should support practitioners
to analyze (and maybe also question), as well as align their
RE artifacts with a notion of quality that fits their individual
processes.
Outline: The following section shows related work on RE
quality and activity-based quality modeling. Afterwards, we
introduce ABRE-QM and a methodology how to create an
ABRE-QM. This methodology is followed by a technical
validation, as well as an industrial validation, in which we
exemplarily show how an ABRE-QM is applied in practice and
analyze the experiences. The paper concludes with a summary
and an outlook on future work.

II. FUNDAMENTALS AND RELATED WORK

The notion of quality has been widely discussed in RE
research and different RE quality models have been proposed
so far. Besides the widely-known standards defining quality
in terms of a set of attributes demanded of a requirements
specification, e.g., [1], [2], several models question quality
in RE in a more fundamental way. Lindland et al. [3], [4],
[5] model RE quality based on semiotic theory. Syntactic
quality is concerned with the absence of errors regarding the
languages used, semantic quality with the completeness and
correctness (or, validity), and pragmatic quality with the degree
to which a specification is understood by its audience. Pohl et
al. [6] model RE quality along three fundamental dimensions,

namely specification (degree of completeness), representation
(degree of formalization), and agreement (degree to which a
common view was obtained). Furthermore, depending on the
representation used, specific quality models are introduced,
e.g. for natural-language specifications, Berry et al. [7] relate
manifestations in terms of linguistic defects to understand-
ability, consistency, completeness, and correctness. All these
models have in common to focus on intrinsic properties of
artifacts rather than on its usage for the engineering endeavor.
In contrast, the basic idea of activity-based quality models
is to define quality by how well properties of a product
support the activities carried out by the use of the product (see
also [8]). Those models, as introduced by Wagner et al. [9]
are originally intended to enable the precise definition and
evaluation of code quality aspects against maintainability [10]
and other non-functional requirements [11], [12]. In order to
precisely define context-specific quality, this work transfers
the basic concepts of the activity-based quality model to the
domain of RE (and its quality assurance) where we support
building up a context-specific notion of RE artifact quality.

III. ACTIVITY-BASED RE QUALITY MODELS

We strictly understand RE as a supporting means for soft-
ware engineering, with the goal to produce working software
products in a systematic and predictable way. Therefore, the
value of the outcome of RE cannot be assessed on its own but
must be evaluated in its use as a function to the rest of the
engineering endeavor. In this work, we take an artifact-based
view on RE where we concentrate on the artifacts rather than
on the methods used to create and modify the artifacts. In our
understanding, an artifact is any document or data set required
in the RE process in its intermediate of final form [13].

A. Metamodel

Stakeholder & Activities

Stakeholder

consists of

performs

Artifacts & Entities Activity

Impacts

Quality Factor

impacts

characterized by

Fig. 1. Metamodel of the activity-based RE quality model based on [9]

To define the notion of the quality of RE artifacts, we adopt
the approach of activity-based quality as defined by Wagner
et al. [9] by investigating the activities in which the artifact is
potentially used as an input. This approach, which results in
what we call a activity-based requirements engineering quality
model (ABRE-QM), investigates all stakeholders (or roles) and
the activities that use an artifact, and identifies characteristics,
called quality factors that impact the stakeholder’s ability to

14

perform his specific activity efficiently and effectively. The
meta-model is illustrated in Fig.1.

Furthermore, for each quality factor, the model must provide
the following information: a) One or more Activities on which
this quality factor has an influence; Consequently, we can
obtain a structured quality model from those activities, e.g.,
if the activity is testing, the quality factor will be part of
testability in the model. b) Furthermore, for each quality
factor and each activity, a rationale has to be given. The
rationale includes a reason, i.e., an argumentation why the
possession of a specified characteristic (the quality factor)
of an artifact impacts the associated activity, consequences
on costs, schedule or quality of the developed system if the
quality factor is not met, and a source from which this impact
was derived and which can provide further information, such
as a requirements quality standard or corporate guidelines’.
c) Lastly, the Entity in which the information described by the
quality factor is contained. This can be an high-level artifact,
such as e.g. use cases or more specific definition of the
exact content location, such as e.g. the first step in
each use case.’

This metamodel enables us to define quality for specific
activities and purposes in a profound manner. However, instan-
tiating this model for a specific purpose requires a thorough
analysis of the impacts and activities, which we will present
in the following section.

B. Defining an ABRE-OM

In order to give a deeper understanding on how to define
an activity-based RE quality model, we describe a process
that can be applied to a specific context (i.e. for a certain
process, project or company). This process is by no means
prescriptive; yet we argue that a systematic methodology
towards defining RE quality increases the chance to create
a more complete quality model since all stakeholders and
artifacts are systematically included in the analysis.

The process contains four steps, following the main con-
cepts of the meta model provided in Fig. 1. These four steps
are most probably not executed sequentially, but iteratively
until all stakeholders are content with the result.

1. Define RE entities in the project. First, we must analyse
which artifacts are used in the context of this ABRE-QM,
and determine for which artifacts we define quality. Usually,
project repositories (e.g. in version management or file systems
or also project tracking systems such as JIRA) give a good
overview, but sometimes artifacts are also transferred directly
between stakeholders. The elicited artifacts are then broken
down into their entities. Good candidates for entities are fields
or self-containing sections in the artifacts.

2. Elicit stakeholders. Depending on how requirements are
used and needed in a project, various stakeholders work
with the requirements artifact. These stakeholders have direct

2For simplification, we did not include these in Fig. 1.

3The ABRE-QM focuses on the impact relation. Therefore, we intentionally
omitted modelling further existing relations (such as the relation between
stakeholders and artifacts).

needs to the requirements artifact and thus must be involved
in the definition of the ABRE-QM. Accordingly, missing
stakeholders as well as unnecessary stakeholders can lead to
a suboptimal definition of the quality model. A project lead
is usually a good starting point for finding out who interacts
with the RE artifact.

3. Elicit activities with an interface to RE. A good op-
portunity to find out how RE artifacts are used is to ask the
elicited stakeholders how they use the requirements artifacts.
This leads to certain, usually coarse-grained activities. These
coarse-grained activities have to be broken down into smaller,
until we can pinpoint to how a specific stakeholder interacts
with the RE artifact.

4. Determine quality factors and impacts. We now have to
identify quality factors (properties of the elicited entities) that
affect the elicited activities. Currently, we only see heuristics
to determine the quality factors: Generally, we need to analyze
those activities where the RE entities serve as input artifacts:
What helps or hinders to execute this activity and why?
What helps or hinders to create an output for this activity
efficiently and effectively? For example, there are reports on
various quality factors in literature, e.g. in standards (e.g. the
requirements language criteria in [2]) or in specific research
areas (e.g. the work on requirements ambiguity in [14]).
Furthermore, some companies have specific guidelines for
their projects. Other sources for quality factors include defect
reports, questionnaires in the project or retrospectives. These
quality factors are then explicitly linked to the respective
activities via impacts. However, we must carefully validate
our impacts and determine whether each impact really holds
in the context under consideration.

C. Example

The following short example illustrates these ideas.

1. Artifacts and entities: A Use Case (e.g. [15]) is
a common artifact for specifying functional requirements to
software systems. A use case usually contains a basic
flow, which is a sequence of steps that describes how the
user interacts with the system. 2. Stakeholders: For the
sake of simplicity, in this example we will consider only
test engineers. 3. Activities: When we analyze how
a test engineer in a specific project processes the use case
document, we find out that in some contexts the test engineers
goes through the steps and creates test steps for each
element in the sequence. 4. Quality factors: It is considered
good practice in use cases to enumerate these steps one
by one instead of describing the interaction in a text block.
With the aforementioned context and activity in mind, we
understand why a use case inhibiting this quality factor is
better: The test engineer’s task of creating a test sequence can
be executed more effectively (and maybe also more efficiently)
when the factor is present in the use case. In the remainder of
the paper, we will denote this positive ("+’) impact with the
following shorthand:

Explicit step enumeration @basic flow = Create test steps

15

IV. PRELIMINARY TECHNICAL VALIDATION

The goal of this technical validation is to demonstrate the
feasibility of the proposed concepts, and to gather experiences
in applying our approach to software processes. Therefore, we
instantiate a model by applying the ABRE-QM approach to a
standardized software process. This serves as a preparation for
the application in a real-world scenario described in Sect. V.

The set of activities and artifacts we rely on are taken from
the iterative and incremental software development process
unified process (UP), based on Jacobsen et al. [16]. We chose
UP, because it is widely known in both academia and industry,
its activities are refined to detailed tasks and described in
detail, and so are the expected output artifats created by the
activities. The entities in UP therefore provide us with the
information necessary to conduct step 1-3 of the procedure
described above. Note that although the model is based on
activities of the UP, it does not strictly depend on the actual
order of how those activities are performed, and thus may be
applicable to various other process model variants having same
or similar activities.

A. Defining an ABRE-QM

In the first step, we obtain the RE entities, stakeholders, and
activities as defined in the UP (step 1-3). In order to determine
the quality factors and their impacts (step 4), we analyze the
descriptions of the activities and their output artifacts, marking
all occurrences where a characteristic of an RE artifact can
impact elementary tasks of the corresponding activity. Each
quality factor is formulated in such a way that the impact on
the associated activity is positive, and a rationale for it is given.
Example. We demonstrate the derivation of quality factors
on the activity design system test performed by the
test engineer. According to the UP, one elementary step
in designing a system test is to identify and describe
test cases, producing test case artifacts. For both the
aforementioned activity and the output artifacts, the definitions
provided by the UP need to be analyzed for potential quality
factors. For instance, the UP states that test cases shall be
created for “requirements whose implementation justifies a
test” [16]. One important factor for this is the requirements im-
portance, e.g., in terms of associated priorities*. Consequently,
we derive the quality factor

Valid understanding of prioritization @use case L>Design Test

B. Resulting Model

In the remainder, we identify quality factors that are rel-
evant for the activities in the exemplary discipline (system)
testing. We opt for this discipline because of its relevance,
its strong dependencies with RE, and because of its general
representativeness for many engineering processes.

The obtained quality model is illustrated in Fig. 2 together
with the rationale for each identified quality factor. According
to the UP, RE artifacts are extensively used for planning

4Other factors include technical factors, such as the requirements error-
proneness.

Artifacts & Entities

Stakeholder & Activities
Test Engineer

<+ —— 3 3 +

| Plan Test | | Design Test || Implement Test || Execute Test || Evaluate Test

Impacts

(2) Ease of discovering
repeatedly used func.

(1) Ease of discovering

Use Case

system.capahilitites. (6) System env. Conditions

(3) Req. Dependencies specified }7

specified

(4) valid understanding of

prioritization

(5) Granularity of prioritization

(8) In- and outputs specified at

system boundary (7) In- and Outputs

Q. Factor

quantitatively specified

Rationale

(1) Ease of discovering
system capabilities

In order to estimate the efforts in testing, the system’s desired functionality can serve as an indicator. Hence, the system capabilities must
be known to the test engineer

During the identification of test cases, the engineer must be able to obtain the system’s capabilities in order to choose the test cases to
be created.

(2) Ease of discovering re-
peatedly used functionality

Choosing between automated and manual tests is also an economic question. It can be argued that (parts of) system’s functionality often
used among different scenarios and use cases may be appropriate candidates for test automation.

(3) Requirement
dependencies specified

The test plan includes a test schedule, which must reflect the logical order of different req., e.g, that login-functionality preceedes data
manipulation scenarios.

During the identification of test cases, the engineer must be understand how the requirements influence each other, e.g., that some
functionality is always run in parallel, in order to create more approriate testing conditions.

(4) Valid understanding of pri-
oritization

Cf. Prioritization specified. (In addition, prioritization often lack an unambiguous specification of what an associated priority means)

(5) Granularity of prioritiza-
tion

Cf. Prioritization specified. (The more fine-grained the prioritization, the better the test engineer could optimize his test budgets)

(6) System Environment Con-
ditions specified

Part of the test cases is to describe the environment of the test as close as possible to the productive (end) system. Thus, the engineer
must understand under what conditions the system will operate, e.g., regarding amounts of productive data, temperature, workload.

(7) Inputs and Outputs quali-
tatively specified

In order to be able to produce executable test cases, the system requires quantiatively precise inputs. Furthermore, the system emits
quantitative results, where an acceptable range thereof must be defined in a test case.

(8) Inputs and Outputs speci-
fied at system boundary

A test case has to be applicable directly on the system, i.e., inputs are submitted and outputs obtained at the system’s interface. Inputs
or outputs which happen in the environment of the system are not sufficient to create test cases.

Fig. 2. Quality model (with rationales) for system testing according to the Unified Process.

the test strategy (output artifact: test plan) and design-
ing system tests (output artifacts: test cases and test
procedures), while for implementation, execution and eval-
uation, the SRS is not explicitly used at all and, thus, has solely
indirect influence. Furthermore, some quality factors influence
more than one activity, e.g., requirement dependencies are
used both during planning (to arrange a feasible schedule) and
designing test cases (to specify appropriate testing conditions).

C. Experiences from the Technical Validation

We were able to derive quality factors (and their impacts)
from UP activities and their corresponding output artifacts.
However, a pure analysis of the process model description is
not sufficient, but a more liberal interpretation is required. That
is, a static (idealized) description of a process is not sufficient
as the obtained quality factors (and their practical value)
highly depend on the person deriving it, especially regarding
the expertise in the field and, since definitions are vague,
experiences how the activities are carried out in practice. From
our experiences, we obtained more and more precise quality
factors when asking experienced testers compared to students.

In contrast to the more traditional quality attributes advo-
cated by standards (e.g., [1], [2]), the obtained quality factors
are quite different in nature. They are more specific in the
sense that they focus on a rather small part of the whole

16

SRS, e.g., the priorities attached to requirements, and could
thus demand quite precise characteristics of them, whereas
traditional quality attributes are rather cross-cutting concerns
in nature, e.g., all information must be precise.

V. INDUSTRIAL VALIDATION

The goal of this validation is to evaluate whether an activity-
based quality model can represent a valid, context-specific
quality model in practice. Therefore, we conducted a real-
world validation with our industry partners. In this study,
we translated a set of company-specific use case guidelines,
which are used throughout a large re-insurance company,
into an ABRE-QM and validated the resulting model with
practitioners. The purpose of this validation is to receive
qualitative practitioners’ feedback on the resulting model in
order to understand applicability, and thus let practitioners’
evaluation steer the further development of our approach.

A. Study Design

Study Objects. We performed the study at Munich Re, which
is one of the worlds leading reinsurance companies with more
than 47,000 employees in reinsurance and primary insurance
worldwide. For their insurance business, they develop a variety
of custom software systems. To elicit the artifacts, stakeholders
and activities of a regular Munich Re project, we inspected

the development of a large software project that has passed
its initial development and is currently in the maintenance
phase. For the impacts, we referred to Munich Re’s “use case
authoring and review guide” (guidelines in the remainder of
this paper), which is a 28 pages document that gives detailed
instructions on how to describe use cases at Munich Re.
Data Collection. Following the process as described in
Sec. III-B, the approach contained four phases: First, we
received and analysed a full set of 51 requirements engineering
artifacts that were created in the project, including use cases,
business rules and others. In the first, 90-minutes workshop
with the project lead, we eliminated artifacts that were ir-
relevant to the guidelines and broke the remaining artifacts
down into entities. Furthermore, when the project artifacts
did not follow the guideline rules, we extended the model
by the entities that were mentioned in the guidelines. Then,
the project lead explained the current process of the project,
including the users of each artifact and the activities that are
performed with these artifacts (Steps 2 and 3 in the process).
Furthermore, we defined general activities, such as £ind or
trace that are generic activities which are independent from
the specific roles or which are a basic foundation for each
activity, such as understand. After the meeting, the authors
inspected each of the 50 rules of the guidelines and determined
(a) the quality factors that the rule describes, (b) the entities
that this rule affects, and (c) the activities that this rule impacts
either according to the guideline, if explicitly mentioned, or
according to our own experience. This step took approximately
1.5 days.

Although we conducted these steps one-by-one, we itera-

tively refined over the different phases whenever it was evident
that information was missing. This happened particularly often
with the activities. For instance, when we discussed the impact
of a quality factor, we realized that we needed to add certain
activities.
Validation. We validated the model in the second, 90-minutes
workshop with an RE lead as well as an experienced de-
veloper at Munich Re. This resulted in adding one activity
(1/19 =~ 5%) and changing (i.e. adding, removing or altering)
11 impacts (11/79 =~ 14%). In the remaining section, we
describe the resulting model after validation.

B. Resulting Model (Exerpt)

The resulting model, after validation with the two experts,
contains 36 entities, 5 stakeholders, 19 activities and 79 im-
pacts. In this section, we provide an overview of the resulting
model and give some insights into examples. Please note, that
it is not our intention to discuss the reasoning in the guideline
rules nor the impacts that were given by Munich Re. The
goal in this work is to understand whether the meta-model of
ABRE-QM enables a definition of quality in this context.
Stakeholders and Activities. The stakeholders involved were
requirements engineers, architects, developers, testers, and the
department that requests the IT system under development
(customer in the remainder of this section).

17

On the activity side, the model defines five activities that
form the basis for the remaining, i.e. £ind (successfully
searching an information) and understand (transferring the
intended meaning from the author to the recipient). By extract-
ing this abstract information, we were able to keep impacts
on e.g. implementing a use case only if the impact was really
specific to this activity and not due to a generalized one of
the above. That way we take only direct impacts into account
and avoid the model to be cluttered with indirect impacts.
The remaining activities range from standard SE activities,
such as derivate test, to more specific activities, such
as update use case.

Artifacts and Entities. Munich Re applies use cases with
the entities proposed by Cockburn [15]. They furthermore add
a small number of semi-formal language constructs, such as
references for extension points and subflows.

Quality Factors and Impacts. Instead of presenting all
quality factors, we provide three typical examples:

Presence of UI design details @step L{ Understand, Implement}
Presence of Ul design details @step —{ Maintain, Implement, Use}

As one example, the experts discussed a common defect
in RE artifacts which violates the rule that requirements
artifacts should be implementation-free, i.e. the artifact should
describe the problem domain instead of the solution domain,
see also [2]. In the specifications of Munich Re, however,
we could observe various violations of this quality attribute,
especially in use case artifacts. In the example in Fig. 3, we
show the resulting ABRE-QM for UI Design Details (i.e.
details on the system’s look) on the software development
process at Munich Re: The Artifact under consideration is the
use case, which contains different entities, such as a name
or pre—/postconditons and basic flow, which in
turn consists of a set of steps. For the activities, we show
only the most relevant activities in this figure. Regarding the
impacts of UI design details, the model argues that they make
understanding a use case more efficient, as the visual support
can increase the understanding of how the use case is executed.
In addition, the UI details might help the tester to run the
test case. However, Ul details tend to change more often,
which can lead to additional maintenance for the requirements
engineers. Lastly, these details might lead to a non-optimal
solution, which might be rejected by the end-user.

Contains unique ID @name L)[Find, Overview, Trace}
Contains unique ID @name ——Read

The second rule in the Munich Re guidelines states
that each use case should have a unique identifier in the
name, e.g. at Munich Re use cases are named in the pat-
tern <ProductPrefix>-UC<nn> <name>. The ID in the
middle obviously serves purposes of identification and trace-
ability. Furthermore, the experts explained us that the number
enables to keep an overview as most file browsers thus display
the use cases in a defined order. However, they agreed that the
ID makes texts sometimes less efficient to read, a trade-off they
are willing to accept for the benefits.

Stakeholder & Activities

Artifacts & Entities | All Stakeholders I | Req. Engineer | | Implementer | | Tester | | User |
+ ¥ ¥ -
| Find UC I | Understand UC | | Create UC | | Maintain UC | | Implement UC | | Derivate Test Idea | | Run Test | | Perform UC |
Impacts
Rationale: Rationale: Rationale:

A visual representation of a Ul
supports the stakeholder in
understanding, because it
makes the Use Case more
concrete.

Postconditions

Basic Flow

Visual elements change more
often than the way how a user
interacts with the system.
Therefore, UC with Ul detail
must be changed more often.

The tester can associate the UC
directly to the Ul which makes
running the test case easier.

A user might have to use a
suboptimal Ul, because it was
determined early in the
process.

| Step I """"""""" | UIDesignDetaiIsI

Fig. 3. An example of an activity-based quality definition with implementation details

Is present @subﬂowL{ Update, Trace}
Is present @subflow — Read, Understand}

In a final example, we heavily discussed the usage of
subflows with the experts. Subflows are mechanisms for reuse
that enable the author of a use case to extract a certain set of
steps into a reusable subflow to prevent copy-and-past reuse
(so-called cloning [17]) in the use cases. That way, if parts
of the flow change, they only need to be changed in one
location (the subflow), and not in each use case [17], hence
the positive impact (efficiency) in the Update activity. This
furthermore creates an explicit trace link between the use
cases. However, in Microsoft Word use case documents, as
currently used by Munich Re, subflows force the reader to
jump between different positions in the text in order to read
through the use case, which can be argued to lead to less
readable use cases that are harder to understand.

C. Experiences from the Industrial Validation

Our experiences in the industrial validation can be divided
into a company and a researcher’s perspective.

In order to understand the companies perspective, we asked
the project and RE lead after the creation of the model,
whether they considered this quality model a useful approach.
They responded that they considered this definition of impacts
a relevant analysis for understanding guideline correctness
and completeness: First, discussing each quality factor and its
impacts on activities was seen as a validation of the company
guidelines. They considered re-evaluating guideline rules that
do not have a broad impact on the development process.
Also, rules that have positive as well as negative impacts
should be debated within the company again, especially if
use case authors have issues following them. Second, they
considered the model a good starting point for improving
guideline completeness, through analysis of their process from
activities to quality factors: What do the testers need from the
requirements specification? What additional quality factors do
we need for the developers, etc. The model might enable to
formalize these discussions. We will focus on these goals in
future validating research.

18

From a researcher’s perspective, we realized during the
creation of the ABRE-QM, that the most difficult part is
understanding the impacts of a certain quality factor: Dis-
cussions on the impact often resulted in one example in which
the impact was present and a contradicting example in which it
was not. Hence, whether there was an impact depended on the
context. We see two solutions to this problem: First, further
refinement of quality factors and activities can enable to more
precisely define the quality factor or the particular activity that
is affected. For example, whereas the impact of UT details
in use cases on the implementation is unclear, it is obvious
that unnecessary UI details have a negative impact.
Similarly we can split up activities to further understand which
activities are affected in what way. Second, if the refinement
as described before, does not help to clarify the impact, a
quality factor may also include multiple impacts on an activity
with a defined context describing when a certain impact will
hold. This more fuzzy solution prevents that impacts are
removed due to conflicting opinions. As future work, we need
to understand whether the opinion of different experts intersect
regarding the impact of quality attributes.

VI. DISCUSSION

So far, we presented a new approach to derive a quality
model based on activities that need RE artifacts. In this
section, we reflect on strengths and limitations of such a model
regarding the validity and completeness of the notion of quality
and the notion of context-specificity, and discuss its use for
constructive quality assurance.

A. Model Completeness

Applied to the quality modeling approach in this paper, we
consider a quality definition model to be complete if all quality
factors which (significantly) impact the activities are identified.
Regarding both the technical and industrial validation, we
face one fundamental problem; we only consider the impact
on the engineering in terms of pure creation of a software
system. However, RE results may be used for activities beyond
engineering, e.g., cost-estimation, project management, main-
tenance. Therefore, the obtained quality model cannot be com-
plete unless those activities are also considered. Furthermore,

the derivation of quality factors is a cognitive task based on
expertise and experience of individuals, and as such, imperfect
by definition. Also, the set of quality factors which have some
effect on the activity outcome may very well be infinite. For
practical purposes, we would advise to derive quality factors
by several experts independently, and than use consolidation
techniques to obtain a final set of quality factors, however,
we have no scientific evidence for such claims and it remains
future work.

B. Applicability for Quality Assurance

We envisioned the activity-based quality modeling approach
to be embedded in practical quality assurance. Therefore,
further techniques and tools are required. For quality as-
sessment, we could imagine that our definition of quality
might lead to new metrics to measure quality factors, and for
constructive quality assessment, techniques such as the one
of Requirements Smells [18] for quality factors could provide
valuable feedback when writing the requirements specification.

C. Threats to Validity

Our approach, in particular the industrial validation, offers
some threats to validity, let alone those inherent to case
study research [19] such as subjectivity. However, we were
particularly interested in (subjective) practitioners feedback
and qualitative insights that would allow us to actively steer
the further improvement of ABRE-QMs. This subjectivity also
means that we need to expand our investigations in the future
to analyse the risks arising from those subjective facets relating
to quality modeling for requirements engineering: Do people
agree on the impact of certain defects in their requirements
specifications?

Finally, our findings can not be generalized as we made
our investigations in one company context only involving two
subjects. The objective of the validation was, however, not of
confirmatory nature, but of exploratory where we wanted to
reveal first qualitative insights. Needed are, therefore, further
independent investigations for which we have provided the
basis. During those independent investigations, it has also to be
shown if the approach can be used by others and how exactly
it is used (in which particular quality assurance context).

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed activity-based quality models
(ABRE-QM) that support practitioners in defining a context-
specific notion of RE (artifact) quality. We defined a meta-
model and suggested a coarse procedure to build such an
individual ABRE-QM. Our first technical validation and the
industrial evaluation in collaboration with practitioners both
indicate that the concepts can be applied in practice. Our re-
sults furthermore strengthen our confidence that the approach
yields substantiated and detailed quality factors. Practitioners
suggested that the approach could improve their requirements
guidelines in terms of correctness and completeness, which
forms future research.

19

We identified the proper validation of impacts as a key
challenge in the development of ABRE-QMs and we see
potential of the quality model to enable a cost-benefit analysis
of conflicting (positive as well as negative) impacts through
weighting of the different factors. Finally, another question that
is currently unanswered is how much the application of the
quality model depends on the involvement of us researchers.
As we could only provide the first step in this direction, we
cordially invite further researchers and especially practitioners
to critically discuss our approach, and to join us in (indepen-
dent) evaluations of our approach to eventually further explore
the full spectrum of quality modeling in RE.
Acknowledgments. We thank Jonas Eckhardt, Sebastian Eder,
Klaus Lochmann, Sabine Teufl, Antonio Vetro’, Benedikt
Hauptmann as well as Rudolf Vaas und Alexander Widera
from Munich Re for their feedback.

REFERENCES

“IEEE Recommended Practice for Software Requirements Specifica-
tions,” IEEE Computer Society, Tech. Rep., 1998.

ISO, IEC, and IEEE, “29148:2011-Systems and software engineering -
Life cycle processes - Requirements engineering,” Tech. Rep., 2011.

J. Krogstie, “Integrating the understanding of quality in requirements
specification and conceptual modeling,” ACM SIGSOFT Software Engi-
neering Notes, 1998.

J. Krogstie, O. I. Lindland, and G. Sindre, “Towards a deeper under-
standing of quality in requirements engineering,” in CAiSE. Springer,
1995.

O. I Lindland, G. Sindre, and A. Solvberg, “Understanding quality in
conceptual modeling,” IEEE Software, 1994.

K. Pohl, “The three dimensions of requirements engineering: a frame-
work and its applications,” Information Systems, 1994.

D. M. Berry, A. Bucchiarone, S. Gnesi, G. Lami, and G. Trentanni, “A
new quality model for natural language requirements specifications,” in
REFSQ, 2006.

ISO and IEC, “IEC 25010: Systems and Software Quality Requirements
and Evaluation (SQuaRE),” Tech. Rep., 2011.

S. Wagner, K. Lochmann, L. Heinemann, M. Klis, A. Trendowicz,
R. Plosch, A. Seidl, A. Goeb, and J. Streit, “The Quamoco Product
Quality Modelling and Assessment Approach,” in /CSE, 2012.

F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard,
“An activity-based quality model for maintainability,” in ICSM, 2007.

K. Lochmann, “Engineering Quality Requirements Using Quality Mod-
els,” in ICECCS, 2010.

S. Wagner, F. Deissenboeck, and S. Winter, “Managing quality require-
ments using activity-based quality models,” in WoSQ, 2008.

Méndez Fernandez, D. and Penzenstadler, B. and Kuhrmann, M. and
Broy, M., “A Meta Model for Artefact-Orientation: Fundamentals and
Lessons Learned in Requirements Engineering,” in MoDELS, 2010.

D. M. Berry, E. Kamsties, and M. M. Krieger, “From Contract Drafting
to Software Specification : Linguistic Sources of Ambiguity,” Tech. Rep.,
2003.

A. Cockburn, “Basic use case template,” Humans and Technology,
Technical Report, vol. 96, 1998.

I. Jacobson, G. Booch, J. Rumbaugh, J. Rumbaugh, and G. Booch, The
unified software development process. Addison-Wesley Reading, 1999.
E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,
S. Wagner, C. Domann, and J. Streit, “Can Clone Detection Support
Quality Assessments of Requirements Specifications?” in ICSE, 2010.

H. Femmer, D. Méndez Fernandez, E. Juergens, M. Klose, I. Zimmer,
and J. Zimmer, “Rapid Requirements Checks with Requirements Smells:
Two Case Studies,” in RCoSE, 2014.

P. Runeson and M. Host, “Guidelines for Conducting and Reporting
Case Study Research in Software Engineering,” EMSE, 2009.

[10]
[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

A. Publications

Publication B: Requirements Quality is Quality in Use —
A Novel Viewpoint

Authors Henning Femmer and Andreas Vogelsang
Venue Submitted to IEEE Software

Abstract The quality of requirements engineering artifacts is widely considered
a success factor for software projects. Currently, the definition of high-quality or
good RE artifacts is often provided through normative references, such as quality
standards, text books, or generic guidelines. We see various problems of such
normative references: (1) It is hard to ensure that the contained rules are complete,
(2) the contained rules are not context-dependent, and (3) the standards lack
precise reasoning why certain criteria are considered bad quality. To change this
understanding, we postulate that creating an RE artifact is rarely an end in itself,
but just a means to understand and reach the project’s goals. Following this line of
thought, the purpose of an RE artifact is to support the stakeholders in whatever
activities they are performing in the project. This purpose defines high-quality RE
artifacts. To express this view, we contribute an activity-based RE quality meta
model and show applications of this paradigm. Lastly, we describe the impacts of
this view onto research and practice.

Extended Summary This paper is summarized in Sections 4.1 and 6.2.

Authors Contributions I co-designed and co-reported the work.

m

Requirements Quality 1s Quality in Use
— A Novel Viewpoint —

Henning Femmer and Andreas Vogelsang

Abstract—The quality of requirements engineering artifacts
is widely considered a success factor for software projects.
Currently, the definition of high-quality or good RE artifacts
is often provided through normative references, such as quality
standards, text books, or generic guidelines. We see various
problems of such normative references: (1) It is hard to ensure
that the contained rules are complete, (2) the contained rules
are not context-dependent, and (3) the standards lack precise
reasoning why certain criteria are considered bad quality. To
change this understanding, we postulate that creating an RE
artifact is rarely an end in itself, but just a means to understand
and reach the project’s goals. Following this line of thought,
the purpose of an RE artifact is to support the stakeholders
in whatever activities they are performing in the project. This
purpose defines high-quality RE artifacts. To express this view,
we contribute an activity-based RE quality meta model and show
applications of this paradigm. Lastly, we describe the impacts of
this view onto research and practice.

Index Terms—Quality, quality standards, requirements, docu-
mentation, roadmap

Three Actionable Insights:

« Always remember: Requirements engineering artifacts
are a means, not an end.

o Therefore, before writing your requirements, think about
the readers and how they use the artifacts first.

« Use this simple model to define who is using RE artifacts,
what RE artifacts are used for, and how RE artifacts
should therefore look like.

I. CURRENT STANDARDS ARE INCOMPLETE, INADEQUATE
AND IMPRECISE ON REQUIREMENTS QUALITY.

Requirements Engineering (RE) artifacts are central entities
in the software engineering process. Based on these artifacts,
project managers estimate effort, designers create architec-
tures, developers build the system, and test managers set up a
test-strategy. Consequently, quality defects in RE artifacts can
cause expensive consequences in subsequent software devel-
opment activities. Therefore, quality control of RE artifacts is
key for successful software development projects.

The definition of high-quality or good RE artifacts is
often provided through normative references, such as quality
standards or text books (e.g., ISO/IEEE/IEC-29148 [1]). We
see various problems of such normative references.

Quality standards are incomplete. Several quality stan-
dards describe quality through a set of abstract criteria. When
analyzing the characteristics in detail, we see that there are
two different types of criteria: Some criteria, such as ambi-
guity, consistency, completeness, and singularity are factors
that describe properties of an RE artifact itself. In contrast,
feasibility, traceability and verifiability state that activities can

be performed with the artifact. This is a small, yet important
difference: While the former can be assessed by analyzing
just the artifact by itself, the latter describe a relationship
of the artifact in the context of its usage. Yet this usage
context is incompletely represented in the quality standards:
For example, why is it important that requirements can be
implemented (feasible in the terminology of ISO-29148) and
verified, but other activities, such as maintenance, are not
part of the quality model? Therefore, we argue that normative
standards do not take all activities into account systematically,
and thus, are missing relevant quality factors.

Quality standards are not context-dependent. One could
go even further and ask about the value of some artifact-based
properties such as singularity or formality. Still widely cited
quality models of the past [2] proclaimed that (all) projects
should strive towards formalized requirements. What is the
purpose and reason behind such a property? A normative
approach does not provide rationales. This is different for
activity-based properties, such as verifiability, since these
properties are defined by their usage: If we need to verify the
requirements, properties of the artifact that increase verifiabil-
ity are important. In particular, we need to understand up-front
how we want to verify the requirements. For a formal veri-
fication, formalized requirements are a reasonable approach.
For manual testing, however, formalized requirements might
actually make them harder to understand and, therefore, harder
to test. This example shows that, in contrast to the normative
definition of quality in RE standards, RE quality usually
depends on the usage context.

Quality standards lack precise reasoning. For defining
most of the aforementioned criteria, the standards remain
abstract and vague. For some criteria, such as ambiguity, the
standards provide detailed lists of factors to avoid. However,
these criteria have an imprecise relation to both the abstract
criteria mentioned above as well as to any kind of reasoning.
Consequently, the harm that these criteria might cause remains
unclear.

Set of Regs. /
Regs. Document

(Individual)
Requirements

Requirements
Language Criteria

sistent, the ISO 29148 definition of inconsistency
also includes duplication issues and terminological
deficiency. In addition, the IREB assesses quality

Consistent Unambiguous Superlatives
Subjective
Complete Necessary Language
Affordable Consistent Vague Pronouns
Ambiguous Adverbs
Bounded Complete i Al
Lo Open-ended, non-
Unambiguity Traceable Verifiable. Terms
Clear Structure Verifiable Comparatives
Modifiability and ’
Extensibility Feasible Loopholes
Traceability Implementation Free IEBmEE
References
. Negatives
Sy Statements
Al Short Sentences
9 and Paragraphs
Understandable @ [(par
Sentence
Kev: I1SO 29148 & IREB
ey: Characteristics
1SO 29148
Characteristic
IREB
Characteristics

Fig. 1: This figure depicts the quality characteristics
of ISO 29148 and the IREB syllabus in compari-
son. Blue characteristics are shared characteristics,
orange and green characteristics appear only in one
of the standards. Please note that, as we discuss
in the text, some characteristics are shared between
the standards by their name, but vary in the precise
meaning of the characteristics.

II. SIDEBAR: COMPARISON OF RE QUALITY
STANDARDS

To get a taste of current RE quality standards,
we compare the ISO/IEC/IEEE-29148 [1] quality
standard with the definition of quality attributes
from the curriculum of the International Require-
ments Engineering Board (IREB), a certification
also widely used in industry.

Both standards define a quality model through
a simple list of characteristics. According to the
standards, good requirements documents are those
in which these characteristics are present. The stan-
dards share nine of the characteristics (see Fig. 1),
mostly those characteristics defined in earlier litera-
ture and standards, such as the IEEE 830. However,
the standards disagree on more characteristics than
they agree on. In particular, the standards completely
disagree when it comes to concrete language criteria.
And even when the standards agree on the charac-
teristics, as soon as they define the characteristics,
their interpretations differ significantly. Take, for
example, consistency. While the IREB definition
only considers disagreeing requirements as incon-

characteristics on a continuous scale, whereas the
definitions of the ISO standard suggests a boolean
interpretation.

At a glance, both standards share the same
approach towards quality, but their details differ
tremendously. This is especially true for the con-
crete, assessable language criteria. We argue that
these differences indicate two problems. First, the
missing agreement on the level of concrete language
criteria indicates that we do not yet know what is
good or bad quality, and that we have little to no
established understanding of the impacts of concrete
language criteria. Second and even more problem-
atic, the missing agreement at the level of abstract
quality characteristics indicates there is neither an
established understanding about nor an established
approach towards quality for RE artifacts as a whole.

ITII. GOALS OF REQUIREMENTS ENGINEERING

Let us take a step back. If we want to get to the bottom
of RE artifact quality, we need to reconsider the goals of
requirements engineering itself since RE artifacts should even-
tually support the goals of RE. Following the definitions of the
goals of RE as understood by Glinz [3, p.18], we understand
quality in RE as the degree to which the following goals are
sufficiently fulfilled for system stakeholders as well as the
project team:

(D Understand stakeholders’ needs: In our understanding,
high quality in RE is the degree of correct and complete
understanding of the goals, expectations and constraints
of the system stakeholders.

(@ Achieve agreement: In addition, high quality in RE
is the degree of agreement on a system that manifests
the consensus of all system stakeholders. To this end,
high quality in RE correctly prioritizes requirements, and
ensures that a best-possible solution is derived for the
system stakeholders’ needs (iteration between problem
and solution space, see twin-peaks model [4]).

(® Create the same mental model between all system
stakeholders: Furthermore, high quality in RE is the
degree to which these system stakeholders’ needs and
the derived consensus is correctly and completely com-
municated between all involved system stakeholders in
the project.

(@ Structure & manage requirements-based activities:
Lastly, many project activities are structured along the
system stakeholders’ needs, e.g. in the form of require-
ments. Some exemplary activities are estimating costs
and schedule of the system, developing the system or
testing the system. Consequently, high quality in RE is
the degree to which engineers working with the require-
ments (i.e. the information) can efficiently and effectively
use the requirements to execute their requirements-based

Use Case 1.docx
/

Inconsistency
between reqgs.

Passive voice

Cause mistakes and

Not explicitly separated steps

Artifact Quality factors Impact

decrease speed O

Testers

Developers, Estimators, ...

Read & Understand ___
Use Case

Create Test Case —

Artifact Users

Activities

Fig. 2: This figure shows the general idea: High or low quality means that the artifact shows quality factors which impact

activities of the user of the artifact.

activities. This can include being able to handle changing
requirements over time, if necessary in the project.
These goals could be achieved without RE artifacts. How-
ever, RE artifacts support achieving these goals of RE, es-
pecially if a project is difficult to overview due to its size
or product structure complexity. In these cases, projects can
benefit from relying on RE artifacts to effectively and effi-
ciently fulfill the purpose of RE. Some projects try to execute
requirements engineering without RE artifacts.

IV. A DIFFERENT VIEW ON REQUIREMENTS QUALITY

In the following, we want to describe our novel approach
towards requirements artifact quality. For this, we first describe
the basic concepts, then the detailed model and afterwards an
exemplary quality factor.

A. The Idea

We postulate that creating an RE artifact is rarely an end in
itself, but just a means to reach the project’s goals. In particu-
lar, they are a tool to reach the goals of RE, as described in the
previous section. Following this line of thought, the purpose
of a requirements artifact is to support the stakeholders in
whatever activities they are performing in the project (see
Fig. 2). This change of view means that it is unreasonable
to talk about good or bad RE artifacts in general. What is
good and what is bad must always be assessed with respect
to the given context. More specifically, good quality depends
on the RE artifact stakeholders and the activities that they
conduct with the RE artifacts. In fact, we argue that common
quality criteria, even completeness and correctness, have to be
rethought from a quality-in-use perspective. This contributes a
novel view on requirements engineering artifact quality, which
discusses RE artifact quality from a quality-in-use viewpoint.

B. The Model

To precisely define RE artifact quality, we designed activity-
based RE artifact quality models (ABRE-QMs). First, to de-
scribe the structure of ABRE-QMs, we provide an ABRE-QM
meta model that introduces the concepts needed to describe an
ABRE-QM.

The ABRE-QM meta model adapts and extends the
QUAMOCO meta model [5]. The QUAMOCO meta model is
used to explicitly define quality-in-use characteristics of source
code, such as maintainability [6]. We simplify, but also extend
the meta model to adapt it to RE artifact quality.

ABRE-QMs define quality as an instance of the following
elements (see Fig. 3):

An artifact is a documented collection of requirements
entities, which is produced during an RE process. An example
for an artifact is a use case document.

An entity is a coherent documented information. An entity
can be an information content item, but can also be further
decomposed, e.g. into the linguistic components of such a con-
tent item. Examples for entities are a use case, an alternative
flow or a step within the flow.

A stakeholder role is the role of someone with an interest
in the RE artifact [7], such as a test engineer. Each role can
include more generic roles. For example, both test engineer
and developers are also readers of the requirements artifact.
Therefore, quality factors that affect the activity read, affect
all readers of the artifact, including fest engineers and devel-
opers through their included generic role reader. This allows
combining shared activities that multiple stakeholders must
execute.

An activity is an invested effort, which involves one or more
of the aforementioned artifacts, such as creating test cases, and
one or more of the aforementioned stakeholder roles, such
as the fest engineer. An activity can be broken down into
subactivities. For example, the testing activity is decomposed
into creating, running, and maintaining test cases.

A quality factor is a property that is or is not present in an
entity. This property must be objectively assessable through a
measure to be used for quality control.

An impact is an explicit relation between a quality factor
and an activity. The impact influences either effectiveness or
efficiency of that activity. This impact is explicitly discussed
through: First, a reason, i.e. an argumentation why the pres-
ence of a specified characteristic (the quality factor) of an
artifact impacts the associated activity; second, consequences
on costs, schedule or quality of the developed system; and
third, a source from which this impact was derived and which
can provide further information, i.e. a requirements quality
standard or corporate guidelines.

A context factor influences the impact of a quality factor.
For example, the problematic impact of a passive voice re-
quirement varies, depending on the background of the reader.
If the reader has no or few domain knowledge, the passive
voice has a stronger impact. In contrast, in cases where the
reader is well aware of the domain and the ideas of the system,
the impact can be less problematic. Context factors can be
human, process or tool factors.

includes generic role
Stakeholder
Role
performs consists of

Activity g

o

Avrtifact
contains
contains
Entity

influenced by
is Quality Context
present Factor Factor
evaluated by

Assessment

Use Case Test Engineer
Document (TE.)
i \l,performs
contains
Use Case Create Test
Steps
K J
contains
+
Basic Flow Rationale: T.E. can translate
impacts steps
contans [influenced by
is is explicitly !
Step present separated Tool-Features

evaluated by

Manual Review

Fig. 3: This figure shows the ABRE-QM meta model and a simple example of a quality factor in an ABRE-QM. The meta model
consists of artifacts and their decomposition into entities, quality factors and their impact on activities, which are performed
by certain stakeholder roles. Impacts are influenced by context factors. Lastly, quality factors are evaluated by assessments.
The example discusses why explicitly separated steps in basic flows of use cases are considered good quality. In this example,
we discuss the impact on creating test steps, i.e. explicitly separated steps in basic flows allow more efficient and effective

creation of test steps through reuse.

