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Zusammenfassung

Die Herstellung von wiederverwendbaren Softwareframeworks, welche nicht an bestimmte
Komponenten gebunden sein sollen, erfordert ein spezielles Design um jene Komponenten
austauschen zu können. Diese Komponenten, die in Form von Betriebssysteme, Middle-
wares, Datenbanken oder Hardware Komponenten auftreten können, nennen wir den
abstrahierten Aspekt.

Eine Weise diese Austauschbarkeit herzustellen, ist die konkreten Komponenten zu
meiden und stattdessen die indirekte Nutzung via definierter Schnittstellen durchzusetzen.
Zusammen mit den konkreten Implementierungen bilden diese Schnittstellen die Software-
abstraktionsschichten, die sicherstellen, dass die gleiche Funktionalität angeboten wird,
unabhängig von der konkreten Konfiguration des abstrahierten Aspekts im Zielsystem,
etwa der Hardwarekonfiguration oder des Betriebssystems. Da die Entwickler Software
gegen das Interface anstelle der konkreten Implementierung entwickeln, nehmen sie an,
dass ihre Software sich in jedem Szenario, unabhängig von der konkreten Konfiguration,
gleich verhält.

Daher muss getestet werden, ob alle Implementierungen der Schnittstelle äquivalent sind
um Differenzen festzustellen und zu entfernen. Aus dem Satz von Rice folgt allerdings,
dass diese Äquivalenz nicht entscheidbar ist. Deswegen ist es nicht möglich ein Programm
zu schreiben, dass für zwei beliebige Funktionen bestimmen kann, ob diese äquivalent sind.
Dementsprechend müssen Heuristiken angewendet werden, die eine Näherungslösung
für das Problem erstellen.

Diese Arbeit beschreibt und analysiert das oben beschriebene Problem im Detail. Es
fasst verwandte Arbeiten zusammen und erzeugt eine Taxonomie möglicher Ansätze. Ein
neuer Ansatz wird entwickelt, welcher auf Reviewing basiert und durch statische Analyse
und Machine Learning unterstützt wird. Diese Methode wird anhand einer Fallstudie mit
dem Operating System Abstraction Layer (OSAL) des NASA Core Flight System evaluiert,
welche bereits in verschiedenen Missionen der NASA Anwendung findet. Der vorgestellte
Ansatz entdeckte 111 Problemstellen, von denen sich viele als Fehler verschiedenster
Schwere herausstellten. Einige der Problemstellen wurden bereits vom OSAL Team als
Fehler bestätigt. Dabei wurden verschiedene Klassen von Problemstellen klassifiziert; eine
Implementierungen etwa wiesen Inkonsistenzen im Rückgabeverhalten auf. Ein weiteres
Beispiel zeigt sich in der unterschiedlichen Interpretation der erlaubten Länge der Namen
gewisser Komponenten.

Die Ergebnisse deuten an, dass Machine Learning und Statische Analyse helfen kön-
nen um Äquivalenz festzustellen. Weiterhin zeigt sich, dass ein Reviewing-Werkzeug,
welches von Statischer Analyse und Machine Learning unterstützt wird, erfolgreich schw-
erwiegende Probleme in realen, sicherheitskritischen Anwendungen aufdecken kann.



Abstract

Creating reusable software frameworks where the goal is not to be bound to certain compo-
nents often involves designing for exchangeability between common types of components,
such as operating systems, middlewares, databases, and hardware components. We call
this the abstracted aspect.

One way to enable exchangeability is to avoid using such components directly and
instead promote indirect use through common interfaces. Together with their imple-
mentation, these interfaces form software abstraction layers, which ensure that the same
functionality is delivered to the user, regardless of the concrete configuration of the
abstracted aspect, for example the concrete operating system or hardware setup. As de-
velopers create software following the abstraction layer’s interface instead of the concrete
implementation, they assume that their software will always behave in the same way
independently of the actual configuration in use.

Thus, there is a need to check whether all implementations of the interface are indeed
equivalent, so that differences can be detected and removed. However, as a consequence
to Rice’s theorem, equivalence of certain software components is not decidable. Hence,
no computer program can accurately determine whether two arbitrary functions are
equivalent. Consequently, heuristics have to be created to target the problem.

This work first describes and analyzes the aforementioned problem in detail. It fur-
thermore sums up related work and creates a taxonomy of possible approaches. A novel
approach is designed, which is based reviews and supported through static analysis and
machine learning. This method is then evaluated in a case study analyzing the Operating
System Abstraction Layer (OSAL) of NASA’s Core Flight System, which is commonly used
in various space missions. The developed approach detected 111 issues of which many
turned out to be bugs of differing severity. Some issues were already acknowledged by
the OSAL team. We identified various classes of issues, for example, the implementations
showed inconsistent return behavior at various points. To name a second, some functions
interpreted the allowed length for names of certain components differently.

The results indicate that machine learning and static analysis can provide helpful support
for determining component equivalence. Furthermore, the results show that a tool that
supports reviewing by adding information from static analysis and machine learning, can
be successfully applied to find serious issues in real world safety critical applications.
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Introduction
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Overview over Equivalence Analysis
for Software Abstraction Layers

In order to introduce equivalence analysis for software abstraction layers (SALs), we
describe a scenario of application, explain the origin of the problem and describe why the
problem should be addressed. We furthermore define scope and structure of this work.

1.1 Developing Flight Software at NASA

In this section we describe how space missions develop software at NASA based on the
reusable Core Flight System (CFS) code base as well as reasons for the need to analyze the
equivalence of software abstraction layers.

Scenario

The basic requirements for flight software are very similar from mission to mission. Tradi-
tionally, missions have been ad hoc reusing flight software from older missions with similar
hardware. The software was then adapted to the new mission, requiring extensive manual
coordination and leading to very little reuse across NASA centers or external entities
[GLA+

09]. In order to create systematic reuse in NASA space missions, the organization
has created various frameworks that incorporate standard mission components. One
of these frameworks is the Core Flight System, which provides a flexible plug-and-play
software architecture, including reusable libraries for flight software and an integrated
tool suite [Bar09].

One advantage of using the CFS framework relates to the development process of flight
software. In missions that base on CFS (such as Solar Dynamics Observatory (SDO), Lunar

3



1 Overview over Equivalence Analysis for Software Abstraction Layers

Reconnaissance Orbiter (LRO) etc., see Section 8.1) developers can program on their Linux
or Mac machine to create the needed software and run the necessary tests. Afterwards,
the same code base can be deployed onto the real hardware, running under a real-time
operating system serving the safety needs of space software.

This is achieved through the Operating System Abstraction Layer (OSAL), a small
framework that is placed between the software and the operating system (OS). The
OSAL contains an interface including most relevant system calls and implementations for
four major operating systems (Mac OS X, Linux, Real-Time Executive for Multiprocessor
Systems (RTEMS) and VxWorks6). Developers write software against the OSAL interface,
enabling the system to be deployed to either one of the OSes without changing any code.

Problems in Software Abstraction Layers

Separating development from deployment assumes that the choice of platform makes no
difference. For example, tests that are executed within laboratory settings should have
equal outcome in the real setting to maintain their usefulness. Otherwise, the software,
which is a supposedly deterministic component, creates unexpected behavior.

From a developer’s point of view, he1 will develop software based on the information
provided by the system’s specification. For example, after a file is created the system might
want to check if the operation was performed successfully and thus needs OSAL’s response.
But what if this behavior, the information from OSAL, varies from operating system to
operating system? The developer would need to now the underlying operating system,
and would have to develop specifically for this OS. At this point we lose the operating
system independence, which undermines the purpose of the whole OS abstraction layer.
Instead, what we are looking for is consistency across the different implementations of the
interface, so that any difference in the underlying OS remains unexposed to the user of
the interface.

1.2 Arguments for Addressing Equivalence Analysis

Thus, there is a need for equivalent components, as well as methods that allow us to
analyze whether two components are equivalent or not. However, the question is: Is it
economically reasonable to create an approach that addresses equivalence analysis? The
following three arguments support the hypothesis that this is the case.

First, by establishing a lightweight approach we can keep costs low. If a tool can
be created that is easy to apply and finds a reasonable amount of differences between
implementations (often a sign of bugs), the investment for this application is quite low
compared to more labor intense strategies. We created an approach based on a combination
of static analysis, machine learning and reviewing, where no additional set up (such as
formal interface specifications or similar) is required to analyze the code base. Hence, the
tool we developed demonstrates that costs for applying a lightweight approach can be
very low. Additionally, first analysis results can be retrieved early after first investment.

Second, in safety critical systems every bug can turn into a serious problem threatening
the life of human beings, e.g. in the Therac-25 radiation therapy machine that led to

1For pure readability reasons we will stick to the generic masculine during this whole work.
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1.3 Scope of This Thesis

the deaths of five people in the 1980s. And even in unmanned spacecraft, when human
beings are not directly endangered, bugs can threaten whole missions, such as the US$1

billion loss of the Ariane 5 in 1996. The software was tested using simulation software
that was designed for Ariane 4, assuming the same results would hold for the successor.
Hence, the real-time behavior in deployment was not equivalent to the behavior in the
simulation, which prevented the developers from detecting the issue during development
[LLF+

96]. The use case analyzed in this thesis is functioning as the base for such safety
critical systems.

Third, we knew about the demand: We discussed the issue with developers at NASA.
They assured us that to their knowledge there is no such tool in use, but they would be
very interested to analyze their software with respect to component equivalence for the
above-mentioned reasons.

1.3 Scope of This Thesis

In this thesis we focus on equivalence of SALs where different implementations of an
interface exist. An approach was developed that detects equivalence and violations thereof,
in other words, a tool that determines whether implementations can be exchanged without
any unexpected behavior. One could require the implementations to prove compliance to a
given formal specification of the interface. We, however, developed an approach that does
not require a formal specification of the interface, as this specification might not always be
available. Instead, implementations are compared against each other.

The approach was especially developed to support real world scenarios where the
system under analysis interacts with and depends on the environment in which the system
is executed. This comes with two challenges: First, not all code of this environment is
necessarily accessible, for example, because the system is running under a specialized,
proprietary operating system. Accordingly, the developed approach needed to be able to
analyze only parts of the system. Second, in real world scenarios systems also have a state,
which stores certain information about the current condition of the system. Hence, the
approach developed in this thesis can handle stateful systems, which initialize, modify
and read from a global state.

1.4 Structure of This Work

This thesis consists of five parts (see Figure 1.1). Part I describes the frame of this work. It
introduces into the topic, motivates the invested effort and defines the scope of the thesis.
Furthermore, we give a little tour through existing work on the topic. Part II describes
software equivalence analysis in detail and classifies possible approaches, of which one
approach (symbolic execution) is explored. Afterwards, a second approach is elaborated
in Part III in more detail. In Part IV a case study using the latter approach is conducted
and results of the experiment are explained. We give a summary of the work presented in
this thesis subsequently. Lastly, an appendix serves for references.
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1 Overview over Equivalence Analysis for Software Abstraction Layers

Overview!

• Scenario and motivation!
• Related work!

Exploration!

• Definition of equivalence and software abstraction layers!
• Classification of approaches and exploration of symbolic execution!

Elaboration!
• Detailed explanation of techniques in use!

Evaluation!

• Operating System Abstraction Layer (OSAL)!
• Conclusion!

Appendix!
• Further references and details!

Figure 1.1: Structure of this work

Figure 1.2: Word cloud of this work
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Related Work

Relevant work from both industry as well as research is summed up. Furthermore we
describe how the related work influenced the present thesis.

2.1 Existing Work on Software Equivalence

Determining whether two programs are equivalent is a problem reaching back into the
1950ies. The earliest resource we found was by Hoare [Hoa69], who references papers
supposedly discussing the topic in 1958. Yet, for most of the time it stayed a theoretical
problem. Recently, equivalence of components came back into focus with applications in
hardware verification and regression analysis.

Equivalence in Hardware and Embedded Software Design

In hardware, developers often have to check if a developed model is consistent with a
certain piece of hardware. This is a crucial task after optimizations and transformation of
models into circuits. Accordingly, equivalence in hardware verification, namely equivalence
of circuit implementations, finds wide application [LVH10] in its field. Due to enabling
technology like Boolean Satisfiability Solvers and Binary Decision Diagrams, commercial
tools are in common use (e.g. [Syn12]). Recently, there have been attempts to leave the
circuit world and try to find equivalence in embedded software. For one, [FH05] compares
equivalence of code in the field of embedded software. However, these approaches often
have very strong requirements: For example, [AEF+

05] split up the functions for finding
so-called cut points, where verification is (computationally spoken) easier. From proofing
cut point by cut point, they try to prove equivalence for the whole program. However,
they assume that the source code contains neither recursion nor loops. Alternatively, in

7



2 Related Work

bounded model checking and related approaches, loops are unrolled n times, in order to
escape the undecidability problems arising from unbounded loops (e.g. in [CKY03]).

Equivalence of Web Services

In a different field, web services serve as highly decoupled components for providing
data or serving for certain tasks. With the goal of enabling comparison of Web services,
[ILF09] presents a middleware for service integration. It includes a component, which
is checking the equivalence of non-functional requirements (the Quality-of-Service, QoS)
of the services included in the framework. One could imagine checking non-functional
requirements of different implementations similarly to non-functional requirements of
Web services. We will explain this in Section 3.2.1.

Program Element Matching and Semantic Differencing

[KN06] is a summary of the state of the art in the field of program element matching. The
paper evaluates the different methods available based on hypothetical change scenarios.
However, their goal is to support the development of software that origins in cloned parts,
especially focusing on the evolution of information hiding. Their work is supposed to help
determining whether a bug has an impact on more than one piece of code. [BCJ07] suggest
dependence highgraphs, a hierarchical representation of the source codes control and data
flow, as an intermediate structure in compilers and source code analysis. They claim that
program element matching is easier to perform with this representation.

Using textual diffing for regression analysis is presented in [Hor89]. Furthermore,
enhanced control flow graphs (CFGs) are used to identify semantic changes. Other early
work on semantic diffing is described in [LS92]. The authors define an algorithm that
identifies changes in CFG and reduces the graph to the relevant part afterwards. This
work is transferred to Java and extended with object-oriented semantics by [AOH06].

Another more recent group focusing on differences between code versions is the Sym-
Diff (Symbolic Differencing) project at Microsoft. The goal is to extract clear information
displaying the semantic differences between versions. This is useful to prevent introducing
undesired side effects. In [KLR10] they define conditional equivalence as two functions
being semantically equivalent under certain inputs and implement a basic version for the
intermediate language BoogiePL. The Z3-SMT Solver is used for verifications. In [HKLR11]
the authors try to automatically extract termination conditions and summaries from the
source code. They demonstrate the ideas on a handful of laboratory examples.

Equivalence Using Symbolic Execution

[Kin76] introduced forward symbolic execution. We do not intend to list the general
state of the art of this field here, it can be found in [CKP+

11] or [SAB10]. The common
tools used for symbolic execution are JPF-SE [APV07] for Java, s2e [CKC12] for symbolic
execution within the real environment, and KLEE for C code [CDE08]. The latter also
includes a short example of comparing two functions for functional equivalence. This
example is extended in [RE11], analyzing more libraries for differences. In their work the
authors compare two functions by finding, storing and comparing the transformations
of a program. However, most of these applications cannot handle common real life code

8



2.2 Discussion

elements such as structures or external routines depending on symbolic arguments (such
as system calls).

Differential symbolic execution [PDEP08] formalizes the functional equivalence and
analyzes different versions of one program. It extracts only differing parts and performs
symbolic execution on these, thus reducing the state explosion problem. Similar approaches
are presented in [MSF05] and [SMS+07].

Equivalence for Differential Static Analysis

[LVH10] sums up the state of the art in differential static analysis. This field analyzes
different versions of one program at compile time. The paper describes the challenges and
advantages of using static analysis and names applications for differential static analysis.

One group at Technicon in Haifa, Israel worked on verifying equivalence of two versions
of a program (Regression Verification). One mentioned use case is refactoring, where
proofing functional equivalence could serve as a safety net. [GS08] introduces formal rules
for equivalence. They define six different definitions of (functional) equivalence and show
how to prove them for an artificial language LPL. These are further implemented in the
Regression Verification Tool (RVT) described in [GS09]. Bounded model checking is used
to verify equivalence.

Equivalence Through Dynamic Code Analysis

In contrary to all papers mentioned before, [HEJ09] apply dynamic code analysis. The
authors show how to compare execution traces of different program versions. They make
use of aspect-oriented programming and analyze Java programs that use a certain subset
of the Java language. Applying dynamic testing for functional equivalence has been
proposed by some authors (e.g. [Vou90]). They suggest a technique called back-to-back
testing, where behavior of functional equivalent versions of a software system during
testing is compared. They work with a probabilistic model of occurring events during
testing to determine the functional equivalence. In this they apply a certain tolerance.
However, it is important to note that this tolerance does not compare with our terminology
of abstracted aspects: The tolerance provides a way to state that two systems are 90%
equivalent with no regards of where the difference exists. In contrary, the abstracted aspect
requires the software to be 100% equivalent on domains outside the abstracted aspect and
not equivalent within the domain.

2.2 Discussion

Most of the work described in this chapter addresses a problem that is very similar to the
one we were facing with equivalence for software abstraction layers. Some were very close
in the goals. But none was handling the real world issues we were focusing on: None of the
above-mentioned papers deals with the tolerance we need in our approach. As software
in our case accesses subcomponents that are potentially not accessible during analysis,
we need to work with a broader term of equivalence than the ones given in related work
(for example in [PDEP08], see Section 3.2). Also, software running on different systems
(such as different hardware, operating systems, parsed by different compilers and so forth)

9



2 Related Work

is analyzed, a special case we could not find anywhere in related work. Also, many of
the more formal approaches do not present any results from real industry projects: The
examples presented usually do not include any side effects, the initialization of a global
state or function calls to external libraries. Our experiences with symbolic execution
support the hypothesis that these very exact approaches are not the perfect choice in
a setting with much uncertainty. We describe the challenges, findings and results in
Section 4.2. However, preliminary findings were not very promising; consequently, we
chose to use heuristics and static analysis to address the problem instead.

We furthermore filter the results of the static analysis approach. This is an idea that
has been successfully applied before (e.g. in [BLH08]). However, to all our knowledge
no research has been conducted to apply data mining or machine learning for functional
equivalence of software systems.

The approaches applying dynamic analysis such as testing or trace analysis could not
be applied in our case study, as execution of software was not possible. Hence, we focused
on static analysis and forward symbolic execution. This decision is explained in more
detail in Section 4.1.

The works on symbolic differencing inspired the tool developed. The structure of our
analysis framework is very similar to the one described in [NNHME09], although not as
comprehensive. The concept of beliefs, introduced in [ECH+

01] is conceptually similar
to our hints, explained in Section 5.1 in the way that it provides evidence but does not
guarantee a fact. We gave the concept a different name, as they differ structurally and in
the way they are extracted.

Furthermore, we built our definitions of equivalence for software abstraction layers
atop of the definitions provided in [Rom02], [ILF09], [LVH10] and finally the more formal
definition in [PDEP08].
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Analyzing Equivalence
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Equivalence of Software Abstraction
Layers

We provide an overview over software abstraction layers (SALs). The reasons for imple-
menting and the actual implementations of SALs are analyzed, their structure is elaborated
in detail and an according equivalence definition is given. Afterwards, different aspects
and definitions of equivalence are identified and explained. Lastly, we will point out which
direction of the field we will explore in the rest of the thesis.

3.1 Software Abstraction Layers

Software abstraction layers are common parts of software architectures. They serve a
well-defined purpose and can appear at various layers of software systems, which we will
show in the following examples.