An assessment is a description for evaluating an entity
against a quality factor. The application of an assessment
against an entity (analogue to Deissenboeck [6]) results in a
(potentially empty) set of quality defects. Just as Deissenboeck
describes, we see three potential categories of assessments:
manual, automatic, and semi-automatic assessments.

C. An Exemplary Quality Factor

To foster understanding, this section provides an exemplary
excerpt of an ABRE-QM (see Fig. 3). The example shows the
definition of one quality factor, namely the presence of explicit
steps in a use case flow.

1. Artifacts and entities: A use case is a common artifact
for specifying functional requirements to software systems. A
use case usually contains a basic flow, which is a sequence of
steps that describes how the user interacts with the system.

2. Stakeholder roles: For the sake of simplicity, in this
example, we consider only test engineers.

3. Activities: When we analyze how a test engineer pro-
cesses the use case document in a specific project, we discover
that, among other activities, the test engineers goes through the
use case steps and creates test step(s) for the use case’s basic
flow.

4. Quality factors: It is considered good practice in use
cases to explicitly separate each step instead of describing the
whole basic flow in one text block. With the aforementioned
context and activity in mind, we understand why a use case
with this quality factor is considered higher quality: The
test engineer can directly translate the use case steps to test
steps. Therefore, the test engineer’s task of creating a test
sequence can be executed more effectively (and maybe also
more efficiently) when the factor is present in the use case.
Fig. 3 explicates this reasoning through a positive ("+’) impact
in an ABRE-QM. Please note, that for simplicity, we only
discuss one of the impacts of this quality factor here.

5. Context factors: One could consider the applied tool
environment to be a context factors. Depending on the concrete
tools in use, the translation is more or less efficient.

6. Assessment: One could discuss various types of as-
sessments, depending on the tools used. An easy-to-apply
assessment is a manual review, which can spot this quality
defect. In addition, for various requirements management
tools, one could discuss automatic (or at least semi-automatic)
methods through automatic analysis of the use case’s structure.

This example shows the definition of one quality factor.
An ABRE-QM is a composition of a set of such quality
factors with their respective relations. RE artifact quality is
thus defined through an ABRE-QM.

This model enables researchers to provide practitioners with
a precise definition of what they consider to be bad quality,
why (i.e., due to which consequences) and in which context
(i.e., based on which activities). Practitioners can then use such
a precise quality model and, based on artifacts, activities and
impacts, decide which quality characteristics are relevant for
their context.

V. APPLICATIONS IN RESEARCH AND PRACTICE.

We have applied the proposed meta model for different
purposes. The meta model proved beneficial in several contexts
that are discussed in the following.

Activity-based RE Guidelines. Nowadays, many compa-
nies have generic guidelines to help employees improve their
requirements and to create a baseline for quality. We argue
that guidelines that are defined in an activity-based manner
could help to make these guidelines more complete, precise,
and specific for their context. In a first study [8], practitioners
reported that a translated guideline helps to both discuss
validity of the existing rules and to create more complete
guidelines.

Activity-based Tailoring of Requirements Templates.
Requirements templates are blueprints that determine the
syntactic structure of a single requirement. One reported
advantage of requirements templates is that they facilitate
more complete specifications of requirements. However, what
complete actually means depends on how requirements are
used: The information that needs to be provided in a require-
ment is determined by the activities that are performed based
on the requirement. In a recent paper [9], we used activity-
based models to tailor requirements templates in a way that
the information they demand for a requirement fit the actual
usage in a specific development context. The result is a set of
requirements templates that are more specific and expressive
than general templates that are proposed to fit every situation.

Activity-based Cost Estimation. We used the proposed
meta model to develop cost models to enable an informed
decision making process: In a recent study [10], we used an
instance of the meta model to characterize the cost and benefits
of refactoring functional parts that reoccur in several functions
of a system specification. The decision whether a refactoring
pays off heavily depends on the context in which the respective
system specification is used. Therefore, we identified activities
that are performed with the system specification, and we
identified cost factors that affect these activities in the original
and the refactored version. Cost factors are a specific form of
quality factors as present in the meta model. As a result, the
decision whether to refactor a specification or leave it as it is
can be assessed with respect to the usage context.

Activity-based Quality Assurance. The presented
paradigm also has strong implications on quality assurance.
This is both for constructive aspects, such as tailoring
guidelines to requirements use, but also analytical approaches,
such as requirements smells [8], where ABRE-QMs enabled
us to decide which quality characteristics should hold in a
certain context.

Activity-based Impact of RE Quality in a Common
Theory. Lastly, this paradigm helps steer and unite research
by providing it with a common theory: Research can be
structured along quality factors and thus focus on which
activities are impacted by a certain quality factor. That way,
both defining the quality factor and understanding its impact
follows a precise structure. We followed this example in our
experiment on the impact of passive voice on understanding
requirements [11].

VI. SO WHAT?

Based on our activity-based model, we can categorize where
the research in the field should be heading towards.

A. What Should Practitioners Do?

If you are a practitioner trying to improve the RE process
in your company by increasing the artifact quality, we would
argue that these steps help to create more efficient and effective
requirements artifacts:

1) Always remember: Requirements engineering artifacts

are a means, not an end.

2) Therefore, before writing requirements, we suggest to
think about the readers and how they use the artifacts
first: Which information do they need? Afterwards, we
advice to create a model of the RE artifacts produced
in the company, the stakeholders that use these artifacts,
and the activities that the stakeholders perform. The meta-
model presented in this article can help to structure this
model.

3) What is most important in our opinion is to talk to the
stakeholders who use an artifact to assess what helps or
hinders them in performing their tasks. Their experience
can be included as quality factors to the quality model.

4) After the basic model of artifacts, activities, and quality
factors is established, one can start introducing company-
wide guidelines or quality assurance measures based on
this model. We argue that these guidelines and measures
are more complete, specific, and justified than normative
references, because they have a direct relation to activities
that directly profit from them. Requirements patterns may
help to remind the engineers of the information they need
to document (see [12]).

5) Lastly, it is important to evolve and maintain this model
over time. The stakeholders, activities, and therefore also
the notion of artifact quality may change over time or
there might be new quality factors that should be added.
Additionally, a change in some context factors (e.g.,
tooling improvements) may mitigate negative impacts.
This could mean that maintaining some quality factors
may no longer be relevant.

B. What Is Left For Research?

The activity-based approach for quality definitions strongly
benefits from a unified and well-tested body of quality factors
and related impacts. If the research continues along this theory,
the community can, together, create a generic ABRE-QM,
which will resembles the existing knowledge on RE artifact
quality. The precision of such a theory would allow researchers
to systematically discuss results in the field and its focus on
activities would enable practitioners to understand and weigh
consequences of bad quality in a structured manner. In the long
run, this paradigm could even be extended beyond artifacts to
create a general RE quality theory.

To accomplish this vision, researchers should work on the
following topics:

o Create a reference artifact and usage model that serves
as a complete list of possible stakeholders, their most
important activities, and typical artifacts that are used in
the activities. Practitioners may use this reference model
as a starting point for a company-specific model.

o Create a taxonomy of quality factors that serves as a
body of knowledge of quality factors. To observe these,
one can look through produced artifacts, e.g.:

— Review protocols that indicate the effort that was
invested during QA of the RE artifacts (as we, for
example, did in an earlier paper [13])

— Incorrect test cases or incorrect test results that show
that the test case engineer misunderstood the RE arti-
facts

— Requirements change requests, or defects in bug track-
ing systems that can be traced back to RE artifacts, to
understand defects in the RE artifact that are discovered
during development or further activities

— Concrete changes that have been performed on the
RE artifacts to understand maintenance efforts (as for
example performed by Basirati et al. [14])

o Create a taxonomy of impacts that provides a list of
well examined effects of quality factors on activities. To
evaluate impacts, one may use interviews (see [15],), case
studies (see [14]), or experiments (see [11])

VII. CONCLUSIONS

The strength of our approach, as reported by practition-
ers [15], lies its clarity of reasoning. Taking activities as the
basis provides a simple rule whether or not something is of
better or worse quality: If it hinders someone, it is bad quality.
This rule, at the same time, generates falsifiable hypotheses
for each postulated rule for good or bad quality. We argue
that this quality model enables research to both argue more
clearly about their results, but also conduct better studies, with
a clearer research focus. We furthermore argue that this model
provides practitioners with a precise and valid approach to
understand: What are good requirements artifacts in my case?
We defined follow-up steps to be conducted by researchers, in
order to built a precise common understanding of RE artifact
quality,

ACKNOWLEDGEMENTS

This work was performed within the project Q-Effekt; it
was funded by the German Federal Ministry of Education
and Research (BMBF) under grant no. 01IS15003 A-B. The
authors assume responsibility for the content.

Henning Femmer Henning Femmer is a Ph.D. can-
didate at Technical University Munich (TUM) and
co-founder of the requirements consulting company
Qualicen. His research focusses on improving the

PLACE efficiency and effectiveness of requirements quality
Pg}?gg control, with a particular focus on automatic meth-

ods. He publishes at academic venues, such as ICSE,
RE, ESEM, but also speaks at industy-focussed
events, such as ReConf or Embedded World. In both
his research and practical work he aims to combine
scientific rigor with industrial applicability in order
to efficiently deliver high quality.

Andreas Vogelsang Andreas Vogelsang is a profes-
sor for systems engineering at the Berlin Institute of
Technology (TU Berlin). He is also a research direc-
tor at the Daimler Center for Automotive IT Inno-

PLACE vations. His research interests comprise model-based
P }I?é)g];) requirements engineering, requirements specification

quality, and software architectures for software-
intensive systems. He has published over 20 pub-
lications in international journals, conferences, and
workshops including ICSE, RE, and REFSQ. Ad-
ditionally, he participated in several research col-
laborations with industrial partners especially from the automotive domain.
Most of the research collaborations focused on how to create high-quality
requirements artifacts and how to improve the RE process.

[1

[2]

[3]

[4

[5]

[6]

[7]

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

ISO/IEC/IEEE, “Systems and software engineering — Life cycle pro-
cesses — Requirements engineering,” International Organization for
Standardization, Geneva, Switzerland, ISO/IEC/IEEE 29148:2011(E),
2011.

K. Pohl, “The three dimensions of requirements engineering,’
in International Conference on Advanced Information Systems
Engineering, ser. CAiSE, 1993, pp. 275-292. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-56777-1_15

M. Glinz, “A glossary of requirements engineering terminology,” In-
ternational Requirements Engineering Board and University of Zurich,
Tech. Rep., 2014.

B. Nuseibeh, “Weaving together requirements and architectures,” IEEE
Computer, vol. 34, no. 3, pp. 115-119, 2001.

S. Wagner, K. Lochmann, L. Heinemann, M. Klis, A. Trendowicz,
R. Plosch, A. Seidl, A. Goeb, and J. Streit, “The quamoco
product quality modelling and assessment approach,” in International
Conference on Software Engineering, ser. ICSE, 2012, pp. 1133-1142.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2337372

F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-
F. Girard, “An activity-based quality model for maintainability,”
in [International ~ Conference on Software Maintenance and
Evolution, ser. ICSM, 2007, pp. 184-193. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4362631

K. Pohl, Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer, 2010.

H. Femmer, D. Méndez Fernidndez, S. Wagner, and S. Eder, “Rapid
quality assurance with requirements smells,” Journal of Systems and
Software, 2016.

J. Eckhardt, A. Vogelsang, and H. Femmer, “An approach for creating
sentence patterns for quality requirements,” in International Workshop
on Requirements Patterns (RePa), 2016.

A. Vogelsang, H. Femmer, and M. Junker, “Characterizing
implicit communal components as technical debt in automotive
software systems,” in Working IEEE/IFIP Conference on Software
Architecture, ser. WICSA, 2016, pp. 31-40. [Online]. Available:
http://www4.in.tum.de/ vogelsan/publications/WICSA16.pdf

H. Femmer, J. Kucera, and A. Vetro, “On the impact of passive voice
requirements on domain modelling,” in International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2014.

J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager, “Challenging
incompleteness of performance requirements by sentence patterns,” in
International Requirements Engineering Conference (RE), 2016.

A. Vogelsang, H. Femmer, and C. Winkler, “Take care of your modes!
An investigation of defects in automotive requirements,” in International
Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ), 2016.

M. R. Basirati, H. Femmer, S. Eder, M. Fritzsche, and A. Widera,
“Understanding changes in use cases: A case study,” in International
Requirements Engineering Conference (RE), 2015.

H. Femmer, J. Mund, and D. Méndez Ferndndez, “It’s the activities,
stupid!: A new perspective on RE quality,” in International Workshop
on Requirements Engineering and Testing (RET), 2015.

Publication C: Understanding Changes in Use Cases: A
Case Study

Authors Mohammad R. Basirati, Henning Femmer, Sebastian Eder, Martin
Fritzsche, Alexander Widera

Venue 23rd IEEE International Requirements Engineering Conference (RE), 2015

Abstract Requirements change and so (should) do requirements artifacts, such as
use cases. However, we have little knowledge about which changes requirements
engineers actually perform on use cases. We do not know what is changing, at which
locations use cases change and need a deeper understanding of which changes are
problematic in terms of difficult or risky.

To explore these challenges from an industrial point of view, we conducted a mixed
methods case study in which we analyze 15 month of changes in use cases in an
industrial software project.

The study provided interesting observations for both practitioners and researchers
involved: First, the most frequently changing use cases had an issue in their struc-
turing. Second, alternative flows (i.e., variations or extensions of the main flow)
were especially prone to changes. Third, changes in content (semantic changes)
and in presentation of the content (syntactic changes) happen similarly frequently.
Last, a qualitative and quantitative analysis aiming at a deeper understanding of
problematic changes identified taxonomy changes, as well as locally or temporally
dispersed changes as particularly difficult and risky.

In this paper, we contribute a first empirical inquiry for understanding the main-
tainability of use cases: The presented study provides empirical evidence that there
are particular maintenance risks and suggests to continuously analyze local and
temporal dispersion.

Extended Summary This paper is summarized in Section 4.2.3.2.

Authors Contributions I co-designed the case study, I executed the interviews, I
co-analyzed and reported the results.

Copyright (C) 2015 IEEE. Reprinted, with permission, from Mohammad R. Basirati;
Henning Femmer; Sebastian Eder; Martin Fritzsche; Alexander Widera, Understand-
ing changes in use cases: A case study, Conference Proceedings of 2015 IEEE 23rd
International Requirements Engineering Conference (RE), August 2015

118

Understanding Changes in Use Cases: A Case Study

Mohammad R. Basirati, Henning Femmer, Sebastian Eder

Technische Universitit Miinchen,
Germany

m.basirati@tum.de, {femmer, eders} @in.tum.de

Abstract—Requirements change and so (should) do require-
ments artifacts, such as use cases. However, we have little
knowledge about which changes requirements engineers actually
perform on use cases. We do not know what is changing, at which
locations use cases change and need a deeper understanding of
which changes are problematic in terms of difficult or risky.

To explore these challenges from an industrial point of view,
we conducted a mixed methods case study in which we analyze
15 month of changes in use cases in an industrial software project.
The study provided interesting observations for both practitioners
and researchers involved: First, the most frequently changing
use cases had an issue in their structuring. Second, alternative
flows (i.e., variations or extensions of the main flow) were
especially prone to changes. Third, changes in content (semantic
changes) and in presentation of the content (syntactic changes)
happen similarly frequently. Last, a qualitative and quantitative
analysis aiming at a deeper understanding of problematic changes
identified taxonomy changes, as well as locally or temporally
dispersed changes as particularly difficult and risky.

In this paper, we contribute a first empirical inquiry for
understanding the maintainability of use cases: The presented
study provides empirical evidence that there are particular
maintenance risks and suggests to continuously analyze local and
temporal dispersion.

Index Terms—Requirements Engineering, Artifacts, Use Cases,
Change, Maintainability

I. INTRODUCTION

Requirements Engineering (RE) artifacts play a central role
in many software development projects [12]: RE, Customers
and other stakeholders use it to communicate stakeholder’s
needs, developers create software and testers create systems
tests based on these artifacts, to name only a few roles. One
common way to document requirements, are use cases (see,
e.g., [16]).

In long living software systems, the requirements to the sys-
tem change over time. With changing requirements, changing
the use case artifacts is inevitable: If the use cases are not
maintained over time, they become useless to stakeholders,
since they do not reflect the (currently intended) system
behavior [2].

Changes to requirements artifacts can be of different nature:
Some changes target the functionality (the semantics) of the
system, leading to changes in other artifacts, such as test cases
or source code. Other changes alter only the presentation (on
a syntactical level) of a requirement, for example restructuring
use cases or improving the understandability of the written
text.

978-1-4673-6905-3/15/$31.00 © 2015 IEEE

352

Martin Fritzsche, Alexander Widera
Munich Re,
Germany
{MFritzsche, AWidera} @munichre.com

In both cases, changing a use case can require a high effort.
The reason for this are interconnected use cases, where a
change in one use case leads to changes in various other use
cases. For example, changing the user interaction for storing
certain data might require changes in use cases for creating,
reading, updating and deleting this data and, furthermore, in
other downstream artifacts such as test cases or source code.

Additionally, changing use cases is risky, since a change
might introduce wrong requirements or requirements that are
hard to understand. The latter leads to difficulties in subsequent
software engineering activities, such as testing or implementing
the system. In the case of interconnected requirements artifacts,
changes might introduce inconsistencies between these artifacts,
which leads to possibly contradicting requirements.

How difficult it is to keep the use cases up-to-date with the
changing requirements, depends on the use case’s maintainabil-
ity: The risk and the efforts should decrease with an increasing
maintainability of the requirements documents.

Problem: There is a lack of knowledge how use cases change
over time. In order to be able to manage requirement artifacts
change and foster an understanding of maintainability of
requirements, we need to empirically investigate requirements
change in real world projects.

Approach: This paper aims at exploring maintenance in use
cases. In an industrial case study, we manually inspect more
than 400 changes in a corpus of 32 use cases over the time of
15 months. In order to validate our results and gain additional
insights we pair with industry practitioners through interviews.

Our approach is split into three steps: We first identify change
hotspots in the form of often changing use cases and use case
parts and analyze the reason for these changes. Afterwards, we
inspect the changes in depth by developing a taxonomy of use
case changes, and by classifying all changes in an industrial
project of the reinsurance company Munich Re. We furthermore
investigate, which of the changes impose higher risk or effort.
Contributions: The main contribution of this study are: a) the
identification of use cases and parts of use cases, where
maintenance happens most frequently, b) a taxonomy of
concrete changes in use cases, and c¢) an elaboration of which
changes to use cases lead to problems in our study object.
Impact: The taxonomy presented in this paper enables a
more structured investigation of the maintenance activities
in use cases, which can be helpful for researchers in order to
understand maintenance and can be helpful for practitioners
to understand the state of their project. Furthermore the

RE 2015, Ottawa, ON, Canada
Industry Paper

identification of problematic changes points to systematic
problems that have to be investigated in detail. The study
shows cases in which maintainability of use cases can have a
severe impact on the risks and efforts imposed by changes in
use cases.

Structure of this work: The paper organized as follows: After
discussing related work, we present the design of our study and
its results. Then, we describe the threats to our study’s validity
and conclude with a summary and future research directions.

II. RELATED WORK

Change in software has been studied as a software main-
tenance and evolution issue for many years. The work of
Swanson [8] and later Briand et al. [4] built the foundation for
further researchers. Chapin et al. [9] propose a comprehensive
redefinition of the change types in software maintenance and
evolution, and Buckley et al. propose a taxonomy of software
change based on characterizing the mechanisms of change
and its influencing factors [7]. Moreover Benestad et al. [3]
present a systematic literature review on software maintenance
research based on analyzing individual changes which gives
us a comprehensive picture of this perspective.

In the domain of RE, most researchers agree that also change
in software requirements is a constant phenomenon: Harker et al.
recommend to consider the characterization of changes and their
nature to improve our insight on their impact [15]. Following
this view, researchers analyze changes based on different
attributes to reach a better characterization of requirement
changes.

There are many studies that analyze changes based on
addition, deletion, and modification of the software require-
ment [14, 24, 21, 10]. Most of the studies focus on classifying
the reasons (sources) which trigger changes in requirements [14,
21, 22, 10, 18, 20, 19]. McGee and Greer provide a generic
change source taxonomy for better managing requirement
changes in a series of studies [18, 20, 19]. They distinguish
between uncertainty and trigger as reasons for change and
introduce five generic sources of change: Market, Customer
Organization, Project Vision, Requirement Specification, and
Solution.

A few studies go further and distinguish between the reason
of a change and its origin [15, 21, 22]. Nurmuliani et al. identify
the reasons of a change as rationales behind the proposed
changes, such as Design Improvement, and the origin of a
change as where it is originated, such as Design Review [21].

Type of Requirement: Some researches classify changes
based on the requirement, on which the changes are applied
to [14, 24, 15]. Ghosh et al. classify changes based on
five requirement categories: Non Functional, two groups of
Functional, User Interface, and Deliverable Requirements [14].

Summarized, a wide range of studies analyze different factors
of requirement changes. However, our goal is to understand
maintainability of the artifact itself. Therefore, we focus on
change within the artifacts from a requirements engineer’s
point of view instead of its reasons and origins, or its effects
and consequences later in the software development process.

III. STUDY DESIGN

To close the aforementioned gap, we designed a case study
investigating on the nature of use case changes in practice.

A. Goal and research questions

The goal of this study (formally defined in Table I) is to
understand changes in use case artifacts and the modifications
that are performed on them. To accomplish the stated goal, we
aim at finding out what is changed particularly often (which of
use cases and in which part), what these changes are and what
types of changes are problematic to requirements engineers.

TABLE I: Research goal

Analyze changes in contents of use case artifacts

with respect to frequency, location, change types, and level of risk
from the point of view of requirements engineers in practice

in the context of a large business information system in maintenance.

From this goal definition, we conduct an exploratory study
based on the following research questions:

RQ1. Which use cases change and in which part? To
understand the changes in the project, we first analyze the
distribution of changes over use cases individually: Are there
single use cases that change more than others? If so, why?

We furthermore inspect the relation of changes to the
structure of use cases in general. In consistency with, e.g., [13],
we refer to the use case structural elements as content items
(e.g., basic flow, preconditions, etc.): Do some content items
form hotspots in use cases that are particularly prone to
changes? If we understand these hotspots, they might point
at certain types of bad maintenance. In addition, for parts of
use cases that change particularly often, maintenance might be
especially important.

RQ2. Which types of changes exist and occur in use
cases? After understanding which use cases change and in
which parts, we can then investigate into the contents of the
changes, i.e., we need to create a faxonomy of these changes.
This enables us to understand whether certain types of changes
occur more frequently than other.

RQ3. Which changes are the most problematic? Lastly,
our ultimate goal is to understand and handle problematic
changes. We want to provide a first understanding what are
problematic changes from a practitioner’s perspective and
analyze their nature according to the classifications in RQ2. In
the long term, this might enable us foresee and prevent some
of these problematic changes.

B. Case and Subjects Selection

The case was selected with the goal to study realistic models
under realistic conditions, i.e., a real project from industry;
Out of these, the selection was performed opportunistically.
We invite other researchers to reproduce the study in different
contexts.

For the subject selection, we carefully selected those practi-
tioners who performed the analyzed changes and thus worked
or work with the use cases.

353

C. Data Collection and Analysis

We retrieved the use cases of each iteration from the
companies versioning system. For this, we extracted the major
version of each iteration.

We identified a change as a block of added, removed or
modified words. We compared the textual contents between
the iterations, based on the built-in diff function of Microsoft
Word. Even though this adds manual effort for extracting the
changes out of Microsoft Word for quantitative statistics, it
eases classification, since changes are displayed in the context
of changes in the whole use case. When relying on the built-
in diff was not technically possible, e.g., due to a difference
in layout, we manually compared the text. When use cases
changed their name, we identified the corresponding use case
and compared them nevertheless. The first version of newly
appearing use cases is not counted as a change, but only the
following changes, since our study focuses on maintenance.

We filtered graphical changes, layout changes, as well as
changes in the document meta data (table of contents, authors,
etc.), since we focused on the changes of the textual content in
use case artifacts. We manually inspected the changes to filter
out single, extreme outliers (e.g., in change size) that would
otherwise skew the data.

To answer RQ1, we proceeded as follows (more detailed
explanation and definitions of the metrics can be found in
Table II):

1) Frequency of changes can be understood in three ways:
The total number of changes (modified text blocks),
Stz€count, the number of words changing (often called
churn in source code metrics), total_churn, or the
number of iterations in which a use cases changes, size;er-
To identify frequently changing use cases, we aggregate
StZ€count, total_churn and size;i., per use case.

2) To identify frequently changing content items, we ag-
gregate, for each content item, the average number of
changes over all iterations, avg_changes. However, since
the content items vary strongly in size (e.g., a list of actors
section versus the basic flow section), we also normalize
the number of changes by the size of the content item,
relative_churn.

3) We discuss the three most frequently changing use cases
as well as the most frequently changing content items
according to all aforementioned metrics with practitioners,
in order to understand why these use cases and content
items might change more often.

To answer RQ2 we proceeded as follows:

4) We perform iterative, open coding on the changes and
translate the codes into a taxonomy.

5) We classify all changes according to the created taxonomy.

6) We calculate the size.oun: as well as the sizeorgs for
each taxonomy item.

7) We discuss the taxonomy, as well as its distribution with
practitioners.

To answer RQ3 we proceeded as follows:

TABLE II: Used Definitions and Metrics

change A block of added, removed or modified words

changes(uc, it) The set of changes for a use case in a given iteration

sizecount(change) The count-size of a single change is 1

sizecount(changes) The number of changed text blocks

Sizeyords(change) The number of words removed, added or modified
within a single change

Sizewo'r'ds(Changes) ZVCEchanges Sizewo’r'ds(c)

sizejter(changes) The number of distinct iterations of the changes

churn(uc, it) The number of words changed in a use case in an
iteration: sizey,orqs(changes(uc, it))

total_churn(uc) D vitciterations Churn(uc, it)

ZVCEchanges (ciyit) S¥¥Cwords (C)

Vit€iterations SiZ€words (Ci, it)

relative_churn(ci) (iterations)
n(iterations

The set of changes in a given content item in a
given iteration

The average sizecount(changes(ci,it)) of a con-
tent item over all iterations

changes(ci, it)

avg_changes(ci))

8) We interview practitioners about problematic changes in
use cases from their perspective.

9) We group syntactically similar (coupled) changes and
calculate dispersion of a group over use cases as well as
the dispersion over time (number of different iterations).

10) We compare the largest groups with the categories of RQ2
and discuss results with practitioners.

D. Validity Procedure

To control threats to internal validity due to errors or
mistakes, all data analysis and interpretation is executed by at
least two researchers, and validated with practitioners involved
in the case study.

In order to control the risk that misunderstanding or
ambiguity of the taxonomy impacts the distribution for Step
5-7, two researchers independently classify a random subset
of 10% of the changes and calculate the inter-rater agreement
(Cohen’s kappa).

IV. RESULTS

In the following, we report on the results of a first execution
of the study at Munich Re.

A. Case and Subjects Description

We performed the study at Munich Re, which is one of the
world’s leading reinsurance companies with more than 43,000
employees in reinsurance and primary insurance worldwide.
For their insurance business, they develop a variety of custom
software systems. To elicit the changes of a regular Munich
Re project, we inspected the development of a medium-sized
industrial software project (around 102,000 SLoC in about
1,900 files), which went live 5 years ago and is thus currently in
the maintenance phase. The system forms a complex interface
to the Munich Re calculation of life insurance probabilities and
conditions. The system behavior is currently described in 32
use cases with a total size of around 35,000 words. The system
is furthermore described through supplementary requirements
artifacts, such as business rules, business specifications, security

354

10 20 30 40 50 60 70
I

Change Count(#occurrence)

Ll

1 2 3 4 5 6 7 8

0

9 10 11 12 13 14 15 16

D

Ralllln]

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Use Case ID

Fig. 1: Total Number of Changes in Use Cases

1000 1500 2000
I I |

Change Size(#word)

500
I

5 8 9 10 11 12 13 14 15 16

o D DiiiD: [= R) P O

11T ™.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Use Case ID

Fig. 2: Total Size of Changes in Use Cases

Number of Iterations
4
|

1 8 9 10 11 12 13 14 15 16

DD DDDDD N

T "s

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Use Case ID

Fig. 3: Number of Iterations Use Case Changed in

plans and guidelines, as well as Ul specifications, all of which
were not subject of this analysis.

The analyzed use cases were tracked in twelve iterations over
the time of 15 months from February 2012 until May 2013.
All changes were performed by the RE team of the project. We
consider the Munich Re use cases a very common interpretation
of the established Cockburn template (e.g. [11]). They contain
the following content items: A brief description over the
contents of the use case, the actors and their authorizations in
this use case, pre- and post conditions, as well as the basic
flow ("main success scenario” in Cockburn [11]) and a set of
alternative flows ("extensions" or "subvariations" [11]).

In total, our change set included 485 changes. Of these,
we filtered 33 changes in the document history, 23 graphical
changes, and one outlier, which extracted all business rules into
another separated document, and which would have skewed

our size metrics. Hence, the following analysis is based on the
remaining 405 changes.

Due to non-disclosure agreements and sensible information,
in the following, we removed some details of the software
system under analysis, focusing on the research questions.

In the following, we answer each research question, by
providing our results, explaining practitioners feedback and
validation and finally interpreting the results.

RQ1: Which use cases change and where?

We first analyze which use cases change and then analyze
the content items changing.

Which use cases change most often? As explained in the
study design, the size of a set of changes can be understood
in three different ways: Either by taking each change as an
atomic unit and simply counting the number of changes for
each use case, or by counting the number of words that are

355

changed within each single change, or, lastly, by counting the
number of iterations in which the use cases change.

Figure 1 depicts changes in use cases in terms of count.
Use Cases 1, 20 and 29 have the largest number of changes,
with between 38 and 70 changes over all iterations. Figure
2 depicts changes in use cases in terms of number of words.
Use Cases 18, 20 and 29 have the largest amount of changes
with between 920 and 2100 words changed. Lastly, we want
to know which use cases were the most volatile over time and
changed during larger number of iterations. Figure 3 depicts
the number of different iterations in which each use case has
changed. The most volatile ones are Use Cases 1 and 20 with
changes in 8 iterations and Use Cases 29 with changes in 7
iterations.

Practitioners Feedback: Practitioners explained that these
results were not unexpected, since there is an inherent depen-
dency between Use Cases 1, 20, and 29 due to the business
workflow. Practitioners told us that this is a structural problem
based on the slicing of use cases and, if they would have
to write the use cases again, they would put these three use
cases into a single use case. Regarding the fact that these use
cases changed among 7 or 8 iterations, they told us that this
represents Munich Re’s process of sometimes incrementally
adding functionality. In one case the use cases were changed
over two to three iterations until they were implemented into
code. The explanation for the large changes in Use Case 18
was a major extension that was executed in this year in an
incremental style over 4 iterations.

Interpretation: The analysis revealed three problematic use
cases that are constituents of one business flow. In other words,
there was one challenging volatile business flow that needed
the most attention to take care of. This analysis shows that in
our case study the analysis of most changing use cases was
indicating at a dependency between use cases.

Which content items of use cases change most often?

In a second part of this research question, we inspect the
change within different content items of use cases, measured by
the churn (see Table II): Figure 4 depicts the average number of
changes occurring in each content item per iteration. Absolutely,
most changes (avg. of 24 changes per iteration) appear in the
basic flow, followed by the alternative flows (avg. of 7 changes
per iteration). The other content items hardly change at all.

However, assuming that change is statistically dependent
with size, we normalize the change frequency through the size
in words, as the relative churn, resulting in the distribution
shown in Figure 5. This figure shows a different view: The
alternative flow is, normalized by the size, changing more than
the basic flow.

When inspecting the changes in alternative flows in more
depth, we could see that most of changes in this section are
adding new flows from scratch or moving concepts from basic
flow to alternative flows.

Practitioners Feedback: Practitioners were surprised to
see that the alternative flow has a greater relative churn
than the basic flow. They saw two reasons for this: First,
it could be caused due to common flow restructuring in

20

15

10

Average Change Count(#occurrence)

Preconditions

)
Brief Description

Actors Basic Flow Alternative Flows Postcondition

Use Case Content Item

Fig. 4: Average Number of Changes in Use Case Content Items
per Iteration

0.10
|

0.08
L

0.06
L

Relative Churn

0.04
L

0.02
L

I

Brief Description

Basic Flow Alternative Flows Postcondition

0.00
L

Actors Preconditions

Use Case Content Item

Fig. 5: Change Probability of Use Case Content Item per Word

alternative flows. Second, since this is a project with a long
life span, new requirements often are extensions to existing
use cases. This could lead to the fact that new requirements
manifest themselves as new alternative flows. Regarding the
non-changing content items, they agreed, since changes in
actors (including authorizations) for such a mature project is
very rare.

Interpretation: In this case study, the basic flow is changed
most often. However, looking at the content per word, the
alternative flow has a higher change rate. Based on the feedback
from practitioners we interpret the data as follows: Alternative
flows of a use case are not completely clear at the beginning;
there are alternative flows which initially cannot be recognized
neither by customer nor by requirement engineers and it takes
time until they get exposed. Another reason for high relative
churn in alternative flows can be lack of attention on alternative
flows at first, caused by the fact that basic flow matters more
than alternative flows.

In summary, we interpret these results as showing, that the
maintenance of basic and alternative flows should be watched
carefully, since these content items will change more often
over time. This implies for practitioners, that proper slicing
of use cases early on can potentially save effort later in the
process.

RQ2: Which types of changes exist and occur?

To answer this research question, we developed a taxonomy
of use case changes. In contrast to related work, we focused

356

on concrete changes in use cases without considering the high
level reason or source of a change.

Which types of changes exist? In order to create a taxonomy
that adequately represents the changes under analysis, and not
limit ourselves with any constraints or assumptions, we applied
a bottom-up approach, i.e., an open classification of a subset of
changes. We iteratively extended and groomed this taxonomy,
until we resulted in the categories given in Table III. In the
following we will not explain each category in detail, but the
structure and motivation of the categories.

The taxonomy is based on the differentiation between
semantic and syntactic changes: When a semantic change
is executed, the system that is described in the use case
changes. This implies, that semantic changes necessarily lead
to subsequent changes in other artifacts. In contrast, syntactic
changes only change how the system is described in the use
cases. Syntactic changes are similar to refactorings, as known
from source code.'

All semantic changes are, from an RE perspective, to add,
modify or remove requirements. All differentiation here would
lead to an analysis of the reasons for use case changes, which is
out of scope of this research. In contrast, the syntactic changes
scatter over various types of use case refactorings. Please refer
to Table III for more details.

Practitioners Feedback: The taxonomy was successfully
validated with practitioners: Practitioners were not aware of
further categories, and advised against removing any of the
introduced categories.

Which types of changes occur? To understand which
changes occur, we made a closed classification of all
405 changes, applying the bottom-up taxonomy discussed
before. Figure 6 shows the total number of changes
in each category. Adding Requirement, Modifying
Requirement, and Clarifying Taxonomy have the
largest number of changes among all change categories
respectively. They are followed by Flow Management, UI,
and Sentence Enhancement.

Figure 7 depicts a box plot for change sizes in each
category, ordered by total size in terms of words of changes
in each category. Adding Requirement, Modifying
Requirement, and Flow Management have the largest
total size of change, while Document Management,
Flow Management, and Adding Requirement have
the greatest mean size of change respectively. The results
show that after Adding Requirement and Modifying
Requirement, Flow Management changes were the most
common on use case documents. Furthermore striking is the
large number of Clarifying Taxonomy changes occurred,
all of which had very small sizes.

'We use the terms ’semantic’ and ’syntactic’ here in the context of system
behavior, in contrast to the semantics of natural language. Obviously, nearly
every addition, modification or deletion of words changes the semantics of the
natural language text, but not each change also changes the semantics of the
described system. For example, if we clarify the meaning of a term appearing
in the use case, we still describe the same system behavior, but with more
precise language (thus the semantics of the text changes).

Practitioners Feedback: Practitioners were surprised by the
high number of Adding Requirement and Modifying
Requirement changes. They were unsure whether this was
typical for their projects. They expected the high number of
Clarifying Taxonomy changes, due to major changes
that we will describe in detail in the RQ3.

Interpretation: In our case study, Adding
Requirement and Modifying Requirement, as
well as Clarifying Taxonomy are the most common
change types. Future work needs to investigate whether this is
also common for other projects or a case specific result.

How are semantic and syntactic changes distributed? Besides
the detailed analysis of each category by itself, we also
analyze how changes are distributed over the categories
of semantic and syntactic changes. To identify semantic
and syntactic changes we used the classification based on
our detailed categories of changes, in which we classify
Adding Requirement, Modifying Requirement, or
Removing Requirement as semantic changes and other
categories as syntactic changes.

TABLE IV: Syntactic vs Semantic Changes

Semantic ~ Syntactic
S1Z€count 47% 53%
Siz€yords 1% 29%

The results in Table IV show that 53 percent of all changes
are syntactic changes and 47 percent are semantics. When
taking the size in words into account 29 percent of the total
size of all changes are syntactic and 71 percent are semantic.
Hence, semantic changes are larger than syntactic changes
(avg. size of 13 words for syntactic changes vs. avg. size of
35 words for semantic changes).

In more depth, Figure 8 and Figure 9 show the count and
size percentage of semantic and syntactic changes in use case
content items respectively. Actors had only syntactic changes,
however only few changes occurred in this content item. Actors,
Preconditions, and Postconditions are more prone to syntactic
changes than other content items. Figure 11 depicts that the
Brief Description had been changed mostly because of a
semantic change in use cases. The relation between semantic
and syntactic changes in Basic Flow and Alternative Flows
represents roughly average distribution (see Table IV).

Figure 10 shows the distribution of semantic vs syntactic
changes over all 12 iterations. We consider Iteration 7 an outlier,
since it only contained 4 changes. Iteration 1, 5 and 6 show
the highest percentage of syntactic changes, with around 60%.
Other iterations show around 20% to 40% of syntactic changes.

Practitioners Feedback: Practitioners agreed with classi-
fying changes into semantic and syntactic and immediately
had an intuitive understanding. However, from their practical
standpoint, they could not relate to the relative numbers from
Tbl. IV, since the size and count of changes does not necessarily
represent effort spent. Future work should look deeper into
a change-effort relation for RE. However, they considered
inspecting the trend of the relation over time reasonable: In

357

Semantic
Changes system
Modifying Requirement Adding or modifying a text which leads to a change "five different” to "the maximum number is 12"
in the system
Removing Requirement Removing a text in order to delete a part of or even "In this case the latter action will be performed
a complete requirement without changing the status"
Flow Management Reorganizing the basic or alternative flows of use Dividing, merging, moving a part or whole of a step
case in which the actions are taking place
Document Management Extracting a text or figures into another document Extracting GUI figures to another document.
or vice versa
Syntactic Sentence Enhancement Enhancing the structure of a sentence to make it "the permitted" to "those that the user is authorized
C}ll*nan s more clear without changing its meaning for"
8¢ Typos A typographical error "fore" to "for"
Clarifying Taxonomy Adding or modifying some words in a phrase to "business" to "entity X"
distinguish it from a changed or new concept in
a clearer way. If this rephrasing also changes a
requirement it is classified as modifying requirement
Formatting Changing the presentation style of a requirement by ~ Representing some rules in a table instead of lines
adding, modifying or removing text of text.
Adding Supplementary ~ Adding a reference to a context to make it more "(see BR_XX)"
Reference clear or connect it to other required documents
Updating Reference Updating a reference to new version "(apply UC_BRXX)" to "(apply LRXX_BRXX)"
Adding Details Adding a text to make something more clear without ~ "both fields" to "the text field and the drop down
adding or changing the context of a requirement box"
Removing Useless Removing a useless or outdated text Deletion of an outdated version of a rule
Ul Adding, modifying, or removing a text or figure "If an element has the status X is highlighted" design
which exclusively speaks on user interface and features
100
o
c
g
5 80+
Q
o
£ 60
g
S 40
(]
(]
2 20 ‘
I
g, T e e e e ——
. . . = = - 1, . o o » » o=
g g E 5 > 5] 3 g 8 £ £ 2 g 5
€ g g £ :E 32 < 5 5 3§ 3§ & G
2 g g g e S g s g £ = g
3 £ 2 5 g £ 3 & 2 3 2 5
< 3§ 2 £ - 5 g
= =) z @ < L4 = ® £ =
= o o %) > [0} [
k] i € o 2 o £
o £ £ i 3
5] 3 8
@ <
Fig. 6: Total Number of Changes per Category
—100 :
(2}
B2
Q 80 1 !
= .
® -
g 607 1 T
» 3 _ :
o 40 - ! :
=) : !
g E - ‘ - =
£ 20 g : ‘ -
O -+ T i
04 i — — - - ; 5 = El = = —_ =
T T T T T T T T T T T T T T
. . = . = o » - o> = » o> »
g g ® g 2 ® 3 8 3 £ E 2 £ S
o o £ o £ s S £ k) 2 o < >
o o [o Q a = o] £ S 7] ° =
£ £ =4 £ 2 o 2 g 5 3 2 S
s = < 3 s £ T S £ = e =]
< B8 = £ c 3 . = =2} S)
g = 8 i 2 g = £ 8 g
8 8 a 5 £ 5 2
i 5 > £ < o %
£ £ 3 © o
[3 8
@ <

TABLE III: Use Case Change Taxonomy

Adding Requirement

Adding a text which adds something new to the

"System sets the validation status to invalid"

Fig. 7: Word-Size of Changes per Category, Ordered by Total Size, Width~Sample Size

358

1.0

0.4 0.6 0.8
L

Count Percentage

0.2

_ia.

Preconditions

0.0

Brief Description Actors Basic Flow Alternative Flows Postcondition

Fig. 8: Syntactic (Light Gray) VS Semantic (Dark Gray)
Change Size Count Percentage in Content Items

sl

Basic Flow Alternative Flows Postcondition

1.0

0.8
L L

0.6

Size Percentage
0.4

0.2

0.0

Brief Description Actors Preconditions

Fig. 9: Syntactic (Light Gray) VS Semantic (Dark Gray)
Change Size Word Percentage in Content Items

the first sprints, requirements engineers had time to deal with
syntactic refactorings in the use cases. The same holds for
Iteration 6.

Interpretation: This case study showed a proportion of
53% of syntactic changes on RE artifacts, which, due to their
smaller size, account for 29% of the size of changes. For source
code, studies show that, e.g., after reviews only around 25%
(e.g. [1]) of changes are semantic changes. Even though this
provides us with a rough benchmark, unfortunately, due to
the high granularity of iterations in our case study, we cannot
detect which changes were triggered through reviews. Future
work should reproduce our results with review changes.

©
1 2 3 4 5 6 7 8 9 10 1 12

Fig. 10: Syntactic (Light Gray) VS Semantic (Dark Gray)
Changes Size Word Over Iterations

1.0

0.8
L

0.4

0.2

0.0

TABLE V: Five largest change groups

| W% | #*
g l5|%
S |2]:
g g%
& |7 |8
Clarifying Taxonomy 18
Group 1 | Modifying Requirement | 1 3 6
Removing Requirement | 1
Clarifying Taxonomy 3
Group 2 U1 9 3 | 4
Clarifying Taxonomy 2
Group 3 | Modifying Requirement | 5 1 1
Adding Requirement 5
Modifying Requirement | 1
Group 4 Adding Requirement 5 1 2
Group 5 | Clarifying Taxonomy 7 1 1

In our study preconditions and postconditions showed a
higher proportion of syntactic changes. It remained unclear
where this difference results from.

We could furthermore observe that the percentage of syn-
tactic changes reflected rather calm periods in the project. We
imagine that tracking the distribution of syntactic vs semantic
changes could indicate for some sort of requirements technical
debt (cf. e.g. [6]), indicating periods of pressure and refactoring
in the project.

RQ3: What are problematic types of changes?

In our last research question, we wanted to understand
which changes are difficult to conduct within the requirements
artifact?.

What are problematic types of requirements artifact changes
from an industry perspective? In order to receive open, unre-
stricted feedback, we openly asked the practitioners what they
considered problematic changes for use cases. This resulted in
two types of problematic changes:

The first group of problematic changes are semantic changes
that are inherently complex (essential complexity in the words
of Brooks [5]), due to the nature of the domain. This is
especially common in the insurance domain, since the systems
build on a complex mathematical and legal background.

The second group of problematic changes are changes that
are not inherently complex, but particularly risky, since there
is a dependency between multiple changes. We would consider
these changes accidentally complex, since the complexity
results from the RE instead of the domain. The practitioners
took our taxonomy as reference and identified Clarifying
Taxonomy, Flow Management, Adding Details or
also locally dispersed semantic changes as particularly risky,
since these changes might have a higher probability of
introducing inconsistencies or unintentionally introduce other
incorrect behavior (c.f. the risk of dispersed software clones
leading to inconsistencies in code [17]).

2We only consider the maintainability of the requirements artifact itself, not
the impact that the change triggers. This has been studied by previous works,
cf. Section II.

359

Can we find problematic changes through syntactically
coupled changes? In order to detect risky changes from
dependencies, we searched for locally dispersed changes,
i.e., changes that are syntactically similar (or coupled), but
appear in different locations, either within a document, be-
tween documents, or even over time (temporally dispersed).
Syntactically coupled changes are a group of changes which
can be recognized explicitly by their terms and phrases as
the same change in different spots in use cases and iterations.
Table V shows the five largest change groups in terms of
highest number of occurrences, including their change types
and number of occurrence, number of dispersed iterations and
use cases. In the following, we provide details and explain
practitioners feedback on the rationale behind each group.

Group 1 was a fundamental taxonomy change due to a change
in the requirements: At first, the whole system was built
around a single type of entity, the model point, which
is added, changed, calculated etc. However, at a certain
iteration in the middle of the project, the system needed
to be changed so that it could handle two different types
of model points. This lead to fundamental changes over
6 use cases, which needed three iterations until finished
(one change was conducted several iterations later, a fact
that could hint at an inconsistent/forgotten change). This
group showed a risky temporally and locally dispersed
change.

Group 2 contained a set of changes in the taxonomy, which
lead to changes in multiple use cases and iterations. The
problem here was that the use cases also contained UI
references, which needed to be updated subsequently.
Practitioners told us that they considered this bad practice
and, if possible, would move UI design specification to a
separate artifact. This indicated bad requirements artifact
maintainability resulting from UI details in use cases.

Group 3 was a set of reference to an enumeration that needed
to be continuously updated when a new item is added to
the list, e.g., B1, B2, etc. They stated that these types of
numbered references are very hard to maintain and can
easily lead to wrong references.

Group 4 was an essentially complex requirements change from
the business domain.

Group 5 was a clarification of taxonomy that was always
implicitly clear for insiders, but became obvious when
new people joined the team.

Interpretation: 49% of changes in the top five change
groups were in the category Clarifying Taxonomy. It’s
an inherent property of Taxonomy Changes to spread among
different use cases, since terms are usually used orthogonally
through all use cases. We interpret these change groups as
advice to have the terms clear at the start of writing use cases,
since changes in taxonomy in late phases causes dispersed and
thus potentially problematic changes. Furthermore, we found
evidence that UI details as well as enumerated references can
cause dispersed changes and thus decrease the maintainability
of use cases.

V. THREATS TO VALIDITY

Regarding our answers to the research questions, two major
threats could constrain our internal validity: First, elaborating
our change taxonomy was a creative process, hence, it could
be ambiguous, incorrect or incomplete. We analyzed the
ambiguity through independent reclassification of a subset
of 10% of the changes, leading to a substantial inter-rater
agreement (Cohan’s kappa: 0.65). We therefore consider this
threat negligible. Second, our change taxonomy could also be
incorrect (internal validity) or incomplete (external validity). We
control these threats, as well as threats regarding potential bias
in interpretation of practitioner’s feedback, through validation
with practitioners.

Regarding external validity, case study research inherently
comes with advantages, but limited generalizability, since
it always answers research questions for a limited set of
cases [23]. Our study intentionally focused on an industrial
project in the maintenance phase, hence, the results might
not be generalizable for requirements artifacts in elaboration.
Furthermore, we intentionally analyzed changes per iteration
instead of more fine-grained changes. This could also create a
different picture, such as more typos. Lastly, our results show
that changes depend on the maintainability of the use cases.
Therefore, we are expecting to see different results for use
cases in different quality.

In addition, our study intentionally focused on expert
opinions, which can only provide some facets of (bad) main-
tainability. Thus, we invite other researchers to reproduce this
case study in order to confirm or refute our observations and
extend the validity onto other change granularities, project
settings, and maintainability facets.

VI. CONCLUSION AND OUTLOOK

Changes in requirements artifacts are common in software
projects, since outdated artifacts are not useful to stakeholders.
However, there is little existing knowledge on maintainability
of use cases.

This paper presents an analysis of use case changes based on
a case study in an industrial software project in maintenance.
Applying qualitative and quantitative methods to more than
400 changes and discussing the results with practitioners, we
answer our research questions in this case as following:

RQ1: Which use cases change and where? Our analysis
revealed that the most frequently changing use cases in our case,
are in a strong dependency with each other (belonging to the
same workflow). We also found that although most of changes
occur in the basic flow, alternative flows are most prone to
change relative to their size. We observe that improper slicing
of use cases forms one way of bad maintainability and that
most maintenance changes go into alternative and basic flows.
This indicates that these two content items have a stronger
need for use case maintainability.

RQ2: Which types of changes exist and occur? We
developed a detailed change taxonomy for use cases, with
which we found out 50% number of all changes and 30%
of the total size of all changes are syntactic. Over time we

360

see that phases with higher proportion of syntactic changes
coincide with rather calm periods in the project. We conclude
that tracking the proportion of syntactic and semantic changes
over time can indicate the effort going into quality assurance of
use cases. Therefore, future work should analyze the potential
of this metric for project and QA monitoring.

RQ3: What are problematic types of changes? Practi-
tioners report that problematic changes origin from essential
complexity, i.e., complexity in the domain, and accidental
complexity, i.e., complexity in the requirements artifacts
themselves. For the latter, we identified dispersed changes as
particularly risky. This study has shown the particular difficulty
of changes in the domain taxonomy. We furthermore identified
UI details and improper referencing as other causes for risky,
dispersed changes. This motivates to monitor dispersed changes,
but also provides first empirical evidence towards factors for
bad maintainability, such as UI details or improper references.

Future work: We found these factors for bad maintainability
in our case study. Future work should dig deeper This study
was performed on major versions of use cases. An analysis on
minor versions of use cases can gives us deeper insight on the
way use cases change, including which changes are triggered
by use case reviews in particular.

ACKNOWLEDGMENTS

This work was performed within the project Q-Effekt; it
was funded by the German Federal Ministry of Education and
Research (BMBF) under grant no. 01IS15003 A-B. The authors
assume responsibility for the content.

REFERENCES

[1] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and
Elmar Juergens. Modern code reviews in open-source
projects: which problems do they fix? In MSR, 2014.

[2] E. Ben Charrada, A. Koziolek, and M. Glinz. Identifying
outdated requirements based on source code changes. In
RE, 2012.

[3] Hans Christian Benestad, Bente, and Erik Arisholm.
Understanding software maintenance and evolution by
analyzing individual changes: a literature review. Journal
of Software Maintenance and Evolution: Research and
Practice, 2009.

[4] Lionel C. Briand, Victor R. Basili, and Yong-Mi Kim. A
change analysis process to characterize software mainte-
nance projects. In ICSM, 1994.

[5] Frederick P. Brooks, Jr. No silver bullet: Essence and
accidents of software engineering. IEEE Computer, 1987.

[6] Nanette Brown et al. Managing technical debt in software-
reliant systems. In FSE/SDP workshop on Future of
software engineering research, 2010.

[7] Jim Buckley, Tom Mens, Matthias Zenger, Rashid Awais,
and Gunter Kniesel. Towards a taxonomy of software
change. Journal of Software Maintenance and Evolution:
Research and Practice, 2005.

[8] Swanson E. Burton. The dimensions of maintenance. In
ICSE, 1976.

[9] Ned Chapin, Joanne E Hale, Khaled Md Khan, Juan F
Ramil, and Wui-Gee Tan. Types of software evolution and
software maintenance. Journal of Software Maintenance:
Research and Practice, 2001.

[10] Bee Bee Chua and June Verner. Examining requirements
change rework effort: A study. International Journal of
Software Engineering & Applications, 2010.

[11] Alistair Cockburn. Basic use case template. Humans and
Technology, Technical Report, 1998.

[12] Henning Femmer, Jakob Mund, and Daniel Méndez

Fernandez. It’s the Activities, Stupid! A New Perspective

on RE Quality. In RET workshop at ICSE, 2015.

Daniel Méndez Ferndndez, Birgit Penzenstadler, Marco

Kuhrmann, and Manfred Broy. A meta model for

artefact-orientation: fundamentals and lessons learned in

requirements engineering. In Model Driven Engineering

Languages and Systems. 2010.

Sanjay Ghosh, Srini Ramaswamy, and Raoul Praful Jetley.

Towards requirements change decision support. In APSEC,

2013.

S.D.P. Harker, K.D. Eason, and J.E. Dobson. The change

and evolution of requirements as a challenge to the

practice of software engineering. In RE, 1993.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The

unified software development process. Addison-Wesley

Reading, 1999.

Elmar Juergens, Florian Deissenboeck, Benjamin Hum-

mel, and Stefan Wagner. Do code clones matter? In /ICSE,

20009.

Sharon McGee and Des Greer. A software requirements

change source taxonomy. In ICSEA, 2009.

Sharon McGee and Des Greer. Sources of software

requirements change from the perspectives of development

and maintenance. International Journal on Advances in

Software, 2010.

Sharon McGee and Des Greer. Software requirements

change taxonomy: Evaluation by case study. In RE, 2011.

Nur Nurmuliani, Didar Zowghi, and Sue Fowell. Analysis

of requirements volatility during software development

life cycle. In ASWEC, 2004.

Nur Nurmuliani, Didar Zowghi, and Susan P. Williams.

Requirements volatility and its impact on change effort:

Evidence-based research in software development projects.

In ASWEC, 2006.

P. Runeson and M. Host. Guidelines for Conducting and

Reporting Case Study Research in Software Engineering.

EMSE, 2009.

George E. Stark, Paul Oman, Alan Skillicorn, and Alan

Ameele. An examination of the effects of requirements

changes on software maintenance releases. Journal of

Software Maintenance: Research and Practice, 1999.

[13]

(23]

[24]

361

A. Publications

Publication D: On The Impact of Passive Voice
Requirements on Domain Modelling

Authors Henning Femmer, Jan Kucera, and Antonio Vetro

Venue 8th ACM / IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), 2014

Abstract [Context] The requirements specification is a central artefact in the
software engineering (SE) process, and its quality (might) influence downstream
activities like implementation or testing. One quality defect that is often mentioned
in standards is the use of passive voice. However, the consequences of this defect
are still unclear. [Goal] We need to understand whether the use of passive voice in
requirements has an influence on other activities in SE. In this work we focus on
domain modelling. [Method] We designed an experiment, in which we ask students
to draw a domain model from a given set of requirements written in active or passive
voice. We compared the completeness of the resulting domain model by counting
the number of missing actors, domain objects and their associations with respect
to a specified solution. Results: While we could not see a difference in the number
of missing actors and objects, participants which received passive sentences missed
almost twice the associations. [Conclusion| Our experiment indicates that, against
common knowledge, actors and objects in a requirement can often be understood
from the context. However, the study also shows that passive sentences complicate
understanding how certain domain concepts are interconnected.

Extended Summary This paper is summarized in Section 4.2.3.3.

Authors Contributions 1 co-designed the experiment, co-performed the analysis,
and co-reported the results.

Copyright Henning Femmer, Jan Kucera, and Antonio Vetro. On the impact of
passive voice requirements on domain modelling. In International Symposium on
Empirical Software Engineering and Measurement, ESEM, pages 21:1-21:4. ACM,
2014 (©) 2014 Association for Computing Machinery, Inc. Reprinted by permission.
https://doi.org/10.1145/2652524.2652554

129

On The Impact of Passive Voice Requirements
on Domain Modelling

Henning Femmer
Technische Universitat
Minchen, Germany
femmer@in.tum.de

ABSTRACT

Context: The requirements specification is a central arte-
fact in the software engineering (SE) process, and its quality
(might) influence downstream activities like implementation
or testing. Onme quality defect that is often mentioned in
standards is the use of passive voice. However, the con-
sequences of this defect are still unclear. Goal: We need
to understand whether the use of passive voice in require-
ments has an influence on other activities in SE. In this work
we focus on domain modelling. Method: We designed an
experiment, in which we ask students to draw a domain
model from a given set of requirements written in active
or passive voice. We compared the completeness of the re-
sulting domain model by counting the number of missing
actors, domain objects and their associations with respect
to a specified solution. Results: While we could not see
a difference in the number of missing actors and objects,
participants which received passive sentences missed almost
twice the associations. Conclusion: Our experiment indi-
cates that, against common knowledge, actors and objects
in a requirement can often be understood from the context.
However, the study also shows that passive sentences com-
plicate understanding how certain domain concepts are in-
terconnected.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tion

General Terms

Requirements Engineering, Quality Assurance, Natural Lan-
guage

Keywords

Requirements Engineering, Analytical Quality Assurance,
Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEM’ 14 September 18-19, 2014, Torino, Italy.

Copyright 2014 ACM 978-1-4503-2774-9/14/09 ...$15.00.

Jan Kucera
Technische Universitat
Minchen, Germany
kucera@in.tum.de

Antonio Vetro
Technische Universitat
Minchen, Germany
vetro@in.tum.de

1. INTRODUCTION

During software development, the artefacts that are pro-
duced by Requirements Engineering (RE), such as use cases [8],
are usually the central items for communication of stake-
holders’ needs. Based on these artefacts, developers write
source code, testers design test cases and finally the cus-
tomer accepts or rejects the product.

This central role of RE artefacts suggests that their consti-
tution, i.e. their quality, is important for the rest of the pro-
cess. This, together with the fact that producing RE arte-
facts is rarely the goal of the project, implies that we need
to understand this notion of requirements quality from a
quality-in-use perspective on the software development life-
cycle. Hence, the central questions is: Which property of
the RE artefact has what kind of influence on activities per-
formed with the artefact?

Such requirements properties are often proposed by com-
mon standards (e.g. as Requirement Language Criteria in
the most relevant RE standard 1S029148 [7], cf. [14]). One
of the properties that is often proposed, is the use of passive
voice in requirements. The argumentation is usually that in
passive sentences it is unclear who is performing a certain
action on the system (e.g. [10]). However, when we look at
specifications in practice, we nearly always see violations of
this property (for examples see [1, 3, 4, 11]). We argue that
this is not only because of the possible lack of distribution
of the standard in practice, but more due to the fact that we
have not yet understood the real impact of passive sentences
in textual RE specifications onto downstream SE activities.

An analysis on where textual requirements are used in SE
is performed in [8]. There, one of the first steps is to create
a domain model that describes the concepts on which a sys-
tem is working and their interrelations. This domain model,
no matter whether it is build explicitly or implicitly, forms
the common understanding of the concepts that are used
by the involved stakeholders throughout the further system
development process. We focus this work on the impact of
passive voice requirements on domain modelling for these
two reasons, i.e. 1) proximity of the domain modelling ac-
tivity to requirements specification and 2) usage of domain
models on later phases of software development.

2. STUDY

To understand the impact of passive voice in requirements
on domain modelling, we must first define requirements and
domain models in our context and then identify the activities
that are needed to create a domain model.

2.1 Object of study: Requirements

In the following, we understand a requirement as a single,
textual sentence expressing a stakeholder’s need. This is a
common format used in many domains and mirrored in com-
mon requirements formats such as RegIF'' and tools such as
DOORS?. One example of a passive voice is from [4]:

Example 2.1. Dependent on which turn signal is set, the
arrow showing in the same direction lights up blinking, as
long as the turn signal is set.

A version of this example in active voice would be:

Example 2.2. The system shall light up blinking of the
arrow showing in the same direction, dependent on which
turn the driver sets the turn signal.

2.2 Object of study: Domain model

As a domain model we understand a set of domain con-
cepts plus relations between these concepts. A domain model
for this requirement is the one represented in Figure 1.

set light up
m Signa! ’g—¢ Arrow ‘

Figure 1: Domain model for the example

2.3 Activites for domain modelling

In order to evaluate the domain models that experiment
participants produce, we have to detail how the domain
modeling is performed. For this, we took the Unified Process
(UP) [8] as a reference to find the detailed subactivities that
are part of domain modelling. The advantage of using the
UP is that this process provides a comprehensive list of arte-
facts and corresponding activities: however, most of these
activities are not specific to the UP, as they are performed
in many forms of processes — either explicitly or implicitly.

Accordingly, we identified the following three subactivities
where the usage of passive sentences in requirement specifi-
cations could potentially have an impact:

1. Find Actors

2. Identify Domain Objects

3. Identify Associations and Aggregations

For the third subactivity, we focused only on associations,
because we wanted to keep the study design simple. Fur-
thermore, aggregations can be interpreted as a special case
of associations.

2.4 Goal and research questions

The goal of this study (formally defined in Table 1) is to
understand whether using passive sentences in requirements
has a negative impact on domain modelling activities.
From the goal definition we derive our research question:
RQ1 Is the use of passive sentences in requirements harmful
for domain modelling?

The question can be broken down in three subquestions:

RQ1.1 Is the use of passive sentences in requirements harm-
ful for finding actors?

RQ1.2 Is the use of passive sentences in requirements harm-
ful for identifying domain objects?

RQ1.3 Is the use of passive sentences in requirements harm-
ful for identifying associations?

"Mttp://www.omg.org/spec/ReqIF
2http://www-03.ibm.com/software/products/en/
ratidoor

Table 1: Research goal

Characterize the impact of passives sentences in require-
ments on domain modelling

with respect to the quality of the artefacts produced from
the activities Find Actors, Identify Obvious domain objects,
Identify Associations

from the point of view of the software developer (or
business or requirements analyst)

in the context of an analysis of requirements from real
projects by graduate and undergraduate students in Com-
puter Science

2.5 Design, methodology and metrics

We designed an experiment for university students. Each
participant received a set of seven requirements: for one
group (P) all requirements were in the original, passive form
(requirements are passive examples that we found in the
specifications [4] and [11]), for the other group (A) the same
requirements were transposed into the corresponding active
form (see Table 2). The participants were randomly assigned
to one of the two groups of requirements (P,A). They had to
perform three activities for modelling the domain: identify
the actors, domain objects and associations. Each activity
that the participant should perform was previously instru-
mented by reading material and an example of a solution®.
To verify our thesis, we observed the artefacts produced by
those three activities and compared the artefacts produced
in the two groups, by counting the number of missing actors,
number of missing domain objects and number of missing
associations with respect to the master solution.

i) Number of missing actors: We counted all actors that
were identified in the master solution and not recog-
nized by the participants. Additional actors were ig-
nored since missing actors is a more serious error than
superfluous ones. Also, we carefully looked for syn-
onyms (e.g., if the master solution identified the actor
“realtor”, we also accepted “real-estate agent” or even
“user” (if there is a clear distinction to other actors).

ii) Number of missing domain objects: The number of miss-
ing domain objects were counted similarly to the num-
ber of missing actors (i.e. synonyms are accepted). We
did not count as a mistake when a participant identi-
fied an actor in the first activity and did not write down
the actor name when required to draw or list the do-
main objects. We assumed that the subject correctly
identified that actor as an object in this case.

iii) Number of missing associations: We evaluated whether
the associations connect to correct domain objects. Al-
though we asked the participants to include also the
directions and names of the associations, we didn’t
evaluate them: these descriptions rather served as a
point of assurance for the evaluator that the partici-
pant understood the task correctly.

With N4 and Np being the number of missing actors,
missing domain objects, and missing associations respec-
tively in active sentences (A) and passive ones (P), our re-
search questions translate in the following pair of null (1)

3All experiment data is available for checks and replication
at http://goo.gl/W1TPES

Table 2: Requirements Used in Experiment

ID | Passive voice requirement

Translated into active voice

The search results shall be returned no later 30 seconds after the
user has entered the search criteria.

2 The CMA report shall be returned no later 60 seconds after the
user has entered the CMA report criteria.

3 The realtor shall be notified of new client appointments after
automatic synchronization with office system.

4 All transaction details shall be obtained from the Statement
Database.

All additions of new users shall be recorded on the User Report.
The reliability of the indicator lights and the engine control light
shall be tested, whenever the instrument cluster is activated.

7 Dependent on which turn signal is set, the arrow showing in the
same direction lights up blinking, as long as the turn signal is
set.

o ot

and alternative (2) hypotheses (one pair for each of the three
activities): Hy: Np < Na ()
Ha: Np > Ngy (2)

The Mann-Whitney test with 95% confidence interval was
used to test the three null hypotheses.

2.6 Participants selection

The subjects of the experiment are B.Sc., M.Sc. and Ph.D.
students from Technische Universitidt Miinchen (see Table 3).
To reduce the threat of participation of students with in-
sufficient knowledge, we removed the 2 participants who
achieved less than 70% correct answers in a short test in
the field of RE, extracted from [12]. We furthermore ex-
cluded one participant who misunderstood the task and one
participant who did not finish the experiment.

Table 3: Participants (final number in brackets)

Student’s degree A P Sum
B.Sc. 4(2) 1(0) | 5(2)
M.Sc. 3(3) 5(5) | 8(8)
PhD 3(2) 2(2) 5(4)
unknown 0(0) 1(1) | 1(1)
Sum 10(7) 9(8) | 19(15)

3. THREATS TO VALIDITY

We report herein the validity issues of our experiment,
according to the traditional classification [15]. Regarding
internal threats, we recognise the risk that the activities are
so simple that no impact could occur in the experiment even
though there is some impact in the reality. To reduce this
threat we selected seven requirements from real industrial
projects. Second, the students in our context had very lim-
ited context information. However, this applies for partici-
pants with both active and passive voices and thus should
not impact the outcome per-se. Nevertheless, it remains
open whether the same effect can be observed in practice.
We observe a conclusion threat as well: since the activities
in the experiment are from an engineering field, there is also
a high risk that each participant provides a different solu-
tion. We controlled this threat by providing comprehensive
instrumentation and defining tolerant criteria for correctness
(see Section 2.5).

Finally we report external threats. The first one relates
to the generalizability of results to industrial practices, since
participants of the experiment were students. The use of stu-
dents as study subjects has been longly discussed in the soft-
ware engineering literature and in general considered as suit-

The system shall be capable of returning the search results latest 30
seconds after the user has entered the search criteria.

The system shall be capable of returning the CMA report latest 60
seconds after the user has entered the CMA report criteria.

The system shall notify the realtor of new client appointments after
automatic synchronization with the office system.

The system shall obtain all transaction details from the Statement
Database.

The system shall record all additions of new users on the User Report.
The system shall test the reliability of the indicator lights and the engine
control light, whenever the system activates the instrument cluster.
The system shall light up blinking of the arrow showing in the same
direction, dependent on which turn the driver set the turn signal.

able under certain conditions, based on generally accepted
criteria for validity evaluation of empirical studies [6]. Rune-
son [13] observed that graduate level students are feasible
subjects for revealing improvement trends: since the focus
in our study was a comparison and not to find an absolute
level of improvements, according to [13] the use of students
in our case is suitable. In addition, a study on requirements
prioritisation [2] showed that experience and commitment
are important factors when using students as study sub-
jects: we balanced this threat by letting the participation
of students voluntary and by ensuring an adequate level of
experience and skills of participants. Finally, we used re-
quirements from real industrial projects.

4. RESULTS

The box plot in Figure 2 gives an insight on the results
and a comparison between active and passive voices require-
ments. In addition, Table 4 reports the results of the non
parametric Mann-Whitney test with 95% confidence inter-
val for the difference between the two groups, and Cliffs’ §
as non parametric standardised effect size measure. It was
not possible to reject the null hypotheses for finding actors
and identifying domain objects. On the contrary, the null
hypothesis on identifying associations was rejected in favor
of its alternative, i.e. the number of missing associations is
higher in requirements with passive sentences (effect esti-
mate: 75% of the time).

10

|

|

Missed elements
4

|

Actors(A) Actors(P) Objects(A) Objedts(P)

Domain model elements

Associations(A) _ Associations(P)

Figure 2: Number of errors for requirements in
(A)ctive and (P)assive voice

S. DISCUSSION

First, the participants were able to identify actors in both
active and passive voices. However, there was one difference
in Requirement 3 (slightly better performance of the pas-
sives) and Requirement 7 (heavily worse performance of the
passives). For the latter, the participants were unable to

Table 4: Results and descriptive statistics

; =
<C Ay % — w
g g ; A
5 S T FE &
Ay O @)

Activity = =

actors 0.43 1.00
objects 1.29 2.00
assoc. 4.14 7.88

0.10 (0;00) 0.39
025 (-L;c0) 0.25
002 (l;00) 0.75

e
e

w — S| Median A

o — ~| Median P.

missed

decide that the “driver” of a car was the main actor. We in-
terpret this as follows: The role of the context is important
to find the actor when it is not explicitly present; hence,
it may lead to misunderstandings, but in our experiments
this was not the case in nearly all examples. While in real
situations we assume that more context is present and thus
the difference would be even less, we have to analyse the
different forms of passives in more depth to understand.

Second, for the identification of domain concepts, the re-
sults are not really different between the two groups. One
could argue that it is possible to identify all relevant domain
objects from the text, regardless of the form.

Last, the identification of associations shows a statistically
significant difference. We see three different reasons for this:
Either, this difference only shows up as significant because
the activity is harder. In fact, the average number of errors
is higher. But, this is the same for both active and pas-
sive voice. Or, the reason is that requirements in passive
voice contain less information. But this would contradict
the fact that there is no significant difference between the
active and passive during identification of objects. Hence,
we argue that, even though the information about the exist-
ing concepts is there, the passive complicates understanding
how these concepts are linked. An additional observation
supports this hypothesis: 3 out of the 9 participants in the
group of passive voices (P) were not even able to draw rela-
tions, even though they quite correctly identified actors and
objects.

6. RELATED WORK

There are various approaches that aim at detecting passive
voice in requirements (as one form of ambiguity), with the
assumption of bad impacts (e.g. [5] or [9]). Other approaches
such as [10] go even further and aim at compensating the
missing actors by deducing them from the context.

However, we are not aware of any study that focuses on
understanding the impact of this property of requirements
onto activities of the software engineering lifecycle.

7. CONCLUSION AND FUTURE WORK

In this paper, we described an experiment conducted to
characterise the impact of requirements in passive voice onto
domain modelling, as one activity of the SE lifecycle.

The results indicate that while the commonly discussed
danger of missing actors did not show to be substantial,
there is a statistically significant gap in the understanding
of how concepts are related in a sentence in passive voice.

We provided a link to the experiment instrumentation for
the sake of exact replication of this study. Additionally,
we especially need replications with other requirements to

analyse whether there is a difference in outcome when using
different forms of passive voice.

On a methodical level, we are working on an evidence-
based approach towards understanding quality for require-
ments engineering in an activity-based manner. This study
is one step indicating that experiments can provide such ev-
idence on property-impact-activity relationships.

Acknowledgments

We would like to thank Maximilian Junker, Daniel Méndez
Ferndndez and Andreas Vogelsang for their reviews.

8. REFERENCES

[1] Canal monitoring and control system. Technical
report, MoDRE, 2011.

[2] P. Berander. Using students as subjects in
requirements prioritization. In ISESE, Aug 2004.

[3] Boston Scientific. Pacemaker system specification.
Technical report, 2007.

[4] K. Buhr, N. Heumesser, F. Houdek, H. Omasreiter,
F. Rothermel, R. Tavakoli, and Z. T. DaimlerChrysler
demonstrator: System specification. Technical report,
EMPRESS Project, 2003.

[5] G. Génova, J. M. Fuentes, J. Llorens, O. Hurtado, and
V. Moreno. A framework to measure and improve the
quality of textual requirements. Requirements
Engineering, 2011.

[6] M. Host, B. Regnell, and C. Wohlin. Using students as
subjects - a comparative study of students and
professionals in lead-time impact assessment.
Empirical Softw. Eng., 2000.

[7] ISO, IEC, and IEEE. 29148:2011 - Systems and
software engineering - Requirements engineering.
Technical report, 2011.

[8] I. Jacobson, G. Booch, and J. E. Rumbaugh. The
unified software development process. Addison-Wesley,
1999.

[9] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry.
Requirements for tools for ambiguity identification
and measurement in natural language requirements
specifications. Requirements Engineering, 2008.

[10] L. Kof. Treatment of passive voice and conjunctions in
use case documents. NLDB, 2007.

[11] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli,

J. Krall, F. Peters, and B. Turhan. The promise
repository of empirical software engineering data,
2012.

[12] R. S. Pressman and D. Ince. Software engineering: a
practitioner’s approach. McGraw-Hill, 1992.

[13] P. Runeson. Using Students as Experiment Subjects -
An Analysis on Graduate and Freshmen Student
Data. In EASE, 2003.

[14] F. Schneider and B. Berenbach. A Literature Survey
on International Standards for Systems Requirements
Engineering. In CSER, 2013.

[15] C. Wohlin, P. Runeson, M. Hést, M. C. Ohlsson,

B. Regnell, and A. Wesslén. Experimentation in
Software Engineering. Springer, 2012.

Publication E: Experiences from the Design of an
Artifact Model for Distributed Agile Project
Management

Authors Henning Femmer, Marco Kuhrmann, Jérg Stimmer, and Jorg Junge
Venue International Conference on Global Software Engineering (ICGSE’14)

Abstract The organization of projects with distributed teams is a demanding
task for every project manager. Requirements need to be collected, documented,
and discussed, and the resulting tasks must be distributed to the responsible sites.
These activities require an efficient and continuous communication. Furthermore,
it is necessary to monitor a project and to track its progress from a management
perspective.

As a solution, we opt for a monitoring strategy that is based on the project artifacts
and corresponding reports. For this, we defined in a previous work a generic artifact
model for agile methods to enable seamless communication and data exchange
between projects and teams. In this paper, we present a concrete instance aim-
ing at providing the backbone of the information and data exchange subsystem
of a SaaS-based collaborative project management and governance software for
distributed software development. We present the artifact model, give insights into
its development, and discuss its feasibility.

Our findings show that while the previously defined reference model adequately
reflects basic concepts and thus allows for coupling distributed projects, we need
to refine the artifact model to emphasize project management/governance and its
implementation in tools.

Extended Summary This paper is summarized in Section 4.2.1.

Authors Contributions 1 co-designed and co-executed the study, and analyzed and
co-reported the results.

Copyright (© 2014 IEEE. Reprinted, with permission, from Henning Femmer,
Marco Kuhrmann, Jérg Stimmer, and Joérg Junge, Experiences from the Design
of an Artifact Model for Distributed Agile Project Management, 2014 IEEE 9th
International Conference on Global Software Engineering (ICGSE), August 2014

134

2014 IEEE 9th International Conference on Global Software Engineering

Experiences from the Design of an Artifact Model
for Distributed Agile Project Management

Henning Femmer, Marco Kuhrmann
Technische Universitdt Miinchen
Garching, Germany
{femmer,kuhrmann} @in.tum.de

Abstract—The organization of projects with distributed teams
is a demanding task for every project manager. Requirements
need to be collected, documented, and discussed, and the resulting
tasks must be distributed to the responsible sites. These activities
require an efficient and continuous communication. Furthermore,
it is necessary to monitor a project and to track its progress
from a management perspective. As a solution, we opt for a
monitoring strategy that is based on the project artifacts and
corresponding reports. For this, we defined in a previous work
a generic artifact model for agile methods to enable seamless
communication and data exchange between projects and teams.
In this paper, we present a concrete instance aiming at providing
the backbone of the information and data exchange subsystem of
a SaaS-based collaborative project management and governance
software for distributed software development. We present the
artifact model, give insights into its development, and discuss its
feasibility. Our findings show that while the previously defined
reference model adequately reflects basic concepts and thus
allows for coupling distributed projects, we need to refine the
artifact model to emphasize project management/governance and
its implementation in tools.

Index Terms—agile methods; artifact model; governance; dis-
tributed projects; project management; experience report

I. INTRODUCTION

Managing a software project is a demanding task, as many
activities need to be organized, e.g., requirements elicitation,
software development, test, or solution delivery. Distributed
software development pushes project management to the next
level of difficulty. Project management is performed in a
setting in which teams are spread across the globe. Hence,
project managers have to deal with time zones, asynchronous
communication, language and culture barriers [1], heteroge-
neous software processes, or delayed/inconsistent reports not
adequately reflecting the current project progress. In order
to successfully manage distributed settings, project managers
require sophisticated tool support that allows for a “near real
time” project monitoring and tracking, and that allows the
distributed team to share information and artifacts.

A centralized solution in which a shared team server pro-
vides the team with the necessary infrastructure seems to be
the “promised land”, as infrastructure (e.g., repository, test,
or build server) as well as collaboration options (e.g., built-in
real-time communication and collaboration support) [2]-[4]
are provided. Consequently, the question for the data to be
exchanged and its structure arises.

978-1-4799-4360-9/14 $31.00 © 2014 IEEE
DOI 10.1109/ICGSE.2014.9

Jorg Stimmer, Jorg Junge
pliXos GmbH
81247 Munich, Germany
{joerg.stimmer,joerg.junge } @plixos.com

Problem Statement & Research Objective. In [5], we
proposed a generic artifact model to support data exchange
among distributed project sites. The proposed model addressed
the need to standardize data structures to abstract from local
processes. However, the generic artifact model emerges from
a systematic literature review and, thus, only reflects state-
of-the-art as reported in literature. In the paper at hand, we
discuss the feasibility of the proposed model in practice by
investigating the following research questions:

RQ Question and Rationale

RQ1 Is the generic artifact model sufficiently complete for practical
application? When applying the generic artifact model in practice,
we need to analyze, customize, and/or revise the model in order to
address specific (technical) needs. Therefore, we investigate how
well the generic model reflects real world requirements, especially,
in terms of completeness of the model.

RQ2 Is the generic artifact model sufficiently precise for practical
application? One purpose of an artifact model is to provide a
precise description of a data model. Due to the nature of the generic
artifact model, we expect refinements, e.g., of attributes. Thus, we
investigate the precision of the generic model compared to the
refined model.

RQ3 Is the refined model still compatible with the generic artifact model?
Based on the generic model, we defined a process interface for data
exchange. We investigate whether the refined model is compatible
with the generic model to evaluate the feasibility of the generic
model for establishing a common project and process interface.

Contribution. In this paper, we contribute an artifact model
to support the construction of tools for managing distributed
projects. For this, we use a previously defined reference artifact
model for agile methods and enhance it for the use as a real-
world data exchange model for a SaaS-based collaborative
project management tool. We provide an analysis to compare
the models and discuss our lessons learnt during the collabo-
ration with practitioners. The rest of the paper is organized as
follows: In Sect. II, we discuss related work and previously
published material. In Sect. III, we introduce the improved
artifact model, analyze it in Sect. IV, present our lessons learnt
in Sect. V, before summarizing the paper in Sect. VI.

II. BACKGROUND & RELATED WORK

Agile methods gained much attention over the years and,
beyond small-scale and co-located development, are also sub-
ject for research in distributed software development, e.g.,
[6]-[8]. Hersleb and Mockus [9] investigated collaboration in

IEEE
@comput%r

soclety

distributed projects. As part of collaboration, direct commu-
nication is a basic pillar of agile methods. However, direct
communication is hard to realize in distributed settings and,
thus, often relies on tools [?], [10]. In [11], we found artifacts
as means to direct communication between projects beneficial.
However, regarding agile processes, we also found significant
gaps of artifact descriptions. In response, we conducted a
systematic literature review to improve the understanding of
artifacts in agile methods, and proposed an artifact-based
process interface to couple distributed projects [5].

A Generic Artifact Model for Agile Methods. The motiva-
tion behind the general artifact model is that in the context
of distributed development the data (structures) and informa-
tion of the local processes usually differ. However, although
processes may differ, all information that is exchanged needs
some degree of standardization. The basis for defining an
artifact model to support distributed project management is a
generic artifact model that provides a general notion of agile
methods, and how agile methods can be systematized [5]. The
artifact model emerges from a comprehensive literature study
in which the reported state of the art on the use of artifacts in
agile methods was investigated. The complete model ist shown
in [5]; in the following, we describe the most important parts.
The heart of the artifact model is the class Artifact, repre-
senting any piece of information created in a project (realized
using the composite pattern, cf. [?]). Artifacts have depen-
dencies among each other to model relationships to enable
tailoring for creating project-specific artifact models. Also,
artifacts have roles assigned that are either responsible for the
artifacts’ creation, or that contribute to an artifact’s creation
or modification. All elements of the model are subclasses of
Artifact, e.g., Backlogltem, Code, or Deliverable. In order to
directly support the description of a project-specific approach,
the artifact model comprises several refined artifact types
addressing typical project disciplines, e.g., project-, task- and
time management: TeamMember, ProjectBacklogltem, or Task;
development: SourceCode, Ressource, or Release; quality as-
surance: TestCase or UnitTest; or requirements engineering:
Feature, UserStory, or UseCase. However, we designed the
artifact model in a generic fashion that requires a refinement
(extension, deletion, modification of classes and attributes)
respecting the actual organization and project context.

III. AN ARTIFACT MODEL FOR AGILE PM

In the following sections, we present a context-specific
refinement of the previously defined artifact model [5] to
support the development of a tool for distributed agile project
management and governance. In order to transfer the ideas
and concepts into practice, we refined the artifact model
and adopted it for being used as a backbone for a real-
world application. In this section, we describe the refinement
approach, before presenting the refined artifact model.

A. Refinement Approach

The refinement was conducted in a cooperation project in
which pliXos GmbH and TU Miinchen investigated solutions

to support distributed projects and their management. The goal
was to develop an actionable artifact model for a tool under
development at pliXos, called the Outsourcing Director. For
this, we refined the existing model through the following steps:
1) Suitability analysis of the general (reference) artifact model.
2) Analysis of the Outsourcing Director use cases: specifically,
we looked at (implicit/explicit) artifact models of possible col-
laboration systems, e.g., Microsoft’s Team Foundation Server
(TFS) [12]. 3) Analysis and design workshops to enhance the
reference model and to develop the target model. 4) Feedback
(industry and potential customers for the tool) and refinement
cycles.

In summary, the refined artifact model was inductively
developed. We refined the model in several workshops taking
into account the roadmap of the tool development, respective
use cases, and especially comprehensive feedback from clients.

B. Refined Artifact Model

The refined artifact model serves the development of a data
format to allow for collaboration and data exchange between
project sites from the perspective of project management. We
describe the model by its packages, and go into details for
selected refinements. However, the focus of this paper is not
to explain the entire model but to discuss its refinement and
applicability and explain our lessons learnt.

1) Resulting Model: Figure 1' shows the refined artifact
model resulting from the aforementioned refinement steps.
Around the key class Artifact, we refined elements from the
generic artifact model and introduced new elements, which we
organized in packages. The package Artifacts comprises the
artifacts reflecting the project disciplines Planning, Require-
ments & Specification, Change Management, Development,
and Testing. In these packages, we locate all artifact types
that are subject to controlling and reporting, e.g., Task, User
Story, or Issue.

To allow for creating a distributed project structure, we
added the packages GloBuS Bus and Service Provider Project
Configuration. In the first package, we locate those artifact
types necessary to build the common structure between parties.
In the GloBuS context, a project has a Client, and a project
is carried out by at least one ServiceProvider. Furthermore,
in a project, a number of GloBuSReleases (deliverables) are
shipped to the client. While the GloBuS Bus package rep-
resents the overall project, the provider configuration package
represents the structure of a sub-project conducted by a service
provider. The root element is the class Project, which relates
the project team (class TeamMember) with artifacts being
produced by the team. Furthermore, a project produces several
deliverables, which are (collections of) artifacts themselves,
and that become part of an integrated GloBuSRelease. That is,
according to the artifact-based design approach, the provider
configuration package serves as a proxy for the fine-grained
artifact model. All considered artifact types are children of the

I'This is a simplified version without attributes and relations. The full ver-
sion can be found here: http://www4.in.tum.de/~kuhrmann/sonst/globus.zip

1 1
GloBuS Bus Service Provider Project Configuration
GloBuSProject [Project [Resource |
Client [TeamMember |[Deliverable |
ServiceProvider [Role [Costltem |
GloBuSRel
Artifact [ArtifactGroup | [Historyltem |
[ArifactHistory | [StateMachine |
1
— Artifacts
Planning
[Task |[P-SequencePlan][TimeEstimate |
[Iteration I Milestone I Risk |
[ProjectPlan][ResourcePlan || Measure |
]] 1
Requirements & Change Testing
Specification Management [AcceptanceTest |
[Requirement | Issue [Resut]
[Estimate | Bug]
ChangeRequest Development
UserStory

Fig. 1. The refined artifact model for the GloBuS project (simplified).

class Artifact and thus allow for polymorphic data structures to
be exchanged among (sub-)projects. To support the manage-
ment of a distributed project, the refined model comprises all
artifact types considered necessary to organize and distribute
work, and to create reporting lines to track project progress.