3.1.1 Purpose and Architecture of a Software Abstraction Layer

When developing software, various situations necessitate different implementations for a
similar aspect: We want to switch between different search algorithms, a web mesh up
page accesses different service providers or a developer creates a program that is supposed
to run on different hardware or operating systems. In all of the above-mentioned cases we
have a system and various subsystems providing information or services to the top layer.
In all of the cases there is an implicit or explicit specification of the sublayer’s requirements,
either explicit through formalized interface definitions like contracts or OCL constraints, or
more often implicit through naming, rough textual documentation or discussions between
developers. And in all of the cases, the sublayers are similar besides one aspect. We call
this the abstracted aspect or variation.

13
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Tests Application

Implementation 2 Implementation 3Implementation 1
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Driver
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Implementations

<< builds upon >>

Figure 3.1: Architecture of abstraction layers

Abstraction Layers are needed when we want to include this possible variation in
the architecture of our system. Architecturally spoken, we want to hide the concrete
implementation of the aspect underneath and thus define an interface that is used in further
development (see Figure 3.1). The interface defines the purpose of the implementations
underneath. The implementation of this interface can be exchanged as long as each
implementation follows the interface definition. We call the application that uses the
interface driver, the interface represents the abstraction layer, and implementations that build
upon a certain technology represent one possible choice in variation.

3.1.2 Aspects of Abstraction

Various abstraction layers are part of our day-to-day software. We demonstrate the
widespread use of SALs in various applications by giving a handful of examples.

Hardware Abstraction

The first example is part of many major operating systems: It is called the Hardware
Abstraction Layer or HAL. Large operating systems like Windows NT or distributions
using the Linux kernel have a certain layer in the core that enables the OS to forget about
specific hardware details (see Figure 3.2). For example, it does not matter which supplier
produced a certain drive and it also does usually not matter which graphic card is located
on the mainboard. Otherwise the developers of the OS would need to change the code of
the operating system for every new piece of hardware that is supposed to be compatible
with the system.

14
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Algorithms

Mac OS X
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Figure 3.2: Different levels of abstraction layers

Operating System Abstraction

The second example lifts the idea by one layer and tries to find abstraction not only from
hardware, but also abstraction from the operating system (for example real-time operating
system (RTOS) and Mac OS X, see Figure 3.2). There are two approaches towards this
challenge:

One approach defines an application programming interface (API) that includes every
functionality an operating system needs to provide to an application. Programs develop
and compile against this interface. This interface is implemented for each operating system
and stored within the runtime system. The program then dynamically loads the library
during runtime, and can thus access the system specific functionality, without changing a
line in the code. The implementations of the interface are created by encapsulation of the
operating system through wrappers around the system calls. This lightweight approach
will be part of our case study and explained in detail in Section 8.1.

The second approach for abstracting from operating systems is building a virtual
machine. This virtual machine is an operating system inside the operating system. All
programs develop and compile against the virtual machine, which translates the program
into virtual machine bytecode. The virtual machine bytecode is then translated into
operating system specific machine code during runtime. The virtual machine approach is
heavily in use within the java runtime environment, the standard for developing operating
system independent code.

Both approaches unites that they standardize the interface between OS and applications.
They differ in the way this interface is implemented - either lightweight through wrappers
and libraries or by building a complete virtual machine with an intermediate language.

Remark: The Portable Operating System Interface (POSIX) standard family is an ap-
proach to create such an API. The operating systems share the same API, so that developers
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Figure 3.3: The strategy pattern

can access functionality through the POSIX interface. RTEMS and VxWorks6 are fully com-
pliant, just as Mac OS X, Cygwin and Linux systems are largely compliant. However, the
devil is in the details. For example, [Jos03] lists the small but relevant semantic differences
between the POSIX standard and the Linux kernel implementing it. [Wal95] works out
POSIX’ problems and names a major issue: It is too small to provide the full access (e.g. to
underlying hardware) and all necessary system specific components, such as a GUI. Upon
request, Alan Cudmore, the initiator of the NASA OSAL (see Section 8.1) names three ma-
jor reasons why POSIX is not a sufficient OS abstraction layer1: First, POSIX is sometimes
implemented inconsistently. For example, in the concrete implementations the original
OS system calls provide more consistent return codes. Second, the implementations of
the original OSes are clearer and more intuitive than the POSIX standard, for example in
the domain of semaphores. And third, not all functionality is implemented in all POSIX
OSes. Cudmore names timed message queues as an example. Consequently, in order to
provide fully consistent POSIX APIs one can either create workarounds for the known
differences or set up a completely new, consistent layer that only uses the POSIX standard
where appropriate (for the full conversation see Appendix A).

Algorithmic and Library Abstraction

We can continue lifting the abstraction up to a third level: abstraction within the applica-
tion’s source code (see Figure 3.2).

This is the case if we want to use different algorithms. Exchange of algorithms often
manifests itself in the architecture with the Strategy pattern, with the intent given by
Gamma:

Define a family of algorithms, encapsulate each one, and make them inter-
changeable. Strategy lets the algorithm vary independently from clients that use
it. —[Gam95, page 315]

Strategy patterns are used to decouple certain task from the performing class. This
enables reuse and exchange of algorithms. However, when a strategy pattern is used to

1Personal communication
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exchange the algorithm, equivalence analysis could help to prevent unexpected behavior.
For example, assume two different implementations exist for a query: One implementation
is designed for SQL conform databases, the second implementation retrieves the same
information from a NoSQL database. These implementations will cause differing actions
on the database, as the databases follow completely different paradigms. However, the
result of the implementations should be equivalent. For instance, if for any reason the
database query cannot be executed, all implementation should respond with an equivalent
behavior, so that the driver (i.e. the calling function) is really decoupled from the concrete
implementation. If the implementations were not equivalent, the calling function would
need concrete references to the implementations, e.g. a branch in the calling code that
includes the error codes of the NoSQL definition.

The intention to exchange the strategy can arise for different reasons: Above, we
mentioned different technologies (i.e. database systems), another reason is the requirement
to exchange libraries, e.g. because of runtime constraints, or even the need to exchange
whole layers. For example, the system might need to switch between a shared memory and
a network-based middleware system (as in [GLR+

10]), depending whether the concrete
implementation is deployed within the same machine or in a distributed setting. Both
systems should have the same behavior, except the medium used for transmission of
messages.

In summary, software abstraction layers are placed between various layers of software
systems, from the very top to the very bottom. Various applications exist; yet, to all our
knowledge, checking equivalence is not very common.

3.2 Equivalence

Implementations of abstraction layers are equivalent, but not equal. Differences might
lie in the algorithm or library used, the web page, the operating system or the hardware.
The software will do things differently; for example, it will send network packages to
a different address or it will use different protocols for the different hardware in use.
Hence, the implementations are not equal; they differ. However, the implementations
have the same purpose and it does not change the overall system when we switch the
implementations. Thus, no matter if I use hard drives or floppy disks, storing of data
should have the same results. Hence, we say that the implementations are equivalent with
a definition of equivalence given in the following sections.

In contrary, we refer to equal implementations when two implementations do exactly
the same thing in exactly the same way.

Definition Two functions are (syntactically) equal, iff the code of two the func-
tions is characterwise equal.

We will discuss the frequency of equal functions in Section 8.3. However, the set of equal
functions is a subset of equivalent functions.

∀ f , g : f =code g⇒ f ≡ g

In words: Every function pair of equal functions is also equivalent.
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In order to define the term equivalence more precisely we looked into the field of
requirements engineering. Here requirements are classified into two groups: Functional
and non-functional requirements. Whereas non-functional requirements “describe aspects
of the system that are not directly related to the functional behavior of the system” [BD07,
page 160], functional requirements “describe the interactions between the system and its
environment” [BD07, page 159].

We propose the same categories for defining equivalence.

3.2.1 Non-Functional Equivalence

Non-functional differences are very common when comparing SALs. Usually, they are
built into technology and architecture or part of the aspect of abstraction. For example,
later on we will analyze an operating system abstraction layer where we compare one
implementation, which uses the commercial real-time operating system VxWorks6, with
another implementation that uses the open source system RTEMS. It is common sense that
these systems differ in their non-functional requirements, for example in their usability or
reliability. Hence, non-functional differences are built into our code by choice of technology
already. In the above-mentioned case minor differences are acceptable, depending on the
space mission that uses the corresponding operating system. However, it might make
sense to define the range of difference that is allowed. For example, it would be a good
idea to find a metric for reliability and limit the non-functional differences in these regards.

Model-driven Development

In the field of model-driven development, Romberg defines equivalence of non-functional
requirements for checking code against models:

Definition Non-functional equivalence is the correspondence of estimates for
non-functional values (such as timing properties) drawn from the model with
actual properties of the implementation. [Rom02]

If we understand one piece of code as the model, this definition gives a rough idea of what
we are looking for.

Service Oriented Architectures

A related definition in the field of Service Oriented Architectures (SOAs) is a little more for-
mal. In SOAs, quality of service is a common term, defining non-functional requirements
of services. [ILF09] created a meta-measure for calculating similarity of non-functional
properties for services:

QoSDegree(opm, opn) =
|NPopm |

∑
i=1

wi ∗ deg(npi(opm), npi(opn))

where QoSDegree is the non-functional equivalence degree between two functionally
equivalent operations opm and opn, and wi are weights for each QoS property np with
index i of the operation opm. NPopm are all non-functional properties of the operation opm.
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deg is some function giving a similarity level of two function’s properties (e.g. arithmetic
difference for real value properties).

This definition could be translated to software abstraction layers. Even though this
formula is very vague, we think it might serve as a very useful framework for future work.
The most interesting questions are yet to be answered though. Which quality measures
should be used, how do we compare these measures, which weights should we give and
what could be a reasonable degree of similarity permitted? We figure that the field of
software metrics can answer at least some of the questions.

Conclusion

For systems with hard requirements, as it is often the case with RTOSes, the analysis of
non-functional requirements is often compulsory. In RTOSes the developers often depend
on explicit timing constraints to be met. Research on systematic non-functional equivalence
analysis in cases where such an explicit specification does not exist, might lead to an
interesting analysis to carry out before exchanging system components. We do not know
of any research in this field. However, due to the limited scope of this thesis we focus on
the area of functional equivalence.

3.2.2 Functional Equivalence

We will first present two definitions from related work, which will be translated into
our domain in the second section. However, these definitions cannot lead to a perfect
algorithm directly, because functional equivalence is undecidable, which we will explain
in the third section.

Defining Functional Equivalence

To show different approaches we would like to present two definitions for functional
equivalence. They differ in their degree of formality. The straight-forward definition gives
a good gut feeling for the problem:

Definition Functional equivalence relates methods that have the same externally
observable behavior. [PDEP08]

The functions2 should react equivalently under equal inputs, which includes the general
system state if it has an impact on the function. The system state includes referenced
memory location, file system state and all other external information that influences the
function in its behavior. Furthermore, the externally observable behavior of two functions
includes the return value as well as manipulations of the global state, such as variables or
output streams.

[PDEP08] also give a more formal definition for functional equivalence based on sym-
bolic summaries. Their work relates to symbolic execution and uses so-called symbolic
variables, which are variables that do not contain concrete values, but logical expressions
from the manipulation in the code (see Section 4.2).

2We use the term functions instead of methods, as we are mostly refering to non-object-oriented C code.
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Partition Effect

path == NULL RETURN == INVALID_POINTER
strlen(path) ≥ MAX_NAME RETURN == PATH_TOO_LONG
strlen(path) < MAX_NAME RETURN == SUCCESS

Table 3.1: Example for a symbolic summary of a function with one string parameter

Definition A partition-effects pair (in, ef) consists of: an input constraint in, which
is a conjunction of relational expressions defined over constants and symbolic
variables, and an effects constraint ef, which is a conjunction of expressions that
equate written locations to expressions defined over constants and symbolic
variables.

Partition-effect pairs can be understood as summaries of the input and output relation of
the function. Each line in the example in Table 3.1 is one partition-effect pair3. The input
contains both parameters and the global state. The effect expressions contain expression
about both the return value and the side effects of a piece of code.

These pairs can then be summarized to represent a function. Table 3.1 is an example for
such a summary. However, to prevent contradictions and indeterminism, we have to take
care that the input partitions are disjoint. This way for every input there is at most one
pair (in, ef) in the summary:

Definition A symbolic summary, for a method m, is a set of partition-effects pairs
msum = (in1, ef1), (in2, ef2), . . . , (inn, efn) where the input constraints are disjoint,
i.e., ∀i ∈ [1, n], j ∈ [1, n] : i 6= j→ ini ∧ inj is unsatisfiable.

If the symbolic summary does not contain any contradictions, we can translate it
into mathematical logic. This way we can use a precise logical calculus to talk about
equivalence.

Definition Given a method, m, and its symbolic summary, msum, the logical
method summary for m is

〈m〉 =
∨

(in,ef)∈msum

in∧ ef

With this term we can now define functional equivalence as the logical equivalence of
the logical method summaries.

Definition Given two methods m and n, m is functionally equivalent to n iff

〈m〉 ⇔ 〈n〉

Whenever two functions are not functionally equivalent we can compute the difference,
the so-called functional delta:

3Please note that we added the function strlen(char*) for simplification. Functions are not part of the standard
definition of partition-effect pairs.
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Definition Given two methods, m and n, the functional delta is

∆(m,n) = 〈m〉 ∧ ¬〈n〉

You can find an example for determining the difference of two functions with the
functional delta in logics in Appendix B.

Functional Equivalence for SALs

However, even though very precise, these definitions do not include the abstracted aspect.
But as mentioned earlier, in SALs it makes a difference where differences are located in
relation to the abstracted aspect.

Definition Two functions m and n are functionally equivalent modulo an abstraction
aspect A iff all semantic differences between m and n are side effects in the
domain of A.

We add the term in the domain of, which depends on the abstracted aspect. For example,
if the abstracted aspect is a database system, differences in side effects may only affect the
database system.

Rice’s Theorem and its Consequences

However, functional equivalence is a special case of Rice’s theorem and hence is an
undecidable problem (e.g. [BCJ07]). Rice’s theorem states:

Any non-trivial property about the language recognized by a Turing machine is
undecidable. —[CDW04]

Trivial properties are those that hold for either all functions or no function. As equivalence
is non-trivial (there is at least one example for equivalent functions and one example for
non-equivalent functions), functional equivalence is undecidable.

Consequently, we have to over- and/or under-approximate the problem, meaning we
will incorrectly guess equivalent function pairs to be different and different function pairs
to be equal. Having Rice’s theorem in mind, it might be more appealing to build a tool
that finds violations of equivalence, instead of building a tool that proofs equivalence, for
two reasons:

a) Finding differences is computationally easier, just as it is often easier to find a counter
example than proving a theorem.

b) When a difference is found, we found a concrete spot for improvement of software.
This is often close to bug finding, which is very valuable to the developers.

Accordingly, in Part III we will focus on heuristics for finding differences violating the
definitions above.
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Figure 3.4: LSP vs. equivalence for SALs

3.3 SALs and Equivalence in the Scope of This Work

This chapter discussed Equivalence of SALs in a very abstract way. Due to time constraints
this thesis can only focus on addressing a subproblem.

Domain

Whenever an interface is build in a way that the behaviors of sublayers are transparent
but the result is defined, we want the implementations to be functionally equivalent. All
implementations should be substitutable. This is very close to the Liskov Substitution
Principle (LSP), which describes how subclassing should be performed (see Figure 3.4):

Definition Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T. [LW94]

In other words: The external behavior of a subclass should be consistent with the behavior
of its superclass. If the interface (which is the superclass in this terminology) contains
a formal specification, we could consider to formally verify that the implementations
are correct with respect to the specification. Yet many interfaces do not have a formal
specification. Therefore, in this work we will focus on interfaces that are not explicitly
formalized. Without formal specification we have to compare the different implementations
of the interface against each other (see Figure 3.4, right hand side). Furthermore we want
to reduce the LSP, as we are not interested in all properties, but only the externally visible
ones. We could rewrite the LSP accordingly:

Definition Let q(x) be a property about objects of type T that are implementa-
tions of an interface I. Let q(x) be visible to a certain external observer o that
has no access to the domain of the abstracted aspect A. Then q(y) should be
visible to o for every object y of type S that is an implementation of interface I.

The exact definition of the observer o remains in the domain of the abstracted aspect.
Hence, the focus of this work is comparing implementations against each other where

specification is only implicit or informal.
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Granularity

Until now we mostly discussed equivalent implementations, thereby talking about the
implementation at system level. However, APIs can be represented as a set of functions.
Accordingly, one can brake up an API into its functions and discuss equivalence on the
function level. This differs from the aforementioned view in the way that the function
is looked at on its own, instead of analyzing all possible combinations of functions.
Consequently, if there is a difference at function level, there is also a difference at system
level. Also, in case we can determine equivalence (including all side effects) at function
level, we know that the implementations are equivalent.

Definition Two implementations of an API A, Im1 and Im2, are equivalent iff
each function f defined in A has an implementation f1 in Im1 and an implemen-
tation f2 in Im2 and f1 and f2 are equivalent.

Consequently, we will focus on equivalence at functional level.

Summary

Software abstraction layers are APIs that hide certain abstraction aspects. Equivalence
of SALs should be checked when no explicit specification of the interface is provided,
but instead the implementations provide implicit specifications. Equivalence of SALs can
be reduced to compare single functions for equivalence. It can furthermore be split up
into two parts: functional and non-functional equivalence. Non-functional equivalence
relates to non-functional requirements and could be compared using the appropriate
metrics. However, the focus of this work is functional equivalence, which is defined
as the lack of differences in externally visible behavior, such as return values and side
effects. As determining functional equivalence is an undecidable problem, we suggest to
focus on heuristics for determining the opposite of functional equivalence, i.e. functional
differences.
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Analyzing Equivalence of SALs

Dynamic and static analysis “are typically seen as distinct and competing approaches with
fundamentally different techniques and technical machinery” [Ern03]. Consequently, we
categorize possible approaches into these categories (for an overview see Figure 4.1). We
will first describe some ideas of applying dynamic code analysis. Second, we analyze
our experiments with forward symbolic execution, a mixture between static and dynamic
analysis. An introduction into forward symbolic execution and its application for equiva-
lence analysis is given and preliminary results are explained. Lastly, application of static
analysis is evaluated in terms of possible methods, advantages and disadvantages. The
chapter finishes by describing tool-supported reviewing, the approach used throughout
this thesis.

Approaches

Static Analysis Reviewing

Bug Patterns

Tool-Supported Reviewing

Dynamic Analysis

Diversified Testing Back-To-Back Testing

Mutation Testing

Trace Analysis

Forward Symbolic Execution

Figure 4.1: Presented approaches
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Figure 4.2: A trace file

4.1 Dynamic Code Analysis

In dynamic code analysis, code is executed to be analyzed. We can analyze the runtime
behavior of software either during the regular execution in the production environment,
or alternatively we could run the software specifically for analysis as in tests. In any case,
the software is run in a context equal or similar to the real production environment. This
includes the whole deployment environment in both hard- and software.

Using Dynamic Analysis to Determine Software Equivalence

Two approaches for analyzing equivalence dynamically came to our mind: trace analysis
and diversified testing.

Trace Analysis

To apply trace analysis we must observe runtime behavior during execution. Therefore,
code traces are created that log what is happening in the program. Examples of such a log
can be found in Figure 4.2. These logs describe the behavior in so-called events, which are
combined in a trace. A set of traces describes the behavior of the program.

Very often aspect-oriented programming is used to add the logging of events into the
original code. In aspect-oriented programming one can attach code (the so-called weaving)
that is afterwards executed in specified situations, such as after or before function calls,
assignment of variables etc.

In order to perform trace analysis, first of all the traces need to be created. In order to do
so, we need to define events that create a log. With reference to the equivalence definition
given in 3.2, we should focus on finding differences in externally visible behavior. As
such, we would create events upon manipulation of external space, such as hard drives or
sockets, and global variables, as well as function behavior such as function calls, input and
output.

Second, we need to execute the software. Test cases might be useful, as they reflect
various different applications of the software and hence create many different traces.
Otherwise regular execution of the software should be logged.