2) Examples for Refinements: To use the reference artifact
model [5] in practice, we had to refine it. The following
two examples provide some insights into the construction
procedure.

A major refinement considered essential was the notion of
finances. To enable project managers to control a project, effort
needs to be estimated, and effort needs to be converted into
costs to allow, e.g., for creating offers, or bidding on a publicly
announced project. For this, the attribute estimate (original
model Backlogltem) was extracted and explicitly modeled
as a class Estimate for which the refinements TimeEstimate
and StoryPointEstimate were introduced. Furthermore, a class
Costltem was defined and linked to resources (internal costs)
and roles (external costs). Every Task has resources and several
estimates assigned, and, thus, allows for estimating effort,
time, or costs. Including internal and external costs allows
for internally calculating costs for personnel or consuming
resources, and, at the same time, for billing the clients.

As second example for a substantial refinement, we discuss
the enriched attribute lists, e.g., for the artifact type Issue.
The initial study, on which the reference model is based,
revealed no fine-grained attribute structure. To make Issue

artifacts tangible, we relied on previous research in the context
of process enactment and adopted work item structures from
Microsoft’s TFS process templates for the intended artifact
model. This approach was then also applied to the remaining
artifact types to provide an initial but proven set of attributes.

IV. ANALYZING THE ARTIFACT MODEL

In this section, we analyze the refined artifact model to
answer the research questions. For this, we briefly show the
study design in Sect. IV-A and present the results in Sect. IV-B.

A. Study Design

The overall goal is to provide a refined artifact model aiding
the development of project management tools. For this, the
general artifact model for agile methods was taken as reference
with the purpose to analyze and compare the refined model in a
practical context. To investigate the objective, we defined three
research questions (see Table I): RQ! focuses on the amount
of refinement necessary to get from the reference model to
the applicable refined model on a coarse-grained level. RQ2
analyzes the details that we needed to specify to achieve
applicability, and RQ3 analyzes whether the reference model
still sufficiently serves as the least common denominator for
different artifact models.

To answer the research questions, we conducted a compar-
ative analysis of the reference model and the refined artifact
model. In the following, we describe in more detail how
we addressed the research questions: For RQI, we walked
through each class in both the reference as well as the refined
model, and decided which element exists in either both or
only a single artifact model. For the discussion, we afterwards
qualitatively analyzed intersections as well as gaps between
the models, by walking through the elements and reflecting on
the rationales behind their presence or absence. For RQ2, we
looked at the attributes and references of the model and marked
those classes that were refined during the process. Again,
the results were qualitatively interpreted for the discussion.
For RQ3, we specifically selected the classes of the reference
model that were considered part of the proposed interface [5],
which shall define the least common denominator regarding
data structures to be exchanged among project sites, e.g.,
artifacts or planning information. For each class defined in the
proposed interface, we decided whether the class was present
in the refined model, whether a subclass or renamed class of
the original class was present in the refined model, or whether
the class was not part of the refined model at all. Afterwards,
reasons were again qualitatively analyzed.

Author 1 and Author 2 performed the data collection for
these tasks in critical discussion by element-wise comparing
artifact model printouts and storing the results in a spread-
sheet?. The results were validated together with Author 3 and
Author 4.

2Full dataset: http:/www4.in.tum.de/~kuhrmann/sonst/globus.zip

B. Results

The presentation of results is structured according to the
research questions.

RQI: Figure 2 shows the relation between the two models.
Apparently, there is a gap between the reference model and the
refined model: 28 of the 41 classes (ca. 68%) are not included
in the refined model and 25 of the 38 classes (ca. 66%) of
the refined model are not present in the reference model. This
leads to 13 classes that are present in both artifact models.

Reference Model

Refined Model

28
Classes

</

41 38
Added attributes Classes

Created from
attributes of the
reference model

Classes

Fig. 2. Comparison of the reference and refined artifact model

Interpretation—When looking into the details, large parts of
the original model were removed, whereas other parts, e.g., the
GloBuS Bus, are completely new (Sect. III-B). We were ex-
pecting that some parts must be added because of the context.
However, we did not expect the large number of classes that
did not appear in the final model. For instance, the packages
GloBuS Bus and Service Provider Project Configuration were
completely new. The reason: the generic artifact model does
not provide any means to model project configurations, which
is, however, necessary when developing project management
support. On the other hand, the code-related artifacts from the
reference model were removed, as particular code artifacts,
e.g., classes or resource file, were considered irrelevant in the
actual context. From this, we argue that the reference model,
which reflects the reported state of the art of the use of artifacts
in agile methods, is yet incomplete from the perspective of
project management, as it does not address the overall project
organization.

RQ2: As Figure 2 shows, 13 classes are present in both the
reference as well as the refined artifact model. Of these 13
classes, 11 classes needed further refinement of the attributes
(in summary: 45 attributes were refined and/or added to
these classes). Extracting an attribute of a class and creat-
ing a separate class with further attributes lead to 3 more
refinements. For instance, in the generic artifact model, in
the class Artifact, information regarding artifact status and
history were comprised as attributes. In dialog with industry,
it was suggested to make this (essential) information more
explicit, e.g., to better support history analyses, or flexible
state machine configuration.

Interpretation—This analysis mirrored our perception of the
reference model. Even though on a coarse-grained level we felt
that the general information is present, we expected that all
reused classes must be refined to fit to our concrete purpose
and setting. From this, we argue that the general direction of
the generic reference artifact model is correct, however, that
it needs refinement to be used in practice.

RQ3: The artifact-based process interface as part of the
reference model [5] consists of 10 classes. In this research
question, we analyzed in how far the refined model can serve
to the interface. Figure 3 shows the three different levels
of support: directly supported classes are marked with green
color, indirectly supported classes were branded with a yellow
color (their proxy classes in light-green hatched), and non-
supported classes were marked red.

GloBuS Model

|ProjectPIan| | Task | | |
Reference Model T

Process Interface

Artifact

Requirement

Deliverable

[P e T ;
Backlogltem - !
<<substitutes>>
e J-

| Code |

Metaphor

Fig. 3. Supported classes of the interface of the reference model

The figure shows that four classes of the interface (Artifact,
Role, Requirement and Deliverable) are also present in the
refined model and are thus directly supported. Four further
classes (Plan, Backlogltem, Person, and Test) are not directly
part of the refined model; however, classes that are defined
as subclasses in the reference model or contain at least the
information of the interface (refines, substitutes in the figure)
were present in the refined model (indirectly supported). Thus,
we can say that the information required for the interface is
also present in the refined model. For example, even though
we did not model a Person as class in the refined model,
we find the subtype TeamMember that contains at least all the
information of the class Person. Two classes (Code, Metaphor)
are present in the interface, but not in the refined model.

Interpretation—The directly supported artifacts are central
to any project management approach, and also, in contrary
to the indirectly supported classes, have a very well-defined
meaning and purpose. The indirectly supported classes are

mostly very abstract (e.g., Person, Plan, or Test) and thus need
more specific details in order to be of value. Lastly, we have
to investigate the non-supported classes: First, code was not in
the focus of the GloBuS endeavor and, thus, it did not surprise
us that there was a gap between the reference and the refined
artifact model. For the Metaphor, experience has always told
us that this is a concept that has been discussed widely in
the theory of the XP community, but did not make it into
practice. Or, as [13] puts it: “The *metaphor’ is the practice
of agile processes most ignored by practitioners”. This study
once again supports that claim.

V. LESSONS LEARNT

In our study, we discussed the feasibility of a previous ref-
erence artifact model for practical use. In detail, we analyzed
how we need to transform the reference model to satisfy the
requirements of its deployment in practice. Comparing both
models—the reference model and the refined model—we saw
that the reference model needed extensive refinement. We
found that especially the details regarding the attributes needed
substantial revision. However, although several adjustments
were necessary to enable the model for practical use, the
resulting refined model is still “compatible” with the reference
model, and, thus, the intention to define a generic interface to
exchange project data is still met with the refined model.

Moreover, our study revealed further interesting insights:
the study indicates—again—that the concept of a metaphor
is widely discussed in theory but apparently not relevant in
practice (the respective artifact was removed from the model).
Another striking and interesting insight of the results are
the predominant concepts of traditional project management,
which shape the once very agile artifact model. After extensive
discussion with practitioners, we conclude that this is due
to the fact that if an agile process is transferred into a
global scale, more and more information for the business
context is needed—here the practice often relies on the long
experience of traditional project management techniques. The
experts using these techniques told us that that traditional
key-performance indicators are still necessary for controlling
regardless of the process used. Moreover, during the design
workshops we realized that the more “formalization” (to
support tool development) is necessary, the less agility remains
in the model. From this, we argue that we still miss adequate
techniques to precisely model agile projects today.

We deliberately started to create an artifact model for a
particular context in order to extend this model iteratively
driven by demand. However, we consider the presented artifact
model a first step towards a deeper understanding of structures
in agile projects, and for exchanging project information. We
are very interested in the feedback of future users of the artifact
model, and we cordially invite researchers and practitioners to
share their experiences.

VI. CONCLUSION

In this paper, we described the refinement of an existing
reference artifact model for its application in distributed agile

project management. We furthermore comparatively analyzed
the difference between the generic reference model and the
concrete, practically usable refinement for the GloBuS project.

Our study shows that large parts of the artifact model
must be refined, either by creating new classes or by adding
attributes to existing classes. However, the study also shows
that even though refinements are necessary, the original model
provides enough material to start with. The original intention
(provide common ground) is still valid, and the study shows a
compatibility of both models. Our study also raises questions
on the dissemination of the concept of a metaphor in practice.

Particularly interesting is the result that the artifact model
that we created and that started out as an agile artifact model
had to be extended more and more with traditional project
management artifacts. This raises a question that must be
analyzed in detail in future investigations: Is it true that even
for agile project management, the more we think on a global
scale, the more the artifact model resembles models of old-
school project management?

ACKNOWLEDGMENTS

The project GloBuS was supported by the Bavarian State
Ministry for Economic Affairs, Infrastructure, Transport and
Technology (StMWIVT) under IUK-1110-0002//IUK391/001.

REFERENCES

[1] D. Smite, N. B. Moe, and R. Torkar, “Pitfalls in Remote Team Co-
ordination: Lessons Learned from a Case Study,” in Product-Focused
Software Proces (PROFES). Springer, 2008.

[2] P. Tell and M. Babar, “Activity Theory applied to Global Software En-
gineering: Theoretical Foundations and Implications for Tool Builders,”
in International Conference on Global Software Engineering (ICGSE),
2012, pp. 21-30.

[3] F. Lanubile, T. Mallardo, and F. Calefato, “Tool support for geograph-
ically dispersed inspection teams,” Software Process: Improvement and
Practice, vol. 8, no. 4, pp. 217-231, 2003.

[4] F. Calefato and F. Lanubile, “Socialcde: A social awareness tool for
global software teams,” in Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). ACM, 2013, pp. 587-590.

[5] M. Kuhrmann, D. M. Ferndndez, and M. Grober, “Towards artifact mod-
els as process interfaces in distributed software projects,” in International
Conference on Global Software Engineering (ICGSE), 2013.

[6] H. Holz and F. Maurer, “Knowledge Management Support for Dis-
tributed Agile Software Processes,” in Advances in Learning Software
Organizations. Springer-Verlag, 2003.

[7]1 M. Paasivaara and C. Lassenius, “Collaboration practices in global
inter-organizational software development projects,” Software Process:
Improvement and Practice, vol. 8, no. 4, pp. 183-199, 2004.

[8] H.-C. Estler, M. Nordio, C. Furia, B. Meyer, and J. Schneider, “Agile vs.
structured distributed software development: A case study,” in /CGSE,
2012.

[9] J. D. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,” IEEE
Transactions on Software Engineering, vol. 29, no. 6, 2003.

[10] M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin, “Commu-
nication tools for distributed software development teams,” in the 2007
ACM SIGMIS CPR conference. ACM Press, 2007, pp. 28-35.

[11] M. Kuhrmann, C. Lange, and A. Schnackenburg, “A survey on the
application of the v-modell xt in german government agencies,” in
Proceedings of the 18th Conference on European System & Software
Process Improvement and Innovation (EuroSPI), 2011.

[12] M. Kuhrmann and G. Kalus, “Werkzeugspezifisches Tailoring fiir das
V-Modell XT,” Technische Universitit Miinchen, Research Report (in
German) TUM-10804, 2008.

[13] J. Tomayko and J. Herbsleb, “How Useful Is the Metaphor Component
of Agile Methods? A Preliminary Study,” CMU, Tech. Rep., 2003.

Publication F: Rapid Requirements Checks with
Requirements Smells: Two Case Studies

Authors Henning Femmer, Daniel Méndez Fernandez, Elmar Juergens, Michael
Klose, Ilona Zimmer, and Jorg Zimmer

Venue 1st International Workshop on Rapid Continuous Software Engineering
(RCoSE) at the 36th International Conference on Software Engineering (ICSE), 2014

Abstract Bad requirements quality can have expensive consequences during the
software development lifecycle. Especially, if iterations are long and feedback comes
late — the faster a problem is found, the cheaper it is to fix.

We propose to detect issues in requirements based on requirements (bad) smells by
applying a light-weight static requirements analysis. This light-weight technique
allows for instant checks as soon as a requirement is written down. In this paper,
we derive a set of smells, including automatic smell detection, from the natural
language criteria of the ISO/IEC/IEEE 29148 standard.

We evaluated the approach with 336 requirements and 53 use cases from 9 specifi-
cations that were written by the car manufacturer Daimler AG and the chemical
business company Wacker Chemie AG, and discussed the results with their require-
ments and domain experts.

While not all problems can be detected, the case study shows that lightweight smell
analysis can uncover many practically relevant requirements defects. Based on these
results and the discussion with our industry partners, we conclude that requirements
smells can serve as an efficient supplement to traditional reviews or team discussions,
in order to create fast feedback on requirements quality.

Extended Summary This paper is summarized in Sections 4.3 and 4.4.

Authors Contributions I designed approach and case study, executed the interviews,
analyzed and reported on the results.

Copyright Henning Femmer, Daniel Méndez Fernandez, Elmar Juergens, Michael
Klose, Ilona Zimmer, and Jorg Zimmer. Rapid requirements checks with requirements
smells: Two case studies. In International Workshop on Rapid Continuous Software
Engineering, RCoSE, pages 10-19. ACM, 2014 (C) 2014 Association for Computing
Machinery, Inc. Reprinted by permission.
https://doi.org/10.1145/2593812.2593817

140

Rapid Requirements Checks with Requirements Smells:
Two Case Studies

Henning Femmer
Technische Universitat
Minchen, Germany
femmer@in.tum.de

Daniel Méndez
Fernandez
Technische Universitét
Minchen, Germany

Elmar Juergens
CQSE GmbH, Germany
juergens@cgse.eu

mendezfe@in.tum.de

Michael Klose
Wgcker Chemie AG, Germany
michael.klose@wacker.com

llona Zimmer
MBtech Group GmbH
& Co. KGaA, Germany

Jorg Zimmer
Daimler AG, Germany
joerg.zimmer@daimler.com

ilona.zimmer@mbtech-
group.com

ABSTRACT

Bad requirements quality can have expensive consequences
during the software development lifecycle. Especially, if it-
erations are long and feedback comes late — the faster a
problem is found, the cheaper it is to fix.

We propose to detect issues in requirements based on re-
quirements (bad) smells by applying a light-weight static
requirements analysis. This light-weight technique allows
for instant checks as soon as a requirement is written down.
In this paper, we derive a set of smells, including automatic
smell detection, from the natural language criteria of the
ISO/IEC/IEEE 29148 standard.

We evaluated the approach with 336 requirements and
53 use cases from 9 specifications that were written by the
car manufacturer Daimler AG and the chemical business
company Wacker Chemie AG, and discussed the results with
their requirements and domain experts.

While not all problems can be detected, the case study
shows that lightweight smell analysis can uncover many prac-
tically relevant requirements defects. Based on these results
and the discussion with our industry partners, we conclude
that requirements smells can serve as an efficient supplement
to traditional reviews or team discussions, in order to create
fast feedback on requirements quality.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tion

General Terms

Requirements Engineering, Quality Assurance, Natural Lan-
guage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.

RCoSE’14, June 3, 2014, Hyderabad, India
ACM 978-1-4503-2856-2/14/06
http://dx.doi.org/10.1145/2593812.2593817

10

Keywords

Requirements Engineering, Analytical Quality Assurance,
Requirements Smells

1. INTRODUCTION

Issues in requirements, such as ambiguities or incomplete
requirements specifications, can lead to time and cost over-
run in the project [20]. Generally speaking, a problem that
is found late in the project is more expensive than if it was
found early [6]. Therefore, we need fast feedback cycles that
enable to react early to pitfalls during requirements engi-
neering.

Some of these issues require specific domain knowledge to
be uncovered. For example, it is very difficult to detect with
automatic approaches whether a requirements specification
is lacking necessary features.

However, other issues can be detected more easily: If a
specification states that a sensor should work with suffi-
citent accuracy, without detailing what sufficient means in
the context, the specification is incomplete. The same holds
for other pitfalls such as loopholes: Phrasing that a cer-
tain property of the software under development should be
fulfilled as far as possible can cause misinterpretations and
difficult consequences during the acceptance phase of a prod-
uct.

Consequently, an approach that gives requirements en-
gineers and project participants fast feedback on possible
issues in the specification could provide valuable feedback.
However, since requirements in industry are nearly exclu-
sively written in natural language [21] and natural language
has no formal semantics, these issues are hard to detect. To
face the challenge of fast feedback and the imperfect knowl-
edge of a specification’s semantics, we created an approach
that is based on what we call requirements (bad) smells,
which are concrete symptoms for a requirement artefact’s
quality defect.

In this paper, we settle on the ISO/IEC/IEEE 29148:2011
standard [15] (in the following: ISO 29148) as a definition
for requirements quality. The standard supplies a list of so-
called Requirements Language Criteria, such as loopholes,
ambiguous adverbs or comparative and negative statements.
Based on this standard, we present a set of 8 smells that

indicate potential issues in requirements specifications ac-
cording to the standard and implement an automatic smell
detection for their discovery.

In two case studies, we applied the smell detection to 336
requirements and 53 comprehensive use cases from 9 speci-
fications that were created in 2 different companies. Based
on the results, we analyse with experts from the respec-
tive companies whether requirements smell analysis can be
a beneficial approach for detecting defects in requirements
specifications.

2. RELATED WORK

Various authors have worked on quality assurance of soft-
ware requirements. Some focus on the classification of qual-
ity into characteristics [6], others develop comprehensive
checklist, e.g. [19], [3], [2] or constructive approaches, e.g. [7],
to name only a few.

Some researchers focussed on automatic detection of spe-
cific defects in requirements specifications. This includes
detection of cloning in RE artefacts [16], detection of simi-
lar requirements [9], ambiguity [12], or detection of missing
information and passive sentences [18].

Some groups have developed tools that focus on a broader
understanding of requirements quality, instead of just a sin-
gle aspect, e.g. the ARM tool [28] that is based on the
IEEE 830 standard [14] that aims at developing metrics
for requirements quality instead of giving feedback to de-
velopers. Consequently, only quantitative evaluation is per-
formed.

Also the QuaRS tool [5, 8] analyses natural language re-
quirements. However, their approach is based on a propri-
etary quality model and we could not find a discussion of
the results with practitioners.

Circe [11] is able to detect more violations of quality char-
acteristics in a more exact way by building logical models of
the requirements specifications. However, their approach as-
sumes that the specifications is written in certain patterns.
This is often not the case in industry.

Research Gaps: We identified gaps from three sides: eval-
uation, quality definition and technique.

A major drawback that we see with the existing approach-
es, are the evaluations. Only few of the works apply their
ideas on real industry specifications. Those who do ap-
ply their approach on real industry specifications, only give
quantitative summaries, explaining which finding was de-
tected and how often. Some authors also give examples of
findings, but we could not find a detailed evaluation of how
the findings relate to acknowledged requirement defects, i.e.
together with the people who are supposed to use the ap-
proach. In our opinion, especially in the tacit domain of
natural language, we must understand the impact of a find-
ing in order to justify its detection.

Second, the existing approaches are based on proprietary
definitions of quality, based on experience or on what can
be measured. We have not seen an approach based on the
novel ISO 29148 standard. Also, we have not seen an explicit
understanding of how the produced findings relate to quality
or quality defects. Our approach of smells covers this aspect
systematically.

Lastly, from the technical side, different rules from the
new quality standard required specific solutions: We have
not seen the use of morphological analysis in requirements
engineering quality assurance.

11

3. REQUIREMENTS SMELLS

In this section, we first introduce a short terminology on
requirements smells, we then describe which smells we cre-
ated, and finally explain how we detect the smells.

3.1 Requirements Smell Terminology

One concept for lightweight quality analysis are smells,
which are proposed in the work by Fowler and Beck [10]
to answer the question: At which point is the quality of
code so low that we need to change it? According to the
authors, the answer cannot be objectively measured, but we
can only look for certain symptoms. This idea has also been
transferred to (Unit) Test Smells [27] and finally to Natural
Language Test Smells for user acceptance tests [13]. We
apply the concept of smells to requirements.

Accordingly, we define requirements quality in terms of
fitness-for-purpose, which implies that bad quality is a gen-
eral property of a requirements artefact that has negative
effects on activities in the software lifecycle.

Furthermore, a quality defect is a concrete instance or
manifestation of bad quality in the artefact. This enables
us to define a requirements (bad) smell as a concrete symp-
tom for a requirement artefact’s quality defect. In contrast
to requirements defects, a requirements smell only shows a
concrete indication for bad quality. Additionally, whether a
smell turns into a problem is very context-specific. Lastly,
we define a finding as instances of a smell, which might or
might not be a defect.

3.2 Requirements Smell Design

We develop requirements smells based on an existing def-
inition of quality. For this paper, we took the ISO 29148
requirements engineering standard [15] as a baseline. The
reasons for this standard were two-fold:

First, the ISO 29148 standard has been created to har-
monise a set of existing standards, including the well-known
IEEE 830:1998 [14] standard. It differentiates between qual-
ity characteristics for a set of requirements, such as com-
pleteness or consistency, and quality characteristics for in-
dividual requirements, such as unambiguity, singularity etc.
The standard furthermore describes the usage of require-
ments in different project phases and describes exemplary
contents and structure for requirements specifications.
Therefore, we argue that this standard is based on a broad
agreement and acceptance. Recent literature studies come
to the same conclusion [24].

Second, the standard provides readers with a list of so-
called requirements language criteria, which should help to
choose proper language for requirements specifications. The
authors of the standard argue that violating the criteria re-
sults

in requirements that are often difficult or even
impossible to verify or may allow for multiple
interpretations. [15, p.12]

In detail, the requirements language criteria consist of the
following elements: [15]

Ambiguous Adverbs and Adjectives refer to adverbs
and adjectives that are unspecific.
Examples: almost always, significant, minimal.

Vague Pronouns are unclear relations of a pronoun.
Example: The system must have a keypad and a key-
board. 1t should use the German layout.

Table 1: All implemented Smells

Smell Name Implementation

Ambiguous Adverbs and Adjectives Smell Dictionaries

Vague Pronouns Smell POS tagging: Substituting pronouns
Subjective Language Smell Dictionaries

Comparative Phrases Smell

Morph. Analysis: Adjectives and adverbs in comparative form

POS tagging: Conjunctions of comparison

Superlatives Smell

Negative statements Dictionaries
Non-verifiable Terms Smell Dictionaries
Loopholes Smell Dictionaries

Incomplete references

Morph. Analysis: Adjectives and adverbs in superlative form

Not implemented

® @

o @ ©
Parsing Annotation
Spec A1 —Sec1 ——-Req1 i
At POS Tagging
Reg2 Morphologic Analysis
B1.doc Reqs Lemmatization
Sec2 Req1
Specifications Req2
Spec B1 —Sec1 Req1 a
—ERqu o
Reqg3

Presentation

Smell Identification

Rerendering
Specifications
with Annotations

statistics
.html

ATM Specification
AT,

Analysis
Dashboard

2 schreibung

Figure 1: The Overall Smell Detection Process

Subjective Language refer to words of which the seman-
tics is not objective.
Examples: user friendly, easy to use, cost effective

Comparative Phrases are used in requirements that ex-
press a relation of the system to specific other systems.
Examples: better than, higher quality

Superlatives are used in requirements that express a rela-
tion of the system to all other systems.
Examples: best performance, lowest response time.

Negative Statements are “statements of system capabil-
ity not to be provided”[15]. Some argue that negative
statements can lead to underspecification.

Example: The system must not accept VISA credit
cards.

For this example, a more complete specification de-
scribes how the system reacts on the unaccepted input.

Open-ended, Non-verifiable Terms are hard to verify
as they offer a choice of possibilities.
Examples: provide support, but not limited to, as a
minimum

Loopholes enable stakeholders to ignore certain parts of
the specification.
Examples: if possible, as appropriate, as applicable

Incomplete References are references that a reader can-
not follow (e.g. no location provided).

Example: [1] “Unknown white paper”. Peter Miller.

12

In the following we use all of these characteristics except
for incomplete references as there were no explicit references
in our specifications. All remaining features were considered
as smells for bad quality of requirements specifications. At
this point we assume that these criteria apply for all specifi-
cations; however, we will discuss the appropriateness of the
given list based on concrete experience from the case studies
in Section 5.2.

3.3 Requirements Smell Detection

The requirements smell detection, as presented in this
paper, serves the automatic identification of requirements
smells to support further manual quality assurance tasks
(and potential corrections of requirements smells). In the
following, we introduce the process for the automatic part
of the approach, i.e. the detection of requirements smells.

The process consists of four steps (see Fig. 1): Parsing
the specifications into single requirements, annotating the
requirements with meta-information, detecting the require-
ments smells and finally creating a human-readable presen-
tation of the findings, which are displayed integrated into
the specification.

For the annotation and smell detection phase we employ
various techniques, including techniques from Natural Lan-
guage Processing (NLP)[17]. The smell detection is based
on three different techniques. Tbl. 1 gives an overview of
the techniques used for each individual smell.

ATM Specification

2.1 Interface

confronted with a simple interfAce.

[Req4]: The ATM
as far as possible

Findings

[Req2]: The ATM must be user-fiendly

ATM Specification
2 Non-Functional Description

[Req1]: The ATM must have the fas ,,3: connection at its disposal.

[Req3]: The ATM myst havg an effectivi
interface to the backend. he AT shot

oyld hafid out card

According to IEEE29148, subjective
language, such as these terms 'result in
requirements that are often difficult or
even impossible to verify or may allow
for multiple interpretations.'

According to IEEj#R9148 requirements
should not use supgrlatives, as they
might impact testapility and ambiguity.

Colo

Explanations

Figure 2: A Sample Output from the Smell Detection Tool for a Dummy Specification

POS Tagging: For two smells, we use a technique called
part-of-speech (POS) tagging. Given a sentence in nat-
ural language text, it determines the role and function
of each single word in the sentence. The output is
usually a so-called tag for each word, e.g. whether a
word is an adjective, a particle or a possessive pro-
noun. We used the Stanford NLP library [26] and the
RFTagger [23] for this. Both are statistical, probabilis-
tic taggers that train models similar to Hidden Markov
Models, based on existing databases of tagged texts. A
detailed introduction into the technical details of POS
tagging is beyond the scope of this paper, but can be
found, for example, in [17]. We use POS tagging to
determine so-called substituting pronouns. These are
pronouns that do not repeat the original noun and,
thus, need a human’s interpretation of its dependency.

Morphological Analysis: Based on POS tagging, we per-
form a more detailed analysis of text and determine its
inflection. This contains, among others to determine a
verb’s tense or an adjective’s comparison. We use this
technique to analyse if adjectives or adverbs are used
in their comparative or superlative form.

Dictionaries: For the remaining five smells we use dictio-
naries, based on the proposals of the standard [15], and
on our experience in the case studies. We furthermore
apply lemmatisation for these words, which is a nor-
malisation technique that reproduces the original form
of a word. In other words, if a lemmatiser is applied
to the words were, is or are, the lemmatiser will for all
three return the word be. Lemmatisation is in its pur-
pose very similar to stemming (e.g. the famous Porter
Algorithm [22]), yet not based on heuristics, but on
the POS tag as well as the word’s morphological form.

13

The whole approach is implemented on top of the soft-
ware quality analysis toolkit ConQAT!. ConQAT offers a
platform for detailed data analysis, which we extended with
NLP features. We furthermore developed a presentation
that allows to read the finding in its context. In this presen-
tation, the complete specification is displayed, and findings
are annotated in a spelling-correction style. This follows the
idea of smells as only indications that must be evaluated
holistically in its context. Lastly, the system gives detailed
information, when a user hovers a finding (see Fig. 2).

4. EVALUATION

We evaluated the approach in two case studies with 9
specifications from industry. In the following, we report on
these studies.

4.1 Research Questions

For this first evaluation, we had three research questions
in mind:

RQ1: Can we find defects with smell detection? First,
we want to discuss the potential of the approach of re-
quirements smells and lightweight smell analysis. To
this end, we ask whether the approach produces results
that pinpoint to defects of the requirements specifica-
tion

RQ2: How many findings are present in the require-
ments specifications? Second, besides the potential
of the approach, we also want to analyse the outcomes
from a requirements engineering perspective. For this,
we wanted to understand the distribution of findings
across domains, specifications and the different smells.

"http://www.conqat .org

RQ3: Would requirements engineers use a require-
ments smell tool? Last, we wanted to have an opin-
ion of both experts on whether or not a requirements
smells approach would be useful for them.

4.2 Study Design

The study consisted of an automatic smell detection (see
Fig. 1) and a manual evaluation phase (see Fig. 3):

In the smell detection phase, the specifications are first
parsed from their original format (.html and .doc) into a
machine readable format and parsed into individual require-
ments or use cases. Afterwards, each sentence and each
word in each requirement is annotated with the informa-
tion necessary for smell analysis, which is the POS infor-
mation, morphologic information and the lemmatised word
(see Sec. 3.3). Next, all smells detection algorithms are per-
formed for each requirement, producing a set of findings for
each requirement. These are subsequently presented in so-
called Analysis Dashboards, which are human-readable pre-
sentations, including statistics and annotated views on the
specification.

Evaluation Phase

Smell Detection Phase

=Ry

Specifications Smell Detector

Classification

Responses

Figure 3: The Data Collection Process

In the evaluation phase, we first had to chose a subset
of findings from the whole set of findings produced by the
smell detection, as many findings are similar and the time
of experts is rare. For the selection, we tried to filter false
positives? and find samples from all smells.

For this paper, we were interested in the results of a light-
weight static analysis of requirements. In order to receive
unbiased and open opinions, we asked the participating ex-
perts of their opinion on these samples as an open question
instead of a closed evaluations (e.g. ratings on a Likert scale).

Afterwards, two authors classified the qualitative answers
independently using open coding (as known from the e.g.
Grounded Theory approach [1]). Afterwards, we compared
the codes as a validity procedure and in case of inconsisten-
cies, resolved them.

Lastly, we asked the participating experts whether re-
quirements smells tool could support their work.

4.3 Case & Subject Description

The case selection was driven by opportunity. We were ap-
proached by companies that wanted to understand whether

20Obviously, this prevents us from analysing the precision of
our smell detection.

14

there are issues in their requirements. All specifications were
written in German language.

The two cases come from different domains and, thus,
we have different representations of the requirements. Both
companies are very successful and mature in their software
development and are investing into good requirements en-
gineering. In the following, we describe the chosen cases in
detail.

Daimler AG: Daimler AG is one of the key players in
the automotive industry with several hundred thousand em-
ployees and over 100 billion US dollar revenue.

At Daimler AG, we analysed six different specifications
that were written by various authors. The specifications
describe functionality in various domains of engine control
as well as driving information. In this case, requirements are
written down in the form of sentences, identified by an ID.
The authors are domain experts who are coached on writing
requirements.

The specifications A1-A6 that we analysed consist of 323
requirements (see Table 2). All of the specifications of Daim-
ler AG analysed in our study were created by domain experts
in a pilot phase after a change in requirements engineering
at Daimler AG. We reviewed 22 findings with an external
coach who works as a consultant for requirements engineer-
ing tightly collaborating with the group for many years.

Wacker Chemie AG: In the second case, we analysed
specifications of business information systems from Wacker
Chemie AG (or short: Wacker). Wacker is a globally ac-
tive chemical company headquartered in Munich, Germany,
with about 16,000 employees and a revenue of 4.63 billion
Euros (2012). The systems that we analysed fulfil company-
internal purposes, such as systems for access to Wacker build-
ings or support systems for document management.

We analysed three Wacker specifications that were written
by five different authors. At Wacker Chemie AG, functional
requirements are written as use cases (including fields for
Name, Description, Role, and Precondition), whereas non-
functional requirements are described in simple sentences.
The specifications consisted of 53 use cases and 13 unstruc-
tured requirements (see Table 2). For the reviews of the
findings, we selected 18 findings and discussed them with
the Chief Software Architect, who also has several years of
experience in quality assurance.

4.4 Results

We base our answer to RQ1 on the produced presentations
of our tool and the responses to the findings by the experts,
the answer to RQ2 on the total number of findings, and the
answer to RQ3 on the written statements by the experts.

RQ1: Can we find defects with lightweight smell
analysis?

We wanted to understand the potential of the approach in
terms of ability to detect requirements defects. In the fol-
lowing, we first provide some examples before summarising
the results from our analysis.

Examples: The automatic smell analysis produced 356
findings over all 9 specifications (see Thl. 5), of which we
selected 40 findings (~11%) to discuss with the analysts in
depth (see Fig. 3). An exemplary finding of each smell is
shown in Tbl. 3. To demonstrate the types of issues that
can be found, we will discuss three issues in depth here and
go over a summary of the remainder afterwards.

Table 2: Study Objects

Specification Topic Size (Words) Size (Sentences) # Requirements # Use Cases
Al Adaptive valve control 2098 121 91

A2 Exhaust control 2540 125 72

A3 Driving information 215 13 12

A4 Engine startup control 1118 76 44

A5 Engine control 579 49 49

A6 Powertrain communication 1248 66 55

SUM 7798 450 323

B1 Management of access control 2337 172 9 18
B2 Event notification 1162 103 3 19
B3 Document management 490 26 1 16
SUM 3989 301 13 53

Table 3: Exemplary Findings; shortened and translated from German by the Authors

Smell Name Exemplary Finding

Ambiguous Adverbs and If the (...) quality is too low, a fault must be written to the error
Adjectives Smell memory.

Vague Pronouns Smell The software must implement services for applications, which must

communicate with controller applications deployed on other controllers.
[Note: The translation is less ambiguous than the original finding in
German, as the reflexive pronoun in English identifies its relation more
clearly. The original requirement stated: Die Software muss Dienste
fiir Anwendungen implementieren, welche tdber ein Steuergerdt hinaus
mit anderen Steuergerdte- Anwendungen kommaunizieren miissen.]

Subjective Language Smell The architecture as well as the programming must ensure a simple and
efficient maintainability.

Comparative Phrases Smell ~ The display (...) contains the fields A, B and C, as well as more exact
build infos.

Superlatives Smell The system must provide the signal in the highest resolution that is
desired by the signal customer.
Negative statements One’s own user cannot be deleted.

Non-verifiable Terms Smell ~ The system may only be activated, if all required sensors (...) work
with sufficient measurement accuracy.
Loopholes Smell As far as possible, inputs are checked for plausibility.

Subjective Language Smell In specification B2, a spec- word other applications as a hint that the word which

ification of a business information system, we found
the requirement that the software must ensure a sim-
ple and efficient maintainability. This description of a
non-functional requirement contains the classical error
of violating verifiability. It is very hard to use this re-
quirement properly in other activities of the software
development lifecycle, e.g. engineers will find it hard
to develop code against this requirement and testers
will not be able to decide whether the resulting soft-
ware fulfils the requirement during acceptance testing.
The expert classified two instances of this finding as a
major defect.

Vague Pronouns Smell The second example, found in

specification A6, exemplarily shows the difficulties that
come with complicated grammatical structures. In the
example given in Tbl. 3, it remains unclear whether
the software, the services or the applications should
communicate with other applications. It is sometimes
possible to deduce the reference from the context of
the requirement, e.g. in this case we could take the

15

refers to the word application. However, we still argue
that the requirement contains potential for misunder-
standings for all kinds of roles that are in contact with
the specification.

Loopholes Smell The third example is taken from speci-
fication B1, a requirement artefact that describes the
internal software system that manages the guests who
access Wacker’s properties, including chemical plants.
The example contains the ambiguous phrase that a
certain requirement should be fulfilled as far as possi-
ble. This is obviously problematic as, e.g. a developer
might have a different opinion on the possibilities than
the tester. Accordingly, testing will be performed sub-
jectively.

After showing 40 findings to experts, we classified the qual-
itative responses to summarise the results. Tbl. 4 shows a
summary of the answers, with responses where the experts
would take action listed at the top and rather rejecting re-
sponses at the bottom part of the table.

Table 4: Qualitative Summary Smell Findings (Open Coding)

Classification (Code) Occurrence Explanation

Potential problem 8 This finding revealed a potential problem.

Needs review 6 This requirement needs a review.

Implicit knowledge 4 There is some implicit knowledge, which should be writ-
ten down.

Missing reference 2 There should be a reference at this point.

Major defect 2 This is a big issue that must be addressed.

Refinement expected 6 While this is not an issue here, it must be further ex-
plained and refined at a different point.

No need for high quality 2 This could be problematic, but this part of the speci-
fication is not so important (e.g. information only, see
Sec. 5)

Domain specialists knowledge 4 This finding seems problematic, but is clear to a domain
expert.

No problem 4 This is not a problem here.

Finding wrong 1 The smell detection did not work properly.

Unsure whether a negative is a problem 1

It is unclear whether and why this formulation should be
a problem (see Sec. 5)

Responses: We can see that there are many requirements
in which experts directly proposed actions on this specifica-
tion. T'wo times, which are two findings similar to the Sub-
jective Language Smell example in Thl. 3, the expert con-
cluded that this is a major defect. The findings revealed es-
pecially issues with unstated information, i.e. implicit knowl-
edge, and missing references. Six times, the expert explained
that the finding probably pinpoints to a defect and that he
would suggest a further review.

On the other side, experts classified that for some of the
findings they would not take any further action. The most
frequent cause was related to the subject under analysis: 8
times the experts told us that we were looking at the wrong
spot, either because they said that this part is not really rel-
evant in the specification® or because they stated that the
requirements should be refined in a different artefact. These
findings imply that a detailed understanding of purpose of
the requirements is necessary to detect issues where they re-
ally matter. Another very common reason was that domain
specialists knowledge is the reason for the finding, but there
it was not seen necessary to make this knowledge explicit.

To summarise, we can see that the smell approach is able
to detect requirements defects, as exemplified and validated
with the experts.

RQ2: How many findings are present in the re-
quirements specifications?

We wanted to understand in how far findings of the differ-
ent smells are present in the specifications. Therefore, we
analyse the distribution of findings across three dimensions:
How are findings distributed across specifications, domains,
and requirements smells? Tbl. 5 shows the total number of
findings for all natural language criteria of the standard.
We see that nearly all specifications are subject to smells.
The distribution varies between 0.3 and 0.62 findings per
sentence, with specification B3 as an outlier, which we will

3Some parts of the specification were only considered to be
further information and thus should not need to be of high
quality.

16

discuss in the next paragraph. Obviously, the number of
findings increases with the size of the specifications.

Furthermore, it is interesting to see that the total num-
ber of findings (see Thl. 5) are quite similar in both domains
(0.42 smells per sentence for the A1-A6 and 0.55 smells per
sentence for B1-B3). One discrepancy that we looked at in
more detail are the number of loophole findings. The rea-
son for this was an extensive use of the German verb soll,
which translates to should and is thus non-binding in con-
tracts (in contrary to shall; cf. [4] or [15]). Hence, we see
this certain error multiple times, especially in specification
B3. Requirements authors at Daimler AG, in comparison,
are taught to use the standard modalities where appropri-
ate. This explains the discrepancy between the specifica-
tions. This is especially reflected in the variable Smells per
Sentence in Tbl. 5.

The distribution between the smells varies strongly. Strik-
ing are the number of negative statements findings and
vague pronouns findings. A selection of negative state-
ments findings that we presented to our industry partners
has lead to discussions with both experts on which we will
report in detail in Sec. 5. For the vague pronouns, the rea-
son lies in the implementation: As explained in Sec. 3.3, the
smell detector suggests all substituting pronouns as findings.
However, it turns out in the study that this is an overap-
proximation. Even though some of the sentences are indeed
hard to understand (e.g. the example from Tbl. 3), very
often it was very clear which word was substituted by the
pronoun. For example, one automotive requirement from
specification A4 constrained The gear lever must be in Po-
sition P or N. This is not the case for (...). In this case,
even though the pronoun this is substituting, the reference
is nevertheless quite clear from the context. Future work
could include deeper linguistic dependency analysis of sen-
tences, e.g. following the work of Smith [25].

RQ3: Would requirements engineers use a re-
quirements smell tool?

After the analysis and interviews, we asked the expert of
both Wacker and Daimler AG if they can comment whether

Table 5: Quantitative Summary of Smell Findings

<
g
)
8
= 2
- C =
: i
— »n 2} — <
o) w B © =
g = g g g <
n g E o0 = g
0 g 9 o @2 g @
g § £ £ ¥ EE £
= ¢ 3 T B3 g g
g E o 8 W - = 7 >
= 5] o M g = 5
3 < & = L 5 <
g n s ¢ A 8 = 9
g 4 5 B £ = g BN E 3 Z
5] = g e 5 = 2 8 E & 7
[} o p=] = = = [
O > < = bt Q 5] =
= g i 2 T & g <= > o &
k3] 0 = < e = = & 5 2
@ — o0 o Q Q = Qap
Q, — S 9) = Q =] e} o < E
) < 0 Z n O ;v 49 Z > <
Al 45 03711 7 7 4 2 0 13 1
A2 57 046 | 14 1 5 6 4 2 24 1
A3 8 0.62 | 2 0 0 0 0 0 6 0
A4 29 0.38 | 8 0 1 3 1 1 15 0
A5 20 041 | 5 0 0 0 0 1 14 0
A6 32 048 | 13 0 7 0 0 4 8 0
Sum | 191 042 |53 8 20 13 7 8 80 2
B1 100 058 (20 6 7 5 18 1 43 0
B2 31 0.30 | 3 0 9 2 2 0 15 0
B3 34 1.31 |0 1 1 0 21 0 10 1
Sum | 165 0.55 | 23 7 17 7 41 1 68 1

or not they think the method is a helpful support. Their
answers were:

Expert 1: I think that smells can help to analyse a spec-
ification. To use this correctly, the following aspects
should be considered:

First, the people who need to write the specification,
received training which gives the required performance
criteria. Second, abstraction level’s must be taken into
account during smell detection process, since at higher
abstractions level’s different criteria can not be met
(e.g., vague pronouns or subjective language).