Third, after the creation of traces, we could create state transition systems and check
the different implementations for bisimilarity, which would focus on the behavior of
the implementations. Alternatively, we could also compare the input/output/side effect
triplets with tools that approximate the program’s invariants, like DAIKON [EPG+

07].
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Diversified Testing

The second approach we could apply is (dynamic) testing. The field of diversified testing
is especially interesting as it compares different versions of software. We present two
suggestions for diversified testing: back-to-back testing and mutation testing.

Back-to-back testing [Vou90] is an approach with a goal very similar goal to ours, even
though it originates in a different use case: It was designed to reduce discrepancies in
multi-version redundancies as created for fault-tolerant software. The idea is simple (see
Figure 4.3): In back-to-back testing, test cases are run on k functional equivalent versions of
software. Afterwards differences in test results are investigated and corrected if necessary
[Vou90]. Experiments have been conducted for k = 2 to k = 13 showing high potential to
find discrepancies.

Collect 
test suite

Run test on
version 1

Run test on
version i

Run test on
version k

Diff results

… …

Figure 4.3: The idea of back-to-back testing

In mutation testing code is manipulated to check the sufficiency of test data sets. In
order to do so, a test set is considered of appropriate size if mutation of code does always
lead to a different result in the test suite, e.g. ∃x ∈ Ti.P0(x) 6= Pm(x) for a test suite Ti, an
original source code P0 and a mutation Pm. Mutation testing involves an easy process (see
Figure 4.4) that involves the following steps:

1. Mutate the program under test P0 into a mutated program Pm following a pre-defined
pattern (the so-called mutant operator). For example, change variable references or
replace == with != conditions. Detailed replacements are discussed and can hence
be found in related work, e.g. in [DR90].

2. Run the test suit. Determine if the test results differ between P0 and Pm.

3. If the results differ, consider this mutation dead.

4. If the results do not differ, consider this mutation alive and extend the test suite.
Return to step 2.
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EQ= 
9x 2 Ti.P0(x) 6= Pm(x) Dead

Alive

[EQ = true][EQ = false] / add test cases 

Figure 4.4: Lifecycle of a mutation

A combination of these approaches could be used for equivalence analysis for software
abstraction layers. As we have k different functions, a comprehensive test set could be
created by applying mutation testing onto both approaches and then afterwards checking
both functions with the whole test set. Hence, function one is tested against the (implicit)
specification of function two and vice versa. In a second step, differences in test results
could be interpreted with the knowledge of back-to-back testing. However, we figure that
probably an additional step needs to be inserted to deal with differences in test results
resulting from the abstracted aspect (see Section 3.2.2).

Reasons for Not Applying Dynamic Analysis in this Case Study

The advantage of a dynamic approach is that found bugs are automatically reproducible
and hence dynamic analysis a) leads directly to the problem and b) is sound, which means
that it does not create false issues if no further approximations are made. Also, traces
could be created in the regular life of the program. Consequently, found bugs are more
closely to the real use of the library or program, instead of bugs in corner cases that are
sometimes produced by other methods.

However, a basic requirement for the application of dynamic code analysis is that the
analyst or analyzing software is able to run the code in its native environment. Yet, as our
primary use case here was NASA space software and simulation or emulation software
for the used operating systems and hardware configurations was not available, applying
dynamic code analysis was out of our bounds.

4.2 Forward Symbolic Execution

In forward symbolic execution “instead of executing a program on a set of sample inputs,
a program is ’symbolically’ executed for a set of classes of inputs” [Kin76]. This results
in creating constraints holding on different paths of execution. We explain the ideas of
symbolic execution and describe its challenges and benefits. For further reference please
refer to [CKP+

11], which explains the state of the art and provides more detailed resources,
especially of the various tools created recently.
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Figure 4.5: Forking in forward symbolic execution

4.2.1 Concept of Forward Symbolic Execution

In symbolic execution, instead of running a program with real values, the user defines a
set of symbolic variables beforehand (e.g. an integer x). These values are unconstrained,
meaning that in the theory of symbolic execution they can have any possible value. A
specially designed virtual machine (or symbolic execution engine) then runs the code with
these variables, recording all their manipulations. Whenever there is a fork in control
flow (e.g. an if-statement x < 0?, see Figure 4.5) that depends on a symbolic variable,
the virtual machine checks if, assuming the known constraints for the symbolic variables,
both paths of the fork could be taken. Afterwards the constraint given through the branch
(e.g. x < 0, x ≥ 0 respectively) is added to symbolic variable. This way, the different forks
create the various possible paths through the system, and on the path all constraints to the
variables are recorded. Furthermore, whenever the code arrives at a critical point (e.g. a
division by x), the machine checks if, given the known constraints on this path, the critical
point may result in an error. In addition, symbolic execution can find unreachable code
by walking all possible paths. Hence, if it can prove an assert-statement on all reachable
paths, it can verify absence or presence of issues.

4.2.2 Applications of Forward Symbolic Execution

Symbolic execution has various applications. As open-source symbolic execution engines
like KLEE [CDE08] are getting more and more mature, scientists extend these tools for
experiments in various fields. Some of the applications are mentioned here; yet, new
applications arise frequently.

Bug finding: At each critical instruction (arrays, pointer arithmetic, memcpy, etc.), the
symbolic execution engine checks if this instruction can lead to a problem, given the
path constraints computed. Critical instructions furthermore include reading and
writing out of memory and division by zero. If a problem could occur, the engine
generates and stores concrete inputs that lead to this bug. It can furthermore detect
unreachable code, if the exploration of all possible paths terminates [CDE08].

Test generation: This is the most famous application of symbolic execution. Whenever
a path through a program terminates (e.g. through an exit or the end of the main
function), the machine creates a test case for this path. This is performed until
the symbolic execution terminates (all paths have been walked) or until the user
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terminates the process. If terminating, symbolic execution automatically generates
tests with 100% branch coverage of all reachable branches [CDE08]. However, these
are smoke tests, meaning that unless manually specified only runtime exceptions
are checked. This form of testing does not check if the program follows a certain
specification or generally does what it is supposed to do. Such checks could be
implemented by defining the function’s specification in assert-statements.

Exploit finding: Some approaches use symbolic execution for more subtle issues in code,
namely possibilities to exploit bugs in software. For example, [ACHB11] analyzed
open-source projects and successfully found various serious bugs. After determining
the targeted part of code, their system even generates the exploit.

Differential symbolic execution: [PDEP08] apply symbolic execution on different versions
of code pieces. Through symbolic execution they can determine semantic differences
in pieces of code.

Functional equality analysis: Few work has been done to check arbitrary programs for
functional equivalence, e.g. in [CDE08] or [RE11]. These works compare side-effect
free functions, like standard C libraries against each other.

4.2.3 KLEE

As we were searching for an open tool that could check C code, KLEE [CDE08] was an
obvious choice to meet our demands.

Features of KLEE

KLEE is an open-source symbolic execution engine that is developed at the University of
Stanford. KLEE checks ANSI C code under Linux and is implemented in C++. It builds
upon the LLVM compiler [LA04] and uses the constraint solver STP to calculate feasibility
of paths. “STP is a decision procedure for the satisfiability of quantifier-free formulas in the
theory of bit-vectors and arrays that has been optimized for large problems encountered
in software analysis applications” [GD07]. KLEE uses various optimizations for speeding
up the search, decreasing memory requirements and increasing code coverage [CDE08].
Instead of variables, space of memory is marked as symbolic (bit-level accuracy), which
increases the applications to more complex data, e.g. strings. Based upon these symbolic
variables and the program code, tests are generated and statement and branch coverage is
printed. Furthermore native execution of tests, including linking to gcov [Fre12] is possible
to verify the just mentioned code coverage values as well as reported issues.

KLEE is able to detect various bugs in the code: Out of the box, KLEE can find issues
by falsifying assert-statements under given constraints, looking for buffer overflows and
reading out of bounds, as well as runtime issues like division by zero or unreachable code
[CDE08].
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4.2 Forward Symbolic Execution

1st step: char localPathP [100];
klee_make_symbolic(localPathP , (sizeof localPathP), "

localPathP");

2nd step: klee_assume(localPathP [100 -1] == ’\0’);

3rd step: assert(OS_API_Init(localPathP) == 0);

4th step: (write models in C code)

5th step: llvm -gcc --emit -llvm -c \
-I../../ include/ -g -Wall -pedantic -Wstrict -

prototypes -fprofile -arcs -ftest -coverage -
DOS_DEBUG_LEVEL =3 -DINTERCEPT -D_EL -DENDIAN=_EL -
DSOFTWARE_LITTLE_BIT_ORDER -D__ix86__ -D_ix86_ -
D_LINUX_OS_ -Dposix -DX86PC -DBUILD= -D_REENTRANT
-D_EMBED_ \

OSFS.c

6th step: klee --optimize --allow -external -sym -calls --libc=uclibc
--use -cex -cache --only -output -states -covering -new --
output -stats \
./OSFS.o

7th step: KLEE: output directory = "klee -out -147
KLEE: done: total instructions = 19169
KLEE: done: completed paths = 101
KLEE: done: generated tests = 5

8th step: ktest file : ’test000001.ktest ’
args : [’./OSFS.o’]
num objects: 7
object 4: name: ’localPathP ’
object 4: size: 100
object 4: data: ’\x01\x01\x01\x01\x01\x01\x01\x01\x01\

x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x02\x01\
x01\x01\x01\x01\x01\x01\x01\x01\x02\x01\x01\x01\x01\
x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x01\x02’

Error: memory error: out of bound pointer
File: /home/fraunhofer/klee/examples/osal/model.c
Line: 113
Stack:

#0 00000697 in __user_main (numArgs =1) at /home/
fraunhofer/klee/examples/osal/model.c:113

#1 00005188 in main (=1, =50531248)

9th step: gcc -I../../ include/ %[...]
/home/fraunhofer/klee/Release+Asserts/lib/

libkleeRuntest.so \
OSFS.c -o OSFS.out

replay -ktest:
KTEST_FILE=$(FILE) ./OSFS.out

replay -run -all -tests:
for file in $(TEST_FILES); \

do make replay -ktest FILE=$$file; \
done

Figure 4.6: The KLEE process
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KLEE Process

When using KLEE, the analyst can follow a pretty straightforward process (see Figure 4.6),
which consists of a few basic steps:

1. Define the variables or memory locations that are supposed to be unconstrained, i.e.
symbolic. This choice is vital to the performance and resulting coverage. One can
achieve this with the call to the KLEE function klee_make_symbolic, providing the
address and size of the memory, which is supposed to be symbolic, as well as the
name of this variable for debugging information.

2. Sometimes we do not want to check the full range of possibilities for certain variables.
This is especially true when dealing with strings, where we usually assume that
strings are terminated with a ’\0’. In practice we add constraints to the variable
that was unconstrained before. This step also includes creating a valid symbolic state
of the system by creating and initializing global variables.

3. If certain properties should be checked, we can encode them into assert statements.

4. In order to be able to check software with KLEE properly, we need to compile the
code and all referenced libraries with LLVM. This means that source code of all
libraries to be used with symbolic variables must be available, as KLEE will execute
these functions symbolically as soon as a symbolic variable is used as parameter.
KLEE can be configured to use a concrete value of a variable if source code is not
available. However, the advantages of symbolic execution usually blow up in smoke
when the function is executed with a concrete value. Therefore, usually external
libraries or system calls need to be mocked to properly analyze a system. The
developer creates mocks with short implementations of the functions and replaces
the original function calls. The replacement can be performed with preprocessor
macros.

5. As soon as external references are created, we can compile the whole system with
LLVM. Regular preprocessor macros may be handed to the compiler as usual.

6. After these steps we can run KLEE on the created LLVM code. KLEE provides plenty
of options, which are mostly not very well documented. As these options can have a
big impact on both speed of execution and code coverage, testing and analyzing the
various options is an important yet annoying task.

7. KLEE informs whether the run has terminated and gives some statistics.

8. After the run we can look into the tests and reports created to analyze the concrete
issues found. These bug reports can be a little cryptic as memory is output in its
byte representation.

9. (Optional) If we want to double-check KLEE’s results, we can rerun the tests provided
natively afterwards. KLEE can also be configured to support gcov [Fre12], a widely
used code coverage tool, which gives deeper analysis of reached lines and branches.
Upon unsuccessful runs by KLEE, this tool is very useful to determine which lines
remained untouched by the symbolic execution process.
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4.2.4 Challenges of Symbolic Execution

Symbolic execution is a very powerful approach. However, it faces three big bottlenecks:

State explosion: At every branch in the control flow of a program, symbolic execution
takes all possible paths. Accordingly, the number of states rises exponentially with
the number of branches, even when not all branches lead to a forking of the control
flow. This state explosion is a problem of both computing all paths but also storing
all the constraints of each possible path that is not yet completely executed. Various
symbolic execution tools tackle the latter issue by sharing the states between different
paths or pruning redundant paths. Both issues are addressed by parallelization
through cloud computing, e.g. with Cloud9 [CZB+

10].

Complex constraints: Complex, real world applications need to solve non-linear mathe-
matical problems, as these are usually approached in the code. These computations
need to be performed by the constraint solver. Even though constraint solvers made
big progress recently, new heuristics are needed to address this problem [CKP+

11].

The environment problem: Lastly, the environment problem relates to interactions of
the program with everything outside the pure code. This includes libraries and
everything that is related to the operating system, such as file systems or multi-
threading.

4.2.5 Symbolic Execution for Equivalence Analysis

The question is, how this can be used for equivalence analysis. Theoretically speaking,
symbolic execution can create a set of pre and post conditions, which are representations
of the semantics of a program. Hence, in order to compare semantics, we can compare
the pre and post conditions calculated by symbolic execution. In practice we can just use
the assert-statement and compare the return values of the two functions called. For our
more complicated use case, some more work needs to be done, which we will explain in
the following sections.

The idea of comparing implementations was first described in [CDE08] and further
developed in a work parallel to this one, in [RE11]. However, the named sources describe
very basic examples. The case studies describe very loosely coupled functions, i.e. functions
with few interactions and dependencies. Furthermore, the functions are independent from
a global state, without side effects. Additionally, deeper knowledge of system calls and
operating systems is not required, as the examples only analyze different software libraries
running on the same machine. Nevertheless, the results are quite promising.

To explain this in more detail the example from [CDE08] is given in Figure 1. In this
example two functions calculate the modulo operation, i.e. the remainder of a division.
The topmost implementation (mod_opt) is an optimization for numbers that are powers
of two, whereas the second function (mod) implements the native modulo operation. We
would like to check then whether the two implementations have the same functional result.
The symbolic execution is initialized in the main function, by marking the two input
variables x and y as symbolic. We have no constraints to the input values here, nor any
external function calls. Hence, we can directly compile the program and execute it with
KLEE.
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1 unsigned mod_opt(unsigned x, unsigned y){
2 if ((y & -y) == y){ // Is y a power of two?
3 return x & (y-1);
4 }else{
5 return x % y;
6 }
7 }
8 unsigned mod (unsigned x, unsigned y){
9 return x % y;

10 }
11 int main(){
12 unsigned x,y;
13 klee_make_symbolic (&x, sizeof(x));
14 klee_make_symbolic (&y, sizeof(y));
15 assert(mod(x,y) == mod_opt(x,y));
16 return 0;
17 }

Listing 1: Return value equivalence in a simple environment with KLEE, from [CDE08]

KLEE will create the two symbolic variables and will jump into the mod implementations
first. It will realize that y must not be zero and create a test case for this issue, furthermore
assuming y 6= 0. Afterwards it will store the result of the call (x mod y), and jump into the
mod_opt implementation. At the if-clause KLEE will check the condition and jump into
two paths: One the one side KLEE checks if y&− y == y is contradictory under the current
path constraints, which is not the case as the constraints are empty. If it was contradictory,
KLEE would recognize that this path cannot be walked and take the other path. In the
present case however, it will branch the path and add y&− y == y to the path constraints.
Inside the then-clause of the if it will return x&(y− 1) to the assert-statement. KLEE
now asks its constraint solver STP if the assert can fail under the current path constraints,
namely x mod y == x&(y− 1), assuming that y&− y == y ∧ y 6= 0 holds. STP will tell
KLEE that it always holds, the path terminates at the return 0 and the symbolic execution
backtracks to the branch at the if-clause. The then-block is not very spectacular, KLEE
assumes that ¬(y&− y == y) holds and returns x mod y. Again, it asks STP to falsify
x mod y == x mod y under the assumption of ¬(y&− y == y)∧ 6= 0, which is not
possible. Accordingly, KLEE will quit with three different test cases: y = 0, y is a power of
2 and y is not a power of 2. As all possible paths were taken and the assert-statement
failed on none, KLEE verified that the two implementations always return the same value.

4.2.6 Leveraging Symbolic Execution for Real Equivalences

In order to check proper equivalences of real world code, some extensions had to be made
to the example.

C standard library and POSIX environment: In order to check code with KLEE, we need
to compile it properly with LLVM, which requires that all libraries are compiled
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1 int main(int cArgs , char* args []){
2 int pre;
3 int sideeffect1;
4 int sideeffect2;
5 char* res1;
6 char* res2;
7

8 klee_make_symbolic (&j, sizeof(int), "j");
9 klee_make_symbolic (& globalVariable , sizeof(int), "

sideEffect");
10

11 /* preserve system state */
12 pre = globalVariable;
13

14 res1 = test1(j);
15 sideeffect1 = globalVariable;
16

17 /* resume system state*/
18 globalVariable = pre;
19

20 res2 = test2(j);
21 sideeffect2 = globalVariable;
22

23 /* compare system states */
24 klee_assert(res1 == res2);
25 klee_assert(sideeffect1 == sideeffect2);
26 }

Listing 2: Excerpt of checking side-effects with KLEE, full version in Appendix D.1
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with LLVM as well. This is not the case for the common standard C library as well
as for POSIX system calls. However, KLEE offers functionality for some POSIX and
standard C calls through the uClibc. Yet this functionality is not complete. We had
to create various models to properly simulate the real environment for our use case.

Side effect equivalence: To find equivalence as defined in Section 3.2.2, we need to de-
termine side effect differences. We check this through assert-statements similar to
those demonstrated in the example in Listing 2. To do this, we extract all global vari-
ables that are used by the function and store their values before and after the call of
tested functions. The new values of the global variables are stored in the sideeffect
variable. After calling both functions, we check the results of the variables as well
as the side effects against each other. The long version of the code can be found in
Appendix D.1.

Reset of side effects: It is important to note that KLEE does not execute the functions in
parallel. Both functions are called one after another, as described in the example in
the last section. This means that we have to prevent functions having an impact on
each other, by determining and reverting existing side effects. In our solution, the
global variables are reset with the stored values after the first function call.

Setup of a consistent global state: Lastly, in stateful applications, we also need to create
a consistent global state. This means that a proper setup of the symbolic variables
needs to be created. In the example added in Appendix D.2 a state machine is
created that manipulates the code depending on a certain set of variables. In order
to check the code with high coverage, we need to ensure that the global state (i.e. the
current state of the state machine) is set to a properly constrained symbolic variable.
If we would initialize it with a certain concrete state, the symbolic execution would
only check one step of the state machine. In a different situation, when dealing
with structures and arrays, we must make sure that dependencies within arrays are
kept in the symbolic variables. For example, when creating a structure that always
contains two integers with an dependency, say a number and its square root, when
marking the first integer as a symbolic variable, we have to keep the dependency
intact, i.e. create a constraint that the second value is the square root of the first.
Otherwise we generate false positives that do not appear in regular execution of the
software.