Expert 2: The method of requirements smells is a valuable
extension in the area of requirements engineering and
gives helpful input concerning the quality of specified
requirements in early development phases.

I like to compare requirements smells to the “check
spelling aid” known e.g. from Microsoft Word, so for
me requirements smells are intuitive and lightweight
and should be used and integrated within requirements
engineering and quality assurance processes.

Even though this is just anecdotal and, thus, subjective
evidence, it forms a first external impression which encour-
ages us to invest more effort into the development of require-
ments smells and analyse the approach in more depth.

4.5 Threats to Validity

We made four choices that could have had an impact the
validity of the results.

17

First, the classification for RQ1 was performed by the au-
thors. To address this threat, we performed triangulation of
the classification between the first and the second author.
For this, the second author of the paper conducted an in-
dependent classification of the responses to the 40 selected
findings without being directly involved in the discussions
with the industry participants. Out of 40 classifications, the
recoding resulted in 6 out of 40 inconsistent classifications,
which were directly resolved in discussions, and 18 out of
40 classifications that were chosen on a more coarse grained
level; for instance, the second author selected the code “OK”
for responses that indicated to findings being not classified
as problems while the first author could reveal more fine-
grained codes such as “Unsure whether a negative is a prob-
lem”. Our interpretation of the independent classification
result is, thus, that the results of the coding are sufficiently
reliable.

Second, we selected the study objects by opportunity.
These were the requirements for which we could get feed-
back from people with knowledge about the systems. To the
best of our knowledge there are no benchmark requirements
sets with proper information about its quality. However,
we analysed requirements of 9 different systems, both from
systems engineering and software engineering of traditional
business information systems.

Third, we selected the set of findings that were discussed
with industry experts not at random, but at our choice. This
was done purposely in order to understand if the approach
is generally able to find defects. Due to this decision, the
number of issues presented in the results are not necessarily
representative for the whole set of findings, i.e. no conclu-
sions can be drawn about the quality of the smell detection
approach in terms of precision or recall. All conclusions
drawn in this paper respect this assumption.

Last, we selected the expert reviewers by availability. Even
though they were familiar with the specifications, in future
it would be best to ask not coaches nor architects, but the
team members who use the requirements, e.g. testers or de-
velopers.

S. DISCUSSION

The study brought up several further questions that have
strong implications on future research. Therefore, we discuss
several of these aspects in more depth.

5.1 Smells for Rapid Requirements Analysis

In this paper, we analysed the usage of requirements smells
in the context of rapid feedback for requirements analysis.
In our context, we were able to show that it is possible to
find relevant defects with automatic smell detection. The
(automatic) smell detection took 59 seconds for Al to A6
and 24 seconds for B1 to B3 in total. We consider this du-
ration to be an effort reasonable to most types of projects.

However, it is important to note that a smell approach
cannot substitute manual reviews or inspections. A require-
ments smell detection can only pinpoint to possible defects
or common pitfalls. As a matter of fact, considering the low
effort necessary to conduct an automatic smell detection, we
believe that such a lightweight approach would greatly add
to human inspections. Those manual approaches, in turn,
can find deep flaws in requirements specifications. This in-
cludes violations of correctness as well as violations of com-
pleteness, such as missing functionality.

For this reason, we argue that requirements smells, just
as in code smells, can serve as a very valuable input for
inspections or reviews.

5.2 IS0 29148 Language Criteria as Smells

Industry experts did not agree on all natural language
criteria that were proposed by ISO 29148.

This was especially the case for the Negative Statements
Smell. The question whether or not findings of this smell
lead to a problem was strongly discussed: On the one hand,
the standard argues that negative phrases and statements
should be avoided as a type of “unbounded or ambiguous
terms”. One could argue that formulating requirements in
negative statements can lead to incompleteness. For the
example given in Tbl. 3, the requirements specification lacks
the information on how the system should react in case the
user tries to delete his own dataset, or how else the system
should prevent this to happen.

There are, on the other hand, non-functional requirements
that are very hard to formulate in positive statements, e.g.
requirements describing the prevention of system access. In
any way, we need to find ways to understand and prove the
impact of findings in a less argumentative (as proposed by
the standard) and more empirically sound manner.

Another smell that produced interesting results was the
Superlative Requirements Smell. The reasoning for this
smell is that a requirements that is stated as, e.g. highest
resolution of a signal or fastest response of a sensor, is in-
herently difficult to verify. However, it again depends on
the context of the requirement. Taking the first example, if
all possible resolutions are clear (i.e. if the set of possibili-
ties is finite) the requirement is indeed verifiable. A simi-
lar argumentation holds for the Comparative Requirements
Smell. We can see here, that the Requirements Smells and
Requirements Smell Detection must be improved by adding
a context to the smell definition. This improves the under-
standing on when a finding of a smell turns into a defect. It
remains open, however, how to include this knowledge into
a smell detector.

5.3 Implementation of Smell Detection

Besides understanding how to define the smells and under-
stand which are the best smells to pinpoint to problematic
spots in requirements artefacts, we can furthermore discuss
how to detect the smells most appropriately after their def-
inition. In this paper we basically made use of three tech-
niques: Dictionaries, POS tagging and morphological anal-
ysis.

Some implementations depend on solely dictionaries (as
others have done with similar problems before [3]). To our
experience, this remains the most vague way of detecting
certain smells as the dictionaries can only detect a finite
set of words. While this is a perfect solution for smells,
where there are only finite forms of this smell (also called
closed classes in natural language processing [17]; e.g. there
is only a small set of words that express negation, like “not”,
“neither”, “no”, etc.), it is inherently imprecise when it comes
to open classes, e.g. Non-verifiable terms. Dictionaries
furthermore inherently struggle when it comes to domain-
specific language. So far, the only chance we see in this case
is to taylor each smell based on feedback from the respective
domain.

18

Other implementations are based on POS tagging and
morphological analysis. Since the specifications were written
in German and morphological analysis libraries are sparse
for the German language, we had to combine various li-
braries, such as the Stanford NLP [26] with German NLP
libraries [23]. We could identify some false positives that
arise from the imprecision that comes with these libraries.
This is especially the case when it comes to domain-specific
terms and proper nouns.

Some implementations could be further refined, if more
information from word dependencies would be used (see
Sec. 4.4). For example, for the Vague Pronouns Smell we
could evaluate the linguistic structure even further and try
to detect whether there are multiple nouns that this pronoun
could refer to.

5.4 Subject of Analysis

In this study we treated all parts of requirements spec-
ifications equally and assumed that each requirement had
to be of highest quality, e.g. unambiguous, exact and veri-
fiable. While this is true for many cases, experts opposed
this assumption in some cases.

In an interview one of the experts told us that a certain
finding was an issue on requirements level, but that in this
spot it was ok, because this particular requirement was in-
tended to be on a more abstract, goal-like level. This in-
dicates that it is important to understand and taylor the
smell detection to the abstraction level and granularity of
the requirements (cf. [19]).

The same also holds for information texts and introduc-
tions. It is still completely unclear to which extent the qual-
ity of these parts of the specifications matter.

6. CONCLUSION

In this study, we proposed a light-weight approach to de-
tect requirements smells. This approach is based on the
natural language criteria of ISO 29148 and serves to rapidly
detect requirements that violate certain RE principles. We
furthermore developed an implementation that is able to
detect these violations using part-of-speech (POS) tagging,
morphological analysis and dictionaries.

We applied the approach in two case studies to 336 re-
quirements and 53 use cases taken from 9 specifications
that were created in 2 different companies. We discussed
the results with industry experts and concluded that the
approach is suitable to detect relevant defects in require-
ments. It cannot find all possible defects but experts judged
it as a valuable input for requirements reviews. Further-
more, we saw that violations of the natural language criteria
are present across domains and various specifications; how-
ever, the study also shows that we need further analyses to
understand the impact of these violations.

Future work includes understanding negative statements
in requirements, enhancement of the smell detection via de-
pendency analysis and development of new requirements
smells through interviews with testers and developers. We
also want to understand the scalability of the approach: We
are currently working on the analysis of a large business re-
quirements specification of an industry partner.

Acknowledgments

We want to thank Daimler AG, especially Heike Frank, and
Wacker Chemie AG for their support during the case stud-
ies, as well as Sebastian Eder, Maximilian Junker, Benedikt
Hauptmann and the anonymous reviewers for their helpful
and encouraging reviews.

7.
1]

(10]

[11]

[12]

REFERENCES

S. Adolph, W. Hall, and P. Kruchten. Using Grounded
Theory to study the Experience of Software
Development. Empirical Software Engineering, 16(4),
2011.

B. Anda and D. I. K. Sjgberg. Towards an inspection
technique for use case models. In Software Engineering
and Knowledge Engineering (SEKE), 2002.

D. Berry, A. Bucchiarone, and S. Gnesi. A new quality
model for natural language requirements
specifications. In Requirements Engineering:
Foundation for Software Quality (REFSQ), 2006.

S. Bradner. Key words for use in rfcs to indicate
requirement levels, 1997. RFC 2119.

A. Bucchiarone, S. Gnesi, and P. Pierini. Quality
Analysis of NL Requirements : An Industrial Case
Study. In Requirements Engineering, 2005.

A. Davis, S. Overmyer, K. Jordan, J. Caruso,

F. Dandashi, A. Dinh, G. Kincaid, G. Ledeboer,

P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos.
Identifying and measuring quality in a software
requirements specification. In Software Metrics
Symposium, 1993.

C. Denger, D. M. Berry, and E. Kamsties. Higher
quality requirements specifications through natural
language patterns. In Software Science, Technology,
and Engineering, 2003.

F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The
Linguistic Approach to the Natural Language
Requirements Quality: Benefit of the use of an
Automatic Tool. In NASA Goddard Software
Engineering Workshop, 2001.

D. Falessi, 1. C. Society, and G. Cantone. Empirical
Principles and an Industrial Case Study in Retrieving
Equivalent Requirements via Natural Language
Processing Techniques. Software Engineering, 39(1),
2013.

M. Fowler and K. Beck. Refactoring: improving the
design of existing code. Addison-Wesley Professional,
1999.

V. Gervasi and B. Nuseibeh. Lightweight validation of
natural language requirements. Software: Practice and
Experience, 32(2):113-133, Feb. 2002.

B. Gleich, O. Creighton, and L. Kof. Ambiguity
detection: Towards a tool explaining ambiguity
sources. Requirements Engineering, 2010.

19

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

28]

B. Hauptmann, M. Junker, S. Eder, L. Heinemann,
R. Vaas, and P. Braun. Hunting for smells in natural
language tests. In International Conference on
Software Engineering (ICSE), 2013.

IEEE Computer Society. IEEE Recommended
Practice for Software Requirements Specifications.
Technical report, 1998.

ISO, IEC, and IEEE. ISO/IEC/IEEE 29148:2011.
Technical report, ISO IEEE TEC, 2011.

E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel,
B. Schaetz, S. Wagner, C. Domann, and J. Streit. Can
Clone Detection Support Quality Assessments of
Requirements Specifications? In International
Conference on Software Engineering (ICSE), 2010.

D. Jurafsky and J. H. Martin. Speech and Language
Processing. Pearson Education, 2014.

L. Kof. Treatment of Passive Voice and Conjunctions
in Use Case Documents. Natural Language Processing
and Information Systems, 2007.

A. V. Lamsweerde. Requirements Engineering. John
Wiley & Sons, 2009.

D. Méndez Ferndndez and S. Wagner. Naming the
Pain in Requirements Engineering: Design of a Global
Family of Surveys and First Results from Germany. In
Evaluation and Assessment in Software Engineering
(EASE), 2013.

L. Mich, F. Mariangela, and N. I. Pierluigi. Market
research for requirements analysis using linguistic
tools. Requirements Engineering, 9(1), 2004.

M. Porter. An algorithm for suffix stripping. Program:
electronic library and information systems, 1980.

H. Schmid and F. Laws. Estimation of conditional
probabilities with decision trees and an application to
fine-grained POS tagging. In Conference on
Computational Linguistics, 2008.

F. Schneider and B. Berenbach. A Literature Survey
on International Standards for Systems Requirements
Engineering. In Conference on Systems Engineering
Research, 2013.

N. A. Smith. Linguistic structure prediction. Morgan
& Claypool Publishers, 2011.

K. Toutanova, D. Klein, C. D. Manning, and

Y. Singer. Feature-Rich Part-of-Speech Tagging with a
Cyclic Dependency Network. In Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (NAACL-HLT), 2003.

A. van Deursen, L. Moonen, A. van den Bergh, and
G. Kok. Refactoring test code. CWI, 2001.

W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt.
Automated analysis of requirement specifications. In
International Conference on Software Engineering
(ICSE), 1997.

A. Publications

Publication G: Rapid Quality Assurance with
Requirements Smells

Authors Henning Femmer, Daniel Méndez Fernandez, Stefan Wagner, Sebastian
Eder

Venue Journal of Systems and Software

Abstract Bad requirements quality can cause expensive consequences during the
software development lifecycle, especially if iterations are long and feedback comes
late.

We aim at a light-weight static requirements analysis approach that allows for rapid
checks immediately when requirements are written down.

We transfer the concept of code smells to Requirements Engineering as Requirements
Smells. To evaluate the benefits and limitations, we define Requirements Smells,
realize our concepts for a smell detection in a prototype called Smella and apply
Smella in a series of cases provided by three industrial and a university context.

The automatic detection yields an average precision of 59% at an average recall of
82% with high variation. The evaluation in practical environments indicates benefits
such as an increase of the awareness of quality defects. Yet, some smells were not
clearly distinguishable.

Lightweight smell detection can uncover many practically relevant requirements
defects in a reasonably precise way. Although some smells need to be defined more
clearly, smell detection provides a helpful means to support quality assurance in
Requirements Engineering, for instance, as a supplement to reviews.

Extended Summary This paper is summarized in Sections 4.3 and 4.4.

Authors Contributions 1 designed the prototype, co-designed the case study, co-
executed the interviews, co-analyzed and co-reported the results.

Copyright Reprinted from Journal of Systems and Software, 123, Henning Femmer,
Daniel Méndez Fernandez, Stefan Wagner, Sebastian Eder, Rapid quality assurance
with Requirements Smells, pp. 190-213, Copyright (2017), with permission from
Elsevier.

151

The Journal of Systems and Software 123 (2017) 190-213

The Journal of Systems and Software

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jss

Rapid quality assurance with Requirements Smells

@ CrossMark

Henning Femmer®* Daniel Méndez Ferndndez?, Stefan Wagner®, Sebastian Eder?

aSoftware & Systems Engineering, Technische Universitit Miinchen, Germany
b [nstitute of Software Technology, University of Stuttgart, Germany

ARTICLE INFO

Article history:

Received 5 January 2015
Revised 19 February 2016
Accepted 28 February 2016
Available online 4 March 2016

Keywords:

Requirements engineering
Automatic defect detection
Requirements Smells

ABSTRACT

Bad requirements quality can cause expensive consequences during the software development lifecycle,
especially if iterations are long and feedback comes late. We aim at a light-weight static requirements
analysis approach that allows for rapid checks immediately when requirements are written down. We
transfer the concept of code smells to requirements engineering as Requirements Smells. To evaluate the
benefits and limitations, we define Requirements Smells, realize our concepts for a smell detection in
a prototype called Smella and apply Smella in a series of cases provided by three industrial and a uni-
versity context. The automatic detection yields an average precision of 59% at an average recall of 82%
with high variation. The evaluation in practical environments indicates benefits such as an increase of
the awareness of quality defects. Yet, some smells were not clearly distinguishable. Lightweight smell de-
tection can uncover many practically relevant requirements defects in a reasonably precise way. Although
some smells need to be defined more clearly, smell detection provides a helpful means to support quality

assurance in requirements engineering, for instance, as a supplement to reviews.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Defects in requirements, such as ambiguities or incomplete
requirements, can lead to time and cost overruns in a project
(Méndez Fernandez and Wagner, 2015). Some of the issues re-
quire specific domain knowledge to be uncovered. For example,
it is very difficult to decide whether a requirements artifact is
complete without domain knowledge. Other issues, however, can
be detected more easily: If a requirement states that a sensor
should work with sufficient accuracy without detailing what suf-
ficient means in that context, the requirement is vague and con-
sequently not testable. The same holds for other pitfalls such as
loopholes: Phrasing that a certain property of the software under
development should be fulfilled as far as possible leaves room for
subjective (mis-)interpretation and, thus, can have severe conse-
quences during the acceptance phase of a product (Femmer et al.,
2014b; IS0, IEC and IEEE, 2011).

To detect such quality defects, quality assurance processes
often rely on reviews. Reviews of requirements artifacts, however,
need to involve all relevant stakeholders (Salger, 2013), who must

* Corresponding author. Tel.: +49 8928917080.
E-mail addresses: femmer@in.tum.de (H. Femmer), mendezfe@in.tum.de
(D. Méndez Fernandez), Stefan.Wagner@informatik.uni-stuttgart.de (S. Wagner),
eders@in.tum.de (S. Eder).

http://dx.doi.org/10.1016/j.jss.2016.02.047
0164-1212/© 2016 Elsevier Inc. All rights reserved.

manually read and understand each requirements artifact. More-
over, they are difficult to perform. They require a high domain
knowledge and expertise from the reviewers (Salger, 2013) and the
quality of their outcome depends on the quality of the reviewer
(Zelkowitz et al., 1983). On top of all this, reviewers could be dis-
tracted by superficial quality defects such as the aforementioned
vague formulations or loopholes. We therefore argue that reviews
are time-consuming and costly.

Therefore, quality assurance processes would benefit from faster
feedback cycles in requirements engineering (RE), which support
requirements engineers and project participants in immediately
discovering certain types of pitfalls in requirements artifacts. Such
feedback cycles could enable a lightweight quality assurance, e.g.,
as a complement to reviews.

Since requirements in industry are nearly exclusively written
in natural language (Mich et al., 2004) and natural language has
no formal semantics, quality defects in requirements artifacts are
hard to detect automatically. To face this challenge of fast feedback
and the imperfect knowledge of a requirement’s semantics, we cre-
ated an approach that is based on what we call Requirements (Bad)
Smells. These are concrete symptoms for a requirement artifact’s
quality defect for which we enable rapid feedback through auto-
matic smell detection.

In this paper, we contribute an analysis of whether and to what
extent Requirements Smell analysis can support quality assurance
in RE. To this end, we

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 191

1. define the notion of Requirements Smells and integrate the Re-
quirements Smells' concept into an analysis approach to com-
plement (constructive and analytical) quality assurance in RE,

2. present a prototypical realization of our smell detection ap-
proach, which we call Smella, and

3. conduct an empirical investigation of our approach to better
understand the usefulness of a Requirements Smell analysis in
quality assurance.

Our empirical evaluation involves three industrial contexts:
The companies Daimler AG as a representative for the automotive
sector, Wacker Chemie AG as a representative for the chemical
sector, and TechDivison GmbH as an agile-specialized company.
We complement the industrial contexts with an academic one,
where we apply Smella to 51 requirements artifacts created by
students. With our evaluations, we aim at discovering the accu-
racy of our smell analysis taking both a technical and a practical
perspective that determines the context-specific relevance of the
detected smells. We further analyze which requirements quality
defects can be detected with smells, and we conclude with a
discussion of how smell detection could help in the (industrial)
quality assurance (QA) process.

1.1. Previously published material

This article extends our previously published workshop paper
(Femmer et al., 2014b) in the following aspects: We provide a
richer discussion on the notion of Requirements Smell and give
a precise definition. We introduce our (extended) tool-supported
realization of our smell analysis approach and outline its integra-
tion into the QA process. We extend our first two case studies with
another industrial one as well as with an investigation in an aca-
demic context to expand our initial empirical investigations by

1. investigating the accuracy of our smell detection including pre-
cision, recall, and relevance from a practical perspective,

2. analyzing which quality defects can be detected with smells
and

3. gathering practitioner’s feedback on how they would integrate
smell detection in their QA process considering both formal and
agile process environments.

1.2. Outline

The remainder of this paper is structured as follows. In
Section 2, we describe previous work in the area. In Section 3, we
define the concept of Requirements Smells and describe how we
derived a set of Requirements Smells from ISO 29148. We intro-
duce the tool realization in Section 4 and discuss the integration
of smell detection in context of quality assurance in Section 5. In
Section 6, we report on the empirical study that we set up to eval-
uate our approach, before concluding our paper in Section 7.

2. Related work

In the following, we discuss work relating to the concept of nat-
ural language processing and smells in general, followed by quality
assurance in RE, before critically discussing currently open research

gaps.

T In context of our studies, we use the ISO/IEC/IEEE 29148:2011 standard (ISO,
[EC and IEEE, 2011) (in the following: ISO 29148) as basis for defining requirements
quality. The standard supplies a list of so-called Requirements Language Criteria, such
as loopholes or ambiguous adverbs, which we use to define eight smells (see also
the smell definition in Section 3.2).

2.1. The notion of smells in software engineering

The concept of code smells was, to the best of our knowledge,
first proposed by Fowler and Beck (1999) to answer the question
at which point the quality of code is so low that it must be refac-
tored. According to Fowler and Beck, the answer cannot be ob-
jectively measured, but we can look for certain concrete, visible
symptoms, such as duplicated code (Fowler and Beck, 1999) as
an indicator for bad maintainability (Juergens et al., 2009). This
concept of smells, as well as the list that Fowler and Beck pro-
posed, led to a large field of research. Zhang et al. (2011) pro-
vide an in-depth analysis of the state of the art in code smells.
The metaphor of smells as concrete symptoms has since then been
transferred to quality of other artifacts including (unit) test smells
(van Deursen et al., 2001) and smells for system tests in natural
language (Hauptmann et al., 2013). Ciemniewska et al. (2007), fur-
ther characterize different defects of use cases through the term
use case smell. In our work, we extend the notion of smells to the
broader context of requirements engineering and introduce a con-
crete definition for the term Requirements Smell.

2.2. Quality assurance of software requirements

The concept of Requirements Smells is located in the context of
RE quality assurance (QA), which is performed either manually or
automatically.

2.2.1. Manual QA

Various authors have worked on QA for software requirements
by applying manual techniques. Some put their focus on the clas-
sification of quality into characteristics (Davis et al., 1993), others
develop comprehensive checklists (Anda and Sjeberg, 2002; Berry
et al., 2006; Lamsweerde, 2009; Kamsties and Peach, 2000; Kam-
sties et al., 2001). Regarding QA, some develop constructive QA
approaches, such as creating new RE languages, e.g. Denger et al.
(2003), to prevent issues up front, others develop approaches to
make analytic QA, such as reviews, more effective (Shull et al.,
2000). In a recent empirical study on analytical QA, Parachuri et al.
(2014) manually investigate the presence of defects in use cases.
To sum it up, these works on manual QA provide analytical and
constructive methods, as well as (varying) lists for defects. They
strengthen our confidence that today’s requirements artifacts are
vulnerable to quality defects.

2.2.2. Automatic QA

Various publications discuss the automatic detection of quality
violations in RE. We summarize existing approaches and tools,
their publications, and empirical evaluations in Table 2. We also
created an in-depth analysis of in total 27 related publications
evaluating which quality defects or smells the approaches opt for
in their described detection. In the following, we will first explain
two related areas (automatic QA for redundancy and for con-
trolled languages), before discussing automatic QA for ambiguity
in general. For ambiguity, we first describe those approaches that
conducted empirical evaluations of precision or recall of quality
defects related, but not identical to, the ones of ISO 29148. After-
wards, we focus on publications that mention the same criteria as
in the ISO 29148 (see Table 1 for this list and their respective em-
pirical evaluations) and discuss the chosen approaches and results.
We publish the complete list of each quality defect that is detected
by each of the 27 papers, as well as the precision and recall (where
provided), online as supplementary material (Femmer et al., 2015).

2.2.3. Automatic QA for redundancy
One specific area of QA is avoiding redundancy and cloning.
Whereas Juergens et al. (2010) use ConQAT to search for syntactic

192 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

Table 1
Related work on criteria of 1SO-29148 standard, detailed supplementary material can be found online (Femmer et al., 2015).
ARM QuARS RQA SREE Smella RETA
(Wilson et al., (Fabbrini et al., (Fabbrini et al., (Fantechi (Bucchiarone (Génova et al., (Tjong and (Femmer et al., (Arora et al.,
1997) 2001b) 2001a) et al,, 2003) et al., 2005) Berry, 2013) 2014b) 2015)
Ambiguous Adv. E/Q
& Adj.
Comparatives E/Q
Loopholes (or Q E/Q E/Q E E Q*/p* E/Q
Options)
Negative Terms E/Q
Non-Verifiable E/Q
Terms
Pronouns Q*/p* E/Q
Subjectivity E/Q E/Q E E E/Q
Superlatives E/Q

O = No empirical analysis, E = Examples from Case, Q = Quantification, P = Precision analyzed, R = Recall analyzed, * = Aggregated over multiple smells.

Table 2
Related approaches and tools, and their evaluation, detailed supplementary material can be found online (Femmer et al., 2015).
Tool/Approach Purpose (unless ambiguity det.) Publications Evaluation Precision Recall
ConQAT Redundancy (Juergens et al., 2010) E/Q/P 0.27-1 -
(Falessi) Redundancy (Falessi et al., 2013) Q/P/R up to 96 up to 96
ReqAlign Redundancy (Rago et al.,, 2014) Q/P/R 0.63 0.86
RETA Structured Language Rules (Arora et al., 2015) E/Q/P/R 0.85-0.94 0.91-1
AQUSA User Story Rules (Lucassen et al., 2015) E/Q/P 0.63-1 -
CIRCE Structured Language Rules (Gervasi and Nuseibeh, 2002; E - -
Ambriola and Gervasi, 2006)
(Ciemniewska) (Ciemniewska et al., 2007) E - -
(Kof) (Kof, 2007a) E/Q - -
(Kiyavitskaya) (Kiyavitskaya et al., 2008) E/Q - -
RESI (Korner and Brumm, 2009a, E/Q - -
2009b, 2009c)
HeRA (Knauss and Flohr, 2007; E - -
Knauss et al., 2009)
Alpino (De Bruijn and Dekkers, 2010) E/Q - -
(Chantree) (Chantree et al., 2006) E/P/R 0.6-1 0.02-0.58
Gleich (Gleich et al., 2010) E/Q*/P*/R* 0.34-0.97 0.53-0.86
(Krisch) (Krisch and Houdek, 2015) E/Q/P 0.12 -
ARM RE Artifact Metrics (Wilson et al., 1997) Q - -
QuARS | SyTwo (Fabbrini et al., 2001b, 2001a; E/Q - -
Fantechi et al., 2003;
Bucchiarone et al., 2005)
RQA (Génova et al., 2011) 0] - -
SREE (Tjong and Berry, 2013) Q*/p* 0.66-0.68* -
Smella (Femmer et al., 2014b) E/Q - -
O = No empirical analysis, E = Examples from Case, Q = Quantification, P = Precision analyzed, R = Recall analyzed, * = Aggregated over multiple smells.

identity resulting from a copy-and-paste reuse, Falessi et al. (2013)
aim at detecting similar content, therefore using methods from
information retrieval (such as Latent Semantic Analysis (Lucia
et al, 2007)). Rago et al. (2014) extend this work specifically
for use cases. Their tool, ReqAlign, classifies each step with a
semantic abstraction of the step. These publications analyze the
performance of their approaches, and depending on the artifact
and methods achieve precision and recall close to 1 (see Table 2).

2.2.4. Automatic QA for controlled languages

Another specific area is the application of controlled language
and the QA of controlled language. RETA (Arora et al., 2015)
specifically analyzes requirements that are written via certain
requirements patterns (such as with the EARS template (Mavin
et al, 2009)). Their goal is to detect both conformance to the
template but also some of the ambiguities as defined by Berry
et al. (2003). The authors report on a case study where they look
at the template conformance in depth, indicating that template
conformance can be classified with various NLP suites to a high
accuracy (Precision > 0.85, Recall > 0.9), both with and without
glossaries. However, the performance of ambiguity detection (such
as the detection of pronouns) is not further discussed in the

publication. Similarly, AQUSA (Lucassen et al., 2015) analyzes
requirements written in user story format (cf. Cohn (2004) for a
detailed introduction into user stories), and detects various defects,
such as missing rationales, where they achieve a precision of 0.63-
1. Circe (Ambriola and Gervasi, 2006; Gervasi and Nuseibeh, 2002)
is a further tool that assumes that requirements are written in
such requirements patterns and detects violations of context- and
domain-specific quality characteristics by building logical models.
The authors report on six exemplary findings, which were detected
in a NASA case study. However, despite their value to automatic
QA, such approaches require very specific requirements structure.

2.2.5. Automatic QA for ambiguity in general

The remaining approaches listed in Table 2 aim at detecting
ambiguities in unconstraint natural language. Since the quality de-
fects detected by the approaches by Ciemniewska et al. (2007), Kof
(2007b), HeRA by Knauss and Flohr (2007), Knauss et al. (2009),
Kiyavitskaya et al. (2008), RESI by Koérner and Brumm (2009a),
Koérner and Brumm (2009b), Kérner and Brumm (2009c), and
Alpino by De Bruijn and Dekkers (2010) are not the ones discussed
in ISO 29148 and since we could not find an evaluation of pre-
cision and recall of these approaches, we omit discussing these

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 193

approaches in-depth here. An analysis of what these approaches
focus on in detail as well as their evaluation can be found in short
in Table 2 and in full length in our supplementary material online
(Femmer et al., 2015). In the following, we first report on those
publications that focus on criteria different from ISO 29148, but
which report precision or recall. Afterward, we describe publica-
tions that aim at detecting quality violations of ISO 29148 (see
Table 1).

First, Chantree et al. (2006) target the specific grammatical is-
sue of coordination ambiguity (detecting problems of ambiguous
references between parts of a sentence), mostly through statisti-
cal methods, such as occurrence and co-occurrence of words. In a
case study, they report on a precision of their approach mostly be-
tween 54% and 75%. even though they do not explicitly differenti-
ate between the detected ambiguities and the concept of pronouns.
Second, Gleich et al. (2010) base their approach on the ambiguity
handbook, as defined by Berry et al. (2003), as well as company-
specific guidelines. They compare their dictionary- and POS-based
approach against a gold standard which they created by letting
people highlight ambiguities in requirements sentences. The gold
standard deviates substantially, however, from what is considered
high quality in their guidelines. Therefore, they create an additional
gold standard, mostly based on the guideline rules. Consequently,
their precision? varies between 34% for the pure experts opinion,
and 97% for a more guideline-based gold standard. Third, Krisch
and Houdek (2015), focus on the detection of passive voice and so-
called weak words. They present their dictionary- and POS-based
approach to practitioners and find many false positives, similar to
our RQ 3. In average, a precision of 12% is reported for the weak
words detection. These approaches focus on very related, but not
identical quality violations or smells.

2.2.6. Automatic QA for ISO 29148 criteria

Lastly, we specifically focus on those approaches that report to
detect the criteria from the ISO 29148 standard. Table 1 provides
an overview of these works and their respective evaluations.

The ARM tool (Wilson et al.,, 1997) defines quality in terms of
the (now superseeded) IEEE 830 standard (IEEE Computer Soci-
ety, 1998) and proposes generic metrics, instead of giving feed-
back directly to requirements engineers. The metrics are calculated
through counting how often a set of pre-defined terms (per metric)
occurs in a document, including a metric of what we call Loop-
holes. Even though they report on a case study with 46 specifi-
cations from NASA, only a quantitative overview is reported.> The
QUuARS tool (Fabbrini et al., 2001a, 2001b) is based on the author’s
experience. Bucchiarone et al. (2005) describe the use of QuARS
in a case study with Siemens and show some exemplary findings.
SyTwo (Fantechi et al., 2003) adopts the quality model of QuARS
and applies it to use cases. Loopholes and Subjectivity are parts of
the QuARS quality model. Also RQA is built on a different, propri-
etary quality model, as described by Génova et al. (2011), which in-
cludes negative terms as well as pronouns as quality defects. These
works also built upon extending natural language with NLP anno-
tations, such as POS tags and searching through dictionaries for
certain problematic phrases. However, we could not find a detailed
empirical investigation of these tools, e.g. with regards to precision
and recall. SREE is an approach by Tjong and Berry (2013), which
aims at detection of ambiguities with a recall of 100%. Therefore,
they completely avoid all NLP approaches (since they come with
imprecision), and build large dictionaries of words. The tool in-

2 Gleich et al. calculate their metrics based on the combination of all ambigu-
ities; unfortunately, they do not differentiate, e.g. by the type of ambiguity. Also,
to our knowledge, the gold standard does not differentiate between the types. This
prevents a direct comparison to their work.

3 See also our RQ 1 in Section 6.

cludes detection of loopholes, as well as pronouns; however, they
report only on an aggregated precision for all the different types of
ambiguities (66-68%) from two case studies. In our previous paper
(Femmer et al., 2014b), we searched for violations of ISO 29148,
yet we provided only a quantitative analysis, as well as qualitative
examples. As mentioned before, RETA also issues warnings for pro-
nouns, however, the evaluation in their paper (Arora et al., 2015)
focusses on template conformance.

2.3. Discussion

Previous work has led to many valuable contributions to our
field. To explore open research gaps, we now critically reflect on
previous contributions from an evaluation, a quality definition and
a technical perspective.

First, one gap in existing automatic QA approaches is the lack of
empirical evidence, especially under realistic conditions. Only few
of the introduced contributions were evaluated using industrial re-
quirements artifacts. Those who do apply their approach on such
artifacts focus on quantitative summaries explaining which finding
was detected and how often it was detected. Some authors also
give examples of findings, but only few works analyze this aspect
in depth with precision and recall, especially in the fuzzy domain
of ambiguity (see Table 2). When looking at the characteristics that
are described in ISO 29148, we have not seen a quantitative anal-
ysis of precision and recall. Furthermore, reported evidence does
not include qualitative feedback from engineers who are supposed
to use the approach, which could reveal many insights that cannot
be captured by numbers alone. However, we postulate that the ac-
curacy of quality violations very much depends on the respective
context. This is especially true for the fuzzy domain of natural lan-
guage where it is important to understand the (context-specific)
impact of a finding to rate its detection for appropriateness and
eventually justify resolving the issue.

Second, the existing approaches are based on proprietary def-
initions of quality, based on experience or, sometimes, simply on
what can be directly measured. The ARM tool (Wilson et al., 1997)
is loosely based on the IEEE 830 (IEEE Computer Society, 1998)
standard. However, as the recent literature survey by Schneider
and Berenbach (2013) states: “the ISO/IEC/IEEE 29148:2011 is actu-
ally the standard that every requirements engineer should be familiar
with”. We are not aware of an approach that evaluates the cur-
rent ISO 29148 standard (ISO, IEC and IEEE, 2011) in this respect.
As Table 1 shows, for most language quality defects of ISO 29148,
there has not yet been a tool to detect these quality defects. To all
our knowledge, for neither of these factors, there is an differen-
tiated empirical analysis of precision and recall. Yet, many other
quality models (most notably from the ambiguity handbook by
Berry et al., 2003) and quality violations could lead to Require-
ments Smells, as far as they comply with the definition given in
the next section.

Finally, taking a more technical perspective, our Requirements
Smell detection approach does not fundamentally differ from exist-
ing approaches. Similar to previous works, we apply existing NLP
techniques, such as lemmatization and POS tagging, as well as dic-
tionaries. For the rules of the ISO 29148 standard, no parsing or
ontologies (as used in other approaches) were required. However,
to detect superlatives and comparatives in German, we added a
morphological analysis, which have not yet seen in related work.

In summary, in our contribution, we extend the current state of
reported evidence on automatic QA for requirements artifacts via
systematic studies in terms of distribution, precision, recall, and
relevance, as well as by means of a systematic evaluation with
practitioners under realistic conditions. We perform this on both
existing, as well as new quality defects taken from the ISO 29148.
Therefore, we extend our previously published first empirical steps

194 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

(Femmer et al., 2014b) to close these gaps by thorough empirical
evaluation.

3. Requirements Smells

We first introduce the terminology on Requirements Smells as
used in this paper. In a second step, we define those smells we
derived from ISO 29148 and which we use in our studies, before
describing the tool realization in the next section.

3.1. Requirements Smell terminology

Code smells are supposed to be an imprecise indication for bad
code quality (Fowler and Beck, 1999). We apply this concept of
smells to requirements and define it as follows: A Requirements
Smell is an indicator of a quality violation, which may lead to a
defect, with a concrete location and a concrete detection mecha-
nism. In detail, we consider a smell as having the following char-
acteristics:

1. A Requirements Smell is an indicator for a quality violation of
a requirements artifact. For this definition, we understand re-
quirements quality in terms of quality-in-use, meaning that bad
requirements artifact quality is defined by its (potential) nega-
tive effects on activities in the software lifecycle that rely on
these requirements artifacts (see also Femmer et al., 2015).

2. A Requirements Smell does not necessarily lead to a defect
and, thus, has to be judged by the context (supported e.g. by
(counter-/)indications). Whether a Requirements Smell finding
is or is not a problem in a certain context must be individually
decided for that context and is subject to reviews and other
follow-up quality assurance activities.

3. A Requirements Smell has a concrete location in an entity of the
requirements artifact itself, e.g. a word or a sequence. Require-
ments Smells always provide a pointer to a certain location that
QA must inspect. In this regard, it differs from general quality
characteristics, e.g. completeness, that only provide abstract cri-
teria.

4, A Requirements Smell has a concrete detection mechanism. Due
to its concrete nature, Requirements Smells offer techniques for
detection of the smells. These techniques can, of course, be
more or less accurate.

Furthermore, we define a quality defect as a concrete instance
or manifestation of a quality violation in the artifact, in contrast
to a finding which is an instance of a smell. However, like a smell
indicates for a quality violation, the finding indicates for a defect.
Fig. 1 visualizes the relation of these terms.

In the following, we will focus on natural language Require-
ments Smells, since requirements are mostly written in natural
language (Mich et al., 2004). Furthermore, the real benefits of
smell detection in practice should come with automation. There-
fore, the remainder of the paper discusses only Requirements
Smells where the detection mechanism can be executed automat-
ically (i.e. it requires no manual creation of intermediate or sup-
porting artifacts).

3.2. Requirements Smells based on ISO 29148

We develop a set of Requirements Smells based on an existing
definition of quality. For the investigations in scope of this paper,
we take the ISO 29148 requirements engineering standard (ISO, IEC
and [EEE, 2011) as a baseline. The reasons for this are two-fold.

First, the ISO 29148 standard was created to harmonize a set of
existing standards, including the IEEE 830:1998 (IEEE Computer So-
ciety, 1998) standard. It differentiates between quality characteris-
tics for a set of requirements, such as completeness or consistency,

Quality Model
Quality-in- supported by RE
use Entity
decreases present in
Requirements Smells
i indicates for
Qual!ty Smell
Violation
automated by
instance of Smell
Detector
Instance detects
Quality indicates for o~
Defect Finding

Fig. 1. Terminology of Requirements Smells (simplified).

and quality characteristics for individual requirements, such as un-
ambiguity and singularity. The standard furthermore describes the
usage of requirements in different project phases and gives exem-
plary contents and structure for requirements artifacts. Therefore,
we argue that this standard is based on a broad agreement and
acceptance. Recent literature studies come to the same conclusion
(Schneider and Berenbach, 2013).

Second, the standard provides readers with a list of so-called
requirements language criteria which support the choice of proper
language for requirements artifacts. The authors of the standard
argue that violating the criteria results “in requirements that are
often difficult or even impossible to verify or may allow for multi-
ple interpretations” (ISO, IEC and IEEE, 2011, p.12). For defining our
smells, which we describe next, we refer to this section of the
standard and use all the defined requirements language criteria.
We employ those criteria as a starting point and define the smells
by adding the affected entities (e.g. a word) and an explanation.
Here, we do not discuss the impact smells have on the quality-
in-use. Essentially, smells hinder the understandability of require-
ments and consequently their subsequent handling and their veri-
fication (for a richer discussion, see also previous work in Femmer
et al. (2015)).

Our current understanding is based on the examples
given by the standard. A subset of the language criteria,
namely Subjective Language, Ambiguous Adverbs and
Adjectives and Non-verifiable Terms, as defined in
ISO, IEC and IEEE (2011), are strongly related, essentially since
subjective language is a special type of ambiguity, which may
lead to issues during verification. Since the intention of this work
is to start with the standard as a definition of quality, in the
following, we will remain with the provided definition based on
the language criteria and leave the development of a precise and
complete set of Requirements Smells to future work. In detail,
we use the requirements language criteria to derive the smells
summarized next.

Smell Name: Subjective Language

Entity: Word

Explanation: Subjective Language refers to words of which the semantics is
not objectively defined, such as user friendly, easy to use, cost
effective.

The architecture as well as the programming must ensure a
simple and efficient maintainability.

Example:

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

O

©)

®

O)

Parsing Annotation Identification Presentation
Spec A1 —Sec1 ——Req1 POS Tagging — Overview
— — Commmta] [
DOCX TXT PD —Eﬂqu Morphologic Analysis 5= e = Dashboard
N Req3 Lemmatization = i
--- Sec2 —Req1 =
XLSX CSV —[Reqz
Requirements Spec B1 —Sec1 ——Req1 o Smell
—ER eq2 a Viewer

Fig. 2. The overall smell detection process.

Smell Name: Ambiguous Adverbs and Adjectives

Entity: Adverb, Adjective

Explanation: ~ Ambiguous Adverbs and Adjectives refer to certain adverbs and
adjectives that are unspecific by nature, such as almost always,
significant and minimal.

Example: If the (...) quality is too low, a fault must be written to the
error memory.

Smell Name: Loopholes

Entity: Word

Explanation: Loopholes refer to phrases that express that the following
requirement must be fulfilled only to a certain, imprecisely
defined extent.

Example: As far as possible, inputs are checked for plausibility.

Smell Name: Open-ended, Non-verifiable Terms

Entity: Word

Explanation: Open-ended, non-verifiable terms are hard to verify as they
offer a choice of possibilities, e.g. for the developers.

Example: The system may only be activated, if all required sensors (...)
work with sufficient measurement accuracy.

Smell Name: Superlatives

Entity: Adverb, Adjective

Explanation: Superlatives refer to requirements that express a relation of
the system to all other systems.

Example: The system must provide the signal in the highest resolution
that is desired by the signal customer.

Smell Name: Comparatives

Entity: Adverb, Adjective

Explanation: ~ Comparatives are used in requirements that express a relation
of the system to specific other systems or previous situations.

Example: The display (...) contains the fields A, B, and C, as well as
more exact build infos.

Smell Name: Negative Statements

Entity: Word

Explanation: Negative Statements are “statements of system capability not
to be provided”(ISO, IEC and IEEE, 2011). Some argue that
negative statements can lead to underspecification, such as
lack of explaining the system’s reaction on such a case.

Example: The system must not sign off users due to timeouts.