Please be aware that the comparison runs on the same machine, compiled in LLVM.
This implies the assumption that the code in the original OS, on the original hardware
with the original compiler, is semantically equal to the version compiled with the LLVM
compiler in the environment of the operating system running the analysis. This assumes
that bugs in both compilers do not affect the executed code as well as the code does not
depend on certain hardware. This is especially important when code directly references to
certain hardware configuration, for example preprocessor macros that checks x86 or x64
bit environment. If such references appear, we have to make sure that the system analyzing
the software has the same configuration than the environment running the software.
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4.2.7 Successful Applications

We applied symbolic execution to a function in the Operating System Abstraction Layer
(OSAL, see Section 8) project. We chose OS_TranslatePath, the function that had the
least connection to the environment and was the most self-containing, although it still
contains calls to the Standard C Library and various global variables (the functions are
listed in Appendix E.1, the POSIX implementations is renamed to OS_TranslatePathP, for
the RTEMS version see OS_TranslatePathR).

We checked for side effects on the parameters with the KLEE script listed in Ap-
pendix D.3. As a result we found one issue in the OSAL project that was present in all
implementations (see Figure 4.7). It led to the system reading a piece of memory out of
the bounds of the targeted array. This can lead to unexpected behavior.

Figure 4.7: A buggy piece of code discovered with KLEE

The fact that the bug was present in all implementations shows a huge benefit of symbolic
execution. It contains some rules of absolute correctness, in contrary to approaches based
on comparison of implementations. Thus, bugs like the one demonstrated can be found,
even if present in all versions. The downside is the time it takes to set up the test case.
Maybe automation can help extracting the relevant symbolic variables, the models to create
for external function calls and other preparations needed.

4.2.8 Conclusion of Applying Symbolic Execution for Equivalence Analysis of
SALs

Applying a symbolic execution tool like KLEE for equivalence analysis of SALs is generally
spoken a very exact method to find real runtime errors. It is especially good for finding
issues in extreme corner cases, as demonstrated in [CDE08]. As a bonus it can find certain
kinds of errors that are present in all implementations. This goes beyond the method
of comparing implementations for pure functional differences. However, some effort
has to be undertaken to analyze real equivalence, which might sometimes be a bit more
complicated, as side effects of a method have to be determined. Furthermore one has to
determine the best way to revert the side effects of the function. We proposed an adequate
method for our use case presented above.

SALs are created in order to deal with differences in technology. Differences vary from
slight deviance between implementations such as in the implementations of the POSIX
API to strong differences such as whole middleware layers. Sometimes SALs provide

37



4 Analyzing Equivalence of SALs

implementations for different environments. As such references to the environment
targeted are very common in these implementations. Accordingly, these environments
need to be modeled for symbolic execution in order to put the state explosion problem
on a lead. However, as models are abstractions of the real behavior, little differences are
introduced. As symbolic execution is a sound tool, it will find these little differences
introduced when searching for other differences, hereby destroying the soundness of the
tool, which is one of its main advantages. In other words: If the tool reports something,
either the code or the model is broken - but usually it is the model. This does not drive the
tool useless (we found a bug during application), but affects the results strongly. When
considering the amount of work to be invested in order to build the appropriate models
for checking the environment-intense code of OSAL, and knowing on the other side
that differences might result from difference in system or library calls, or compilers and
hardware setup under deployment, we come to the conclusion that symbolic execution is
more successful in self-contained environments than in our use cases.

4.3 Static Code Analysis

The third method to determine functional equivalence for SALs we would like to present,
is static (code) analysis. “Static analysis involves analyzing the source code of a module at
compile time to find or ensure the lack of a certain class of defects” [LVH10]. Advantages
of static analysis include:

• Controllability: In comparison to dynamic analysis it is usually easy to apply static
analysis, as it usually does not require integration into the “natural” habitat of the
software. This enables analyzing code of various platforms and/or hardware settings
without being in possession of the whole runtime environment [LVH10].

• Coverage: When a defect like naming conventions or lack of initialization is clearly
specified, static code analysis tools can often check the whole system against the
defect. As static analysis usually checks the code instead of executing its paths, the
problem can be approached faster and more completely.

Yet, static analysis cannot be complete (find all issues) and sound (make no mistakes) in
finding semantic properties of a program. Consequently, many static analysis approaches
suffer from the fact that proposals of many defects turn out to be wrong [Bin07]. This
is a problem that we face with machine learning techniques, which will be explained
in Chapter 6. Furthermore, as soon as semantic analysis of the code is performed, e.g.
deep analysis of loops, static analysis reaches the same issues as other approaches such
as symbolic execution, namely incompleteness and non-termination. This is again due
to the fact that we cannot certainly decide any non-trivial property for all programs (see
Section 3.2.2)

However, the advantages were more convincing for our use case. Consequently we
decided to apply static analysis techniques. Two different static approaches for determining
software equivalence came to our mind: bug patterns and reviewing.
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4.3.1 Bug Patterns

The first way to approach equivalence analysis with static analysis is through bug patterns.
Bug patterns are definitions of possible flaws in program code, such as unreachable code
or possible access to uninitialized variables. With good tools and large sets of error
patterns tools like FindBugs [CHH+

06] or Understand [Too12], static analysis is both
easily applicable and can be successful in avoiding common problems of programming.

However, this approach also has two disadvantages.

• Bug patterns must first be written so that bugs can be found. This leads to the
existing libraries of issues for regular static analysis, such as [Hat04] or others.
However, in contrary to performing reviews, everything that is not yet specified and
written down cannot be found. This means that the so-called unknown-unknowns
are out of scope for the tool.

• Further information from subsystems cannot be easily acquired. Real life software is
usually connected to several subsystems and libraries. In order to understand the
semantics of the software, the semantics of subsystems are required. For machines,
this is again a complex task, especially as developers often do not specify their code
in a machine-readable language.

4.3.2 Manual Reviews

The second approach is based upon the human understanding instead of predefined
machine-coded knowledge. During a reviewing process one or more analysts read through
code with a certain goal. The goal of reviewing two functions for equivalence analysis
is to determine if semantic differences exist (and where they are located), whether these
differences are part of the abstracted aspect (see Section 3.2.2) and consequently if the
functions are equivalent.

Reviewing has been shown to be a successful technique for improving code quality [PJ97].
Especially its structured and more formal pendant, the so-called Fagan inspection [Fag76]
optimizes its effectiveness for defect removal. Furthermore, code reviews have addi-
tional benefits for the team, such as improvement of communication or clarification of
requirements [PJ97].

Conducting manual reviews can have various advantages over automated approaches:
Human beings can often quickly identify semantics of programs, which is an undecidable
task for computers (see Section 3.2.2). If deeper knowledge of the code is required, for
example semantics of the referenced libraries, it can be easily accessed through the web.
In addition to the advantages for finding functional equivalence, manual reviews can
furthermore increase the communication and knowledge transfer in the team. As the team
discusses the code, it can help identifying differences in code style and architecture.

However, reviews can be costly through the invested human effort. Supporters of
reviewing and Fagan inspections usually justify this with the previously mentioned
benefits (as in [PJ97]). Furthermore, manual reviews are threatened by missing subtle
details. In contrary, a mechanic tool that is designed to identify these differences will miss
a difference only if it reaches the boundaries of computation or if there is a bug in the tool
itself.
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4.3.3 Tool-Supported Reviewing

When analyzing advantages and disadvantages of both approaches, it turns out that a
combination of the two is needed. Other research in static analysis comes to the same
conclusion: “The tasks that machines tend to be good at are tedious bookkeeping tasks. In
contrast, programmers are better able to make ’ah ha’ type discoveries. This suggests the
use of semi-automatic analysis where peak performance is obtained through a symbiotic
relationship between the two.” [Bin07]

Consequently, we created a prototype that combines the advantages of each method in a
three-step approach (see Figure 4.8):

1. At first, Static analysis identifies differences in code. Here the computer shows its
strength in finding even the smallest differences in the source code. This step is
explained in the next chapter.

2. Afterwards, machine learning applies filtering. As mentioned previously, static
analysis often faces issues with too many false positives. Existing machine learning
techniques help for this step. We describe our approach towards this issue in
Chapter 6.

3. Lastly, human analysts understand the code and identify functional equivalence or
code issues, which will be described in Chapter 7.
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Figure 4.8: Overview of our approach
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Detecting Differences in Code

“Source code analysis is the process of extracting information about a program from its
source . . .using automatic tools” [Bin07]. In order to do this, the code has to be processed
and analyzed with certain goals. The first section describes the automatic tool we designed.
It explains how the information is detected in the analyzed program. The second section
describes which information is extracted from the source code.

5.1 Process of Detecting Differences

The analysis of source code is split up into three parts (see Figure 5.1): First, processing the
various code files into analyzable function pairs. Second, retrieving context information
for the analysis from related resources, such as libraries or header files, and third the
analysis of the code itself.
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Figure 5.1: Static analysis process
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Processing Code

Processing the code files in order to create analyzable pairs of functions comprises five
steps, which can be seen in Figure 5.2.
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Figure 5.2: Processing of code

Splitting up files: The code is usually available in form of source code files. As discussed
in Section 3.3, we want to analyze code on the level of functions. Therefore, we need
to split up the files into functions.

Unifying functions: Some differences in source code are a matter of code style. In order
to prevent code style from having an influence on the analysis, we eliminate it as
much as possible with the uncrustify tool [Ope12c]. We used the options listed in
Appendix C.1.

Parsing functions: Afterwards functions are parsed into an XML representation with the
srcML tool [MC04]. The output is an XML representation of the abstract syntax tree,
which makes the code easier to process and analyze.

Transforming functions: Next, the XML code is converted into the model used for static
analysis. The model is a data representation of the real code, containing classes
for functions, statements, variables etc. In order to properly analyze variables, we
needed to write a new parser for the expressions used. During this step reappearing
variables and other code elements are identified. For example, if a variable is defined
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at the beginning and appears in a statement afterwards, it is looked up in the
namespace and referenced properly. After this step, the function is transformed into
an analyzable, linked representation of the abstract syntax tree.

Matching functions: Lastly, we take the single functions and match them to have pairs
of different implementations of a function. Matching is performed based upon the
signature.

Retrieve Context Information

In addition to the code itself, sometimes further information is useful to analyze a function.
For example, we might want to know if a called function is defined within the system
under analysis, or we want to check the type of a certain variable that is not defined within
the current function.

The library created for our approach contains a flexible context model that can contain all
sorts of information, which is easily accessible through a dictionary. In practice we added
two kinds of information: header files and an index of functions from the C standard
library. The former serves as an index of functions of the system under analysis, the latter
serves as a reference to check if the function is a standard library function.

Analyze the code

With the information from the context and the model of the code, we can now perform the
actual task: analyzing the code. In order to do this, we created components that extract
information from the code, the so-called data extractors. The library implemented in this
thesis is designed to enable easy extension of data extraction. Hence, additional data
extractors can be defined easily and added to the tool.

The result of this data extraction has two forms: hints and metrics. Hints are concrete
source code elements that indicate differences (such as variable names) whereas metrics are
numerical representations of these differences. For example, when searching through the
usage of variables and finding one variable that is not used in one of the implementations,
the extractor could return the name of the variable as a hint and quantify the metrical
difference with 1. In the following section we will explain the data extractors developed
and used within this thesis.

5.2 The Data Extractors

We wrote data extractors for various forms of differences. Each of the 16 extractors focuses
on one possible type of variance in the code. The differences were of eight distinct types.

• Return code difference
• Side effect difference
• Function call difference
• Variable difference
• Value difference
• Lines of code difference
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• Levenshtein distance
• Cyclomatic-complexity difference
• Operator difference

We describe these in detail in the following sections.

Return Code Difference

Return code difference checks the return value of implementations. Of course, this is again
an undecidable problem, as it asks for the semantics of a program. Hence we have to
apply heuristics. In the present use case, return codes are used to communicate success or
failure of functions; hence, the return statements usually contain either only a constant
or a variable that is used to store the return value. Hence, we wrote a data extractor that
isolates all return values, and, if the return value is a variable, the different values assigned
to that variable. The extractor is calculated by the number of elements that are only part
of one of the implementations, the symmetric difference, which is defined as

SymmDiff(Set1, Set2) = (Set1\Set2) ∪ (Set2\Set1)

Hence, the data extractor is defined like following:

Return code difference

Hints SymmDiff(RCImpl1, RCImpl2)
Metric |SymmDiff(RCImpl1, RCImpl2)|

where RCImpl1 and RCImpl2 are possible return codes of the implementations Impl1 and
Impl2.

Side Effect Difference

Following the definition from Chapter 3.2.2, not only return codes, but also side effects
are relevant to functional equivalence. Hence we added a heuristic that determines which
external variables (parameters passed through call-by-reference or global variables) could
possibly be altered by a function.

Again we calculate the extractor with the symmetric difference of the set of parameters
that is written to at some point of the respective functions. For the global variables we
determine which variables are manipulated, remove those that are defined as a parameter
or within the function and again look for variables that show up only in one of the two
implementations.

The first data extractor relates to side effects by writing of global variables.

Global writing difference

Hints SymmDiff(GWImpl1, GWImpl2)
Metric |SymmDiff(GWImpl1, GWImpl2)|
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5.2 The Data Extractors

where GWImpl gives all variables that are changed within the function Impl and are not
listed in the parameters or defined in the function.

The second data extractor checks side effects by manipulating parameters.

Parameter writing difference

Hints SymmDiff(PWImpl1, PWImpl2)
Metric |SymmDiff(PWImpl1, PWImpl2)|

where PWImpl is a list of variables that are manipulated within the function Impl.

Function Call Difference

We knew from our case study that differences in function calls do not necessarily reflect
semantic differences (for an example see Figure 8.4). We split up function calls into three
different groups, in order to differentiate if the various implementations have access to the
functions.

Global Function Calls are calls to those functions that are definitely available in all imple-
mentations. If the implementations are instances of an API then calls to functions
defined within this API are always global function calls.

Local Function Calls are calls to functions that are only available to a specific implemen-
tation. If the implementations are deployed on different systems the system calls are
local to the respective system, hence, local function calls.

Local Global Function Calls are function calls that could be shared between implementa-
tions. Libraries that may be included in the implementations are part of this domain.
The local and local global function calls are special in the sense that the code called
is out of scope of the implementation.

We created a list with standard library functions and search for function definitions of
the API in header files provided. Hence, we classify all calls to functions from the header
files as global function calls, because these functions are definitely visible and available
to all functions. We furthermore classify all calls to the standard library as local global
function calls, as those are possibly globally visible, but implementations might differ,
as they are local to the compiler. Third, we categorize all other function calls as local
function calls. These are calls that are probably only related to the respective system, such
as system calls.

The three different extractors are again calculated using the symmetric difference.

Function call difference of domain D

HintsD SymmDiff(FC(Impl1, D), FC(Impl2, D))
MetricD |SymmDiff(FC(Impl1, D), FC(Impl2, D)|

For simplicity we list the three extractors in one table. FC(Impl, D) gives all functions of
domain D ∈ {local, global, local-global} called within Impl.
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Variable Usage Difference

Next we found that sometimes developers use varying constants in their code. We explore
this by determining read access to the variables of a function. Every access to a variable
is extracted from the function and deviance between implementations is calculated. We
furthermore created two additional extractors for constant variables: all constants and
project constants, which are constants that are defined within the system under analysis.
Both are classified through regular expressions: By default upper-case variables are
guessed as constants, and a certain prefix is defined for the project constants (e.g. in OSAL
all constants are prefixed with OS_). As usually, difference is calculated through mutually
exclusive read access to variables.

Variable usage difference

Hints SymmDiff(RVImpl1, RVImpl2)
Metric |SymmDiff(RVImpl1, RVImpl2)|

where RVImpl are the variables read by function Impl.

Constant usage difference

Hints SymmDiff(RCImpl1, RCImpl2)
Metric |SymmDiff(RCImpl1, RCImpl2)|

where RCImpl are the constants read by function Impl.

Project constant usage difference

Hints SymmDiff(RPCImpl1, RPCImpl2)
Metric |SymmDiff(RPCImpl1, RPCImpl2)|

where RPCImpl are the project constants read by function Impl.

Value Difference

Furthermore, we figured that not only constants but also constant values could show
semantic differences. For example for-loops might iterate a different number of times.
These values can also serve as an indicator for magic numbers in the code. Accordingly,
we extracted all string and integer values used in the implementations and created hints
and metrics for these two categories.

String value difference

Hints SymmDiff(SVImpl1, SVImpl2)
Metric |SymmDiff(SVImpl1, SVImpl2)|

where SVImpl are all strings defined in the function Impl.
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5.2 The Data Extractors

Integer value difference

Hints SymmDiff(IVImpl1, IVImpl2)
Metric |SymmDiff(IVImpl1, IVImpl2)|

where IVImpl are all integer values used in the function Impl.

Lines of Code Difference

The lines of code difference is a very rough metric. It takes the statement lines of code, i.e.
the number of semi-colons in the C code, and calculates the difference. As such it only
calculates a metric and no hint.

LoC difference

Metric |SLoCImpl1 − SLoCImpl2|

Levenshtein Editing Distance

Editing distance determines how many text changes (adding, changing, deleting characters)
have to be made to convert one text into another. It was first suggested in [Lev66].

To give an example, the editing distance of “pale” and “nail” is 3. It needs three steps to
get from one word to the other: pale - nale - nal - nail.

This extractor is useful in order to roughly see how different two pieces of code are.
We used the implementation from [Ope12a]. However, this extractor does not produce
concrete hints, only a metric.

Levenshtein distance

Metric LevImpl1,Impl2

where LevImpl1,Impl2 denotes the Levenshtein distance between Impl1 and Impl2.

Cyclomatic-Complexity Difference

Next we experimented with differences in control flow elements, such as if-statements or
for-loops. We ended up integrating a metric that sums up these differences: the cyclomatic
complexity, which counts the number of independent paths that can be walked through
the control flow graph (CFG). McCabe presented the approach in [McC76].

McCabe complexity is calculated based on the CFG:

McCabep = Ep − Np + 2Pp

where Ep is the number of edges in the CFG of p, Np is the number of nodes, and Pp
represents the number of connected components. Connected components are subgraphs
where each node of the component is connected to all other nodes of the component
through one or more paths, but is not connected to any other node of the graph outside
the component.
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5 Detecting Differences in Code

1 void mcCabeExample(int parameter)
2 {
3 int i;
4 for (i=3;i>=0;i--)
5 {
6 // do something
7 }
8 if(parameter != 0)
9 {

10 // do something else
11 }
12 }

Figure 5.3: A code example and its CFG

In the example in Figure 5.3 we wrote a short program containing a for-loop and an
if-branch. The CFG of the example contains 9 nodes, 8 edges and 1 connected component
(the whole program). Accordingly, the cyclomatic complexity of the program is:

McCabep5.3 = 9− 8 + (2× 1) = 3

In our tool, we used the library provided by [Blu12] with the options to be found in
Appendix C.2. For the metric, we used the difference of the cyclomatic complexity of two
programs.

This extractor creates only a metric and no hints, similarly to the previous extractor.

Cyclomatic-complexity difference

Metric |McCabeImpl1 −McCabeImpl2|

Operator Difference

Lastly we added a third group of features: Operator differences. During the analysis we
found that various implementations were confusing the boundaries of loops, which will
be discussed in detail in Section 8.4.1. Hence, the operators could make a difference in
equivalence analysis.

However, there are various operators for all kinds of expressions: Arithmetical operators
that compare numbers, operators that calculate integers or operators for boolean variables.
Therefore, we created four different extractors, which count the appearing symbols in the
code (see Table 5.1). The hint is the symbol itself and the metric is calculated by the sum
over all differences of appearance of the symbols

OpDiff(p1, p2, S) = ∑
s∈S
|Count(s, p1)−Count(s, p2)|

where S is the set of symbols and Count(s, p) counts the number of times s appears in p.
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Feature Symbols counted

Operator Diffs All
Comparison Operator Diffs {<=,>=,==, !=,<,>}
Arithmetic Operator Diffs {++,−−,+,−, /, ∗, ^, %}
Logical Operator Diffs {&&, ||, &, |, !}

Table 5.1: Operator sets for data extraction

Operator difference of operator set S

Hints {s|s ∈ S ∧ |Count(s, Impl1)−Count(s, Impl2)| > 0}
Metric |OpDiff(p1, p2, S)|

where S is a set of operators as shown in Table 5.1 and Count and OpDiff as defined above.

5.3 Summary

In this section we used static analysis to determine several forms of deviance between
implementations. We calculated hints, which are possible spots of difference and their
numerical significance, the metrics. However, due to large numbers of differences in code,
big quantities of hints and metrics exist. We will determine ways to extract the relevant
differences in the next two chapters.
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Classification and Filtering of Hints

As static analysis returns a huge number of differences, two systems would be of great help:
1. An automation mechanism prioritizing the various function pairs to compare. Maybe
the mechanism can already give a guess whether two functions are equivalent or not.
Accordingly, the user could focus on the function pairs where the system was uncertain.
2. An automation mechanism that could understand which of the hints provided by the
static analysis are relevant and which hints are probably not relevant to the user.

In order to explain the strategies we created to solve these problems, we will first
introduce into the terminology1 used in machine learning, and explain our approaches
afterwards.

6.1 Terminology

For determining whether a function pair is equivalent or not, we need a classifier (or
prediction model), an automation mechanism that learns from a set of known examples how
to classify unseen examples [WFH11, page 40]. An example or instance is one set of data, in
our case the data of one function pair. All examples together form the example set, which
represents the input to our classifier. The output of the classifier is called the label, which
can be a binary result, an item out of a set of items, or also a real number.

In order to classify examples, classifiers usually require not the instances themselves,
but features thereof (sometimes also called attributes). These features are data points that
describe the instance. Accordingly, each instance can be described as a vector A ∈ DN

with features ai for i ∈ [1, N] with N being the number of features. The domain D can

1Please note that explaining the whole state of the art would go beyond the scope of this work. Accordingly,
only the applied technology is explained. Several extensions and variations of the applied approaches
exist and might be interesting to analyze in future work.
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be numerical or nominal. In our case the label is a nominal type of one of the values
Equivalent or Different. Usually the set of features contains various items that may or may
not be useful for classifying the label. Sometimes features just slow down the classifier or
may even have a negative effect on the result. Hence, feature selection is a technique that
separates the useful from the useless features. Additionally, the more compact data set is
easier to grasp and focuses “the user’s attention on the most relevant variables” [WFH11,
page 308]. Therefore, feature selection improves the classifier’s performance and increases
the clarity of the data set.

6.2 Classification of Function Pairs

SALs can consist of various functions. Hence, prioritization can help focusing on the right
function pair comparisons for further inspection. Correspondingly, if a mechanism can
sort and pre-classify all function pairs of the system under analysis, the user can focus on
uncertain comparisons.

To achieve this, a prediction model is build (see Figure 6.1) that takes two inputs: the
metrics of the function pairs under analysis plus information about these function pairs
from a knowledge base. The prediction model can ask the knowledge base whether a
certain function pair is already classified or not. Accordingly it will use it for training
purpose or alternatively suggest a classification.

Static 
Analysis

0,42,23

Metrics 
Prediction Model

Code1.c

Code Files
Code 3.c

Impl1.c

Input Output
(Equiv, 0.7),
(Diff, 0.3), ...

Predictions 

Knowledge Base

Input Output
Edit Distance, 

Return Diffs, ...

Selected Features

Static 
Analysis

"path_name"

Hints 

Files

Figure 6.1: The process for the prediction model

6.3 Used Features

For a well-functioning classification algorithm, good features are essential. We identified
various metrics of difference in the previous chapter (see Section 5.2). To these we added
the label UserDecision. This field is the given classification contained in the knowledge
base, if the function pair has been classified already. Otherwise a flag indicates that the
knowledge base contains no information regarding the classification of this function pair.
In this case, the prediction model will create a prediction for this instance.

Table 6.1 shows one example with the complete feature list for the POSIX and RTEMS
implementations of OS_translatePath. The functions are listed in Appendix E.1.
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Feature Value

Name OS_TranslatePath
Compared implementations POSIX and RTEMS

UserDecision Different
LoCDiff 26
Editing distance 1191
Code-complexity difference 7
Global function calls difference 0
Local function calls difference 0
Local global function calls difference 4
Variable usage differences 19
Project constant usage 2
Constant usage 5
Parameter writing differences 0
Global writing differences 2
Return code differences 1
Integer value differences 2
String value differences 2
Operator diffs 30
Comparison operator diffs 9
Arithmetic operator diffs 11
Logical operator diffs 5

Table 6.1: An example showing all features in use

6.4 Used Classification Algorithm

The feature vector presented above has one label (UserDecision) and 18 regular features,
of which all non-labels are real numbers. Hence, as the data does not grow large quickly
and performance was not a key interest in this study, we used an instance-based learning
algorithm, where data is stored verbatim [WFH11, page 131]. An instance-based classifier
categorizes an unknown example by looking at other close examples. The k-nearest-
neighbors approach (k-NN) chooses the label with the highest frequency from the closest
k items, for a specified k. RapidMiner uses Euclidean distance to determine how close two
instances are:

dist(A1, A2) =
√

∑
i∈[1,N]

(a1,i + a2,i)2

where A1 and A2 are instances with a1,i being the feature i of instance A1. As all features
of the model are real numbers, we can easily compute these values.

The value which most of the nearest neighbors have as their label, is then proposed
as the classification for the unknown example. Afterwards the model can calculate the
confidence for a target value t of an unknown example X by taking the percentage of the k
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examples that support this classification.

confidencet =
|{n|targetAtt(An) = t ∧ An ∈ kNN(X, k)}|

k

where kNN(X, k) is a set of the k nearest neighbors of X using the distance function
mentioned above.

However, if the examples that are closer to the unknown example should have a higher
impact, weighted voting increases their effect onto the confidence. With weighted voting,
confidence is calculated like the following:

totalDistance = ∑
n∈[1,k]

dist(X, An)

normFactor = max(k− 1, 1)

confidencet = ∑
n|targetAtt(An)=t

1− dist(X,An)
totalDistance

normFactor

First we calculate two constants for normalization. Afterwards, we take those instances of
the k nearest neighbors that have the same target value as the value, which the classifier
will predict for X. Afterwards, we sum up the confidence based on the distance of the
individual instances. Hence, instances that are closer to the unknown example have a
stronger impact onto the confidence.

0.3

0.2
0.15

Feature 1

Feature 2

Figure 6.2: Example for k-nearest neighbors classification

Figure 6.2 shows an example of this approach. For a 2-dimensional space, we want
to classify examples into red and blue instances. The red and blue dots were used to
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train the model; the gray dot is an item to be classified. We marked distances from the
unknown example with circles and give the exact distance at the bottom of each circle.
Applying a k-NN approach with k = 3, we can quickly see that the model would classify
the gray dot as red, because red constitutes the majority in the k = 3 distances. With
unweighted voting, the confidence would be 2

3 . In weighted voting however, we calculate
the confidence according to the previous formulae:

totalDistance = 0.15 + 0.2 + 0.3 = 0.65
normFactor = max(2, 1) = 2

confidence =
1− 0.15

0.65
2

+
1− 0.2

0.65
2

≈ 0.73

We see that the blue dot’s importance decreases with weighted voting, as it is further away
from the unknown dot.

One problem that may occur when using k-NN models are differences between the
domains of the features used: If one feature contains values between zero and one and
another feature uses huge real numbers, the small numbers will dominate the model.
Hence, normalization has to be performed, so that all features have an equal impact onto
the model.

We applied a normalized 6-NN approach with weighted voting. Features are normalized
between zero and one by calculating

ai =
vi −min vi

max vi −min vi

where ai represents the normalized and vi the non-normalized value. The max and min
functions are applied over the whole training set [WFH11, page 132].

6.5 Feature Selection for Filtering Hints

Including too many features into the data set can distort the performance of the classifier
[WFH11, page 30]. Hence, algorithms are in use, which reduce the feature set to a more
optimized one. As there are 2|Features| possibilities for subsets of the feature set, it is usually
infeasible to find the best solution, the global optimum. In contrary, heuristics try to find a
local minimum with a very reduced need of computation.

Two of those approaches are forward (feature) selection and backward (feature) elimina-
tion (see Figure 6.3, the acronyms are short forms of features from Table 6.1). In forward
selection, all features are added one by one. After each time a feature is added, the
performance of the classifier with the new set of features is evaluated. The feature with
the best performance improvement is added to the feature set. The algorithm terminates
when a local optimum is reached, i.e. no added feature would improve the performance.

Backward elimination works very similar, except that the process starts with the whole
feature set and removes feature by feature. Whenever a removal of a feature does not
make the performance worse, the algorithm removes the feature from the feature set.
Accordingly, when removal of any feature from the feature set would have a negative
effect onto the performance of the classifier, the algorithm terminates.
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Figure 6.3: Feature selection and backward elimination, built upon [WFH11, page 311]

Both approaches find local optima, which are not necessarily the global optimum.
However, they need significantly less performance evaluations, as not all possibilities
are checked. In practice, these selections usually lead to good results, i.e. performance
increase and significant reduction of feature set [WFH11, page 312]. Even though more
sophisticated techniques exist, their application is not generally justified [WFH11, page
313].

As forward feature selection approximates the global optimum beginning with an empty
set, and backward elimination starts with the complete set, forward selection tends to have
fewer features in the final feature set [WFH11, page 312]. Consequently, as we want a
feature set as small as possible, we applied forward selection.

However, feature selection has another big benefit besides performance. Reducing the
feature set results in a more compact, more relevant data set [WFH11, page 308]. The
features that remain after the selection process are the most important features for finding
equivalence and differences in the code. Hence, we can take this knowledge and use it for
the hints we created in the previous chapter. When taking only hints of those extractors
determined relevant by the machine learning approach, we get closer to the relevant
features for semantic differences. How this is used to support an analyst for equivalence
analysis will be evaluated in the next chapter.

6.6 Overall Process

In order to give an overview how these features are put together, Figure 6.4 shows the
whole process in the used tool, RapidMiner. In total the prediction model contains the
following steps (the terms in brackets denote the RapidMiner steps which can be found in
the figure):

1. The model assumes the example set represented in lines as shown in Table 6.1. The

58



6.6 Overall Process

information has to be stored in the comma-separated values (CSV) format, where
each line represents an example and commas separate features.

2. The model selects the fields for classification (Set Role) and normalizes the data.

3. Afterwards examples are divided into training and classification set, of which the
former consists of those examples that have already been classified, and hence have a
valid value in the label UserDecision. The still unclassified examples form the set for
classification. In RapidMiner we need to multiply the data and subsequently filter
appropriately.

4. Now the training set is first transformed (the values in UsedDecision are discretized
from integer numbers into the nominal values Equivalent or Different, Discretize) and
then used for the feature selection algorithm (Optimize Selection). The output of the
feature selection algorithm is then stored for further processing (see next chapter) in
an Extensible Markup Language (XML) file (Write Weights).

5. The output of the feature selection algorithm (the examples from the training set
with reduced features vectors) is used to train the k-NN classifier.

6. Next, the features of the example set for classification are reduced to the ones from
the feature selection algorithm (Select By Weights). Now we can apply the just trained
classifier onto this example set, returning predictions for the label UserDecision and
a confidence for this prediction.

7. Lastly, the relevant data (such as the prediction and confidence) is filtered (Select
Attributes) and stored in a CSV file (Write CSV).

59



6 Classification and Filtering of Hints

Figure 6.4: The prediction process in RapidMiner
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Using the User for Equivalence
Analysis

This chapter describes why the user is still needed and how he can be supported in a
reviewing system.

7.1 Semi-automated Equivalence Analysis

As described in Chapter 3.2.2, determining whether two functions are equivalent is
undecidable. As a consequence, no technique will ever be able to determine functional
equivalence in a sound and complete manner. Hence, there are three options: We can apply
an approach that is incomplete, but sound, such as symbolic execution (see Chapter 4.2).
This approach will not find all issues, but it can guarantee soundness for all results it
produces. Second, we could apply a complete, but not necessary sound technique, such
as textual differencing, where code is compared character by character. This method is
complete, as it will find all possible spots of difference in code. However, such approaches
often lack precision, meaning that the approach will mark all differences of which many
are also part of equivalent function pairs. We will evaluate this in Chapter 8.3. Lastly,
there is also a third way, the middle way. This approach is neither sound nor complete,
but instead tries to combine advantages of either of the two ways: to find many semantic
differences with few mistakes.

7.2 Support in a Reviewing System

When supporting an analyst during reviewing the most important aspect is to collect
information and support from various sources and present only the most important of it
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7 Using the User for Equivalence Analysis

in a coherent fashion. The support may come from various sources:

Providing a project overview: We created a tool that gives the user a view onto the project
where he can work through function pair by function pair, without searching through
code bases manually. In our tool, we created a project view, where a list with all
function pairs is presented to the analyst. He can sort the list by all features
mentioned in the previous chapter.

Order function pairs by prediction: In addition to sorting by features we also offer sorting
by the prediction created by the model described in the previous chapter. When a
prediction model gives a first idea, the user can decide how much work he might
want to invest. For example, if the tool is very sure that two functions are equivalent,
the user might only want to quickly check and then focus on more difficult cases.

Giving hints for differences: The tool not only presents the function pairs, but also marks
certain pieces of code, where it assumes relevant differences.

Hiding less relevant differences: The feature selection algorithm described in Chapter 6.5
determines which data extractors and accordingly which hints are the most relevant
for the equivalence analysis as performed by the user. Hence, we only display those
hints where the data extractor has an influence on the prediction model described.
Thus, irrelevant differences are faded out and the (probably) relevant differences are
marked in a striking color. The next chapter shows screenshots of our tool, which
displays these marked hints with a strong red background and the unmarked hints
in a lighter color.

Hiding hints that are repeatedly wrong: In addition to the filtering based on feature se-
lection, we added a filtering stage where hints for differences appear various times,
yet the user decided that the respective function pairs were equivalent. This means
that even though there was a difference (the hint) the user decided that the difference
does not affect the functional equivalence. In practice, we find all pairs of hints that
appear together in equivalent function pairs. The tool assumes that if such a pair
appears more than ten times, the two hints represent an equivalent aspect and are
hence insignificant. However, the user can check this list of insignificant hint pairs
and manually change which hints are to be displayed and which to be hidden.

Syntax highlighting: Instead of presenting the pure textual representation of the code,
keywords and variables are marked with a distinct color (see the examples in the
next chapter). We support the user by providing a well-known view onto the code,
thereby making him feel familiar with the code. Syntax highlighting might also
enhance code comprehension. The library presented in [Gru11] is used to mark the
code accordingly.

Textual diffing: In the final tool we include the information of textual diffing in the
background. Whenever two passages of code are textually different from each other,
the background is slightly colored, so that the user attention is not drawn to these
passages, but the information is available. For example, in some cases the tool does
not provide any hints for differences. In order make a final judgment whether the
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two functions presented are equivalent, we might want to quickly scan through the
differing passages and check if the tool missed something. We can then make a
decision afterwards. The diffing is performed with the library available at [Ope12b].

Line-to-line comparisons and synchronized scrolling: When the user compares two func-
tions, the tool tries to keep the versions appropriately vertically aligned. When
scrolling to a certain point in one of the implementations, the tool shows the appro-
priate part of the second implementation as well. This is achieved through a feature
from [Ope12b].

Reports: In order to export the knowledge retrieved through the comparison of functions
pairs, we added a way to export the knowledge from the tool into CSV format.

7.3 Complete Tool Process

The tool described introduces a loop into our analysis process (see Figure 7.1).

1. Static analysis creates hints and metrics of various kinds (see Chapter 5).

2. The metrics together with the existing knowledge from the knowledge base is fed
into a prediction model, which creates predictions for unknown examples and a set
of relevant, selected features (see Chapter 6).

3. Afterwards, the filtered static analysis results plus the predictions from the prediction
model are fed into a tool and presented to an analyst.

4. The analyst looks at the tool and analyzes the code for equivalence. He makes a
decision whether the two functions are equivalent or different, based upon the hints
presented by the tool.

5. This decision feeds back into the knowledge base, which changes the predictions and
the hints that are displayed to the analyst. Depending on the size of the system under
analysis, we can start reclassifying with the new knowledge either immediately or at
an appropriate point later (e.g. overnight).
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Figure 7.1: The tool loop
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Evaluation with the Operating System
Abstraction Layer

We describe the Operating System Abstraction Layer (OSAL), and analyze its code. On the
way we explain the various issues found.

Goal of study: This study aims to evaluate the equivalence analysis approach presented
in the previous chapters in terms of bug finding and automation potential in comparison
to traditional diffing for a real industry project from the point of view of a developer of
aforementioned project.

First, we will introduce the reader to the case study. Afterwards, we will analyze four
research questions. Each section describes the problem, reasons about the background or
shows a conducted study and answers one question, based on the experience gained.
The following four questions will be evaluated:

1. Is the OSAL a representative industry project?

2. Is traditional diffing appropriate to find equivalence?

3. Is the presented approach able to find serious issues in OSAL?

4. Is the automated approach able to classify equivalence?
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8.1 Introducing OSAL

The goal of this section is to give an overview over the OSAL library.

Purpose of OSAL

When a software application needs functionality of the OS such as file access, retrieving
file system information or task creation, system calls offer an API to the developer. For
example, when a UNIX based ANSI C program needs to know how much disk space is
available on a certain disk, it can make a system call to statvfs, with certain parameters
and retrieve the information from one of the parameters. A program running under the
open source real-time operating system RTEMS [OAR12] would do the same. However,
in other systems, such as the commercial real-time operating system VxWorks6 [Win12],
there is no such system call. Instead, programs need to make a system call to ioctl
with completely different parameters and a different unit for the free space. This raises a
question: How can a developer write software that runs on both operating systems?

The OSAL is an abstraction layer that can be used by ANSI C code. The purpose of
OSAL is to have a common interface for various system calls of different operating systems.
This way, developers can share the same code base for different operating systems, such
as developer’s machines and the deployment system. By sharing a common code base
many versioning and deployment issues can be avoided. Also continuous integration
can be established more easily. OSAL is implemented for software running under UNIX,
VxWorks6 and RTEMS systems and can be easily extended.

History, Applications and Resources

OSAL was initially developed by Alan Cudmore and is now maintained and extended at
National Aeronautics and Space Administration (NASA) Goddard Space Flight Center in
Greenbelt, MD, USA. It is openly available [NAS12d] under NASA open source agreement
(NOSA)[NAS12b]. OSAL is in productive use in several space missions.

Most importantly, OSAL is part of the Core Flight System (CFS). CFS is a reusable
system for flight systems, such as satellites, orbiters or space shuttles. It consists of several
layers that create the abstraction needed to apply it onto several different missions (see
Figure 8.1). The operating system and the board support package (BSP) enable reuse over
several different hardware platforms. However, the mission’s software usually also needs
an interface to the hardware (such as data storage). This is possible through system calls.
Unfortunately system calls are not standardized in the common operating systems that are
used in space software. To reuse code on various operating systems another abstraction
layer is necessary: the Operating System Abstraction Layer.

Various missions, such as the Lunar Reconnaissance Orbiter (LRO) [NAS12a] and
the Solar Dynamics Observatory (SDO) [NAS12c], use CFS. LRO launched from Cape
Canaveral in 2009 for collecting about 192 terabytes of data from the moon. With this data
a very comprehensive map of the moon was created in order to prepare future plans to
create a lunar outpost.

CFS is also part of the Solar Dynamics Observatory (SDO) project. The SDO is trying to
understand the solar variations and how the magnetic fields of the sun are working and

68



8.1 Introducing OSAL

Core Flight Software (CFS)

Package

core Flight Executive (cFE)

Operating System Abstraction Layer (OSAL)

Hardware

Operating System 
(OS)

Board Support 
Package (BSP)

LRO SDO ...

Figure 8.1: Architecture of CFS

influencing life on earth.