Smell Name: Vague Pronouns

Entity: Pronoun

Explanation: ~ Vague Pronouns are unclear relations of a pronoun.

Example: The software must implement services for applications, which
must communicate with controller applications deployed on
other controllers.

Smell Name: Incomplete References

Entity: Text reference

Explanation: Incomplete References are references that a reader cannot
follow (e.g. no location provided).

Example: [1] “Unknown white paper”. Peter Miller.

4. Smella: a prototype for Requirements Smell detection

Requirements Smell detection, as presented in this paper, serves
to support manual quality assurance tasks (see also the next sec-
tion). The smell detection is implemented on top of the software
quality analysis toolkit ConQAT,* a platform for source code analy-
sis, which we extended with the required NLP features. In the fol-
lowing, we introduce the process for the automatic part of the ap-
proach, i.e. the detection and reporting of Requirements Smells. To
the best of our knowledge, there is no tool, other than the ones
mentioned in related work, that detect and present these smells in
natural language requirements documents.

The process takes requirements artifacts in various formats (MS
Word, MS Excel, PDF, plain text, comma-separated values) and con-
sists of four steps (see also Fig. 2):

1. Requirements parsing of the requirements artifacts into single
items (e.g. sections or rows), resulting in plain texts, one for
each item

2. Language annotation of the requirements with meta-information

3. Findings identification in the requirements, based on the lan-
guage annotations

4. Presentation of a human-readable visualization of the findings
as well as a summary of the results

The techniques behind these steps are explained in the follow-
ing section.

4.1. Requirements parsing

Our current tool is able to process several file formats: MS
Word, MS Excel, PDF, plain text and comma-separated values (CSV).
Depending on the format, the files are parsed in different ways.
Plain text and PDF are taken as is and parsed file by file. Microsoft
Word files are grouped by their sections. For Microsoft Excel and
CSV files, we define those columns that represent the IDs or names
(if there are any), and those columns should be used as text input
to detect smells.

If a file is written in a known template, such as a common
template for use cases, we can make use of this template to
understand structural defects, such as lacking content items in a
template. In the remainder of this paper, however, we focus on
the natural language Requirements Smells as provided by the I1SO
standard.

4.2. Language annotation

For the annotation and smell detection steps, we employ three
techniques from Natural Language Processing (NLP) (Jurafsky and
Martin, 2014). Table 3 additionally shows which of the techniques
we use for which smell.

4 http://www.congat.org .

196 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

Table 3
Detection techniques for smells.

Smell name Detection mechanism

Subjective Language Dictionary

Ambiguous Adverbs and Adjectives Dictionary

Loopholes Dictionary

Open-ended, non-verifiable terms Dictionary

Superlatives Morphological analysis or POS tagging
Comparatives Morphological analysis or POS tagging

Negative Statements
Vague Pronouns
Incomplete References

POS tagging and dictionary
POS tagging: Substituting pronouns.
Not in scope of this study

POS tagging: For two smells, we use part-of-speech (POS) tag-
ging. Given a sentence in natural language, it determines
the role and function of each single word in the sentence.
The output is a so-called tag for each word indicating, for
instance, whether a word is an adjective, a particle, or
a possessive pronoun. We used the Stanford NLP library
(Toutanova et al., 2003) and the RFTagger (Schmid and Laws,
2008) for this. Both are statistical, probabilistic taggers that
train models similar to Hidden Markov Models based on ex-
isting databases of tagged texts. A detailed introduction into
the technical details of POS tagging is beyond the scope of
this paper but can be found, for example, in Jurafsky and
Martin (2014). We use POS tagging to determine so-called
substituting pronouns. These are pronouns that do not re-
peat the original noun and, thus, need a human’s interpre-
tation of its dependency.

Morphological analysis: Based on POS tagging, we perform a
more detailed analysis of text and determine a word’s in-
flection. This includes, inter alia, determining a verb’s tense
or an adjective’s comparison. We use this technique to ana-
lyze if adjectives or adverbs are used in their comparative or
superlative form.

Dictionaries & lemmatization: For the remaining five smells,
we use dictionaries based on the proposals of the standard
(ISO, IEC and IEEE, 2011) and on our experiences from first
experiments in a previous work (Femmer et al., 2014b). We
furthermore apply lemmatization for these words, which is

Smella

+ W Case A

Case C

Requirement01.txt

+ W Case B
= M Case C
B Requirement01.txt
B Requirement02.txt
(Loop)

. Comy
i Requirement03.txt =

As a visitor, I want to see the checkboxes in the different categories displayed more clearly,

a normalization technique that reproduces the original form
of a word. In other words, if a lemmatizer is applied to the
words were, is or are, the lemmatizer will return for all three
the word be. Lemmatization is in its purpose very similar to
stemming (see, e.g. the Porter Algorithm (Porter, 1980)), yet
not based on heuristics but on the POS tag as well as the
word’s morphological form. For Requirements Smells, the
difference is significant: For example, the words use and use-
ful stem to the same word origin (use), but to different lem-
mas (i.e. meanings; use and useful). Whereas the lemma use
is mostly clear to all stakeholders, the lemma useful is easily
misinterpreted.

4.3. Findings identification

Based on the aforementioned information, we identify findings.
This step actually finds the parts of an artifact that exhibit bad
smells. Dependent on the actual smell, we use different techniques,
as shown in Table 3. If the smell relates to a grammatical aspect,
we search through the information from POS tagging and morpho-
logical analyses. For example, for the Superlatives Smell, we re-
port a finding if an adjective is, according to morphologic analy-
sis, inflected in its superlative form. If the smell does not relate to
grammatical aspects but rather the semantics of the requirements,
we identify the smell by matching the lemma of a word against a
set of words from pre-defined dictionaries. Since the requirements
under analysis in our cases did not contain references, incomplete
references are not part of our tool at present.

4.4. Findings presentation

We implemented the presentation of findings in a prototype,
which we call Smella (Smell Analysis). Smella is a web-based tool
that enables viewing, reviewing and blacklisting findings as well as
a hotspot analysis at an artifact level. In the Smella presentation,
we display the complete requirements artifact and annotate find-
ings in a spell checker style. This follows the idea of smells as only
indications that must be evaluated in their context. Lastly, the sys-
tem gives detailed information when a user hovers a finding (see
Fig. 3). In the following, we shortly describe the features of Smella

nm o

Show smells by severity

Apply

Jém\ Show smells by category

EJ Requirements Smelis

Amoi JEGE) Ambiguous Adverbs and

so that I can see more quickly that I can select and deselect categories.

kR 104.txt i
equirement04.tx Requirement02.txt

& Requirement05.txt

Comparative Requirements Smell

B Requirement06.txt As a visitor, I want to see the checkbo

Loop |
W Requirement07.txt o
B Requirement08.txt

Requirement03.txt
B Requirement09.txt

Comp)

B Requirement10.txt As an editor, I want to make it simpler

B Requirement11.txt

Requirement04.txt

B Requirement12.txt As avisitor, T want to see further det

B Requirement!3.txt Requirement05.txt

B Requirement14.txt Com

simpler

Comparatives are often hard to test. Use absolute values to ensure

so that I can see more quickly that I ci testability.

Example: 'response time is within 1 second' instead of instead of ‘faster
response time than previous systems'

m Comp Comparative Requirement
IEXH Loop Loophole Smell
Nega [EEG Negative Words Smell
Non- [EEE8 Non-verifiable Term Smell
subj [Subjective Language Smell
supe) Superiative Requirements S...

Vagu JCEE Vague Pronouns Smell

afus'| G remove finding 1y accept finding

Ao o cricbaman Tuant $ET houa = Tanea R T

Fig. 3. A sample output from the smell detection tool (detailed artifact view) with some smells disabled and some findings blacklisted.

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 197

—
Con ConQAT Dashboard @ Mon Jun 29 10:42:37 CEST 2015

+ = |idTotal Number of S

T overview
= All Smells
E Table
= Smell Visualization
Complete Artefact View
= Findings
[&d Total Number of Smells

Total Number of Smells

Tree Map

[&d execution time for nip

[&d subjective Language
Smell

& Loophole Smell

[&d vague Pronouns Smell

&8 Superlative Requirements
Smell

£ Negative Words Smell

&3 comparative
Requirements Smell

& Non-verifiable Term Smell

[&d Ambiguous Adverbs and
Adjectives Smell

& Smell Subset

@ 1Info

¥ Log

& Config

B8 Execution Time

® version

Oooo 200 [Ma00

Ils (Findi

Fig. 4. A sample output from the smell detection tool (hotspot analysis view).

in detail to provide the reader with a rough understanding of the
prototype.

View findings: At the level of a single artifact, we present the
text of the artifact and its structure. We mark all findings
in the text. With a click on the markers, more information
about the finding is displayed. The tool provides an expla-
nation of the rationale behind this smell and possible im-
provements for the finding depending on the smell (every
smell has a message for improvements).

Review findings: We allow the user to write a review and
to set a status for each finding, both supporting feedback
mechanisms within and between project teams. A user has
the possibility to accept or reject a finding but also to
set a custom state, for example under review. Accepting
a finding means the finding needs to be addressed. If a
finding is rejected, the finding does not need to be ad-
dressed. The semantics of the custom status is open to the
reviewer.

Blacklist findings: Smells are only indicators for issues. There-
fore, users can reject findings. If a finding is rejected by the
user, the finding is removed from the visualization and will
not be presented to the user anymore.

Disable smells: Often, users are interested in only a subset of
smells or even just one smell. Therefore, we allow the user
to hide all findings of particular smells and to select the
smells she wants to display in the artifact view.

Analyze hotspeots: In this view, we present all artifacts in a col-
ored treemap (see Fig. 4). Every box in the treemap is one
artifact, with the color of the box indicating the number of
findings: the more red an artifacts is, the more findings it
contains (the more it “smells” bad). The artifacts are grouped
by their folder structure. The tool provides a summarized
treemap for all smells as well as a separate treemap for all
individual smells. With these treemaps, users can identify
artifacts or groups of artifacts exhibiting a high number of
findings - for one single smell but also for all smells to-
gether. This feature supports the identification of candidates
for in-depth reviews.

5. Requirements Smell detection in the process of quality
assurance

The Requirements Smell detection approach described in pre-
vious sections serves the primary purpose of supporting quality
assurance in RE. The detection process itself is, however, not re-
stricted to particular quality assurance tasks, nor does it depend on
a particular (software) process model as we will show in Section 6.
Hence, a smell detection, similar to the notion of quality itself, al-
ways depends on the views in a socio-economic context. Thus, how
to integrate smell detection into quality assurance needs to be an-
swered according to the particularities of that context. In the fol-
lowing, we therefore briefly outline the role smell detection can
generally take in the process of quality assurance. More concrete
proposals on how to integrate it into specific contexts are given in
our case studies in Section 6.

We postulate the applicability of the Requirements Smell de-
tection in the process of both constructive and analytical quality
assurance (see Fig. 5). From the perspective of a constructive qual-
ity assurance, authors can use the smell detection to increase their
awareness of potential smells in their requirements artifacts and
to remove smells before releasing an artifact for, e.g., an inspec-
tion. External reviewers in turn, can then use the smell detection
to prepare analytical, potentially cost-intensive, quality assurance
tasks, such as a Fagan inspection (Fagan, 2002). Such an inspection
involves several reviewers and would benefit from making poten-
tial smells visible in advance. Iterative inspection approaches are
also known as phased inspections, as defined by Knight and Myers
(1993).

We furthermore believe that one major advantage is that the
scope of our smell detection is not to enforce resolving a poten-
tial smell but to increase the awareness of the like and to make
transparent later reasoning why certain decisions have been taken.
Please note that two different roles (e.g. requirements engineer and
QA engineer) can take two different viewpoints on the same smell,
respectively its criticality and whether it should be resolved or not.
In addition, a finding could be unambiguous to the author, but un-
clear to the target group of readers (represented by the reviewers).
Therefore, one contribution of our tool-supported smell detection

198 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

Constructive QA

A

Author

Analytical QA

L

Reviewer

Feedback / \

View findings &
Review findings

Detect
smells

View findings &
Review findings

Automatic
Smell Detection

Fig. 5. A suggestion for applying Requirements Smell detection in QA.

is also to actively foster the communication between reviewers and
authors and to enable continuous feedback between both roles. For
this reason, we enable stakeholders in Smella to comment on de-
tected smells and make explicit whether they need to be resolved
or whether and why they have been accepted or rejected.

6. Evaluation

For a better, empirical understanding of smells in requirements
artifacts, we conducted an exploratory multi-case study with both
industrial and academic cases. We particularly rely on case study
research over other techniques, such as controlled experiments, be-
cause we want to evaluate our approach in practical settings under
realistic conditions. For the design and reporting of the case study,
we largely follow the guidelines of Runeson and Host (2008).

6.1. Case study design

Our overall research objective is as follows:

Research objective: Analyze whether automatic analysis of Re-
quirements Smells helps in requirements artifact quality assurance.

To reach this aim, we formulate four research questions (RQ).
In the following, we introduce those research questions, the pro-
cedures for the case and subjects selection, the data collection and
analysis, and the validity procedures.

6.1.1. Research questions

RQ 1: How many smells are present in requirements arti-
facts? To see if the automatic detection of smells in requirements
artifacts could help in QA, we first need to verify that Require-
ments Smells exist in the real world. The answer to this question
fosters the understanding how widespread the smells under anal-
ysis are in industrial and academic requirements artifacts.

RQ 2: How many of these smells are relevant? Not only the
number of detected smells is important. If many of the detected
smells are false positives and not relevant for the requirements en-
gineers and developers, it would hinder QA more than it would
help. As relevancy is a rather broad concept, we break down RQ 2
into two sub-questions.

RQ 2.1: How accurate is the smell detection? The first sub-
question looks at the more technical view on relevance. We
want to find false positives and false negatives to determine the
precision and recall of the analysis in terms of correct detection
of the defined smell.

RQ 2.2: Which of these smells are practically relevant in
which context? This second sub-question is concerned with
practical relevance. We investigate whether practitioners would
react and change the requirement when confronted with the
findings.

RQ 3: Which requirements quality defects can be detected
with smells? After we understood how relevant the analyzed Re-
quirements Smells are, we want to understand their relation to ex-
isting quality defects in requirements artifacts. Hence, we need to
check whether, and if so, which defects in requirements artifacts
correspond to smells, as we understand smell findings as indica-
tors for defects.

RQ 4: How could smells help in the QA process? Finally,
we collect general feedback from practitioners whether (and how)
smell detection could be a useful addition to QA for requirements
artifacts and whether as well as how they would integrate the
smell detection into their QA process.

6.1.2. Case and subjects selection

Our case and subject selection is opportunistic but in a way
that maximizes variation and, hence, evaluates the smell detec-
tion in very different contexts. This is particularly important for
investigating requirements artifacts under realistic conditions, also
due to the large variation in how these artifacts manifest them-
selves in practice. A prerequisite for our selection is the access to
the necessary data. To get a reasonable quantitative analysis of the
number of smells (RQ 1) and qualitative analysis of the relation
of smells and defects (RQ 3), we complement our three industrial
cases with a case in an academic setting. There, various student
teams are asked to provide software with a certain set of (identi-
cal) functionality for a customer as part of a practical course. This
is also a realistic setting but provides us with a higher number of
specifications and reviews than in the industrial cases.

We will refer to the subjects of the industrial cases as practi-
tioners and we will call the latter subjects students.

6.1.3. Data collection procedure
We used a 6-step procedure to collect the data necessary for
answering the research questions.

1. Collect requirements artifact(s) for each case. We retrieved the re-
quirements artifacts to be analyzed in each case. For one case,
the requirements were stored in Microsoft Word Documents.
For the other cases, this involved extracting the requirements

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 199

from other systems, either a proprietary requirements man-
agement tool (resulting in a list of html files), or the online
task management system JIRA, which led to a set of comma-
separated values files. For the student projects, the students
handed in their final artifacts either as a single PDF or as a PDF
with the general artifact and another PDF with the use cases.
Where authors explicitly structured requirements in numbered
requirements, user stories or use cases, we counted these
artifacts.

. Run the smell detection via Smella. We applied our detection tool
as introduced in Section 4.4 on the given requirements artifacts,
which generated a list of smells per artifact.

. Classify false positives. For all cases in which we wanted to
present our results to practitioners, we reviewed each detected
finding. In pairs of researchers, we classified the findings as ei-
ther true or false positive. We classified a finding as false pos-
itive if the finding was not an instance of the smell, e.g. be-
cause the results of the linguistic analysis was incorrect.” For
artifacts containing more than 10 findings of a smell, we only
inspected a set of 10 random findings (of that smell) per arti-
fact. The same holds for Case D, where we inspected 10 random
findings of each category for the whole case.

. Inspect documents for false negatives. To calculate the re-
call of the smell detection, for each case we randomly se-
lected one artifact that a pair of researchers inspected for
false negatives. To ease the manual inspection, we grouped
the smells Subjective Language, Ambiguous Adverbs
and Adjectives, Loopholes, Non-verifiable Terms
(as Ambiguity-related smells). We classified whether a
finding is a true or false negative based on the same conditions
as in the previous step.

One common cause for false negatives for dictionary-based
smells can be that an ambiguous phrase is not part of the dic-
tionary. Since we developed the dictionaries based on existing
dictionaries, such as the standard, these dictionaries are not yet
complete and must be further developed. However, since this
is an issue that is not a problem of the smell detection ap-
proach in general, but rather a configuration task, we did not
take these findings into consideration for the recall.

. Get rating by practitioners. We selected a subset of the true pos-
itive findings so that we cover all smells with a minimum of
two findings per smell as far as the artifacts allowed. When we
found repeating or similar findings, e.g. multiple similar sen-
tences with the same smell, we also included one of these find-
ings into the set.

We presented this subset to the practitioners and interviewed
them, finding by finding, through three closed questions (see
also Table 9): Q1: Would you consider this smell as relevant?
Q2: Have you been aware of this finding before? Q3: Would
you resolve the finding? Of these, the former two must be an-
swered with yes or no. For the last question, we also needed to
take the criticality into account. Therefore, in case practition-
ers answered that they would resolve a finding, we also asked
whether they would resolve it immediately, in a short time (i.e.
within this project iteration) or in a long time (e.g. if it hap-
pens again). In addition to these three questions, we took notes
of qualitative feedback, such as discussions.

. Interview practitioners. In addition to the ratings, we performed
open interviews with practitioners about their experience with
the smell detection and how they might include it in their qual-
ity assurance process. We took notes of the answers.

5 For example, if the linguistic analysis incorrectly classified the word provider in
the sentence “As a provider, I want [...]” as a comparative adjective.

7. Get review results from students. Lastly, the students performed

reviews of the artifacts of other student teams. They docu-
mented and classified found problems according to a check-
list (see Table A.11) without awareness of the smell findings in
their artifacts. We then collected the review reports from the
students.

6.1.4. Analysis procedure

We structure our analysis procedure into seven steps. Each step

leads to the results necessary for answering one of our research
questions.

1.

Calculate ratios of findings per artifact. To understand whether
smells are a common issue in requirements artifacts, we com-
pared the quantitative summaries of smells in the various ar-
tifacts and domains. To enable a comparison between different
types of requirement artifacts, we used the number of words in
each artifact as a measure of size. Hence, we finally reported
the ratio of findings per 1000 words for each smell and all
smells in total. This provided answers for RQ 1.

. Calculate ratios of findings for parts of user stories. In one case,

we had a common structure of the requirements, because they
were formulated as user stories. To get a deeper insight into the
distribution of smells and findings, we calculated the ratios of
findings per 1000 words for each part. We divided the user sto-
ries into the parts role (“As a ... "), feature (“I want to ... ") and
reason (“so that ... ") using regular expressions. We counted the
words and findings in each part. This provided further insights
into the answer for RQ 1.

. Calculate ratios of false positives. After a rough overview ob-

tained under the umbrella of RQ 1 describing the number of
findings for each smell of the varying artifacts, we wanted to
better understand the smell’s relevance. The first step was to
calculate the ratios of false positive as we classified them in
Step 3 of the data collection. We reported false positive rates
overall and for each smell. This provides the first part of the
answer to RQ 2.1.

. Calculate ratios of false negatives. The precision of a smell detec-

tion is tightly coupled with the recall. Therefore, we calculated
the ratio of detected smell findings to all existing findings, ac-
cording to our manual inspection, as described in Step 4 of the
data collection procedure. This provides the second part of the
answer to RQ 2.1.

. Calculate ratio of irrelevant smells. We were not only interested

in errors in the linguistic analysis but also in how relevant the
correct analyses were for the practitioners. Hence, we calcu-
lated and reported the ratios of findings considered irrelevant
by the practitioners. This answers RQ 2.2.

. Compare defects from reviews with findings. From the students,

we received review reports for each artifact. As the effort to
check them all would have been overwhelming, we took a ran-
dom sample of 20% of the artifacts. For each of the defects de-
tected in the review, we checked if there is a corresponding
finding from a smell. This answers RQ 3.

. Interpret interview notes. To answer finally RQ 4, we analyze the

interview transcripts and code the answers given by the inter-
viewees manually.

6.1.5. Validity procedure

First, we used peer debriefing in the sense that all data collec-

tion and analyses were done by at least two researchers. Analysis
results were also checked by all researchers. This researcher trian-
gulation especially increases the internal validity. Furthermore, we
kept an audit trail in a Subversion system to capture all changes to
documents and analyses.

200

Table 4
Study objects

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

Artifact Topic Size in words # Requirements # Use cases # User stories
Al Adaptive valve control 1896 91

A2 Exhaust control 2244 72

A3 Driving information 199 12

A4 Engine startup control 975 44

A5 Engine control 524 49

A6 Powertrain communication 1100 55

Sum Daimler 6938 323

B1 Management of access control 2093 9 18

B2 Event notification 1015 3 19

B3 Document management 458 1 16

Sum Wacker 3566 13 53

C1 Webshop for fashion articles 5226 168
C2 CMS in transportation domain 2742 123
c CRM system 6863 230
Cc4 Webshop for hardware articles 13,124 561
Sum TechDivision 27,955 1082
Avg Stuttgart 4470 18.9

Sum Stuttgart 227973 966

Sum over all 266,432 336 53 1082

Second, we performed all the classifications of findings into
true and false positives in pairs. This already helped to avoid mis-
classifications. To further check our classifications, we afterwards
did an independent re-classification of randomly selected 10% of
the findings and calculated the inter-rater agreement. We dis-
cussed to clarify which findings we consider false positives and
repeated the classifications until we reached an acceptable agree-
ment. The same procedure held for the inspection of artifacts to
detect false negatives, which we also conducted in pairs. Further-
more, we also independently re-classified one of the artifacts to
understand the inter-rater agreement on the false negatives. Over-
all, our analysis for false positives and relevance of the findings is
also a validity procedure in the sense that we check in RQ 2 the
results from RQ 1.

Third, we discussed with the practitioners what relevance of
smells means in the context of the study to avoid misinterpreta-
tions. Furthermore, we gave the students review guidelines to give
them an indication what quality defects in requirements artifacts
might be. Both serve in particular as mitigation to threats to the
internal and the construct validity.

Fourth, we performed the analysis of the correspondence be-
tween smells and defects with a pair of researchers. This pair de-
rived a classification of the found and not found defects. Both other
researchers reviewed the classification, and we improved it itera-
tively until we reached a joint agreement.

Fifth, we performed member checking by showing our tran-
scriptions and interpretations for RQ 4 to the interviewed practi-
tioners and incorporating feedback.

Finally, to support the external validity of the results of our
study, we aimed at selecting cases with maximum variation in
their domains, sizes, and how they document requirements.

6.2. Results

In the following, we report on the results of our case studies.
We first describe the cases and subjects under analysis, before we
answer the research questions. We end by evaluating the validity
of the cases.

6.2.1. Case and subjects description

The first three cases contain requirements produced in different
industrial contexts: embedded systems in the automotive industry,
business information systems for the chemical domain and agile
development of web-based systems. While the first two represent

rather classical approaches to Requirements Engineering, the third
case applies the concept of user stories, as it is popular in agile
software development. The fourth case is in an academic back-
ground and employs both use cases and textual requirements. Re-
garding subject selection, for each industrial case we selected prac-
titioners involved in the company, domain and specification. We
executed the findings rating (Step 5) and the interviews regard-
ing the QA process (Step 6) with the same experts, so that their
answer in Step 6 is based on their experience with practical, real
examples. In the following, we describe the cases, as well as the
experts or students for each case. Table 4 provides a quantitative
overview of the cases.

Case A: Daimler AG. Daimler AG is a multinational automotive cor-
poration headquartered in Stuttgart, Germany. At Daimler, we ana-
lyzed six different requirements artifacts (A1-A6) which were writ-
ten by various authors. The requirements artifacts describe func-
tionality in different domains of engine control as well as driving
information. In this case, requirements are written down in the
form of sentences, identified by an ID. The authors are domain ex-
perts who are coached on writing requirements.

The requirements artifacts A1-A6 consist of 323 requirements
in total (see Table 4). All of the artifacts of Daimler analyzed in
our study were created by domain experts in a pilot phase af-
ter a change in the requirements engineering process as part of a
software process improvement endeavor. For RQ 2.2., we reviewed
22 findings with an external coach who works as a consultant
for requirements engineering and has tightly collaborated with the
group for many years.

Case B: Wacker Chemie AG. In the second case, we analyzed re-
quirements artifacts of business information systems from Wacker
Chemie AG. Wacker is a globally active company working in the
chemical sector and headquartered in Munich, Germany. The sys-
tems that we analyzed fulfill company-internal purposes, such as
systems for access to Wacker buildings or support systems for doc-
ument management.

We analyzed three Wacker requirements artifacts that were
written by five different authors. At Wacker, functional require-
ments are written as use cases (including fields for Name, Descrip-
tion, Role and Precondition) whereas non-functional requirements
are described in simple sentences. The artifacts consisted of 53 use
cases and 13 numbered requirements (see Table 4). For the reviews
of the findings in RQ 2.2, we selected 18 findings and discussed

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 201

Table 5
Study objects usage in research questions.

Case RQ 1:
distribution

RQ 2.1:

RQ 2.1:
precision recall

RQ 2.2: RQ 3: defect
relevance types

RQ 4: QA
process

A: Daimler
B: Wacker
C: TechDivision

v
v
v
D: Univ. of Stuttgart v

ANENENEN
ENENENEN

ANENEN

them with the Chief Software Architect, who also has several years
of experience in quality assurance.

Case C: TechDivision. For the third case, we analyzed the require-
ments of the agile software engineering company TechDivision
GmbH. TechDivision has around 70 employees, working in 3 lo-
cations in Germany. They focus mainly on web development, i.e.
creating product portals and e-commerce solutions for a variety of
companies, as well as web consulting, especially focusing on search
engine optimizations. Many of their products involve customization
of Magento® or Typo3’ frameworks.

In their projects, TechDivision follows an agile software de-
velopment process using either Scrum (Schwaber and Sutherland,
2011) or Kanban (Anderson, 2010) methodologies. For their re-
quirements, TechDivision applies user stories (Cohn, 2004), which
they write and manage in Atlassian JIRAS. User stories at TechDivi-
son follow the common Connextra format: As a [Role], I want [Fea-
ture], so that [Reason]. We will also follow this terminology here.

The systems under analysis consist of two online shopping por-
tals, a customer-relationship system and a content-management
system, all of which we cannot name for non-disclosure-agreement
reasons. In total, we analyzed over 1000 user stories containing
roughly 28,000 words. For RQ 2.2, we met with an experienced
Scrum Master and a long-term developer, who have worked on
several projects for TechDivision.

Case D: University of Stuttgart. The requirements of Case D were
created by 52 groups of three 2nd-year students each during a
compulsory practical course in the software engineering program
at the University of Stuttgart. We removed one artifact, because it
was incorrectly encoded, thus resulting in 51 requirements artifacts
for this analysis.

The resulting requirements artifacts differ vastly in style; hence,
we were unable to count them in terms of requirements, but in-
stead only counted the structured use cases as provided by the au-
thors, and quantified the artifacts by word size. The average size of
a requirements artifact was 4471 words (min: 1425, max: 8807, see
Fig. 6) and contained 19 use cases (min: 6, max: 39), thus creating
a set of artifacts of nearly a quarter of a million words, including
more than 950 use cases.

For practical reasons, we could not evaluate each research ques-
tion in each case: For example, RQ 3 depends on the existence of
reviews with documented results, which is often not existent in
practice. Furthermore, depending the answers of RQ 4 on the po-
tentially less experienced students from Case D would introduce a
threat to the validity of our evaluation. Table 5 shows the mapping
between research questions and study objects. The interviews for
RQ 2.2 and RQ 4 lasted 60 min for each Case A and B and 120 min
for Case C.

6 http://www.magento.com .
7 http://www.typo3.org .
8 https://atlassian.com/software/jira .

8000

6000
|

4000

2000
|

Fig. 6. Variation of size of requirements artifacts in Case D in words.

6.2.2. RQ 1: How many Requirements Smells are present in the
artifacts?

Under this research question, we quantify the number of find-
ings that appear in requirements. Table 6 shows the number of
findings for each case, each requirements artifact and each smell
and also puts these numbers in relation to the size of the artifact.
We analyzed requirements of the size of more than 250k words, on
which the smell detection produced in total more than 11k find-
ings, thus revealing roughly 44 findings per thousand words.

Table 6 shows that all requirements artifacts contain findings
of Requirements Smells. They vary from 5 findings for the small-
est? case (A3) up to 572 for the largest case (C4). The number of
findings strongly correlates with the size of the artifact (see Fig. 7,
Spearman correlation of 0.9). Hence, in the remainder, we normal-
ize the number of findings by the size of the artifact.

The artifacts of Daimler have an average of 26 findings per
thousand words, in contrast to 41 for both Wacker and TechDi-
vision and 43 for the artifacts produced by the students. Best to
analyze the variance within a requirements artifact seems Case D,
in which multiple teams had a similar background and project size.
Fig. 8 shows the variance between the artifacts of Case D with an
average of 44 findings, a minimum of 26 findings (D11) and a max-
imum of 75 findings (D32) per 1000 words.

When inspecting the different Requirements Smells, we can
see that the most common smells are vague pronouns with
25 findings per 1000 words, followed by the negative words
smell with 6 findings and the loophole smell with 4 find-
ings. The least often smells are non-verifiable terms with
1 finding per 1000 words, and ambiguous adverbs and
adjectives with 0.25 findings per 1000 words. In fact, the most
common smell, vague pronouns, appears 100 times more often
than the ambiguous adverbs and adjectives. To analyze

9 In terms of total number of words.

202

Table 6

Quantitative summary of smell findings.

Ambiguous A & A

Smell
Abs

Non-verifiables

Smell
Abs

Comparatives

Smell
Abs

Negative Words

Smell
Abs

Superlatives Smell

Vague Pronouns

Smell
Abs

Loophole Smell

Subjective

All Smells

Number

Case

Language Smell

Abs

of words

Rel

Rel

Rel

Rel

Rel

Abs

Rel

Rel

Abs

Rel

Rel

Abs

0.53
0.45

3.69
223

1

3.69
0.45

6.86
8.91
15.08
15.38

26.72

13
20

1.05

1.34

211
2.67

23.7

45

1896
2244

Al

0.89

6.24
10.05
8.21
9.54
11.82
7.64
9.56
2.96

14
2

23.2
251

52

A2

0
0
0

3
15
14

199
975
524
1100
6938

A3

1.03
1.91
3.64
1.15
0.48

1.03

1.03

3.08

29.7

29
20
32
183

A4

38.2
291

A5

6.36
2.88
3.34
8.87
2.18
477
6.89
8.75
6.56
3.73
5.51
3.72
3.72

3

7
20

13
53
20

7.27
10.52

19.11

A6

0.29

1.15
2.87

8
6
0
1
7

73
40

0.86
5.26
0.99
41.48
8.69
0.96
2.55
2.04
1.22

1.87
2.39
1.97

13

264
43

Sum Daimler

B1

11

90
28
31
149
229

2093
1015

12.81

13

27.6

B2
B3

218
0.28
0.57

2.18
1.96
0.57
1.09
0.87
0.84
0.82
1.14
1.14
1.12

19.65
17.39

19

9
62
104

19
31

67.7

458
3566
5226
2742
6863

13,124
27,955

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

0.28
0.19

17
36
24
45

6.45
5.55
4.74
4.52

23

1.96
918
4.01
437
2,67
4.44

41.8

Sum Wacker

C1

29

48

43.8

13
31
101

3

22.61
15

62
105
339

1
30
35

124

43.8

34

120
233

C2

0.15

0.15
0.69
0.39
1.05
1.05
0.98

14
16
42

3

0.914
0.57
0.21
0.21
0.26

12
16

49

1
23

25.83

43.6

572
1154

C4

1

154

6.22
6.17
6.17
6.22

174

21.82
26.26
26.26
25.26

610

413

Sum TechDivision
Mean Stuttgart
Sum Stuttgart

Over all

0.96
49

4.71

240
260

16.63

848
1039

27.59
1407
1657

5.12

261
299

117.37
5986
6731

4
4

19.65

1002
1081

1.44
1.44
1.78

6.45
329

1985 444

4470
227973
266,432

444

10,122
11,608

68

4.06

473

43.6

the variance in depth, we again take the students’ artifacts for
reference. Fig. 9 shows the relative number of findings across the
projects.

Interpretation. We interpret the quantitative overview along three
variables: projects, contexts and the different Requirements Smells.

Projects When comparing at project level, we see that Cases

A1-A6 (with outlier A5) and C1-C4 (with outlier C3) show
quite similar numbers. In contrast B1 to B3 vary between
28 and 68 findings per 1000 words. When looking into the
most extreme outliers B3 and D32, we see a systematic er-
ror that creates a large number of findings: Both projects
repeatedly explain what the system should'® do instead of
what it must do. 16 of 19 loopholes findings in B3 and
29 of 37 loophole findings in D32 root from this prob-
lem. This can lead to difficult issues in contracting as re-
quirements that are phrased with a should are commonly
understood as optional (see e.g. RFC2119 (Bradner, 1997) for
a detailed explanation).
Hence, we could see a surprising consistency in two of three
industrial case studies. The Wacker data varies, so does the
students case. In both cases, the negative extremes point at
issues that potentially have expensive consequences.

Context The four cases differ strongly in their context: They

write down requirements in different forms, vary in their
software development methodology and also produce soft-
ware for different domains. When comparing the findings at
the domain level, we see that Daimler artifacts with an aver-
age of 26 findings per thousand words contain less findings
than both Wacker and TechDivision with 41 findings and the
artifacts produced by the students with 43 findings.
Our partners reported that there have been trainings for the
authors of the cases A1-A6 recently, which could explain the
difference. Another reason could be the strong focus that
the automotive domain puts on requirements and require-
ments quality in contrast to the other domains. Lastly, also
the strict process in this domain could be a reason for this
striking difference of the Daimler requirements. Unsurpris-
ingly, the students’ requirements form the lower end of the
scale, yet not by much.

Requirements Smells When comparing the eight smells, we
see a strong variance between the number of findings, both
in absolute as well as relative values. A qualitative inspection
indicates reasons for the most occurring smells. First, the
smell detection for vague pronouns finds all substitut-
ing pronouns in the requirements. Especially in German, in
many sentences the reference of the pronoun can sometimes
be derived from gender and grammatical case of the word,
thus correctly detecting pronouns, but not vague pronouns.
RQ 2.1 quantifies this issue. Second, the most common indi-
cation for loophole findings is the aforementioned use of
the word should. We discuss this case in-depth with prac-
titioners in RQ 2.2. Third, we will also inspect reasons for
the high number of negative words findings in RQ 2.1 and
RQ 2.2

Answer to RQ 1. The number of findings in requirements arti-
facts strongly correlates with the size of the artifact. There are
roughly 44 findings per 1000 words and some contexts show a
striking similarity in the number of findings for their artifacts. In
our cases, the automotive requirements had a lower number of
findings whereas student artifacts contained a higher number of

10 Soll is a German modal verb that is less strict than an English must.

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 203

o = Daimler

S 4

0

& Wacker
—
O
R 8 TechDivision
= i
< ¥
Stuttgart

£
S
£ 8
T o™
£
[
—
o
= O
O O
o «
S
S
b4

o

S

=

o

D45 @@

T T T
0 2000 4000 6000

T T T
8000 10000 12000

Number of Words in Artifact

Fig. 7. Number of findings strongly correlates with size of artifact (for readability reasons, for the Stuttgart cases (blue) only IDs of less correlating artifacts are displayed).
(For interpretation of the references to color in this figure legend, the reader is referred to either the symbols shown in the legend or to the web version of this article.)

o
o o
N

o | _—
© '
o | '
Yol

o |

<

o | .
® :

Fig. 8. Number of findings per 1000 words in Case D.

findings relative to the size of the artifacts. The most common
findings are for the smells loopholes and vague pronouns.

6.2.3. RQ 2.1: How accurate is the smell detection?

To understand the capabilities of the smell detection, we need
to understand precision as metric indicating how many of the de-
tected findings are correct, as well as recall as a metric indicating
how many of the correct findings are detected.

Precision. To understand to which extent the numbers of findings
for certain smells in RQ 1 are caused by the detection mechanism,
we inspected a random sample of 616 findings by taking equiv-
alent sets of findings from each project and manually classifying
whether the finding fulfills the smell definition. We could not in-
spect the same number of findings of each smell for each project,
because some projects only had few or even no findings of a cer-
tain smell (see number of findings per project in Table 6).

Table 7
Precision of smell detection.
Smell Findings Findings Findings Precision
inspected accepted rejected
Subjective Language Smell 69 66 3 0.96
Ambiguous Adverbs and 21 17 4 0.81
Adjectives Smell
Loophole Smell 60 43 17 0.72
Non-verifiable Term Smell 23 16 7 0.70
Superlative Requirements 39 19 20 0.49
Smell
Comparative Requirements 88 42 46 0.48
Smell
Negative Words Smell 129 42 87 0.33
Vague Pronouns Smell 187 48 139 0.26
Average 77 36.6 40.4 0.59
Overall 616 293 323 0.48

Table 7 and Fig. 10 show the summary of this analysis: The
precision of the detection of the subjective language smell
revealed only three false positives in total, thus leading to a
precision of 0.96. Non-verifiable words, loophole, and
ambiguous adverbs and adjectives smells range between
0.70 and 0.81, hence leading to roughly one mistake in four sugges-
tions. Comparative and superlative smells range around 0.5
which would mean that every second finding is correct. At the rear
end of the list are the negative words and vague pronouns
smells with one correct finding in three to four suggestions. Across
all smells, the precision is between 0.48 (over all inspections) and
0.59, if we take the varying number of inspected findings between
the smells into account. To understand these numbers, we qualita-
tively inspected the false positive classifications, revealing the fol-
lowing main reasons for false positives:

Grammatical errors in real world language. The first issue
that creates false positives is the fact that our study analyzes
real world language. Some of the requirements, especially
in Case C, contained a number of grammatical flaws as
well as dialectal phrases, which lead to wrong results in

204 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

o
o |
'e]
o
o
o | :
< '
o
[3e]
o | T
N !
| o
o |
o :
9 R -
o : o
o | '
- . o |
o : :
S — ——
5 — 1 1 —— _ &
T T T T T T T T
Subjective Loopholes Vague P. Superlatives Negatives Comparatives Non-verifiable Amb. Adverbs
Fig. 9. Variation of smells per 1000 words in Case D.
e
- .
Ambiguous
Com ea?rative Non- Adverbs
& P verifiable and
Vague Requirements S
Terms Adjectives
Pronouns ®
D Loopholes Subjective
© | Negative Language
o Words
© |
o
g 0
& Superlative
Requirements
~
o
N
o
Q]
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Precision

Fig. 10. Precision and recall of the discussed smell detection approaches.

the automatic morphologic analysis and automatic POS tag-
ging and consequently also to false positives during smell
detection.

Vague pronouns. The smell detection for vague pronouns
showed the lowest precision. In the detection of this smell,
we look for substituting pronouns, which are pronouns

where the noun is not repeated after the pronoun!!, of
which we characterize only every fourth finding as a de-
fect. The reason behind this poor performance, besides a

11 For example,The father of these. vs The father of these kids.

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 205

Table 8
Recall of smell detection within sample of 4 artifacts (16,271 words).

Smell Findings in Findings identified Recall
artifacts correctly
Ambiguity-related Smells 74 64 0.86
Superlative Requirements Smell 4 2 0.50
Comparative Requirements Smell 21 20 0.95
Negative Words Smell 64 54 0.84
Vague Pronouns Smell 37 34 0.92
Average 40 348 0.82
Overall 200 174 0.87

number of false positives due to the poor grammar men-
tioned before, is the comparably large number of grammat-
ical exponents of the German language. In addition to num-
ber and three grammatical genders, the German language
also has four grammatical cases. Therefore, in various in-
stances of substituting pronouns, there is only one grammat-
ical possibility of what the pronoun could refer to.

Findings in conditions. A third reason for false positives is that

the smell detection, so far, takes very little context into ac-
count. For example, the comparatives smell aims at de-
tecting requirements that define properties of the system
relative to other systems or circumstances.'> When search-
ing for grammatical comparatives in requirements, roughly
48% of the cases are of the aforementioned kind. In roughly
the same number of cases, however, the comparative de-
scribes a condition. For example, if the requirement states
that if the system takes more than 1 second to respond [...],
the comparison is not against another system or circum-
stance but against absolute numbers. Therefore, in this case,
the comparative does not indicate a problem (one could
even argue that this is an indicator for good quality).
A similar problem holds for the negative phrases
smell: The smell detection aims at revealing statements of
what the system should not do. Often, however, the nega-
tive is mentioned in conditions. For example, if the require-
ments express what to do if the user input is not zero [...],
the negation relates to a condition and not to a property of
the system.

Recall. When analyzing the accuracy of an automatic detection, we
must look not only at precision, but also at recall, i.e. the ratio
of all detected findings to all defects of a certain type in an ar-
tifact. To this end, we inspected one artifact of each case, in total a
set of roughly 16,200 words, and manually identified the findings
in each artifact. Due to the problems of distinguishing the vari-
ous ambiguity-related smells, we analyzed the recall of these four
smells as if it was one smell, without further differentiation (see
Section 6.1.3).

The manual inspection revealed 200 findings in this arti-
fact sample and an average recall of 0.82. Table 8 and Fig. 10
show the summary of the results: The comparison shows a re-
call between 0.84 and 0.95 for four of the five investigated
smells. The highest recall was achieved by the Comparative
Requirements Smell, with 0.95, which means that the smell
detection missed one in 20 findings. The fifth smell, with the low-
est recall, is Superlative Requirements Smell with a re-
call of 0.5. However, this smell is one of the rarest of the smells,

12 As discussed in Section 3.2, the problem of comparatives in requirements is
validation: How can we understand whether a system fulfills a requirements if that
requirement is stated in a relative instead of an absolute way? What if the system
in comparison changes its properties, would this render the requirement suddenly
unfulfilled?

as one can also see in the results to RQ 1. Therefore our analysis
of the recall of this smell is based on few data points. Hence, we
suggest to take the recall of this smell with care, and suggest that
future studies should investigate this issue in more depth.

A further analysis of the false negatives shows that the smell
detection missed findings because of imprecisions in the NLP li-
braries (i.e. Stanford NLP (Toutanova et al., 2003) for Lemmatiza-
tion and POS Tagging and RFTagger (Schmid and Laws, 2008) for
morphologic analysis). For the dictionary-based smells, the lemma-
tization did not correctly deduce the correct lemma, e.g. it did not
understand that a certain word was a plural of a lemma. If only
the lemmatized version of the word, i.e. the singular form, is in
the dictionary, then the smell detector does not correctly identify
the smell. In the false negative cases for the Comparative and
Superlative Requirements Smell, RFTagger did not cor-
rectly classify the inflection.

Interpretation. The study revealed that the precision strongly
varies between the different smells. Qualitative analysis provided
further insights described next.

We can now explain the high number of findings for vague pro-
nouns in RQ 1. If we assume that a quarter of the findings are
correct, the number of findings in this category is closer to the re-
maining smells. Also, we could see that while there are certain rea-
sons of impreciseness that root from the study objects themselves
and are, thus, unavoidable, there is plenty of space for optimiza-
tion. First, existing techniques from NLP could be applied to im-
prove certain smells, such as the vague pronouns. Second, from
the examples we have seen, we would argue that the application
of heuristics could heavily improve the precision of existing smell
detection techniques. For example, if we exploit the information
available from POS tagging, we can find out whether a comparison
refers to a number or numerical expression.

Regarding recall, our analysis shows only a slight variance be-
tween the smells, with the only outlier being the Superlative
Requirements Smell; however, since this is a very rare smell,
this recall is based on only few data points, therefore, we must
consider this result with care. When inspecting the reasons for
false negatives, we found that optimizations could be made
through the lemmatizer. Future research in this direction should
compare whether the accuracy of lemmatizers as reported in the
field of computational linguistics also holds for requirements engi-
neering artifacts. Furthermore, we analyzed requirements in Ger-
man language where lemmatization is a more difficult problem
than in English, since the language makes stronger use of inflec-
tions (e.g. with cases or gender). Hence, smell detectors based on
lemmatization for the English language might work better than the
results indicate in our analysis.

In general, the precision and recall are therefore comparable
to other approaches with related purposes (see Section 2). How-
ever, is it sufficient for an application of Requirements Smells in
practice?

First, when looking at precision, we must take into account that
the current state of practice consists still of manual work and that
the cost for running an automatic analysis is virtually zero. Nev-
ertheless, checking a false positive finding takes effort which an
inspector could rather spend in reading the document in more de-
tail. However, as we see a high variation in the precision over dif-
ferent smells, we need to discuss these separately. Several of the
smells have a precision of 0.7 and higher which is considered ac-
ceptable in static code analysis (Bessey et al., 2010). For other Re-
quirements Smells, the precision is below 0.5. This means that ev-
ery other finding will be a false positive. This can be critical in the
effort spent in vain and annoy a user of the smell detection. Yet,
we follow Menzies et al. (2007) that a low precision can be still
useful “When there is little or no cost in checking false alarms.” In

206 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213
Table 9
Exemplary findings; shortened and translated by the authors, findings in bold.
ID Finding Relevant? Aware? Resolve?
1 As a visitor, [want to see the checkboxes in the different categories displayed more clearly, so that | Yes Yes Yes in short term
can see more quickly that I can select and deselect categories.
2 As a visitor, | want to see the checkboxes in the different categories displayed more clearly, so that I No No No
can see more quickly that I can select and deselect categories.
3 As an editor, | want to make it simpler to differentiate between ... No No No
4 As a visitor, | want to see further details, e.g. (...) , so that ... Yes Yes Yes immediately
5 As a customer, | want, if [have a larger number of E-Mails in my mailbox, ... Yes Yes Yes immediately
6 As an editor, I want to make it simpler to differentiate between A and B, therefore, A should be Yes No Yes in long term
labeled as ...
7 As a provider, [want that, as far as possible, all fields, are mapped between System A and System B. Yes Yes Yes immediately
8 As a provider I want the news section to be implemented with an effort as low as possible. Yes Yes No
9 As a visitor, I do not want to see category X, so that I am not confronted with the issue. No No No
10 As a visitor of the webpage, | want for not selected categories, the displayed hearts of the score Yes Yes Yes immediately
(search results list) to be displayed in such a color, that the score display is not changed and always
only hearts of relevant categories are displayed in color.
1 As an employee, [want that an article, if no price is imported, despite the label ‘available’ to be not Yes Yes Yes immediately
displayed in SYSTEM X, so that the article automatically resumes when a price is imported.
12 As a user, | want to have the possibility to use custom values for minimum and maximum, so that No No No
(er)
13 As a visitor, [want to have a possibility to browse through previous and next products, so that I can No No No
quickly and easily look at multiple product without having to go back to the overview page.
14 As a visitor, I want to navigate to meaningfully structured categories via the menus. Yes Yes Yes immediately
15 As a visitor, I want to quickly open the pictures of the website, so that unnecessary waiting is avoided. Yes Yes Yes immediately
16 As a visitor of the website, | want a nicely designed search-suggest-box when I enter a text and wait. Yes Yes Yes immediately
17 As a buyer, [want to select from a set of shopping providers (...), so that I can select the best suited No No No
shopping provider.
18 As an editor, I want to have multiple entry points for linking categories, so that the visitor can (...) get Yes No No
an overview of selected brands and categories and their filters.
19 As [OTHER SYSTEM], I want that an order of the status 'Order income’ transitions into status 'wait for No No No
transmission into [SYSTEM]', so that I do not see the order when indexing open orders and so I do
not process the order multiple times (and that one can see the status of the order in the backend
properly).
20 As an editor, I want to know a good way how to transfer news content from [SYSTEM] to [SYSTEM] to Yes Yes No

be able to efficiently migrate everything at once.

our experience, the cost of checking a finding is often just a few
seconds.

Second, when looking at recall, most of the smell detections
reach a recall of more than 80%. Various publications, most promi-
nently Kiyavitskaya et al. (2008) and Berry et al. (2012), argue that
a recall close to 100% is a basic requirement for any tool for au-
tomatic QA in RE. The core argument is that with a lower re-
call, reviewers stop checking these aspects and consequently miss
defects, and that reviewers need to check the complete artifact
anyway. However, if taking the example of spell checkers and
grammar checks, these are still used on a daily basis, although
they are far away from 100% recall. Therefore, one could conse-
quently also argue that the precision is more important than the
recall.

In any case, whether the reported precision and recall are
sufficient in industry needs further research in the future. As
mentioned above, it mainly depends on two factors: the required
investment versus the gained benefit (similar to the concept of
technical debt). For the required investment, we argue that, based
on our experience of analyzing the various cases presented here,
one can quickly iterate through the detected findings with low
investment. To further support this discussion, the following re-
search question analyzes the aspect of the benefits to practitioners
in more detail.

Answer to RQ 2.1. As shown in Tables 7 and 8, and as shown in
Fig. 10, the precision is on average around 59%, with an average re-
call of 82%, but both vary between smells. We consider this reason-
able for a task that is usually performed manually. However, this
also depends on the relevance of findings to practitioners, which
we analyze in RQ 2.2. The study also reveals improvements for fu-
ture work through the application of deeper NLP.

6.2.4. RQ 2.2: Which of these smells are practically relevant in which
context?

To understand whether the Requirements Smells help detect-
ing relevant problems, we first performed a pre-study, in which
we confronted practitioners of Daimler and Wacker with findings.
The pre-study, which we reported in Femmer et al. (2014b), aimed
at receiving qualitative and tacit feedback. It showed that Require-
ments Smells can in fact indicate relevant defects.

In contrast, in this study we analyze relevance in specific cate-
gories by interviewing practitioners at TechDivision on their opin-
ion on the findings in terms of relevance, awareness, and whether
these practitioners would resolve the suggested finding.

Quantitative observations. Table 9 reports the 20 findings that we
discussed with TechDivision. In summary, we can see that they
considered 65% of the findings as relevant for their context. Fur-
thermore, they have not been aware of 45% of the findings. Lastly,
they would act on 50% of the presented findings and on 40% even
immediately.

Qualitative observations (true positives). The findings that the tool
produces mostly constituted forms of underspecification. For ex-
ample, in Finding #1 (see Table 9): "As a searcher, I want to see the
checkboxes in the different categories displayedmore clearly, so that
... ” (for similar examples, see Findings 3, 4, 14, 16, and 20). In this
case, as in many of the other examples, the practitioners stated
that no developer could implement this story properly. They also
recalled various discussions in estimation meetings on what was
to be done to complete these types of stories'>.

13 Note that discussions can have different objectives, i.e. what is to be imple-
mented and how. For these, how to implement a story is the team’s task and thus

Table 10

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

Findings in different parts of user stories (T = total, Ro = role, F = feature, Re = reason).

Case #Stories w/o reason Size in words Findings absolute Findings per 1000 words
Total Role Feature Reason T Ro F Re T Ro F Re
C1 168 23 5226 801 2375 2050 229 1 83 145 44 1 35 71
c2 123 45 2742 260 1552 930 120 0 62 58 44 0 40 62
C3 230 19 6863 824 3090 2949 233 5 81 147 34 6 26 50
C4 561 203 13,124 1188 8223 3713 572 0 307 265 44 0 37 71
Sum 1082 290 27,955 3073 15,240 9642 1154 6 533 615 41 2 35 64

207

In the previous research questions, we have seen that Require-
ments Smells are able to detect loopholes in requirements, such
as the usage of the word should. To understand the relevance of
this finding in the context of an agile company, we also discussed
the loophole in Finding #6. When we pointed out the finding,
they responded that they considered expressing what the system
should do in user stories problematic. They considered this defect
a low risk, as the developers understood (”If you are told that you
should take out the trash, you understand that it is an imperative.”)
and their user stories did never turn out to be of legal relevance.
They concluded that they want to avoid this, but it has no imme-
diate urgency in a project situation.

ISO 29148 discusses the use of negative statements ("ca-
pabilities not to be provided”). In a previous study (Femmer et al.,
2014b) practitioners expressed their reluctance of this criterion. In
contrast, in this study, practitioners said they would act upon 2
out of 3 of the negative statements (Findings #9-11) that we pre-
sented to them as they revealed unclear requirements. In one case
they even remembered that this led to discussions about the im-
plementation during the sprint. Table 9 shows many more, similar
examples.

Qualitative observations (false positives). Also interesting are those
cases that practitioners considered not relevant in their context or
where practitioners said they would not act upon. Summarized,
the reasons were the following:

Domain and context knowledge: Some stories that were un-
clear to outsiders were understandable for someone know-
ing the system under consideration. For example, in user
story #18 it was unclear to the first and second author what
their refers to. It was clear, however, to both practitioners
with knowledge about the system.

Process requirement: In Finding #8, the smell reveals another
conspicuous finding: The developer should put as low ef-
fort as possible into the implementation of this story. In the
discussion, the reason for this was that the customer did
not want to pay much for this implementation. Thus the
story should only be fulfilled if it was possible to be ful-
filled cheaply. While the practitioners told us they would
not change anything about this story, they agreed that the
smell pointed out something that violates common user
story practice.

Finding in reason part: In four cases, the practitioners agreed
to the finding but considered it irrelevant as the finding was
inside the reason part of the user story. This is due to this
part of the user story only serving as additional information.
This reason part is not used in testing nor is the information
directly relevant for implementation. The main purpose is to
understand the business value and to indicate the major goal

discussions can help finding the best way. In contrast, what the product owner
wants is outside of the team’s scope and therefore should not be a matter of dis-
cussion.

to the team, similar to goals and goal modeling in traditional
requirements engineering (Lamsweerde, 2009).

Answer to RQ 2.2. In summary, the practitioners expressed that
65% of the discussed findings were relevant, as they lead to lengthy
discussions and unnecessary iterations in estimation. They also
saw the problem of legal binding, but in contrast to the practition-
ers of Cases A and B, they considered these findings less relevant.
Due to these results, they expressed their strong interest in explor-
ing smell detection for projects; we will explain the results of this
discussion in RQ 4.

Further observations of quality defects in different parts of a user
story

We considered especially the last explanation for rejecting find-
ings (finding in reason part of a user story) particularly interesting.
We had noticed that the reason part was often written in a rather
imprecise way. To be able to quantify this aspect, we automatically
split user stories according to the language patterns and quanti-
fied the distribution of words as well as findings over the different
parts of user stories.

Table 10 shows the results of this analysis. The number of
words is roughly distributed as follows: 11% of the words of a user
story describe the role, 55% of the words describe the feature and
34% describe the reason. Of the 1082 user stories, 290 had no rea-
son part at all. Due to this uneven distribution, similar as in the
previous analyses, we normalize the number of findings by the
number of words in each part resulting in the number of findings
per 1000 words.

Only 1% of the findings are located in the role part. In fact,
when we inspected these findings, they were false positives due to
the grammatical problems described in the previous section. The
absence of findings in this section is expected, as this part of the
user story only names the role and does not offer many chances for
smells as described in Section 3.2. For the remainder, 46% of the
findings are located in the feature and 53% are located in the rea-
son part. In relation to its size, the difference is striking: With 64
findings per 1000 words, the reason has nearly double the number
of findings of the feature part and nearly 70% more findings than
the average requirement, as analyzed in Section 6.2.2.

In summary, the reason part of user stories is particularly prone
to smells, but the qualitative analysis in RQ 2.2 reveals that practi-
tioners consider findings in this section to be less relevant. This
investigation could support further application of Requirements
Smells in practice by helping to prioritize smells according to their
location.

6.2.5. RQ 3: Which requirements quality defects can be detected with
smells?

For 44 of the 51 requirements artifacts the students provided
technical reviews. We qualitatively analyzed the results of 10 ran-
domly selected reviews (around 20%). The inspected reviews were
conducted by 5-7 reviewers (mean: 5.6), took 90 min and resulted
in 18-69 defects (mean: 38.1). We iterated through the 381 de-
fects documented in the reviews and evaluated whether the smell

208 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

Language semantics

Spelling
Grammar
Language mixture

Sentence not understandable

Wrong word (language) Wrong word (domain)

Terminology

Unnecessary terms in glossary
Naming violating convention

Undefined domain-specific terms

. Underspecified terms
Inconsistent usage of terms

Representation

Improper legal binding

Presentation and Structure

Encoding
Singularity in UC

Unintuitive structure of table
Unappealing image

Unnatural itemizations
Unreadable image

Missing mandatory items
Structural redundancy / Cloning

Detected Detectable

Structurally inconsistent diagrams

Incomplete information
Incorrect information
Unintuitive Use Case flow or diagrams

Semantically contradicting information
Semantic clones

Rather not detectable

"
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+
I
I
|
I
I
I
I

+
I
I
I
I

<
by Requirements Smells by Requirements Smells

by Requirements Smells

Fig. 11. Findings in requirements reviews, classified by content/representation and detection.

detection produced findings indicating these defects. If no smell
indicated the defect, we openly classified the defects. We did not
quantify these results, because the resulting numbers would as-
sume and suggest that the distribution of defects is representative
for regular projects, which we are unsure about (i.e. because of a
high number of spelling and grammatical issues).

The classification of the defects and their comparison with the
detected smells resulted in the following list of defects indicated
by Requirements Smells:

Sentence not understandable. In some instances, when the
defect suggested changing the sentence to improve un-
derstandability, these sentences were highlighted especially
by the vague pronouns and negative statements
smells.

Improper legal binding. Various requirements artifacts had is-
sues with improper legal binding. In one case, the reviewers
recognized this and demanded the use of the term must. The
loopholes smell pinpointed at this issue.

Unspecified/unmeasurable NFRs. Various smells, especially the
superlatives smell, indicated at defects of underspec-
ification within non-functional requirements.

The remaining defects were not indicated by Requirements
Smells.

Interpretation. The quantitative distribution of defects is not neces-
sarily representative for industry projects and, thus, has not been
not analyzed. The reviews clearly show that manual inspection dis-
covered the same defects as in the previous research question:
Understandability, legally binding terminology and underspecified
requirements. These are issues with regards to representation but
also the content described in the artifact. We argue that these is-
sues are common for requirements artifacts. Requirements Smells
can therefore indicate relevant defects from multiple, independent
sources (manual inspection, interviews with practitioners, inde-
pendent manual reviews) for multiple, independent cases.

Answer to RQ 3. Automatic smell detection can point to issues in
both representation (e.g. improper legal binding) and content (un-
derspecified/unmeasurable NFRs). The analysis of the reported de-
fects indicates that more defects could be automatically detected
(see section further discussion on detectability of defects described
next). Nevertheless, just as for static code analysis, we see that au-
tomatic analysis cannot indicate all defects and thus must be ac-

companied by reviews (Wagner et al., 2005). The fourth research
question aims at analyzing this aspect in depth.

Further discussion on detectability of defects. During the analysis, if
no smells indicated the defect, we openly classified the defects.
While discussing the resulting list of defects and the degree to
which they are detectable within the group of authors, we came
up with a classification which is broader as initially planned while
designing the study. This classification considers whether a defect:

o Already can be detected

o Could be detected, but is not implemented yet in our detection
o Cannot be detected at the moment, but should be soon

o Cannot be detected at all and probably won’t be soon

This classification is purely based on our knowledge of exist-
ing related work and our subjective expectations gained during the
data analysis process. The classification yielded in a map visualized
in Fig. 11. The figure is structured in two dimensions: On the ver-
tical axis, we group the defects into defects relating to the content,
and defects relating to representation. Furthermore, on the horizon-
tal axis, we map the items according to the expected precision and
completeness we believe the detection could be (i.e. the classifica-
tion above). The further left an item, the more precise and com-
plete we expect a smell detection to be; the items on the right we
assume to be close to impossible to detect in a general case.

With the defects that our current approach does not reveal,
this research question shows that more defects could be detected:
These are namely defects with terminology, singularity in use cases
and structural issues focusing on the content such as the absence
of mandatory elements in the artifact (Kamata and Tamai, 2007),
structural redundancy (Juergens et al., 2010) or structural inconsis-
tency between content. It remains unclear how far more enhanced
language analysis with more sophisticated NLP and ontologies can
enable to understand language. In any case, when a defect remains
subtle and vague in its definition, such as an unintuitive struc-
turing or design, we only see potential for automation if a defect
can be defined precisely. For problems relating to the domain itself
(e.g. incomplete information about the domain or incorrect infor-
mation with regards to the domain), we consider it impossible to
detect issues unless formalizing the concepts of the domain.

6.2.6. RQ 4: How could smells help in the QA process?
After the interviews and analysis, we asked all involved practi-
tioners whether or not they think requirements smell detection is

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 209

a helpful support, and whether and how they would integrate it in
their context. We asked those questions openly and transcribed the
answers for validation by the interviewees and later coding. In the
following, we report on the results structured by topics. Where ap-
plicable, we provide the verbatim answers in relation to their cases
(A, B or C).

Overall Evaluation. In general, all practitioners agreed on the
usefulness of the smell detection even if considering different
perspectives that arise from their process setting. One practitioner
(Case C) reports that he expects one benefit in using smell de-
tection is that it would lead to a reduction of the time spent for
effort estimations (in context of agile methods), as the product
owner could benefit from the smell detection on the fly and, thus,
avoid misinterpretations later.

of RE quality. He further indicates that the smell detection should
explicitly take into account that some criteria cannot be met at ev-
ery stage of a project.

Quotes on Constraints and Limitations

A. “First, the people who need to write the specification re-
ceived training which gives the required performance crite-
ria. Second, abstraction levels must be taken into account
during the smell detection process, since at higher abstrac-
tion levels different criteria cannot be met (e.g. vague pro-
nouns or subjective language).”

B. “As a product owner, | would use a smell detection on the
fly provided that it would not mean additional effort [such
as by having to use another tool].”

Quotes on Overall Evaluation

A. “I think that smells can help to analyze a specification.”

B. “The method of Requirements Smells is a valuable exten-
sion in the area of requirements engineering and gives
helpful input concerning the quality of specified require-
ments in early development phases.”

C. “Ithink such a smell detection is of high value to make sure
that our team is confronted with already quality assured
[user] stories. This can reduce the time in our effort esti-
mations, because the product owner would directly notice
on the fly what could lead to misinterpretations later.”

Integration into process. When asked for how the practitioners
would integrate the smell detection into their process setting, we
got varying answers depending on the process. The practitioner re-
lying more on rich process models (Case B) could imagine using a
smell detection either as a support for the person writing the re-
quirements or as part of a more fundamental QA method for the
company. But also the practitioner relying more on the agile meth-
ods (Case C) could imagine using Requirements Smells as a support
for the person writing the requirements or in context of analytical
QA. In addition, one potential use is seen in context of problem
management. Importantly, all practitioners see the full potential of
a smell detection only if integrated in their existing tool chain (see
also quotes on constraints and limitations).

Quotes on Integration into Process

B. “I like to compare Requirements Smells to the “check
spelling aid” known e.g. from Microsoft Word. So for me
Requirements Smells are intuitive and lightweight and
should be used and integrated within requirements engi-
neering and quality assurance processes.”

C. “As a product owner, | would use a smell detection on the
fly [...]. In addition, smell detection could help in analytical
QA, as it could reveal when a problem occurs repeatedly,
either in a project or in the company as a whole.”

Constraints and Limitations. One facet we consider especially inter-
esting when using qualitative data is the chance to reveal further
fields of improvement. We therefore concentrate now on the con-
straints that would hamper the usage of a smell detection. One
facet we believe to be important is that practitioners want to avoid
additional effort when using smell detection in their context. Fur-
thermore, the practitioner of Case A believes that the automatic
smell detection requires a common understanding on the notion

Answer to RQ 4. Our practitioners provided a general agreement
on potential benefits of using smell detection a quality assurance
context. When asked how they would integrate the requirements
smell detection, they see possibility for both analytical and con-
structive QA, provided, however, this integration would not in-
crease the required effort, e.g. by integrating the detection into ex-
isting tool chains.

6.2.7. Evaluation of validity
We use the structure of threats to validity from (Runeson et al.,
2012) to discuss the evaluation of the validity of our study.

Construct validity. In our evaluation, we analyzed Requirements
Smells in the terms of false positives, relevance and relation to
quality defects. There are threats that the understanding of these
terms varies and, thus, the results are not repeatable. Yet, we are
confident that our validity procedures described in Sect. 6.1.5 re-
duced this threat. For the false positives, we classified a subset of
the findings independently, and afterwards compared (inter-rater
agreement Cohen’s kappa: 0.53) and discussed the results. We sub-
sequently reclassified a different subset of findings again, which
lead to an inter-rater agreement (Cohen’s kappa) of 0.72. For the
classification of false negatives, we reclassified one document sepa-
rately, calculating the percentage of agreement on false positives'*.
This lead to an agreement of 88%.

We consider both of these substantial agreements, especially in
the inherently ambiguous and complex domain of RE. Thus, we
consider this threat as sufficiently controlled.

Internal validity. A threat to the internal validity of our results is
that the experience of the students as well as the practitioners
might play a role in their ratings of relevance or detection of qual-
ity defects. We mitigated this threat by choosing only practitioners
for the ratings and interviews who had several years of experience.
The students are only in the second year. We cannot mitigate this
threat but consider the effect to be small. There might be some de-
fects not found by the students that could have been indicated by a
smell as well as unfound defects undetectable by smells. Hence, fu-
ture studies will add to the classification but are unlikely to change
it substantially. Personal pride could potentially have an impact on
the answers to a RQ 2.2, if practitioners are not able to profes-
sionally discuss their own work products. In our cases, however,

4 We did not employ Cohen’s kappa here, since the number of true positives
(non-smell words) would strongly dominate the result and therefore skew the inter-
rater agreement. Instead, we calculated the ratio of findings which both rating
teams independently classified as false positive to the number of findings which
only one of the teams classified false positive.

210 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

all practitioners openly accepted the discussions (as can be seen
in their answers). Even though we carefully supervised this threat,
we have not found signs of personal bias in the cases involved. Fi-
nally, the students might also have been influenced by the review
guidelines we provided. Yet, none of the investigated smells was
explicitly listed in the guidelines. Instead, the guideline contained
rather high-level aspects such as “unambiguity”. Although we con-
sider this threat to be a minor one, it is still present.

External validity. As requirements engineering is a diverse field,
the main threat to the external validity of our results is that we
do not cover all domains and ways of specifying requirements. We
mitigated this threat to some degree by covering at least several
different domains and study objects, of which some are purely tex-
tual requirements artifacts, some use cases, and some user stories.
We argue that this represents a large share of today’s requirements
practices.

Reliability. Our study contains several classifications and ratings
performed by people. This constitutes a threat to the reliability
of our results. We are confident, however, that the peer debriefing
and member checking procedures helped to reduce this threat.

7. Conclusion

In this paper, we defined Requirements Smells and presented
an approach to the detection of Requirements Smells which we
empirically evaluated in a multi-case study. In the following, we
summarize our conclusions, relate it to existing evidence on the
detection of natural language quality defects in requirements arti-
facts, and we discuss the impact and limitations of our approach
and its evaluation. We close with outlining future work.

7.1. Summary of conclusions

First, we proposed a light-weight approach to detect Require-
ments Smells. It is based on the natural language criteria of
ISO 29148 and serves to rapidly detect Requirements Smells. We
define the term Requirement Smell as an indicator of a quality vi-
olation, which may lead to a defect, with a concrete location and
a detection mechanism, and we also give definitions of a concrete
set of smells.

Second, we developed an implementation that is able to detect
Requirements Smells by using part-of-speech (POS) tagging, mor-
phological analysis and dictionaries. We found that it is possible to
provide such tool support and outlined how such a tool could be
integrated into quality assurance.

Third, in the empirical evaluation, our approach showed to sup-
port us in automatically analyzing requirements of the size of 250k
words. Findings were present throughout all cases but in varying
frequencies between 22 and 67 findings per 1000 words. Outliers
indicated serious issues. An investigation of the detection precision
showed an average precision around 0.59 over all smells, again
varying between 0.26 and 0.96. The recall was on average 0.82, but
also varied between 0.5 and 0.95. To improve the accuracy, we de-
scribed concrete improvement potential based on real world, prac-
tical examples.

A further analysis of reviews and practitioner’s opinions
strengthen our confidence that smells indicate quality defects
in requirements. For these quality defects, practitioners explicitly
stated the negative impact of discovered findings on estimation
and implementation in projects. The study also showed, however,
that while Requirements Smell detection can help during QA pre-
sumedly in a broad spectrum of methodologies followed (including
agile ones), the relevance of Requirements Smells varies between
cases. Hence, it is necessary to tailor the detection to the context

of a project or company. We analyzed this factor in depth, demon-
strating that the reason part of a user story contains most findings
(absolutely and relatively), but practitioners consider these findings
less relevant as they argue that this part is not commonly used in
implementation or testing. This raises the question of the relevance
of this part at all, at least from a quality assurance perspective,
which should be investigated in future work.

Our comparison with defects found in reviews furthermore
showed that the Requirements Smell detection partly overlaps with
results from reviews. As a result, we provide a map of defects in
requirements artifacts in which we give a first indication where
Requirements Smells can provide support and where they cannot.

Therefore, we provide empirical evidence from multiple, inde-
pendent sources (manual inspection, interviews with practition-
ers, independent manual reviews) for multiple, independent cases,
showing that Requirements Smells can indicate relevant defects
across different forms of requirements, different domains, and dif-
ferent methodologies followed.

7.2. Relation to existing evidence

Existing approaches in the direction of automatic QA for RE are
based on various quality models, including the ambiguity hand-
book by Berry et al. (2003), the now superseeded IEEE 830 stan-
dard (IEEE Computer Society, 1998) and proprietary models. Yet,
according to a recent literature review by Schneider and Beren-
bach (2013), ISO 29148 is the current standard in RE “that ev-
ery requirements engineer should be familiar with”. However, no de-
tailed empirical studies (see Table 1) exist for the quality viola-
tions described in ISO 29148. When comparing to similar, related
quality violations, also few empirical, industrial case studies exist
(see Table 2). Gleich et al. (2010) and Chantree et al. (2006) report
for conceptually similar problems, a precision of the detection be-
tween 34% and 75% (97% in a special case), and a recall between 2%
and 86%. Krisch and Houdek (2015) report a lower precision in an
industrial setting. The precision and recall for the detection of the
smells, which we developed based on the description in the stan-
dard, are in a similar range to the aforementioned. In summary,
this work provides a detailed empirical evaluation on the quality
factors of ISO 29148, including a deeper understanding of both ex-
isting and novel factors.

We also take a first step from the opposite perspective: So far,
to all our knowledge, all related work starts from a certain qual-
ity model and goes into automation. Our results to RQ 3 provides
a bigger picture for understanding in how far quality defects in
requirements could be addressed through automatic analysis in
general.

Our results to RQ 2.2 furthermore provides evidence for the
claim by Gervasi and Nuseibeh (2002) that “Lightweight validation
can discover subtle errors in requirements.” More precisely, our work
indicates that automatic analysis can find a set of relevant defects
in requirements artifacts by providing evidence from multiple case
studies in various domains and approaches. The responses by prac-
titioners to the findings do, to some extent, contradict the claim by
Kiyavitskaya et al. (2008) who state that “any tool [...] should have
100% recall”. Practitioners responded very positively on our first
prototype and the smells it finds. Yet, obviously, more detailed and
broader evaluations, especially conducted independently by other
researchers not involved in the development of Smella, should fol-
low.

7.3. Impact/Implications

For practitioners, Requirements Smells provide a way to find
certain issues in a requirements artifact without expensive review

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 211

cycles. We see three main benefits of this approach: First, the ap-
proach, just as static analysis for code, can enable project leads
to keep a basic hygiene for their requirements artifacts. Second,
the review team can avoid discussing obvious issues and focus on
the important, difficult, domain-specific aspects in the review it-
self. Third, the requirements engineers receive a tool for immediate
feedback, which can help them to increase their awareness for cer-
tain quality aspects and establish common guidelines for require-
ments artifacts.

Yet, the low precision for some of the smells might cause un-
necessary work checking and rejecting findings from the automatic
smell detection. Hence, at least for now, it is advisable to concen-
trate on the highly accurate smells.

For researchers, this work sharpens the term Requirements
Smell by providing a definition and a taxonomy. By implement-
ing and rating concrete smell findings, we also came to the con-
clusion, however, that not all of the requirements defects from
ISO/IEC/IEEE 29148 can be clearly distinguished as Requirements
Smells. In particular, the difference between Subjective Language,
Ambiguous Adverbs and Adjectives, Non-verifiable Terms, and Loop-
holes was not always clear to us during our investigations (see
RQ 2.1). Therefore, we, as a community, can take our smell tax-
onomy as a starting point, but we also need to critically reflect on
some smells to further refine the taxonomy.

Finally, empirical evidence in RE is, in general, difficult to obtain
because many concepts depend on subjectivity (Méndez Fernandez
et al., 2014). One issue increasing the level of difficulty in evidence-
based research in RE remains that most requirements specifica-
tions are written in natural language. Therefore, they do not lend
themselves for automated analyses. Requirements Smell detection
provides us with a means to quantify the extent of certain defects
in a large sample of requirements artifacts while explicitly taking
into account the sensitivity of findings to their context. Hence, this
allows us to consider a whole new spectrum of questions worth
studying in an empirical manner.

7.4. Limitations

We concentrated on a first set of concrete Requirements Smells
based on our interpretation of the sometimes imprecise language
criteria of ISO/IEC/IEEE 29148. There are more smells, also with dif-
ferent characteristics than the ones we proposed and analyzed. In
addition, even though we diversified our study objects over do-
mains, methods and different types of requirements, we cannot
generalize our findings to all applicable contexts. We therefore
consider the presented results only a first step towards the contin-
uous application of Requirements Smells in software engineering
projects.

7.5. Future work

Our work focuses on Requirements Smells based on
ISO/IEC/IEEE 29148. Future work needs to clarify and extend
this taxonomy based on related work and experience in practice.
This also includes the development of other Requirements Smell
detection techniques to increase our understanding about which
defects can be revealed by Requirements Smells and which defects
cannot.

Second, this first study gained first insights into the usefulness
of Requirements Smells for QA. We furthermore sketched an inte-
gration of Requirements Smells into a QA process. Yet, a full inte-
gration and the consequences must be analyzed in depth. In par-
ticular, we need to understand whether smell detection as a sup-
porting tool, similar to spell checking, as pointed out by one of
our participants, enables requirements engineers to improve their
requirements artifacts.

Lastly, Requirements Smells focus on the detection of issues in
requirements artifacts. They require a thorough understanding of
the impact of a quality defect, which is hence also part of the
requirements smell taxonomy. This link must be carefully evalu-
ated and analyzed in practice. Our preliminary works on this topic
(Femmer et al., 2014a; Mund et al., 2015) provide first ideas in that
direction.

Acknowledgments

We would like to thank Elmar Juergens, Michael Klose, Ilona
Zimmer, Joerg Zimmer, Heike Frank, Jonas Eckhardt as well as the
software engineering students of Stuttgart University for their sup-
port during the case studies and feedback on earlier drafts of this
paper.

This work was performed within the project Q-Effekt; it was
partially funded by the German Federal Ministry of Education and
Research (BMBF) under grant no. 011S15003 A-B. The authors as-
sume responsibility for the content.

Appendix A. Requirements checklist

Table A.11

Checklist for the students’ requirements reviews. Created by Anke Drappa, Patricia
Mandl-Striegnitz and Holger Réder based on (Cockburn, 2000) and (Ludewig and
Lichter, 2010). Translated from German.

The document is well structured and easy to understand.

All used terms are clearly defined and consistently used.

All external interfaces are clearly defined.

The level of detail is consistent throughout the document.

The requirements are consistent and unambiguous.

The defined requirements are consistent with the state of the art.

All tasks and data have useful identifiers.

Data is not defined redundantly.

The defined relationships between data objects are necessary and sufficient.

The specification of quality attributes is realistic, useful, quantifiable and
unambiguous.

The user interface is comfortable and easy to learn.

The use case describes a behavior of the system which is valuable and visible for
the actor.

The use case is described in a table which is consistently used for the whole
requirements specification.

The use case has a unique ID.

The use case has a unique and expressive name.

The main actor’s goal is described in an understandable way.

All actors participating in the use case are specified.

If there is more than one actor, the main actor is identified.

The preconditions of the use case are specified.

The postconditions for the use case are specified.

It is clearly specified how the main actor triggers the main success scenario.

The main success scenario has 3 to 9 steps.

After the main success scenario, the postconditions hold.

The main actor reaches their goal by the main success scenario.

Each step is sequentially numbered.

It is clear which actor is executing the step.

The step does not describe details of the user interface.

The step describes exactly one action of the acting actor.

There are postconditions for each extension.

It is clearly specified in which step the main success scenario deviates into an
extension.

The conditions for the deviation into an extension are clearly specified.

After an extension, all postconditions for that extension hold.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.js5.2016.02.047

References

Ambriola, V., Gervasi, V., 2006. On the systematic analysis of natural language
requirements with CIRCE. Autom. Software Eng. 13 (1), 107-167. doi:10.1007/
$10515-006-5468-2.

212 H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213

Anda, B., Sjeberg, D.LK., 2002. Towards an inspection technique for use case models.
In: Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering. ACM doi:10.1145/568760.568785.

Anderson, DJ., 2010. Kanban. Blue Hole Press.

Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.,, 2015. Automated checking of confor-
mance to requirements templates using natural language processing. IEEE Trans.
Software Eng. 41 (10), 944-968. doi:10.1109/TSE.2015.2428709.

Berry, D., Gacitua, R., Sawyer, P, Tjong, S.F,, 2012. The case for dumb requirements
engineering tools. In: Requirements Engineering: Foundation for Software Qual-
ity. Springer, Berlin, Heidelberg, pp. 211-217. doi:10.1007/978-3-642-28714-5_
18.

Berry, D.M., Bucchiarone, A., Gnesi, S. Lami, G. Trentanni, G., 2006. A new
quality model for natural language requirements specifications. In: Require-
ments Engineering: Foundation for Software Quality. Essener Informatik
Beitrdge.

Berry, D.M., Kamsties, E., Krieger, M.M., 2003. From contract drafting to software
specification: linguistic sources of ambiguity. Technical Report. School of Com-
puter Science, University of Waterloo, Waterloo, ON, Canada.

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kam-
sky, A., McPeak, S., Engler, D., 2010. A few billion lines of code later: using
static analysis to find bugs in the real world. Commun. ACM 53 (2), 66-75.
doi:10.1145/1646353.1646374.

Bradner, S., 1997. Key words for use in RFCs to Indicate Requirement Levels - RFC
2119. https://www.ietf.org/rfc/rfc2119.txt.

Bucchiarone, A., Gnesi, S., Pierini, P,, 2005. Quality analysis of NL requirements: an
industrial case study. In: 13th IEEE International Requirements Engineering Con-
ference, pp. 390-394.

Chantree, F, Nuseibeh, B., Roeck, A.D., Willis, A., 2006. Identifying nocuous ambigu-
ities in natural language requirements. In: 14th IEEE International Requirements
Engineering Conference, pp. 59-68. doi:10.1109/RE.2006.31.

Ciemniewska, A., Jurkiewicz,]., Olek, L., Nawrocki,]., 2007. Supporting use-case re-
views. In: Business Information Systems. Springer, Berlin, Heidelberg, pp. 424-
437. doi:10.1007/978-3-540-72035-5_33.

Cockburn, A., 2000. Writing Effective Use Cases. Addison-Wesley.

Cohn, M., 2004. User Stories Applied: For Agile Software Development. Addis-
on-Wesley Professional.

Davis, A., Overmyer, S., Jordan, K., Caruso,], Dandashi, F, Dinh, A., Kincaid, G.,
Ledeboer, G., Reynolds, P., Sitaram, P, Ta, A., Theofanos, M., 1993. Identifying
and measuring quality in a software requirements specification. In: Proceed-
ings First International Software Metrics Symposium, pp. 141-152. doi:10.1109/
METRIC.1993.263792.

De Bruijn, F, Dekkers, H.L, 2010. Ambiguity in natural language software re-
quirements: a case study. In: Requirements Engineering: Foundation for
Software Quality. Springer, Berlin, Heidelberg, pp. 233-247. doi:10.1007/
978-3-642-14192-8_21.

Denger, C., Berry, D., Kamsties, E., 2003. Higher quality requirements specifications
through natural language patterns. In: Software: Science, Technology and Engi-
neering. IEEE, pp. 80-90. doi:10.1109/SWSTE.2003.1245428.

van Deursen, A., Moonen, L., van den Bergh, A., Kok, G., 2001. Refactoring test code.
CWIL.

Fabbrini, F., Fusani, M., Gnesi, S., Lami, G., 2001a. An automatic quality evaluation
for natural language requirements. In: Proceedings of the Seventh International
Workshop on Requirements Engineering: Foundation for Software Quality, vol.
1, pp. 4-5.

Fabbrini, F, Fusani, M., Gnesi, S., Lami, G., 2001b. The linguistic approach to the
natural language requirements quality: benefit of the use of an automatic tool.
In: Proceedings 26th Annual NASA Goddard Software Engineering Workshop.
IEEE Computer Society, pp. 97-105. doi:10.1109/SEW.2001.992662.

Fagan, M., 2002. Design and code inspections to reduce errors in program develop-
ment. In: Software Pioneers. Springer, pp. 575-607.

Falessi, D., Cantone, G., Canfora, G., 2013. Empirical principles and an industrial
case study in retrieving equivalent requirements via natural language process-
ing techniques. IEEE Trans. Software Eng. 39 (1), 18-44.

Fantechi, A., Gnesi, S., Lami, G., Maccari, A., 2003. Application of linguistic tech-
niques for use case analysis. Requirements Eng. 8 (3), 161-170. doi:10.1109/ICRE.
2002.1048518.

Femmer, H., KuCera,]., Vetro, A., 2014a. On the impact of passive voice requirements
on domain modelling. In: Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ACM, New York,
NY, USA, pp. 21:1-21:4. doi:10.1145/2652524.2652554.

Femmer, H., Méndez Fernandez, D., Juergens, E., Klose, M., Zimmer, 1., Zimmer, J.,
2014b. Rapid requirements checks with requirements smells: two case studies.
In: Proceedings of the 1st International Workshop on Rapid Continuous Soft-
ware Engineering. ACM, New York, NY, USA, pp. 10-19. doi:10.1145/2593812.
2593817.

Femmer, H., Méndez Fernandez, D., Wagner, S., Eder, S., 2015. Supplementary on-
linematerial: analysis of related work. Created on: 2015-12-22.

Femmer, H., Mund,], Mendez Fernandez, D., 2015. It's the activities, stupid! A
new perspective on RE quality. In: Proceedings of the 2nd International Work-
shop on Requirements Engineering and Testing, pp. 13-19. doi:10.1109/RET.2015.
11.

Fowler, M., Beck, K., 1999. Refactoring: Improving the Design of Existing Code. Ad-
dison-Wesley Professional.

Génova, G., Fuentes, .M., Llorens, J., Hurtado, O., Moreno, V., 2011. A framework to
measure and improve the quality of textual requirements. Requirements Eng. 18
(1), 25-41. doi:10.1007/s00766-011-0134-z.

Gervasi, V., Nuseibeh, B., 2002. Lightweight validation of natural language require-
ments. Software: Pract. Exper. 32 (2), 113-133. doi:10.1002/spe.430.

Gleich, B., Creighton, O., Kof, L, 2010. Ambiguity detection: towards a tool ex-
plaining ambiguity sources. In: Requirements Engineering: Foundation for
Software Quality. Springer, Berlin, Heidelberg, pp. 218-232. doi:10.1007/
978-3-642-14192-8_20.

Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R, Braun, P, 2013. Hunting
for smells in natural language tests. In: Proceedings of the International Confer-
ence on Software Engineering, pp. 1217-1220. doi:10.1109/ICSE.2013.6606682.

IEEE Computer Society, 1998. IEEE Recommended Practice for Software Require-
ments Specifications. https://standards.ieee.org/findstds/standard/830-1998.
html.

ISO, IEC, IEEE, 2011. ISO/IEC/IEEE 29148:2011. https://standards.ieee.org/findstds/
standard/29148-2011.html.

Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B., Schaetz, B., Wagner, S., Do-
mann, C., Streit, J., 2010. Can clone detection support quality assessments of
requirements specifications? In: Proceedings of the International Conference on
Software Engineering, pp. 79-88. doi:10.1145/1810295.1810308.

Juergens, E., Deissenboeck, F, Hummel, B., Wagner, S., 2009. Do code clones mat-
ter? In: Proceedings of the International Conference on Software Engineering,
pp. 485-495.

Jurafsky, D., Martin, J.H., 2014. Speech and Language Processing, 2nd ed. Pearson
Education.

Kamata, M.L, Tamai, T., 2007. How does requirements quality relate to project suc-
cess or failure? In: 15th IEEE International Requirements Engineering Confer-
ence, pp. 69-78. doi:10.1109/RE.2007.31.