Architecture of OSAL

We sketched the architecture of OSAL in Figure 8.2. The OSAL API is defined in various
header files. Missions and tests develop against this interface, which is then implemented
by wrappers for each operating system. The OSAL can now be compiled for each operating
system and placed appropriately in the running OS. The application can then call the OSAL
function and the available OSAL binary will execute the call in the correct implementation
accordingly.

In order to create a consistent abstraction for each implementation internal data struc-
tures are created and maintained as well. These data structures consistently store informa-
tion about the OS status. For example, tables about existing file systems, message queues
or semaphores are created and kept up to date for the calls coming into the OSAL.

Features of OSAL

Among others OSAL offers services for: [Yan07] [YCY11]

• Abstracted IDs and information: A generalized interface to file and object handling
and identification is provided. All information is structurally identical for each OS.

• Tasks: The heart of most real-time operating systems are tasks. OSAL offers function-
ality to create, delete, start and delay tasks. Additional parameters like the priority
of a task can be accessed and modified.

• Timer: In order to get a notification after a certain period of time, OSAL also
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Figure 8.2: Architecture and artifacts of OSAL

implements a timer API. With these functions an application can create, delete and
find timers by name or id.

• Queues: Using OSAL systems can create and delete queues, put and read bytes from
the queue, as well as get some additional information.

• Semaphores: To handle passages with mutual exclusion, support for various forms
of semaphores is provided.

• Files and File Systems: OSAL offers a wide range of functionality for file and file
system operations. Thus a developer can manage file systems and have all kinds
of access to files. File systems can be created, mounted or unmounted; files can be
copied, moved, access rights can be changed and more.

• Network: Limited functionality is available for Network access: OSAL applications
can retrieve information about this computer or the network this computer is part of.

• Interrupts and Exceptions: Systems can enable and disable various interrupts, as
well as check for floating point unit (FPU) exceptions.

8.2 Is the OSAL a Representative Industry Project?

To derive valid consequences from this case study, we have to look at the system-under-
analysis in detail first. Can we generalize results from this case study, and if so, to what
extent?

8.2.1 Characteristics of OSAL

The project under analysis has applications in space software. It is used in various missions
where safety is critical due to financial and personal risks.
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In OSAL we analyzed 100 functions that were present in all three implementations and
four functions that were only present in two implementations. This leads to 100× (3

2) +

4× (2
2) = 304 one-to-one comparisons (or function pairs) in total. Of these 104 functions, 11

functions were only implemented as stubs in at least one of the three implementations.
This includes functions that only return success or failure, without changing or really
implementing the API. A complete list can be found in Appendix E.2.

Even though the applications of OSAL are (literally) rocket science, the functions are
of short to medium length (an average of 14 executable statements per function) and
low to medium complexity (average cyclomatic complexity of 5.5). It is recommended
(e.g. in [WMW96]) to limit functions to a cyclomatic complexity of 10; hence, we could
argue that an average complexity of six is close to a standard value in software projects.
In order to give an idea how different the functions are (syntactically), we propose the
average Levenshtein distance between function pairs (see Section 5.2). This metric gives
a good idea of how different functions are. In OSAL the average Levenshtein distance
of function pairs is 264. This indicates some relation between the implementations, but
implementations are still very different.

Table 8.1 gives a short summary of the analyzed parts of the OSAL project. Tests,
example apps, config-, make- and bsp-files were excluded. The top section was retrieved
from [Yan07], the next four sections were generated with understand [Too12], and the
bottom two sections were calculated within our own framework.

8.2.2 Result

The different implementations have a certain similarity and are of medium complexity.
They are slightly less complex than average open source projects, e.g. given by [PSE04].

However, the OSAL is a real industry project used in extremely safety critical environ-
ments. OSAL’s users need highly reliable software for real-time operating systems. Hence,
the requirements to OSAL are definitely above average. As such one could argue that the
results could be transferred to many less strict use cases.

A follow-up study should answer this question.

8.3 Is Traditional Diffing Appropriate to Find Equivalence?

One could image that we can find equivalences in software systems by using regular
diffing. Diffing is the action of comparing two textual files, and determining the textual
fragments that have to be added or removed in each version [CCD09]. The Unix command
diff is a very prominent example, returning the minimum number of lines to be added or
removed to convert one version of text into another.

But can a diffing tool really determine or at least approach such a sophisticated matter
like software equivalence? To answer this question we used a state-of-the-art diffing tool
that fit into our tool chain, DiffPlex [Ope12b]. We studied how many of the real equivalent
functions in OSAL were syntactically (character-by-character) equal.
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Metric Value

System Under Analysis OSAL
Analyzed Version 3.2
Developed since August 2003

Implementations 3
Files 26
Functions 317

Lines 20065
Lines of Code 8641
Comment Lines 7513

Executable Statements 4443
Average Executable Statements per Function 14
Maximum Executable Statements 65

Sum Cyclomatic Complexity 1742
Maximum Cyclomatic Complexity 43
Average Cyclomatic Complexity 5.5

Total function pairs compared 304
Equivalent function pairs 181
Different function pairs 123

Average Levenshtein Distance 264
Avg. Levenshtein (different function pairs) 456
Avg. Levenshtein (equivalent function pairs) 133

Table 8.1: Metrics of OSAL

8.3.1 Study

First, we only split up the code files into functions. After this step 14 pairs had identical
code. Second, we eliminated most aspects of different code styles, using the uncrustify
tool (see Section 5.1). This second step led to 44 pairs of identical code. However, by
manually reviewing we found out that 181 pairs of functions had identical code. Thus,
even more elaborated diffing could find less than a fourth of the real equivalences (23.4%,
see Figure 8.3).

One example for a function that is functionally equivalent but syntactically different can
be found in Figure 8.4. We have two implementations of the OSAL function OS_TaskExit:
an implementation for POSIX to the left, and an implementation for RTEMS to the right.
We can see three differences that are irrelevant to the functional equivalence of the software
abstraction layers: First, the RTEMS version declares an additional variable, status that is
only written, but never read. Hence, neither control flow, nor external data is changed
because of this difference. It has no effect to the functional equivalence described in Sec-
tion 3.2.2. Second, POSIX and RTEMS have different ways to protect and free semaphores.
In POSIX this is achieved by calls to pthread_mutex_lock and pthread_mutex_unlock,

72



8.3 Is Traditional Diffing Appropriate to Find Equivalence?

181!

44!

14!

0! 50! 100! 150! 200!

Real Equivalent!

Diff-Tool Equal (unified)!

Diff-Tool Equal!

Number of Functions!

Figure 8.3: Using diffing for finding equivalence

Figure 8.4: Two equivalent functions in OSAL
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while RTEMS requires calls to rtems_semaphore_obtain and rtems_semaphore_release.
Please note also the differing parameters used. Lastly, in the table OS_task_table, which
stores all relevant information about existing tasks in the operating system, both imple-
mentations alter the field id at different locations in the code. This may lead to functional
differences; however, it does not in this initialization case.

8.3.2 Result

The short study indicates that diffing can find only a very small subset of equivalent
functions. Even when some more semantic information about the programming language
is given, the number of equivalent functions that could be found was less than a fourth.
The reason for this is that equivalence is a more subtle property than code equality. An
example for these subtle textual differences can be found in Figure 8.4.

8.4 Is the Presented Approach Able to Find Serious Issues in
OSAL?

In order to evaluate if the tool is of any use, we need to apply it to a real situation and
see if the tool works. Can issues in the code be found? If so, how serious are they? This
section shows the issues we found by applying our approach to OSAL v3.2.

8.4.1 Issues Found in OSAL

In total we found 111 issues. Please note that one function can have more than one issue.
We will first give a short overview and explain the names and then go into the details
afterwards.

The issues listed in Figure 8.5 are:

Return Code Differences: When two implementations use different return codes for the
same situation, we call it return code differences.

Magic Numbers: Magic numbers are “numbers with special values that usually are not
obvious.” [FBB+

99, page 126] As such, they have a negative impact on the maintain-
ability of code [SGHS11].

Output Differences: If two programs have differences in their visual output, we call those
output differences.

Global Writing Differences: We refer to global writing differences, if two programs ma-
nipulate variables accessible by all implementations in a different way.

Precondition Checking Differences: Most functions need a set of requirements to be
fulfilled to properly execute their purpose. When precondition checking differences
exist, these requirements are semantically differently tested.

Config Issues: Some configuration constants are not consistently used in the various
implementations.
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Parameter Writing Differences: Sometimes programs manipulate parameters in different
ways.

Parameter Checking: This is a special case of precondition checking, where parameters
are involved.

Different Check: Like with magic numbers, these are issues that relate to maintainability.

Other Issues: This category serves for issues that do not fit into one of the above-
mentioned categories.
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Figure 8.5: Total number of issues found in OSAL

In the following we will go into some of the bugs in detail. We classified the issues into
the two possible differences identified in Chapter 3.2.2. The first part contains differences
regarding the return value, the second part relates to side effects.

Return Value Issues

The first set of issues focuses on the most obvious element of functions: the return value.
In an equivalent context, with equal parameters, two implementations should return the
same value. We found that this is not always the case in OSAL.

Return Codes OSAL uses the return value for notifying if the function was properly
executed. In this case the called OSAL function should return OS_SUCCESS. In every other
case, an appropriate error code is defined and explained in the function’s documentation.

As we knew from previous code reviews, OSAL has issues with the return codes
used in the implementations. Occasionally an implementation returns unspecific error
messages. OS_BinSemCreate, to give one example, is in charge of implementing a binary
semaphore for mutual exclusion. By applying our tool, we found that in case something
goes wrong during the creation of the semaphore, the POSIX implementation of OSAL
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Figure 8.6: An issue showing a difference in return codes in OSAL

Figure 8.7: An issue showing a bug of function not returning an return code in OSAL

uses the very general return code OS_FAILURE to indicate the lack of success. However,
the implementations of VxWorks6 and RTEMS use the more specific OS_SEM_FAILURE,
indicating that there was an issue with the semaphore. In case an application depends on
either of the values, it will fail when the implementation switches.

A similar issue can be seen in Figure 8.6. In this function a wrong pointer is reported in
two different ways. On the left we see the implementation of OS_check_name_length for
VxWorks6, to the right we see the implementation for RTEMS. In both implementations a
pointer is checked, but both implementations return different error codes in case of failure.

Twice implementations confused the return code with a return value. For example,
OS_fsBytesFree (see Figure 8.7) should return the number of bytes free in a given file
system. The implementation of the function should store the result in one of the pointers
given as a parameter. However, in a certain error case, the VxWorks6 implementation
returned a 0 in the return value instead of the parameter. This should indicate that zero
bytes are free in this file system. But in this function the return value is reserved for the
return code and dramatically, zero is the return code for success. So the function returns
success instead of error and the parameter reserved for the result remains untouched.

The former issues were known and already corrected in the latest version, the latter
issue we found during our investigations. A complete list of issues related to return codes
can be found in Appendix E.3.1.
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Figure 8.8: An issue showing a difference in checking the string length in OSAL

Precondition and Parameter Checking Functions usually assume some constraints about
the preconditions and parameters passed (see Section 3.2.2). Usually, these parameters
get checked at the beginning of a function (e.g. if pointers are null). In the reviews we
quite quickly realized that precondition checking in OSAL contained discrepancies. Not
only differed the return codes from time to time, but also the question when or if a certain
parameter is checked against forbidden values and how.

The most issues we found were related to text strings. In OSAL file and directory names
are limited to a certain length that is defined in the configuration. But discrepancies in
implementations exist, differing in the question if the given length maybe just as long
as the value set in the configuration. One example can be seen in Figure 8.8: Before any
further operation the length of a string parameter, in this case queue_name, is retrieved
and checked against a certain constant (OS_MAX_API_NAME). But the implementations differ
functionally: When a queue has exactly the length OS_MAX_API_NAME; the implementation
to the right will return an error code, whereas the implementation to the left will continue
with its regular procedure. A complete list of similar issues can be found in Table E.3.2.

The second issue related to parameter checking we found in the implementations of
OS_creat and OS_open. These functions are used when the callee wants to create a new file
or open an existing one. In both cases, a parameter is needed that describes the access level
to the file. This is coded into a signed integer with predefined macros, i.e. OS_READ_ONLY,
OS_WRITE_ONLY, OS_READ_WRITE. The different implementations then access the underlying
system calls, e.g. open() in POSIX. But how is the parameter used? Looking at the
example given in Figure 8.9 one can see that one implementation translates the parameter
into a new variable, whereas the other implementation only forwards the parameter given.
This is possible assuming that the codes for the OSAL function are identical with those of
the underlying system call. But when looking at the issue more closely one realizes that
translating the parameter contains an additional step, which is marked by the keyword
default. This additional step is another check for validity of the given parameters.

Configuration Issues The third class of problems related to return values, is what we
call configuration issues. We discovered these issues when we analyzed and compared
constants used in the various implementations. Various constants, although defined in
the configuration file or visible in the configuration manual, did only appear in one of
the implementations (a list is given in Appendix E.5). To the user of the OSAL these
settings are accessible, and they might even have a certain effect, but it differs from
implementation to implementation. For this reason we suggest to hide the option from the
OSAL configuration files and move it into the implementation files.
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Figure 8.9: An issue showing a difference in parameter checking in OSAL

Side Effect Differences

A second set of discrepancies between implementations focuses on side effect differences.
As analyzed in Section 3.2.2, functional equivalence can be violated by either return value
or side effect differences, such as manipulation of certain global variables, parameters or
generally spoken, manipulation of memory that is not freed after leaving the function.

We found the following issues violating this rule.

Global Variables From checking modifications of globally defined variables (i.e. vari-
ables not defined in the parameters or in the function itself), we observed three major
discrepancies. These discrepancies can be filed into three different categories.

The first issues were rotating around the .id field of various internal arrays. This
field stores a unique identifier for semaphores, tasks, and other data structures. The
implementations for VxWorks6 and RTEMS are initializing the field in the OS_API_Init
function. In contrary, the developers of the POSIX version only set the field during the
creation of new structures. Although the variable is defined locally in the .c files of each
implementation, it is defined in all three implementations.

More serious are discrepancies of the errno variable present in two functions of OSAL,
OS_BinSemCreate and OS_readdir. The errno variable is defined in the standard library
of the C programming language and is used to store information about failure or success
of a function call. As this variable is defined outside OSAL we consider it being a more
serious discrepancy. A complete list can be found in Appendix E.3.5.

Third, our tool led us to the inconsistent manipulation of a variable in the VxWorks6

version of OS_BinSemTimedWait (an excerpt of the function is listed in Figure 8.10, Vx-
Works6 left, RTEMS right). This function should reserve “a binary semaphore with a
timeout.” [YCY11] OSAL creates an internal data structure for each semaphore called
OS_bin_sem_table. This structure contains a field called current_value storing a value
indicating how many units of this resource are available. It is properly decreased at the
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Figure 8.10: A bug from manipulating a wrong field in OSAL

Figure 8.11: A bug from using a wrong constant in OSAL

beginning. However, in an error case we need to revert this decrement and free the re-
sources again, which is performed underneath. Looking at the VxWorks6 implementation
more closely, we can see that it increases the counter of the OS_count_sem_table array,
instead of the OS_bin_sem_table array, thereby corrupting both arrays. This was filed by
the OSAL team as a bug and corrected in OSAL v3.3 [NAS12e].

Lastly, we found an issue where the initialization within OS_API_Init was using a
wrong constant (see Figure 8.11). The implementation to the left initializes the array
until the field with the number OS_MAX_BIN_SEMAPHORES, the implementation to the right
uses the constant OS_MAX_COUNT_SEMAPHORES. Looking into the definition of the array
OS_count_sem_table we can see that it is initialized with the length OS_MAX_COUNT_SEMA-
PHORES (which is also indicated by naming). Thus, when the constant is increased in
the configuration file, memory outside the bounds of the array is manipulated in the
implementation on the left hand side. When the constant is decreased, the array is not
initialized properly.
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Figure 8.12: A bug showing a difference in side effects in OSAL

Parameters Modification Side effects of functions may not only arise though global
variables, but also when a function manipulates variables passed though call-by-reference.
When a parameter is passed call-by-reference, the machine does not pass the parameter
value, but the parameter’s memory location. Thus a persistent manipulation of address
space outside the functions local address space is possible. In ANSI C this can be achieved
through the use of pointers.

Such a situation is shown in Figure 8.12. The function OS_QueueGet is in charge of
reading a set of bytes from a queue. The function copies the bytes to a given location and
posts the number of bytes that were copied into the parameter size_copied. Consistent
manipulation of this variable is important as callees could depend on the appropriately set
value. In contrast, side effects are present in the implementations for POSIX and VxWorks6,
but not for RTEMS.

A list can be found in Appendix E.3.6.

Output Differences Lastly, side effects can also be manipulations of streams in and out
of the program. This could be a network stream, file systems changes or printing to the
system output. In total we found 18 cases of inconsistent output behavior, by checking the
printf() calls (see Appendix E.3.8).

8.4.2 Result

We found various issues in the OSAL library. Some of the issues can be filed as less
serious inconsistencies. We count the output differences and magic numbers under this
category. Others, such as the modification of the errno variable could lead to problems in
certain special cases, such as under very special use. Some issues, such as the return code
issues or the manipulation of the wrong variable in OS_BinSemTimedWait, were already
acknowledged as bugs by the OSAL team and fixed in the most recent release.

This long list of issues clearly demonstrates that our approach can find serious issues in
code.
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Figure 8.13: Different ways to check an array in OSAL

8.4.3 Other Benefits

Besides the issues related to functional equivalence, we spotted two more classes of issues
that were pointed out by our approach, and might help to create good software.

The issues of the first class we found were so-called magic numbers. These are “numbers
with special values that usually are not obvious.” [FBB+

99, page 126] Replacing magic
numbers with the appropriate constants increases readability and makes changes eas-
ier [FBB+

99, pages 125ff]. We found various spots in the source code where functions used
integer constants instead of error codes. For example, many implementations call library
functions defined by OSAL or external libraries. After the call the functions usually want
to check if the operation was successful by comparing the return code against an integer
value, which is usually zero. Instead [FBB+

99] suggests checking if the call returned
an OS_success or the macro for a successful operation defined by the used library. A
complete table of found issues with magic numbers is shown in Appendix E.3.7.

The second issue is a matter of code style. The function OS_TaskRegister initializes
a task within the operating system. In Figure 8.13 is an excerpt from the POSIX (left)
and VxWorks6 implementation (right). At some point in the code, the implementations
have to find the task in the internal data structure. Both implementations search through
the array until they find an instance with a certain id. When this instance is found,
the implementations jump out of the loop, keeping the index of the instance stored in
the variable i. When this instance is not found, the program exits the loop at the end,
the variable i contains the value OS_MAX_TASKS. Here the implementations differ: POSIX
returns an error if i equals OS_MAX_TASKS, VxWorks6 also returns an error if the value
is greater than OS_MAX_TASKS. Unless there is a further change in the code, the different
implementations are functionally equal, as i will never be greater than OS_MAX_TASKS. So,
if due to a code change the POSIX version jumps over a certain field, one could argue
that the VxWorks6 version is safer. In any case, awareness of the difference might be very
helpful when this function is changed.

These issues do not directly lead to any functional differences in code. However,
various sources indicate that code conventions such as avoiding magic numbers increase
maintainability (e.g. [SGHS11] or [FBB+

99]) and make code less error-prone [SA04, page
34]. Even though we did not evaluate these classes of defects, this section could be seen
as a teaser indicating why also non-functional equivalence might be a goal for software
abstraction layers (see Section 3.2.1).
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8.5 Is the Automated Approach Able to Classify Equivalence?

Now we want to analyze the classification. This section focuses on the machine learning
support that we described in Chapter 6. The question is: How well can an algorithm
predict if two functions are equivalent? To answer this we first need to define quality
metrics to measure the ’well’. First, we need to find an appropriate competitor to compare
the approach with. Second, we need to compare the performance of our approach against
an appropriate competitor. Third, we want to see the results of this competition.

8.5.1 Study Design

This first section shows how prediction quality was measured, how the test and training
sets were constructed and against which baseline we compared our classifier.

Measuring Prediction Quality: Precision, Recall and Accuracy

For measuring the quality of an approach, analysts very often create confusion matrices as
the one shown in Table 8.2. In the confusion matrix we categorize our guesses. The first
category is the question how the item is classified, i.e. positive or negative. For this thesis
this is the question whether or not the classifier determines that a certain function pair
is different or equal. The second category groups the pairs based upon the question if
the pair is really different or equal. This is the so-called gold standard. This leads to four
different categories of classifications. First, the function pairs that the classifier correctly
marked as being different, the true positives (tp). Second, the function pairs incorrectly
classified as different, the false positives (fp). Third, function pairs that were properly
classified as being equivalent, the true negatives (tn) and lastly, the function pairs that the
classifier guessed to be equivalent, but which really were different. These are called false
negatives (fn).

With the confusion matrix we cannot calculate three important metrics: Precision and
recall are common measurements in information retrieval [JHA+

99]. They can be used
to compare different approaches by their effectiveness related to a certain class. We use
precision and recall to determine how well our approach performs on each equivalent
and different function pairs individually. In contrary, accuracy combines both equivalent
and different pairs. It is widespread in machine learning to determine the error rate of a
classifier [JHA+

99].

Condition as determined by Gold standard
TRUE FALSE

Prediction Positive True positive (tp) False positive (fp) Precision

Negative False negative (fn) True negative (tn)

Recall Accuracy

Table 8.2: Calculation of metrics in machine learning
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Precision Precision is a rate of exactness. It is a real number ∈ [0, 1] calculated by the
number of elements correctly classified as different divided by the total number of elements
classified as different, i.e.: (see Table 8.2)

Precision =
tp

tp + f p

In the context of the present thesis, we calculate precision by:

Precision =
| DifferentPairs ∩ PairsClassifiedAsDifferent |

| PairsClassifiedAsDifferent |

The resulting value is a probability of how certain a user can be that a pair classified as
different really is different.

Recall On the contrary, recall is a measurement for completeness. It is used to estimate
the question, whether an algorithm selects all relevant elements. Thus the ratio, again a
real number ∈ [0, 1], is calculated via: (see Table 8.2)

Recall =
tp

tp + f n

or in our case:

Recall =
| DifferentPairs ∩ PairsClassifiedAsDifferent |

| DifferentPairs |

The result of this measurement is an indicator for how many of the real equivalent pairs
were suggested by the machine learning approach.

Accuracy Third, accuracy (or success rate) determines the correctness of a classifiers
prediction. It calculates the percentage of properly classified elements [JHA+

99].

Accuracy =
tp + tn

tp + tn + f p + f n

In the context of this thesis this can be calculated by:

Accuracy =
| CorrectlyClassifiedPairs |

| AllPairs |

The accuracy is sometimes transformed into the error rate, the percentage of wrongly
classified items:

ErrorRate = (1− accuracy)
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TRUE FALSE

Positive {A1A2, B1B2} {D1D2}

Negative {E1E2} {C1C2}

Table 8.3: Calculating precision, recall and accuracy

Example This short example should clarify the calculations: Imagine we have five
comparisons of functions: {A1A2, B1B2, C1C2, D1D2, E1E2}. We apply an example
classification solution onto these five items and classify {A1A2, B1B2, D1D2} as different
and {C1C2, E1E2} as equivalent. Through intense manual inspection we find that the real
distribution (the gold standard) is:
Different: {A1A2, B1B2, E1E2} and equivalent: {C1C2, D1D2}.

Thus we have the following table:
We can now calculate the metrics:

Precision =
tp

tp + f p
=

2
3

Recall =
tp

tp + f n
=

2
3

Accuracy =
tp + tn

tp + tn + f p + f n
=

3
5

Training and Testing

In order to get realistic predictions for performance in future we cannot calculate the
performance based on classifications of the same items that were used to train the classifier.
First, we need to separate training and test set [WFH11, page 148]. Obviously, the selection
of those sets strongly influences the performance and hence needs to be executed with
care. Second, we need to make sure that both test and training set are “representative
samples of the underlying problem.” [WFH11, page 149]

There are two ways to support the proper decision of splitting up data sets into training
and test set: cross-validation and repetition.

Cross-validation N-fold cross-validation splits up the data set into n equally sized sets
or folds1. It then uses all but one fold for training and the last fold for testing. The testing
sets are rotated n times so that every sample is predicted exactly once. It is common to
use two-thirds of the samples for training and one-thirds for testing (n = 3) [WFH11, page
152]. Of course, cross-validation can be used for many different values of n; however, for
various reasons repetition of three-fold and ten-fold cross-validation are the established
means to calculate performance of classifiers [WFH11, page 154].

1Or approximately equally if n does not divide the sample size.
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Repetition The second option is repetition. In each repetition we randomly split up the
items into training and test set. This is repeated i times. One can then average the error
rates to calculate an overall error rate. This is called the repeated holdout method for error rate
estimation [WFH11, page 153].

ZeroR classifier

Now that we know how to measure the quality of an approach, we have to find an
opponent, a competitor. ZeroR is useful as a baseline, to which other classifiers can be
compared.

ZeroR basically looks at the classes possible and chooses the most probable one (i.e. the
class with the most samples) without looking at any data. ZeroR counts the samples of
each class and afterwards always chooses the majority class. Thus ZeroR always has an
accuracy of over 50%.

Example Let us have a look at the example from above (see Section 8.5.1) and see how
ZeroR classification works.

In this example we had (according to the gold standard) three different and two
equivalent pairs. Because different pairs are in the majority, ZeroR always guesses that
function pairs are different. This leads to the confusion matrix in Table 8.4.

TRUE FALSE

Positive {A1A2, B1B2, E1E2} {C1C2, D1D2}

Negative { } { }

Table 8.4: Calculating precision, recall and accuracy with ZeroR

We can now calculate the same metrics for ZeroR:

Precision =
tp

tp + f p
=

3
5

Recall =
tp

tp + f n
= 1

Accuracy =
tp + tn

tp + tn + f p + f n
=

3
5

From this example we already see that the ZeroR classifier performs quite well, maybe
better than we expected (in fact, looking at the accuracy it performed just as good as the
example classifier). This can be even stronger on more biased test sets. Image a test set
with 90% different pairs. The ZeroR classifier would have an accuracy of 90%, without any
further knowledge about the data.

This inherent bias present in the data is why it is important to compare classifiers against
naive approaches like ZeroR.
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Figure 8.14: The precision of the classifier for OSAL

8.5.2 Results of the Evaluation

We used three fold cross-validation and repetition (i = 100) in order to evaluate the quality
of the classifier. The process was run through RapidMiner [Rap11]. Data was exported
into CSV files and analyzed with R and the built-in tools of RapidMiner.

We determined the gold standard by thorough manual inspection. In total there were
304 function pairs, of which 123 were different and 181 were equivalent (see Table 8.1).
This data was used to train the classifier as described in Chapter 6.

As mentioned earlier, we can calculate precision and recall for each class (equivalent,
different) of predictions. Accordingly, in the following figures, we will give the precision
and recall of each class for our own classifier and for the baseline classifier ZeroR. Accuracy
can be seen as a summary for both classes. Accordingly, only one value for each class is
given.

Precision

Let us first have a look at the precision shown in Table 8.14. The precision gives an
impression of how many of the suggested elements really are of a certain class.

First, we see here that the precision of the classifier performs around 88%. It outper-
forms the ZeroR precision (60%) by approximately 28 points2. If we would give a set of
suggestions generated by the classifier to the user he would only have to correct every
tenth suggestion. Second, the classifier was slightly more precise on different functions
(88.9%) than on equivalent ones (87.6%). This is surprising, especially as we already found
out in Section 8.3 that about one fourth of the functions are equal modulo code style. We
assume that this is because of the features described in Section 6.3. Some features, like
the return code analysis feature, are very strong indicators of difference if they return any
hints.
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Figure 8.15: The recall of the classifier for OSAL
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Figure 8.16: The accuracy of the classifier for OSAL

Recall

Let us now examine the recall displayed in Figure 8.15. As usually, the situation is quite
the opposite of the precision. Of course, the ZeroR classifier has a recall of 100% for
equivalent and 0% for different function pairs as it only suggests different pairs. Hence, it
will definitely ’find’ all equivalent but no different pairs. But of course, those numbers are
of limited support for an empirical argument.

However, we can see that both the recall of the equivalent classifier (93%) and the recall
of the different classifier (81%) are quite high. This shows that the system found 81% of
the known differences in the source code and nearly all equivalent elements.

Accuracy

Finally, we want to know the accuracy, the primary indicator used in machine learning.
This can be understood as a summary of the previous statistics, as it contains precision
and recall of both classes into one metric. It is plotted in Figure 8.16.

2No precision for ZeroR(different) is given, as ZeroR does not suggest any different pairs and thus the
precision cannot be calculated.
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We can see in the statistic that the accuracy of the classifier (88%) surpasses the accuracy
of ZeroR (59%) by far. The error rate of the classifier is at 12% whereas the error rate of
ZeroR is at 41%. This shows that the classifier outperforms guessing by far and can give a
relevant classification in nine out of ten cases.

Also the average variation in the repetitions is around 1.5%. This proves significance of
the difference between ZeroR and the presented approach.

8.5.3 Result

The results presented above indicate that a classifier can be constructed that can give a
classification with an error rate of only 12%. This is significantly better than the bias in the
data given by ZeroR classification. However, the fact that there still is an error shows that
reviewing is still necessary. Consequently, a tool that includes machine learning support
and is still based on the user’s understanding of the code seems to be the method of
choice.

8.6 Threats to Validity of the OSAL Case Study

In order to understand to what extent results of this case study can be generalized, we
have to look at the threats to the validity of this study and how we faced them. These
threats are usually categorized into threats to internal and threats to external validity
following the definition in [CS63, pages 5ff].

8.6.1 Threats to Internal Validity

Threats to internal validity doubt that the results presented actually root in the analyzed
methodology or product, but rather in other facts that were not considered [CS63, pages
5ff].

The main threat to internal validity is the question of the classification as different
and equivalent in the gold standard. This was created based upon known differences
acknowledged by NASA, as well as differences found by the author. We opposed this
threat by checking back the differences with the NASA OSAL team. However, there can
always be differences in the code that remained invisible. Thus we can only base our
argumentation upon the known differences. This threat was faced by thorough manual
inspection. Furthermore, excessive automated testing (∼150 tests) with the Microsoft Unit
Testing Framework addressed threats to internal validity through bugs within the tool.

8.6.2 Threats to External Validity

Threats to external validity question the ability to generalize the results presented [CS63,
page 5]. We mainly see two aspects threatening the external validity.

The first aspect is the fact that the OSAL system has a common style. It uses defined
return codes and is build as a wrapper around operating system calls. The second issue
is that the tool was built with OSAL as the test base. Another analysis with a second,
different code base should face both of these threats.
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8.7 Summary

In this chapter we evaluated the following four questions:

Is the OSAL a representative industry project? First, it is very clear that OSAL is not a
toy example. The applications of OSAL should evidence this. However, the approach
should be validated on a different code base to face the threat that the programming
style is essential for the good results presented.

Is traditional diffing appropriate to find equivalence? Second, a small study showed that
diffing is not a sufficient method to find software equivalence. It can be used to
quickly eliminate a handful of comparisons; however, the vast majority needs more
sophisticated solutions.

Is the presented approach able to find serious bugs in OSAL? Third, we could demon-
strate by explaining plenty of differences found that the proposed solution is able to
find difference issues in a safety critical, real world, industrial code base.

Is the automated approach able to classify equivalence? Fourth, by using common me-
thods from the field of machine learning, we examined the proposed classifier and
showed that the classifier can successfully classify items with 90% accuracy. However
in order to classify every item appropriately, a tool, like implemented in Chapter 7,
seems to be necessary.
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Conclusion and Future Work

In this section we describe the results of this work and analyze chances for future research
in order to summarize the contributions and suggest next steps.

9.1 Wrap-Up

To sum up this work, we see five major contributions as part of this thesis:
First, we defined software equivalence analysis for software abstraction layers: Two

functions m and n are functionally equivalent modulo an abstraction aspect A iff all
semantic differences between m and n are side effects in the domain of A. We furthermore
described a use case at NASA where absence of functional equivalence can lead to serious
bugs.

Second, we classified existing and future approaches into static and dynamic methods.
We explained the choice of static code analysis due to constraints in the application domain
of real-time operating systems.

Third, we explored symbolic execution for equivalence analysis. We found a serious
issue that was present in all implementations. Yet, symbolic execution is based upon a
very exact definition of functional equivalence and furthermore assumes comparison of all
systems running in one environment. It requires large amount of modeling for real world
systems that is especially cumbersome in the context of SALs, as small differences in the
model may directly lead to differences in behavior. These obstacles led to the conclusion
that symbolic execution is not an optimal choice for determining equivalence in the context
of SALs.

Fourth, we elaborated a solution combining static analysis, machine learning and user
reviews. We determined differences with data extractors providing hints for discrepancies
in source code, and quantified these discrepancies in metrics. Afterwards, the metrics are
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used to build a prediction model that classifies function pairs and gives a confidence in
how certain the model can say that a function pair is equivalent or different. The model
furthermore determines the most relevant data extractors. Based on this information
a tool was built that keeps only the most important hints and feeds the analyst with
the information from the previous analysis. Afterwards, the analyst applies his domain
knowledge and decides whether two functions are equivalent or not. This information is
then fed back into the model in order to immediately improve the tool’s classification.

Fifth, we applied this approach to OSAL, a library that is commonly used in space
software. We demonstrated that the approach is able to find various issues in this safety
critical, real world, industrial code base. Furthermore, we found that the tool could predict
function pairs with an accuracy of 90%.

9.2 Outlook

Due to time constraints the scope of this thesis needed to be limited. Consequently, there
are various areas for improvements and extensions. Mainly, we see two fields of future
work: Improvements for the process and further evaluation in different settings.

Technically there are various ways to improve the process and correspondingly the tool
developed in this thesis. Further data extractors could be created, which might increase
the accuracy of the predictor and give additional hints to the analyst. For example, a
deeper analysis of the CFG is one field for deeper analysis. A next step would compare
access to variables by paths. Accordingly, possible paths through one function need to be
determined and matched against a path in the other function, so that deviance between
the two paths can be found. For the first part, symbolic execution might be of great help,
for the latter part bisimulation and model checking could provide the technology needed
to check different paths.

The second field for future work is evaluation of the approach. In order to further
strengthen the validity of the results presented in Chapter 8, a case study on a different
project could provide interesting insights. Furthermore, it would be interesting to em-
pirically measure the improvements which we assume that using the tool provides in
comparison to other forms of determining equivalence, such as symbolic execution or pure
manual reviewing.
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http://corsis.svn.sourceforge.net/viewvc/corsis/trunk/Tenka.Text/Tenka.Text/TextMath.cs?revision=396&view=markup#l_777
http://corsis.svn.sourceforge.net/viewvc/corsis/trunk/Tenka.Text/Tenka.Text/TextMath.cs?revision=396&view=markup#l_777
http://diffplex.codeplex.com/
http://diffplex.codeplex.com/
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Mail Conversation with Alan Cudmore

Here you can find the conversation with Alan Cudmore, initiator of OSAL about the issues
they were facing with POSIX.

From: Alan Cudmore <acudmore@users.sourceforge.net>
Subject: OSAL and POSIX
Date: 6. Februar 2012 16:33:29 MEZ
To: Henning <oanry@users.sourceforge.net>

1 Hi Henning ,
2 A little background: The OSAL comes from NASA Goddard Spaceflight

Center , where we use it for the flight software for small
3 scientific satellites. Over 10 years ago we started looking at

standardizing on an operating system API to allow our code to
become

4 more portable.
5 We did start out with the idea of using the POSIX API and we

started a research project called \"POSIX flight software \".
6

7 At the time , we were looking at Linux for desktop prototyping ,
LynxOS for real time POSIX , vxWorks ( our most commonly used
OS ),

8 and RTEMS. We had also used Nucleus , which did not offer a POSIX
API.

9

10 Problems we found with POSIX:
11 1. Inconsistent APIs
12 Most of our team had a great deal of experience with these

specialized real time operating systems such as vxWorks ,
Nucleus , and

13 the even older VRTX. The APIs were clear , easy to understand , and
provided consistent error return codes. We found POSIX to be a

14 little less intuitive , and not nearly as consistent across the
different platforms were were interested in.

15

16 Take for example semaphores and mutexes:
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17 There are pthread mutexes , system V semaphores , and posix
semaphores. None of them quite did everything we needed , so we

18 ended up with a mixture of the calls.
19

20 2. Not all APIs are available on all OSs
21 One of the key features we use in our software are message queues.

The POSIX message queues ( mq_receive ) is on vxWorks ,
22 RTEMS , and LynxOS , but we often rely on the timeout feature in our

software , so we needed the mq_timedreceive API. This was
23 available on RTEMS , but not the others at the time. There were a

few other examples of these APIs not being on all platforms.
24

25 We could have made supplemental POSIX APIs or helper libraries ,
but we would have had a mixture of system includes and our

26 own re-creation of POSIX headers. It would have been confusing for
our code reviews. Our OSAL is simple and self contained.

27

28 One area that I would re-consider is the file system API. This
seems to be consistent across almost all of the platforms , and
I might

29 have re-considered duplicating the standard open/close/read/write
APIs.

30

31 But there are a couple of areas that the file API proves useful:
32 - We do have a use for path translation to reconcile paths between

linux , RTEMS , and vxWorks , so it does help.
33 - Sometimes our code needs to force close all of the open files we

have before we do a reset. Using the OSAL file APIs and data
34 structures , we can quickly determine which files are open and

close them , regardless of what thread opened it.
35

36 In the end , I think we are happy with our choice over POSIX.
37

38 I hope this helps provide some of the rationale of our OSAL.
39

40 Alan
41

42

43 --
44 This message was sent to your SourceForge.net email alias via the

web mail form. You may reply to this message directly , or via
https :// sourceforge.net/sendmessage.php?touser =857359

45 To update your email alias preferences , please visit https ://
sourceforge.net/account
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Example for Functional Delta

In Section 3.2.2 we defined functional delta as the functional difference between two
functions. As the definition is written in logic, we can easily deduce the difference.
Functions:

Function Partition Effect

m strlen(path) ≥ MAX_NAME RETURN == ERROR
strlen(path) < MAX_NAME RETURN == SUCCESS

m’ strlen(path) > MAX_NAME RETURN == ERROR
strlen(path) ≤ MAX_NAME RETURN == SUCCESS

x ≡ strlen(path) A ≡ RETURN == OK
y ≡ MAX_NAME B ≡ RETURN == ERROR

Calculation:

∆m,m′ = 〈m〉 ∧ ¬〈m′〉 =
∨

(i,e)∈msum

i ∧ e ∧ ¬
∨

(i,e)∈m′sum

i ∧ e

= ((x ≥ y ∧ B) ∨ (x < y ∧ A)) ∧ ¬(x > y ∧ B ∨ x ≤ y ∧ A)

= ((x ≥ y ∨ x < y) ∧ (x ≥ y ∨ A) ∧ (B ∨ x < y) ∧ (B ∨ A))

∧ ((x ≤ y ∨ ¬B) ∧ (x > y ∨ ¬A))

= (x ≥ y ∨ A) ∧ (x < y ∨ B) ∧ (x ≤ y ∨ ¬B) ∧ (x > y ∨ ¬A)

= (x > y ∨ x = y ∨ A) ∧ (x < y ∨ B) ∧ (x < y ∨ ¬B ∨ x = y) ∧ (x > y ∨ ¬A)

= ((A ∧ x < y ∧ x < y) ∨ (A ∧ ¬B ∧ y < y) ∨ (A ∧ x < y ∧ x = y)
∨ (B ∧ x > y ∧ x < y) ∨ (B ∧ x > y ∧ ¬B) ∨ (B ∧ x > y ∧ x = y)
∨ (B ∧ x =< ∧x < y) ∨ (B ∧ x = y ∧ ¬B) ∨ (B ∧ x = y ∧ x = y))
∧ (x > y ∨ ¬A)

= ((A ∨ x < y) ∨ (A ∧ ¬B ∧ x < y) ∨ (B ∧ x = y)) ∧ (x > y ∨ ¬A)

= (A ∧ x < y ∧ x > y) ∨ (A ∧ x < y ∧ ¬A) ∨ (A ∧ ¬B ∧ x < y ∧ x > y)
∨ (A ∧ ¬B ∧ x < y ∧ ¬A) ∨ (B ∧ x = y ∧ x > y) ∨ (B ∧ x > y ∧ ¬A)

= B ∧ ¬A ∧ x = y
= strlen(path) = MAX_NAME
∧ RETURN == ERROR ∧ RETURN! = OK
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Configurations

This chapter lists the configurations for the tools in use.