Kamsties, E., Berry, D.M., Paech, B., 2001. Detecting ambiguities in requirements doc-
uments using inspections. In: Proceedings of the 1st Workshop on Inspection in
Software Engineering, pp. 68-80.

Kamsties, E., Peach, B., 2000. Taming ambiguity in natural language requirements.
In: Proceedings of the International Conference on System and Software Engi-
neering and their Applications, pp. 1-8.

Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M., 2008. Requirements for tools for am-
biguity identification and measurement in natural language requirements spec-
ifications. Requirements Eng. 13 (3), 207-239. doi:10.1007/s00766-008-0063-7.

Knauss, E., Flohr, T., 2007. Managing requirement engineering processes by adapted
quality gateways and critique-based RE-tools. In: Proceedings of Workshop on
Measuring Requirements for Project and Product Success.

Knauss, E., Liibke, D., Meyer, S., 2009. Feedback-driven requirements engineering:
the heuristic requirements assistant. In: Proceedings of the International Con-
ference in Software Engineering, pp. 587-590.

Knight, J.C., Myers, E.A., 1993. An improved inspection technique. Commun. ACM 36
(11), 51-61. doi:10.1145/163359.163366.

Kof, L., 2007a. Scenarios: identifying missing objects and actions by means of com-
putational linguistics. In: Proceedings of the 15th IEEE International Require-
ments Engineering Conference, pp. 121-130. doi:10.1109/RE.2007.38.

Kof, L., 2007b. Treatment of passive voice and conjunctions in use case documents.
In: Natural Language Processing and Information Systems, vol. 4592, pp. 181-
192. doi:10.1007/978-3-540-73351-5_16.

Korner, S.J., Brumm, T., 2009a. Improving natural language specifications with on-
tologies. In: Proceedings of the 21st International Conference on Software Engi-
neering and Knowledge Engineering. World Scientific, pp. 552-557.

Korner, SJ., Brumm, T, 2009b. Natural language specification improvement
with ontologies. Int.]J. Semant. Comput. 03 (04), 445-470. doi:10.1142/
$1793351X09000872.

Kérner, SJ., Brumm, T., 2009. RESI - A natural language specification improver. In:
Proceedings of the 2009 IEEE International Conference on Semantic Computing.
IEEE, pp. 1-8. doi:10.1109/ICSC.2009.47.

Krisch, J., Houdek, F, 2015. The myth of bad passive voice and weak words: an
empirical investigation in the automotive industry. In: 23rd IEEE International
Requirements Engineering Conference, pp. 344-351.

Lamsweerde, A.V., 2009. Requirements Engineering. John Wiley & Sons.

Lucassen, G., Dalpiaz, F., Brinkkemper, S., van der Werf, J., 2015. Forging high-quality
user stories: towards a discipline for agile requirements. In: 23rd IEEE Interna-
tional Requirements Engineering Conference, pp. 126-135.

Lucia, A.D., Fasano, F, Oliveto, R, Tortora, G., 2007. Recovering traceability links
in software artifact management systems using information retrieval methods.
ACM Trans. Software Eng. Methodol. 16 (4). doi:10.1145/1276933.1276934.

Ludewig,]., Lichter, H., 2010. Software Engineering, 2nd ed. dpunkt.verlag.

Mavin, A., Wilkinson, P., Harwood, A., Novak, M., 2009. EARS (Easy approach to re-
quirements syntax). In: Proceedings of the IEEE International Conference on Re-
quirements Engineering, pp. 317-322. doi:10.1109/RE.2009.9.

Méndez Fernindez, D., Mund, J., Femmer, H., Vetro, A., 2014. In quest for require-
ments engineering oracles: dependent variables and measurements for (good)
RE. In: Proceedings of the 18th International Conference on Evaluation and As-
sessment in Software Engineering. ACM, pp. 3:1-3:10.

Méndez Fernandez, D., Wagner, S., 2015. Naming the pain in requirements engineer-
ing: a design for a global family of surveys and first results from Germany. Inf.
Software Technol. 57 (1), 616-643.

Menzies, T., Dekhtyar, A., Distefano, J., Greenwald, J., 2007. Problems with precision:
a response to "Comments on 'data mining static code attributes to learn defect
predictors™. IEEE Trans. Software Eng. 33 (9), 637-640. doi:10.1109/TSE.2007.
70721.

Mich, L., Franch, M., Novi Inverardi, PL., 2004. Market research for requirements
analysis using linguistic tools. Requirements Eng. 9 (2), 151. doi:10.1007/
s00766-004-0195-3.

H. Femmer et al./The Journal of Systems and Software 123 (2017) 190-213 213

Mund, J., Femmer, H., Méndez Fernandez, D., Eckhardt,]., 2015. Does quality of re-
quirements specifications matter? Combined results of two empirical studies.
In: Proc. of the 9th International Symposium on Empirical Software Engineer-
ing and Measurement, pp. 1-10.

Parachuri, D., Sajeev, A., Shukla, R., 2014. An empirical study of structural defects
in industrial use-cases. In: Proceedings of the International Conference on Soft-
ware Engineering. ACM, pp. 14-23.

Porter, M., 1980. An algorithm for suffix stripping. Program 14 (3), 130-137. doi:10.
1108/eb046814.

Rago, A., Marcos, C., Diaz-Pace, J.A., 2014. Identifying duplicate functionality in
textual use cases by aligning semantic actions. Software Syst. Model. 1-25.
doi:10.1007/s10270-014-0431-3.

Runeson, P., Host, M., 2008. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Eng. 14 (2), 131-164.
doi:10.1007/s10664-008-9102-8.

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in Software
Engineering. Guidelines and Examples. Wiley.

Salger, F,, 2013. Requirements reviews revisited: residual challenges and open re-
search questions. In: Proceedings of the 2013 21st IEEE International Require-
ments Engineering Conference. IEEE, pp. 250-255.

Schmid, H., Laws, F, 2008. Estimation of conditional probabilities with decision
trees and an application to fine-grained POS tagging. In: Proceedings of the
Conference on Computational Linguistics. Association for Computational Lin-
guistics, pp. 777-784.

Schneider, F, Berenbach, B., 2013. A literature survey on international standards
for systems requirements engineering. In: Proceedings of the Conference on
Systems Engineering Research, vol. 16, pp. 796-805. doi:10.1016/j.procs.2013.01.
083.

Schwaber, K., Sutherland, J., 2011. The scrum guide. Technical Report. Scrum.org.

Shull, F, Rus, I, Basili, V., 2000. How perspective-based reading can improve re-
quirements inspections. Computer 33 (7), 73-79. doi:10.1109/2.869376.

Tjong, S.E, Berry, D.M., 2013. The design of SREE - a prototype potential ambiguity
finder for requirements specifications and lessons learned. In: REFSQ. Springer,
Berlin, Heidelberg, pp. 80-95. doi:10.1007/978-3-642-37422-7_6.

Toutanova, K., Klein, D., Manning, C.D., 2003. Feature-rich part-of-speech tagging
with a cyclic dependency network. In: Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguis-
tics on Human Language Technology, vol. 1, pp. 252-259. doi:10.3115/1073445.
1073478 June

Wagner, S., Jirjens, J., Koller, C., Trischberger, P., 2005. Comparing bug finding tools
with reviews and tests. In: Proceedings of Testing of Communicating Systems.
Springer, pp. 40-55.

Wilson, W.M., Rosenberg, L.H., Hyatt, L.E., 1997. Automated analysis of requirement
specifications. In: Proceedings of the International Conference on Software En-
gineering. ACM, pp. 161-171. doi:10.1109/ICSE.1997.610237.

Zelkowitz, M.V., Yeh, R., Hamlet, R.G., Gannon,].D., Basili, V.R., 1983. The software
industry: a state of the art survey. In: Foundations of Empirical Software Engi-
neering: The Legacy of Victor R. Basili, vol. 1, p. 383.

Zhang, M., Hall, T,, Baddoo, N., 2011. Code bad smells: a review of current knowl-
edge. J. Software Main. Evol. 23 (3), 179-202. doi:10.1002/smr.

Henning Femmer holds an MSc in Software Engineering with honors from Techni-
cal University of Munich, Ludwig-Maximilians University Munich, and the Univer-
sity of Augsburg. His main research interest is the quality of requirements specifi-
cations.

Daniel Méndez Ferndndez studied computer science at the Ludwig-Maximilians
University Munich. He received his PhD and subsequently his habilitation in Com-
puter Science from Technical University of Munich. His research covers empirical
software engineering with a particular focus on requirements engineering.

Stefan Wagner studied computer science in Augsburg and Edinburgh and holds a
PhD in computer science from Technical University of Munich. Since 2011, he is a
full professor of software engineering at the University of Stuttgart. His research
includes work on software quality, requirements engineering, safety & security en-
gineering and agile/lean/continuous software development.

Sebastian Eder holds an MSc in Software Engineering with honors from Technical
University of Munich, Ludwig-Maximilians University Munich, and the University of
Augsburg. His main research interest is software maintenance based on software
usage.

Publication H: Quality Assurance of Requirements
Artifacts in Practice: A Case Study and a Process
Proposal

Authors Henning Femmer, Benedikt Hauptmann, Sebastian Eder, Dagmar Moser

Venue 17th International Conference on Product-Focused Software Process Im-
provement (PROFES2016)

Abstract Requirements artifacts build the basis for various software engineering
activities, such as development, testing or effort estimations. As such, the quality
of requirements artifacts impacts the efficiency and effectiveness of these activities.
Consequently, requirements artifacts should be subject to quality assurance (QA).

Unfortunately, QA of requirements artifacts struggles in practice. We contribute
a first industrial case study, in which we found that the main problems in QA for
requirements artifacts in this case were a missing common quality understanding,
the low feedback speed, low efficiency in the QA process, and, consequently, the lack
of creating a sustaining QA processes.

Based on these results, we furthermore contribute a process for requirements artifact
QA that is designed to address these problems. We discuss feasibility and impact of
the process with industry, who acknowledge its potential to increase efficiency and
to provide a more sustaining QA process in practice.

Extended Summary This paper is summarized in Section 4.3.1.

Authors Contributions 1 co-designed and co-executed the interviews, and analyzed
and co-reported the results.

Reprint Denied The reprint of this publication was rejected on open-access plat-
forms. The publication can be found at https://link.springer.com/. The details are
provided below.

Publication (C) Springer International Publishing AG 2016. Reprint denied.

In: P. Abrahamsson et al. (Eds.): PROFES 2016, LNCS 10027, pp. 506-516, 2016.
DOL: 10.1007/978-3-319-49094-6 36

Product-Focused Software Process Improvement, Quality Assurance of Requirements
Artifacts in Practice: A Case Study and a Process Proposal, 10027, 2016, pp. 506-516,
Henning Femmer, Benedikt Hauptmann, Sebastian Eder, Dagmar Moser

176

A. Publications

Publication I: Which requirements artifact quality
defects are automatically detectable? A case study

Authors Henning Femmer, Michael Unterkalmsteiner, Tony Gorschek

Venue Accepted for publication at the Fourth International Workshop on Artifi-
cial Intelligence for Requirements Engineering (AIRE’17) at the 2017 IEEE 25th
International Requirements Engineering Conference (RE)

Abstract The quality of requirements engineering artifacts, e.g. requirements spec-
ifications, is acknowledged to be an important success factor for projects. Therefore,
many companies spend significant amounts of money to control the quality of their
RE artifacts. To reduce spending and improve the RE artifact quality, methods
were proposed that combine manual quality control, i.e. reviews, with automated
approaches.

So far, we have seen various approaches to automatically detect certain aspects in RE
artifacts. However, we still lack an overview what can and cannot be automatically
detected.

Starting from an industry guideline for RE artifacts, we classify 166 existing rules
for RE artifacts along various categories to discuss the share and the characteristics
of those rules that can be automated. For those rules, that cannot be automated,
we discuss the main reasons.

We estimate that 53% of the 166 rules can be checked automatically either perfectly
or with a good heuristic. Most rules need only simple techniques for checking. The
main reason why some rules resist automation is due to imprecise definition.

By giving first estimates and analyses of automatically detectable and not automati-
cally detectable rule violations, we aim to provide an overview of the potential of
automated methods in requirements quality control.

Extended Summary This paper is summarized in Section 4.4.

Authors Contributions 1 co-designed and co-executed the study, and analyzed and
co-reported the results.

Publication Please find below the preprint accepted for publication.

177

Which requirements artifact quality defects are
automatically detectable? A case study

Henning Femmer
Institut fiir Informatik
Technische Universitit Miinchen, Germany
femmer @in.tum.de

Abstract—[Context:] The quality of requirements engineering
artifacts, e.g. requirements specifications, is acknowledged to
be an important success factor for projects. Therefore, many
companies spend significant amounts of money to control the
quality of their RE artifacts. To reduce spending and improve
the RE artifact quality, methods were proposed that combine
manual quality control, i.e. reviews, with automated approaches.
[Problem:] So far, we have seen various approaches to auto-
matically detect certain aspects in RE artifacts. However, we
still lack an overview what can and cannot be automatically
detected. [Approach:] Starting from an industry guideline for
RE artifacts, we classify 166 existing rules for RE artifacts along
various categories to discuss the share and the characteristics of
those rules that can be automated. For those rules, that cannot
be automated, we discuss the main reasons. [Contribution:] We
estimate that 53% of the 166 rules can be checked automatically
either perfectly or with a good heuristic. Most rules need only
simple techniques for checking. The main reason why some rules
resist automation is due to imprecise definition. [Impact:] By
giving first estimates and analyses of automatically detectable and
not automatically detectable rule violations, we aim to provide an
overview of the potential of automated methods in requirements
quality control.

Index Terms—Requirement Engineering, Artifact Quality, Au-
tomated Methods

I. INTRODUCTION

Requirements Engineering (RE) artifacts play a central role
in many systems and software engineering projects. Due to that
central role, the quality of RE artifacts is widely considered
a success factor, both in academia, e.g. by Boehm [1] or
Lawrence [2], and also by practitioners [3].

As a result, companies invest heavily into quality control of
RE artifacts. Since RE artifacts are written mostly in natural
language [4], quality control is usually applied manually, e.g.
in the form of manual reviews. However, besides all of its
advantages, manual quality control is slow, expensive and
inconsistent, heavily dependent on the competence of the
reviewer. One obvious approach to address this is combining
manual reviews with automated approaches. The goal of a
so-called phased inspection [5], [6] is to reduce the effort in
manual reviews and to improve the review results by starting
into the review with a better (e.g. readable) artifact.

Therefore, various authors have focused on automatically
detecting quality defects, such as ambiguous language (i.a. [7],
[8], [9], [10]) or cloning [11]. However, it is still an open

Michael Unterkalmsteiner, Tony Gorschek
Software Engineering Research Lab,
Blekinge Institute of Technology, Sweden
{mun,tgo} @bth.se

question to what degree quality defects can be detected au-
tomatically or require human expertise (i.e. manual work).
In previous work [10], we took a bottom-up perspective by
qualitatively analyzing which of the quality review results
could be automatically detected.

Research Goal: In this work, we take a top-down perspective
by focusing on requirements writing guidelines from a large
company. Furthermore, we systematically classify and quantify
which proportion of the rules can be automated.

II. RELATED WORK

Researchers and practitioners have been working on sup-
porting quality assurance with automated methods (at least)
since the end of the 1990’s [7]. We want to give only a brief,
non-exhaustive summary here. Please refer to our previous
work [10] for a more detailed analysis.

Defect types: Most works in this area focus on the detection
of various forms of ambiguity, e.g. [8], [12], [13], [14].
Other works try to detect violations of syntactic [11] or
even semantic duplications [15]. Other works focus on correct
classifications [16] or on the question whether an instance
follows given structural guidelines, e.g. for user stories [9]
or for use cases [17].

Criteria: The aforementioned works used different sets of
criteria. Most prominently are definitions of ambiguity [18],
previously summarized lists of criteria [19], or requirements
standards [10], [20].

Techniques: So far, various techniques have been applied,
including machine learning [16], [21] and ontologies [22].
However, Arendse and Lucassen [23] hypothesize that we
might not need sophisticated methods for most aspects of qual-
ity. In this paper, we provide data regarding this hypothesis. All
in all, few works have tried to take a different viewpoint and
understand what cannot be automatically checked. In previous
work [10], we approached this question in a qualitative man-
ner, by looking not at definitions, but at instances of defects.
We did not quantify the portion of automatically discoverable
defects, since this depends heavily on the requirements at hand
(which defects does an author introduce and a reviewer find?).

Research Gap: Various authors have shown how to au-
tomatically detect individual quality defects. In previous
work [10] we qualitatively analyzed which requirements qual-
ity defects can be detected. In this work, we provide first

evidence, based on requirements writing rules used in a large
organization, on the proportion between automatically/not
automatically detectable requirements quality issues.

III. STUDY DESIGN

We conducted this study in a research collaboration with
the Swedish Transport Administration (STA), the government
agency responsible for planning, implementing and maintain-
ing long-term rail, road, shipping and aviation infrastructure in
Sweden. In particular, we studied their requirements guidelines
that were developed by editors who review and quality assure
specifications. A total of 129 rules were analyzed in this paper.
While our long-term goal in this research collaboration, is
described in more detail elsewhere [24], the specific research
goal of this paper is to characterize requirements writing rules
with respect to their potential to be automatically checked
from the viewpoint of a requirements quality researcher in the
context of an industrial requirements quality control process.
From this goal definition we derive our research questions:
RQ1: How many rules for natural language requirements

specifications can be automated?

RQ2: To what degree can rules be categorized into groups
and to what degree can these groups be eligible for
automation?

RQ3: What information is required to automatically detect
rule violations?

RQ4: Which rules resist automation and why?

A. Rule classification

A lack of classification schema for requirements writing
rules prompted us to formulate the following schema (see
Tbl. I).

1) Rule type: We distinguish between the lexical, gram-
matical, structural and semantic rule type (see rules 160, 56,
78 and 81 in Tbl. I). A lexical rule refers to constraints
on the use of certain terms or expressions that may induce
ambiguity, reduce understandability or readability. Similarly, a
grammatical rule refers to constraints on sentence composition.
A structural rule refers to the form in which information is
presented and formatted. Finally, a semantic rule refers to
constraints on the text content and meaning.

2) Rule context: We introduced this dimension to charac-
terize in which context of the requirements specification the
rule is relevant. An appropriate automated check flags only
violations that occur in the correct context, e.g. in requirements
(if they are separated from informative text), figures, tables,
references, headings, enumerations, comments.

3) Information scope: This dimension describes the scope
that needs to be considered in order to decide whether the
rule is violated or not. We defined five levels: word/phrase,
sentence, section, document and global. For example, to check
rule 56 in Tbl. 1, it is enough to inspect a sentence. However,
rule 24 requires access to information that is not in the
requirements specification, hence we classified it as global
information scope. This characterization provides indication
that can be used to estimate the relative required effort to
implement the automated check of the rule.

%
%y,
1 %, b
%,.% °
)
S,
%
(s
%
) %%,
3 %
g %
: %
“%
%, %0
\S‘éo
0 Z
%
% 4/0, [} Recall 1
%
%

Fig. 1. The categories of detection accuracy as used in this study

4) Necessary information: This dimension describes NLP-
based and domain-specific information needed to detect rule
violations. NLP-based information refers to language and doc-
ument structure, such as Part-of-Speech (POS) tags, lemmas
and word stems, morphological tags, parse trees and meta-data
on formatting. Domain-specific information is only available
in the specific domain in which the rules apply, e.g. lists
of referenced documents or a domain model / ontology. For
example, rule 50 in Tbl. I can be decided with POS tags while
rule 56 requires a parse tree that indicates where the subject
is positioned in the sentence.

5) Detection accuracy: This dimension provides a rough
estimate, based on the experiences of previous work [20],
on the expected accuracy for detecting rule violations. We
have defined a five-level scale, illustrated in Fig. 1, spanning
from deterministic, i.e. 100% detectable, to not detectable at
all. Good heuristics feature both high recall and precision,
while bad heuristics always trade-off between precision and
recall. For example, while assigning POS tags is a probabilistic
algorithm, we classified rule 50 in Tbl. I as a good heuristic
since this particular problem has been solved before, with
demonstrably high precision and recall. We classified rule 81,
on the other hand, as bad heuristic since, while conceptually
feasible, we lack an accurate solution, i.e. a technique to
extract a domain model and use that to determine whether
a requirement statement contains supplemental information.
Then, there are also rules that we do not expect to be
automatically detectable at all (rule 54), because they turn
out to be challenging, even in manual reviews. We classified
these not automatically detectable rules along main reasons
(categories resulted from previous work [10], see Tbl. III).

B. Data Collection, Classification and Analysis

We received a total of 192 writing rules from STA, of
which we filtered unapproved rule ideas (63), resulting in 129
original rules. In case a rule contained discernible sub-rules,
we split them up to facilitate the classification, resulting in
166 classified rules. We then developed an initial version of
the classification schema illustrated in Section III-A. While all

TABLE I
CLASSIFICATION SCHEMA WITH RULE EXAMPLES

ID Rule Type Context Scope Necessary Detection
information accuracy
160 The term “function” shall be used instead of the term Lexical Anywhere Word/Phrase ~ Lemma / Dictionary Deterministic
“functionality”.
56 Requirements shall start with the subject. Grammatical Requirement Sentence Parse tree Heuristic (h)
78 Text consisting of a definition shall be preceded with Structural Requirement ~ Section Lemma / Dictionary Heuristic (m)
the identifier “Definition:”.
81 If a functional requirement is supplemented with ~ Semantic Requirement Section Domain model Heuristic (1)
additional information to clarify how the requirement
can be met, the additional information must be
formulated as a separate requirement.
24 References to other documents in the specification Structural Anywhere Global Regular expressions, Deterministic
are done by reference to the document title. Document list
50 Requirements must be understandable independently, ~ Semantic Requirement ~ Sentence POS tags Heuristic (h)
i.e. the subject must be indicated in the respective
requirements (the subject must not be only defined
in the section title).
54 The introductory section of the specification shall not - - - - Not
contain any requirements. detectable
dimensions and the categories for type and detection accuracy
were defined a-priori, the categories for context, scope and
necessary information were identified during the classification 60
process. During this first workshop we classified 39 rules, 50 4
stabilizing the schema and fostering our shared understanding.
Then, the second author proceeded to classify the remaining ® 40 -
127 rules alone. The first author sampled 20 rules from this 32
set, independently classified them and calculated the inter-rater 5 30 4
agreement (k = 0.79) which is considered substantial [25]. *
The first author then reviewed all 127 rules, marked those 20
where he disagreed, and finally consolidated all classifications
with the second author in a second workshop. 10 059, 119, 119, 199, "
O, 0, 0, 0, 0,
We then used the classifications of accuracy for RQI1, the ° ° ° ° °
type, context and scope for RQ2, the necessary information 0-
= = = o
for RQ3, and the reasons for RQ4. % 5 £ = =
b 2 o 2 =
g < iz g E
© = =] @
8 & 3 3 32
IV. RESULTS P T T a
P4

RQI: How many rules for natural language requirements
specifications can be automated?

In Fig. 2, we show the results from classifying the estimated
detection accuracy of the rules. We estimate that 41% of
the rules can be deterministically checked, meaning that an
algorithm finds each violation. 34% of the rules are heuristic,
with 12% of high accuracy, and 11% of medium and low
accuracy. We estimate that the remaining 25% cannot be
checked at the current state of art and at the current state
of the rule definitions.

Discussion: Whether rules can be automatically detected is not
a binary question. In fact, it depends on the context. However,
most rules we can put into a certain category, indicating their
potential to be automatically checked. We were surprised by
the large number of rules that can be automated. This indicates
the potential for automation, as we will discuss in future work.

Fig. 2. Frequency of rules falling into one of the detection accuracy categories.

RQ?2: To what degree can rules be categorized into groups and
to what degree can these groups be eligible for automation?

In Fig. 3, we show the results from classifying the automat-
ically detectable rules by their type and estimated detection
accuracy. The results indicate an estimated high detection
accuracy for structural and lexical rules, medium accuracy for
grammatical rules, and medium to low accuracy for semantic
rules. Fig. 4 shows that most rules are at the level of words or
phrasing or at the level of sentences. Lastly, Fig. 5 shows
that most rules hold anywhere or specifically concern the
requirements of the RE artifact.

Discussion: The further a rule goes into semantic aspects, the
harder it is to detect violations. For structural rules, e.g. where

35
30
25]
3
] 20
ks
#* 154
104
5 | |_l_
0 :—l_ -
Lexical Grammatical ~ Structural Semantic
| B8 Heuristic () & Heuristic (m) 3 Heuristic (h) [Deterministic |
Fig. 3. Estimated detection accuracy for each category.
50
40
E 30
=
S
©
** 20 +
10
6% 8% 18% 27% 41%
O .
g g S 8 2
9 £ 5 ® g
0] S [} - =
g 2 o 3
o} » s
=

Fig. 4. Distribution of the scope of the automatically detectable rules.

a certain piece of information should be placed, there are a few
rules for which violations are difficult to check automatically.
For example, to understand whether a certain text should
be tagged as a requirement requires context understanding.
We describe further reasons for rules not being automatically
detectable in RQ4.

RQ3: What information is required to automatically detect rule
violations?

To understand what techniques are required to automatically
detect violations of guideline rules, we classified each rule
with the required information for this rule. Each required
information then leads to a certain technique. For example,
if the lemmas of the words are required, we obviously need
a lemmatization technique. Tbl. II shows the results for this
analysis. The three most common techniques are the following:
In 47% of the cases, lemmatization is required to detect a

50
40
n
2 30 1
2
ks
w 20 1
10§ 44%| 4% 1% 1% [B8%| 3% 4% 2% 3%
04 PR —
[0) c =) = = %) %) ©
t & @ § © © E & 2
£ © E€ = E E 2 8 o
= o > o] S c [et
S 7] = = = € L = [)
c IS =] L =] Q ° @
< = o o o (@) c o
S o] %] Q ®©
® o © o n
5 ¢ & £
® 5 & 2
£ =
©
a

Fig. 5. Context of the automatically detectable rules.

violation of a rule. In a further 35% of cases only the pure
text and regular expressions are needed. Next, formatting
information is required in 22% of the cases.
Discussion: This analysis supports the hypothesis of Arendse
and Lucassen [23] that in most cases, we do not need sophis-
ticated methods to detect violations of rules.

TABLE II
FREQUENCY OF REQUIRED INFORMATION (MULTIPLE SELECTIONS)

Information Occurrences Share of Rules
Lemmas / Dictionaries 58 47 %
Pure Text (Reg. Expression) 43 35 %
Formatting 27 22 %
Domain Models 11 9 %
Part of Speech Tags 11 9 %
Lists of [X] 8 6 %
Morphology 5 4 %
Parse Trees 3 2 %
Word Stems 3 2 %
Tokens / Sentences 3 2 %
Named Entities 1 1 %

RQA4: Which rules resist automation and why?

When analyzing the not automatically detectable rules of
RQI, the reasons were distributed as shown in Tbl. III (classi-
fication extends previous work [10]). The major reason was, in
our studied case, that the rules themselves are still imprecise
or unclear. Examples for this are rules such as ”Requirements
must be accurate, unambiguous, comprehensive, consistent,
modifiable, traceable.” (this was one single rule) or ”Require-
ments should contain enough information.” These rules cannot
be checked either manually or automatically. One could even
argue that they convey little value. Such imprecise or unclear

rules are the reason for 81% of the not automatically detectable
rules (see Tbl. III). In 12% of the cases, an automation would
need profound domain knowledge to automatically detect
a violation. An example is that requirements about certain
system parts must first state that these parts exist. However, to
understand which parts this refers to, we would need to know
the domain. This means that only domain experts can manually
detect violations to these rules. In one case, respectively, the
rule requires deep semantic understanding of the text (e.g.
to detect logical contradictions written in natural language in
different paragraphs), the system or even the process scope.

TABLE III
SHARE OF REASONS THAT PREVENT AUTOMATED DETECTION

Reason Frequency Share
R1: Rule unclear or imprecise 34 81 %
Ra: Deep semantic text understanding 1 2 %
R3: Profound domain knowledge 5 12 %
Ry4: System scope knowledge 1 2 %
Rs: Process status knowledge 1 2 %
Sum 42 100 %

Discussion: Deep computational problems do not seem to be
the major cause for why we see no chance in checking a certain
rule, rather imprecise rules themselves.

V. DISCUSSION
A. Share of automatically detectable defects

In our study, we found that a substantial number of re-
quirements writing rules can be automatically checked. This
is a top-down perspective and as such helps to quantify the
share of defects that can be automatically detected. However,
this does not necessarily transfer to the share of defects
found in reviews. This is for the following reasons: First,
defects created by requirements engineers are not equally
distributed over the guideline rules. Furthermore, the defects
introduced by requirements engineers very much depend on
the individual person, company, and project. Second, defects
discovered by reviewers are not necessarily equally distributed
over the guideline rules. Therefore, we argue to consider both
perspectives, i.e. the share of defects based on guidelines and
the share of defects existing in practice, when discussing the
potential of automated requirements quality assurance.

B. The 100%-Recall Argument

There is an ongoing debate in the scientific community
whether automated checks in quality assurance need 100%
recall to be useful in practice. Some authors (i.a. [26], [27],
[28]) argue that if an approach does not achieve perfect
recall, this leads to either the reviewer does not check the
rule anymore, which would lead to unchecked defects, or the
reviewer has to go through the whole document anyways, and
thus, the automated analysis has no benefits. We disagree with
this view for two reasons. First, we argue that in industrial
practice, reviewers rarely go through the artifact rule by rule.

Therefore, there is no such thing as omitting a certain rule.
Reviewers see the guidelines rather as a supporting instrument,
and thus anything that reminds them of certain rules, increases
the quality. Our second argument also refers to the status
quo today. The best automated quality support that is widely
used are spell and grammar checks. Both do not have 100%
recall. So, if recall is a problem, why do we use spell and
grammar checks every day? In our experience from intro-
ducing automated analyses at various companies in industry,
practitioners were more worried about precision than recall.
They are convinced of the value (”Anything helps!”), and care
more for acceptance with the end users. Here, the core aspect
is usability in the form of few false positives, ergo: precision
(cf. also similar discussing in static code analysis [29]).

C. Threats to Validity

There are two major threats to validity. Regarding internal
validity, we classified the rules according detection accuracy.
We did so because it was not feasible within the scope
of this work to do a precision & recall analysis for each
guideline rule. However, the first author has been translating
guideline rules into automated analyses for 4 years. Thus, we
are confident that the results reflect the real precision and recall
after implementation. In addition, we created rough categories
to gain an overview, not a precise analysis for each rule. To
evaluate this aspect, we independently classified a subset of
10% of the rules and calculated a weighted Cohen’s kappa of
the resulting classification (k = 0.79). This agreement fosters
our confidence in the resulting classification.

The second threat relates to external validity. Since we
analyzed a large guideline used at STA, we do not know
whether the results generalize from this partner. We have,
however, previously informally checked a guideline from
another industry partner in a different domain. Here we came
to the same share of not automatically detectable rules (25%).
Future work should broaden the study to different guidelines.

VI. RESEARCH AGENDA

The current paper provides an estimation of the extent to
which industrial requirements quality rules can be automati-
cally checked. We plan to continue our research as follows.
Complete the rule classification. 34 of the studied rules were
imprecise or unclear. Unfortunately, the authors of the writing
guidelines were not available for feedback during the course of
this study. We want to deepen our understanding on the nature
of the imprecision of these rules. In addition, we had no access
regarding the relevance, value, and frequency of violations of
the rules. This could provide insights how rules that can be
automatically checked potentially contribute to review effort
reduction. In addition, the classification scheme used in RQ2
was beneficial for this study and worked fine regarding the first
three categories (lexical, grammatical, structural). However,
the scheme created some discussion around the semantic
category. The reason is that most rules intertwine semantic
and syntactic aspects: Since requirements artifacts are not
automatically compiled like code, the point of syntactic rules is

only to prevent semantic issues. Therefore, future work should
extend this classification scheme to clarify this aspect, e.g. by
decoupling the two aspects.

Implement and statically validate rules. We have already
begun to implement some rules that are based on dictionary
lookups using an existing requirements smell detection frame-
work [10]. While most of the rules can be implemented with
simple techniques, we also plan to experiment with more
advanced NLP techniques where we expect challenges in
the detection accuracy. For example, violations to rule 81 in
Table I could be detected by using topic models enhanced
with domain knowledge [30]: requirements that contain distant
topics or several closely related topics indicate candidates for
rule violations. To validate the implemented rules, we can
exploit the fact that at STA, the rules were developed based
on experience, i.e. there exist versions of requirements that
contain rule violations. We can fine-tune and validate the
detection against this set. We also plan to provide an analysis
of the potential benefits of using automated requirements qual-
ity control. To achieve this, we analyze historic requirements
(where the current rules were not applied) and study the effort
spent on discussing and repairing these violations.
Validation in Use. We plan to evaluate the efficiency and
effectiveness of automated requirements quality assurance in
use, i.e. in the environment of STA with the support of their
requirements editors. One important question to answer is
whether we can control the number of false positives, a crucial
aspect for the adoption of tool support in industry that has also
been observed in other areas, such as static bug detection [29].
Repository for requirements writing rules. Finally, we, as
a community, should establish a repository of precise general
and validated requirements rules. Such a repository can be
created by replicating the work proposed in this paper in dif-
ferent contexts and, at the same time, advance the techniques
for detecting rule violations.

VII. CONCLUSIONS

It is unclear what proportion of quality defects can be
automatically detected. Therefore, in this work, we classify
rules from a large, fine-grained requirements writing guide-
line from one of our industry partners. The results indicate
that a surprisingly large proportion of rules (41%) can be
automatically analyzed. 53% can be analyzed deterministically
or with a good heuristic. One reason for this was that these
rules contain many structural rules, which require just an
analysis of formatting information or pure text. If we take
also those rules into account where we have a medium
heuristic, we could even tackle 64% of the rules. However,
our analysis also shows that 36% of the rules have no or
little chance to be automated. While being just first evidence,
this analysis indicates that there is a substantial proportion of
guideline rules (our intermediate for quality defects) that can
be automatically checked. However, the analysis also indicates
that there is little hope that we can completely replace manual
reviewing with automated reviews. Combining automated and

manual quality assurance, as proposed by others [5], and also
ourselves [6] could be the promising compromise.

ACKNOWLEDGEMENTS

This work was performed within the project Q-Effekt and
ERSAK; it was funded by the German Federal Ministry of
Education and Research (BMBF) under grant no. 011S15003
A-B and by the Swedish Transport Administration. The au-
thors assume responsibility for the content. The authors thank
Jonas Eckhardt for comments on an earlier draft of this paper.

REFERENCES

[1] B. W. Boehm and P. N. Papaccio, “Understanding and controlling
software costs,” IEEE Transactions on Software Engineering, vol. 14,
no. 10, pp. 1462-1477, 1988.

[2] B. Lawrence, K. Wiegers, and C. Ebert, “The top risks of requirements
engineering,” IEEE Software, pp. 62-63, 2001.

[3] D. Méndez Fernandez and S. Wagner, “Naming the pain in requirements
engineering: A design for a global family of surveys and first results
from germany,” Information and Software Technology, vol. 57, pp. 616—
643, 2015.

[4] L. Mich, F. Mariangela, and P. L. Novi Inverardi, “Market research for
requirements analysis using linguistic tools,” Requirements Engineering
Journal, vol. 9, no. 1, pp. 40-56, 2004.

[5] J. C. Knight and E. A. Myers, “An improved inspection technique,”
Communications of the ACM, vol. 36, no. 11, pp. 51-61, 1993.

[6] H.Femmer, B. Hauptmann, S. Eder, and D. Moser, “Quality assurance of
requirements artifacts in practice: A case study and a process proposal,”
in PROFES, 2016, pp. 506-516.

[71 W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, “Automated analysis
of requirement specifications,” in ICSE, 1997, pp. 161-171.

[8] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An automatic quality
evaluation for natural language requirements,” in REFSQ, 2001.

[9]1 G. Lucassen, F. Dalpiaz, J. M. E. van der Werf, and S. Brinkkemper,

“Improving agile requirements: the quality user story framework and

tool,” Requirements Engineering, vol. 21, no. 3, pp. 383-403, 2016.

H. Femmer, D. Méndez Fernandez, S. Wagner, and S. Eder, “Rapid

quality assurance with requirements smells,” Journal of Systems and

Software, vol. 123, pp. 190-213, 2017.

E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,

S. Wagner, C. Domann, and J. Streit, “Can Clone Detection Support

Quality Assessments of Requirements Specifications?” in /CSE, 2010.

A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application of

linguistic techniques for Use Case analysis,” Requirements Engineering,

vol. 8, no. 3, pp. 161-170, 2002.

E. Knauss, D. Liibke, and S. Meyer, “Feedback-Driven Requirements

Engineering : The Heuristic Requirements Assistant,” in /CSE, 2009.

G. Génova, J. M. Fuentes, J. Llorens, O. Hurtado, and V. Moreno, “A

framework to measure and improve the quality of textual requirements,”

Requirements Engineering, vol. 18, no. 1, pp. 25-41, sep 2011.

D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and an

industrial case study in retrieving equivalent requirements via natural

language processing techniques,” IEEE Transactions on Software Engi-

neering, vol. 39, no. 1, pp. 18-44, 2013.

J. Winkler and A. Vogelsang, “Automatic classification of requirements

based on convolutional neural networks,” in 3rd International Workshop

on Artificial Intelligence for Requirements Engineering (AIRE), 2016.

B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, and M. Ochodek, “Towards

use-cases benchmark,” Software Engineering Techniques, 2011.

D. M. Berry, E. Kamsties, and M. M. Krieger, “From Contract Drafting

to Software Specification : Linguistic Sources of Ambiguity,” 2003.

D. M. Berry, A. Bucchiarone, S. Gnesi, G. Lami, and G. Trentanni, “A

new quality model for natural language requirements specifications,” in

REFSQ, 2006, pp. 1-12.

H. Femmer, D. Méndez Ferniandez, E. Juergens, M. Klose, I. Zimmer,

and J. Zimmer, “Rapid requirements checks with requirements smells:

Two case studies,” in International Workshop on Rapid Continuous

Software Engineering, 2014, pp. 10-19.

H. Yang, A. D. Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,

“Analysing anaphoric ambiguity in natural language requirements,”

Requirements Engineering, vol. 16, no. 3, pp. 163-189, 2011.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

(26]

S. J. Korner and T. Brumm, “Natural Language Specification Improve-
ment With Ontologies,” International Journal of Semantic Computing,
vol. 3, no. 4, pp. 445-470, 2009.

B. Arendse and G. Lucassen, “Toward tool mashups: Comparing and
combining NLP RE tools,” in 3rd International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE), 2016, pp. 26-31.
M. Unterkalmsteiner and T. Gorschek, “Requirements quality assurance
in industry: why, what and how?” in REFSQ, 2017.

J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement
for Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159-174, 1977.
D. M. Berry, R. Gacitua, P. Sawyer, and S. F. Tjong, “The case for dumb
requirements engineering tools,” Lecture Notes in Computer Science,
vol. 7195 LNCS, pp. 211-217, 2012.

[27]

[28]

[29]

[30]

N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for
tools for ambiguity identification and measurement in natural language
requirements specifications,” Requirements Engineering, vol. 13, no. 3,
pp. 207-239, jul 2008.

S. F. Tjong and D. M. Berry, “The design of SREE - A prototype
potential ambiguity finder for requirements specifications and lessons
learned,” in REFSQ, 2013, pp. 80-95.

N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22-29, 2008.

D. Andrzejewski, X. Zhu, and M. Craven, “Incorporating domain
knowledge into topic modeling via dirichlet forest priors,” in ICML.

ACM, 2009, pp. 25-32.

	Introduction
	The Problems of RE Artifact Quality Control
	Scope
	Contents and Relation to Previous Publications

	Fundamentals and Related Work
	Key Terms in Requirements Engineering
	Quality and Requirements Quality Fundamentals
	RE Artifact Quality Defects in the Software Engineering Process
	RE Artifact Quality Defect Sources
	Consequences of Low RE Artifact Quality

	Related Work on Quality Models in Requirements Engineering
	Generic RE Quality Models
	Specific RE Quality Models
	RE Quality Models in Standards

	Research Gap
	Research Gap: Quality Definitions for RE artifacts
	Research Gap: QA for RE Artifacts

	Research Design
	Problem and Thesis Statement
	Research Challenges and Research Questions
	Methods and Contributions
	Results Overview
	Further Related Works Co-Contributed by the Author

	Summary of Results
	RQ 1: How Can We Precisely Define Quality for RE Artifacts?
	Summary of Approach: ABRE-QMs
	Conclusion to RQ 1

	RQ 2: How Can We Create Valid Quality Models?
	Foundation: Defining Artifact Models
	Summary of the Approaches
	Summary of Results
	Conclusion to RQ 2

	RQ 3: How Can We Efficiently Ensure Quality Factors?
	Summary of Approach: A More Efficient Process for RE Artifact QC
	Summary of Approach: Requirements Smells
	Conclusion to RQ 3

	RQ 4: What Are the Benefits and Limitations of Requirements Smell Detection?
	Summary of Approach
	Summary of Results
	Conclusions to RQ 4

	Discussion of Results
	Strengths and Limitations of ABRE-QM
	Strengths of an ABRE-QM
	Limitations of an ABRE-QM

	Strengths and Limitations of Automatic Requirements Smell Detection
	Strengths of Automatic Requirements Smell Detection
	Limitations of Automatic Requirements Smell Detection

	Which Quality Characteristics Can We Detect Automatically?
	Characteristics for Sets of Requirements
	Characteristics for Individual Requirements

	Relation of Findings to Project Success
	Summary

	Conclusions and Outlook
	Conclusions
	Definition of RE Artifact Quality
	Efficient Methods for RE Artifact Quality Control
	Summary of Contributions

	Outlook
	Extending the ABRE-QM Meta Model
	Extending Research on Requirements Smells
	Extending Our Studies
	Extending Applications of Activity-based Quality
	Extending RE Artifact Quality by Building a Common Body of Knowledge
	Extending ABRE-QM Towards Activity-based RE Quality

	Publications
	Publication A: It's the Activities, Stupid! A New Perspective on RE Quality
	Publication B: Requirements Quality is Quality in Use – A Novel Viewpoint
	Publication C: Understanding Changes in Use Cases: A Case Study
	Publication D: On The Impact of Passive Voice Requirements on Domain Modelling
	Publication E: Experiences from the Design of an Artifact Model for Distributed Agile Project Management
	Publication F: Rapid Requirements Checks with Requirements Smells: Two Case Studies
	Publication G: Rapid Quality Assurance with Requirements Smells
	Publication H: Quality Assurance of Requirements Artifacts in Practice: A Case Study and a Process Proposal
	Publication I: Which requirements artifact quality defects are automatically detectable? A case study