C.1 Uncrustify

Uncrustify is used to unify code.

1 #
2 # uncrustify config file for the linux kernel
3 #
4

5 indent_with_tabs = 2 # 1= indent to level only , 2= indent with
tabs

6 align_with_tabs = True # use tabs to align
7 align_on_tabstop = True # align on tabstops
8 input_tab_size = 8 # original tab size
9 output_tab_size = 8 # new tab size

10 indent_columns = output_tab_size
11

12 indent_label = 2 # pos: absolute col , neg: relative
column

13

14

15 #
16 # inter -symbol newlines
17 #
18

19 nl_enum_brace = Add # "enum {" vs "enum \n {"
20 nl_union_brace = Add # "union {" vs "union \n {"
21 nl_struct_brace = Add # "struct {" vs "struct \n {"
22 nl_do_brace = Add # "do {" vs "do \n {"
23 nl_if_brace = Add # "if () {" vs "if () \n {"
24 nl_for_brace = Add # "for () {" vs "for () \n {"
25 nl_else_brace = Add # "else {" vs "else \n {"
26 nl_while_brace = Add # "while () {" vs "while () \n {"
27 nl_switch_brace = Add # "switch () {" vs "switch () \n {"
28 nl_brace_while = Add # "} while" vs "} \n while" - cuddle while
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29 nl_brace_else = Add # "} else" vs "} \n else" - cuddle else
30 nl_func_var_def_blk = 1
31 nl_fcall_brace = Add # "list_for_each () {" vs "list_for_each ()\

n{"
32 nl_fdef_brace = Add # "int foo() {" vs "int foo()\n{"
33 nl_after_return = True
34 nl_before_case = 1
35 nl_func_def_args = Remove
36 nl_func_def_end = Force
37 nl_after_semicolon = Force
38 nl_end_of_file = Remove
39 nl_after_brace_open = True
40 nl_after_brace_close = True
41

42 #
43 # Source code modifications
44 #
45

46 mod_paren_on_return = Remove # "return 1;" vs "return (1);"
47 mod_full_brace_if = Add # "if (a) a--;" vs "if (a) { a--; }"
48 mod_full_brace_for = Add # "for () a--;" vs "for () { a--; }"
49 mod_full_brace_do = Add # "do a--; while ();" vs "do { a--; }

while ();"
50 mod_full_brace_while = Add # "while (a) a--;" vs "while (a) { a--;

}"
51

52 #
53 # inter -character spacing options
54 #
55

56 sp_return_paren = Force # "return (1);" vs "return (1);"
57 sp_sizeof_paren = Remove # "sizeof (int)" vs "sizeof(int)"
58 sp_before_sparen = Force # "if (" vs "if("
59 sp_after_sparen = Force # "if () {" vs "if (){"
60 sp_after_cast = Remove # "(int) a" vs "(int)a"
61 sp_inside_braces = Add # "{ 1 }" vs "{1}"
62 sp_inside_braces_struct = Add # "{ 1 }" vs "{1}"
63 sp_inside_braces_enum = Add # "{ 1 }" vs "{1}"
64 sp_assign = Add
65 sp_arith = Add
66 sp_bool = Add
67 sp_compare = Add
68 sp_assign = Add
69 sp_after_comma = Add
70 sp_func_def_paren = Remove # "int foo (){" vs "int foo(){"
71 sp_func_call_paren = Remove # "foo (" vs "foo("
72 sp_func_proto_paren = Remove # "int foo ();" vs "int foo();"
73

74

75 #
76 # Aligning stuff
77 #
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78

79 align_enum_equ_span = 4 # ’=’ in enum definition
80 align_nl_cont = True
81 align_var_def_span = 2
82 align_var_def_inline = True
83 # align_var_def_star = True
84 align_var_def_colon = True
85 align_assign_span = 1
86 align_struct_init_span = 3 # align stuff in a structure init

’= { }’
87 align_right_cmt_span = 3
88 align_pp_define_span = 8;
89 align_pp_define_gap = 4;
90

91 cmt_star_cont = True
92

93 indent_brace = 0

Listing 3: Uncrustify options

C.2 CCM

With CCM the code complexity metric is calculated.

1 <ccm>
2 <analyze >
3 <folder >.</folder >
4 </analyze >
5 <recursive >no</recursive >
6 <outputXML >yes</outputXML >
7 <numMetrics >1000</numMetrics >
8 </ccm>
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KLEE Examples

In this chapter we give examples for applying KLEE.

D.1 Side Effect Function

This example demonstrates how to check side effects in KLEE. The two functions test1
and test2 return the same value but have a different side effect onto the global variable.

1 #include "klee/klee.h"
2

3 int j;
4 int globalVariable;
5

6 static int printf(const char* format , ...){
7 return j;
8 }
9

10 char* test1(int input){
11 int n;
12 n = printf("%d",input);
13

14 if(n>2){
15 return ("big\n");
16 }
17 else{
18 return ("small\n");
19 }
20 }
21

22 char* test2(int input){
23 int n;
24 n = printf("%d",input);
25

26 globalVariable = 2;
27

28 if(n>2){
29 return ("big\n");
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30 }
31 else{
32 return ("small\n");
33 }
34 }
35

36 int main(int cArgs , char* args []){
37 int pre;
38 int sideeffect1;
39 int sideeffect2;
40 char* res1;
41 char* res2;
42

43 klee_make_symbolic (&j, sizeof(int), "j");
44 klee_make_symbolic (& globalVariable , sizeof(int), "sideEffect");
45

46 /* preserve system state */
47 pre = globalVariable;
48

49 res1 = test1(j);
50 sideeffect1 = globalVariable;
51

52 /* resume system state */
53 globalVariable = pre;
54

55 res2 = test2(j);
56 sideeffect2 = globalVariable;
57

58 /* compare system states */
59 klee_assert(res1 == res2);
60 klee_assert(sideeffect1 == sideeffect2);
61 }

Listing 4: Detecting side effects with KLEE

D.2 Establishing a Global State

In this example we demonstrate how to initialize a global state. It simulates a vehicle,
changing various variables, e.g. the speed. The main function at the end of the code shows
how to initiate the global state by creating various assumptions for the global variables.

1 // WRITTEN BY Christoph Schulze <CSCHulze@fc -md.umd.edu >
2 #include <klee/klee.h>
3 #include "stdio.h"
4 #include "stdlib.h"
5

6 #define M_NOTINIT 0
7 #define M_OFF 1
8 #define M_INIT 2
9 #define M_INACTIVE 3

10 #define M_ACTIVE 4
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11

12 /* configuration variable */
13 int InitialSpeed;
14

15 double currentSpeed = -1000.0;
16 int currentActive = 0;
17 double currentThrottleDelta = 0.0;
18

19

20 int g_dsMode = M_NOTINIT;
21 double g_dsOldDSpeed = 0.0;
22

23 int Mode(int deactivate , int activate , int onOff , int set)
24 {
25 if( g_dsMode == M_NOTINIT || !onOff )
26 g_dsMode = M_OFF;
27 else if( g_dsMode ==M_OFF && onOff )
28 g_dsMode = M_INIT;
29 else if( g_dsMode == M_INIT && (set && !deactivate) )
30 g_dsMode = M_ACTIVE;
31 else if( g_dsMode == M_INACTIVE && activate )
32 g_dsMode = M_ACTIVE;
33 else if( g_dsMode == M_ACTIVE && deactivate )
34 g_dsMode = M_INACTIVE;
35

36 return (int) g_dsMode;
37 }
38

39

40 double DesiredSpeed(int mode , int accelResume , int decelSet ,
double speed)

41 {
42 double dSpeed;
43

44 if( mode== M_OFF )
45 dSpeed = 0.0;
46 else if( mode== M_INIT )
47 dSpeed = speed;
48 else if( mode== M_INACTIVE )
49 {
50 if( decelSet )
51 dSpeed = speed;
52 else
53 dSpeed = g_dsOldDSpeed;
54 }
55 else if( mode== M_ACTIVE )
56 {
57 dSpeed = g_dsOldDSpeed;
58

59 if( decelSet && !accelResume )
60 dSpeed = dSpeed - 0.01;
61 else if( accelResume && !decelSet )
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62 dSpeed = dSpeed + 0.01;
63 }
64 else
65 {
66 // printf ("Mode: Invalid mode: %i\n", mode);
67 exit (0);
68 }
69

70 g_dsOldDSpeed = dSpeed;
71 return dSpeed;
72 }
73

74

75 double ThrottleCtl(double dSpeed , double speed)
76 {
77 double throttleDelta;
78

79 if( speed == 0.0 )
80 throttleDelta = -0.1;
81 else
82 throttleDelta = ((dSpeed -speed)/speed) * 0.14;
83

84 if( throttleDelta < -0.1 )
85 throttleDelta = -0.1;
86 else if( throttleDelta > 0.1 )
87 throttleDelta = 0.1;
88

89 return throttleDelta;
90 }
91

92

93 void Cruise(int onOff ,
94 int accelResume ,
95 int cancel ,
96 int decelSet ,
97 int brake ,
98 int gas ,
99 double speed ,

100 int *active ,
101 double *throttleDelta)
102 {
103 int activate , deactivate , mode;
104 double dSpeed;
105

106 deactivate = cancel || brake || gas || (speed <= 25);
107 activate = !deactivate && (accelResume != decelSet);
108

109 mode = Mode(deactivate , activate , onOff , decelSet);
110 dSpeed = DesiredSpeed(mode , accelResume , decelSet , speed

);
111

112 *active = (mode == M_ACTIVE);
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113 *throttleDelta = *active ? ThrottleCtl(dSpeed , speed) : 0.0;
114 }
115

116

117 static void Plant(double currentThrottleDelta , int active , double
inactiveThrottleDelta , double drag , double *speed)

118 {
119 if( !active ) {
120 currentThrottleDelta = inactiveThrottleDelta;
121 }
122

123 *speed = *speed + 2.0 * currentThrottleDelta + drag;
124

125 if( *speed <0 ) {
126 *speed = 0;
127 }
128 }
129

130

131

132 int main()
133 {
134 int i;
135 int onOff;
136 int accelResume;
137 int cancel;
138 int decelSet;
139 int brake;
140 int gas;
141 double inactiveThrottleDelta;
142 double drag;
143

144 klee_make_symbolic (&onOff , sizeof(onOff), "onOff");
145 klee_make_symbolic (& accelResume , sizeof(accelResume), "

accelResume");
146 klee_make_symbolic (&cancel , sizeof(cancel), "cancel");
147 klee_make_symbolic (&decelSet , sizeof(decelSet), "decelSet");
148 klee_make_symbolic (&brake , sizeof(brake), "brake");
149 klee_make_symbolic (&gas , sizeof(gas), "gas");
150 klee_make_symbolic (& inactiveThrottleDelta , sizeof(

inactiveThrottleDelta), "inactiveThrottleDelta");
151 klee_make_symbolic (&drag , sizeof(drag), "drag");
152 // klee_make_symbolic (&g_dsMode , sizeof(g_dsMode), "ds_mode ");
153 klee_make_symbolic (& InitialSpeed , sizeof(InitialSpeed), "

ds_mode");
154

155

156 klee_assume(g_dsMode >= 0 && g_dsMode <= 4);
157 klee_assume(onOff >= 0 && onOff <= 1);
158 klee_assume(accelResume >= 0 && accelResume <= 1);
159 klee_assume(cancel >= 0 && cancel <= 1);
160 klee_assume(decelSet >= 0 && decelSet <= 1);
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161 klee_assume(brake >= 0 && brake <= 1);
162 klee_assume(gas >= 0 && gas <= 1);
163 klee_assume(inactiveThrottleDelta >= -1.0 &&

inactiveThrottleDelta <= 1.0);
164 klee_assume(drag >= -1.0 && drag <= 1.0);
165 klee_assume(InitialSpeed >= 0 && InitialSpeed <= 100);
166

167 if (currentSpeed == -1000.0) {
168 /* currentSpeed == -1000.0 means it is not initialized yet */
169 currentSpeed = InitialSpeed;
170 }
171

172 for (i=0;i<5;i++){
173 Cruise(onOff , accelResume , cancel , decelSet , brake , gas ,

currentSpeed , &currentActive , &currentThrottleDelta);
174 Plant(currentThrottleDelta , currentActive ,

inactiveThrottleDelta , drag , &currentSpeed);
175 }
176

177 return 0;
178 }

Listing 5: Establishing a global state with KLEE

D.3 Checking OS_TranslatePath

Here we show how we checked OS_TranslatePath.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <assert.h>
5

6 #include "klee/klee.h"
7

8 #include "common_types.h"
9 #include "osapi.h"

10 #include "osconfig.h"
11 #include "bsp_voltab.c"
12

13 #include "model.c"
14 #include "model.h"
15

16 #include "model_internal.c"
17

18 int main(int numArgs , char** args)
19 {
20 int i;
21 char p1 [100];
22 char filename [100];
23 char mountpoint [100];
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24 char localPathR [100];
25 char localPathP [100];
26 int32 returnR;
27 int32 returnP;
28

29 int32 status;
30

31 klee_make_symbolic(p1, (sizeof p1),"p1");
32 klee_make_symbolic(mountpoint , (sizeof mountpoint),"mountpoint"

);
33 klee_make_symbolic(filename , (sizeof filename),"filename");
34 klee_make_symbolic(localPathR , (sizeof localPathR),"localPathR"

);
35 klee_make_symbolic(localPathP , (sizeof localPathP),"localPathP"

);
36 klee_make_symbolic (&returnR , (sizeof returnR),"returnR");
37 klee_make_symbolic (&returnP , (sizeof returnP),"returnP");
38

39 klee_assume(p1[100 -1] == ’\0’);
40 klee_assume(mountpoint [100 -1] == ’\0’);
41 klee_assume(filename [100 -1] == ’\0’);
42

43 for(i = 0;i < strlen(localPathP); i++)
44 {
45 klee_assume(localPathP[i] == localPathR[i]);
46 }
47

48 assert(OS_API_Init ()==0);
49 returnR = OS_TranslatePathR(filename ,localPathR);
50 returnP = OS_TranslatePathP(filename ,localPathP);
51

52 assert(returnR == returnP);
53 assert(OS_TranslatePathR (0,0)== OS_TranslatePathP (0,0));
54 assert(OS_TranslatePathR(p1 ,0)== OS_TranslatePathP(p1 ,0));
55 assert(OS_TranslatePathR (0, localPathR)== OS_TranslatePathP (0,

localPathP));
56

57 return 0;
58 }

Listing 6: Checking OS_TranslatePath with KLEE
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This appendix shows more extended versions of some of the examples in this thesis as
well as complete lists of the bugs we found.

E.1 Example Functions

In this section we will list longer versions of the examples presented in the thesis.

E.1.1 OS_TranslatePath

1 int32 OS_TranslatePathP(const char *VirtualPath , char *LocalPath)
2 {
3 char devname [OS_MAX_PATH_LEN ];
4 char filename[OS_MAX_PATH_LEN ];
5 int NumChars;
6 int DeviceLen;
7 int FilenameLen;
8 int i=0;
9

10 /*
11 ** Check to see if the path pointers are NULL
12 */
13 if (VirtualPath == NULL)
14 return OS_FS_ERR_INVALID_POINTER;
15

16 if (LocalPath == NULL)
17 return OS_FS_ERR_INVALID_POINTER;
18

19 /*
20 ** Check to see if the path is too long
21 */
22 if (strlen(VirtualPath) >= OS_MAX_PATH_LEN)
23 return OS_FS_ERR_PATH_TOO_LONG;
24

25 /*
26 ** All valid Virtual paths must start with a ’/’ character
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27 */
28 if ( VirtualPath [0] != ’/’ )
29 return OS_FS_ERR_PATH_INVALID;
30

31 /*
32 ** Fill the file and device name to be sure they do not have

garbage
33 */
34 memset ((void *)devname ,0, OS_MAX_PATH_LEN);
35 memset ((void *)filename ,0, OS_MAX_PATH_LEN);
36

37 /*
38 ** We want to find the number of chars to where the second "/"

is.
39 ** Since we know the first one is in spot 0, we start looking

at 1, and go until
40 ** we find it.
41 */
42 NumChars = 1;
43 while (( VirtualPath[NumChars] != ’/’) && (NumChars <= strlen(

VirtualPath)))
44 {
45 NumChars ++;
46 }
47

48 /*
49 ** Don’t let it overflow to cause a segfault when trying to

get the highest level
50 ** directory
51 */
52 if (NumChars > strlen(VirtualPath))
53 NumChars = strlen(VirtualPath);
54

55 /*
56 ** copy over only the part that is the device name
57 */
58 strncpy(devname , VirtualPath , NumChars);
59 devname[NumChars] = ’\0’; /* Truncate it with a NULL. */
60 DeviceLen = strlen(devname);
61

62 /*
63 ** Copy everything after the devname as the path/filename
64 */
65 strncpy(filename , &( VirtualPath[NumChars ]), OS_MAX_PATH_LEN);
66 FilenameLen = strlen(filename);
67

68 #if 0
69 printf("VirtualPath: %s, Length: %d\n",VirtualPath , (int)strlen

(VirtualPath));
70 printf("NumChars: %d\n",NumChars);
71 printf("devname: %s\n",devname);
72 printf("filename: %s\n",filename);
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73 #endif
74

75 /*
76 ** look for the dev name we found in the VolumeTable
77 */
78 for (i = 0; i < NUM_TABLE_ENTRIES; i++)
79 {
80 if (OS_VolumeTable[i]. FreeFlag == FALSE &&
81 strncmp(OS_VolumeTable[i].MountPoint , devname ,NumChars

) == 0)
82 {
83 break;
84 }
85 }
86

87 /*
88 ** Make sure we found a valid drive
89 */
90 if (i >= NUM_TABLE_ENTRIES)
91 {
92 // assert (0);
93 return OS_FS_ERR_DRIVE_NOT_CREATED;
94 }
95

96 /*
97 ** copy over the physical first part of the drive
98 */
99 strncpy(LocalPath ,OS_VolumeTable[i]. PhysDevName ,

OS_MAX_LOCAL_PATH_LEN);
100 NumChars = strlen(LocalPath);
101

102 /*
103 ** Add the device name ( Linux , Cygwin , OS X only )
104 */
105 strncat(LocalPath , OS_VolumeTable[i]. DeviceName , (

OS_MAX_LOCAL_PATH_LEN - NumChars));
106 NumChars = strlen(LocalPath);
107

108 /*
109 ** Add the file name
110 */
111 strncat(LocalPath , filename , (OS_MAX_LOCAL_PATH_LEN - NumChars)

);
112

113 #if 0
114 printf("Result of TranslatePath = %s\n",LocalPath);
115 #endif
116

117 return OS_FS_SUCCESS;
118

119 } /* end OS_TranslatePath */
120
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121 int32 OS_check_name_lengthP(const char *path)
122 {
123 char* name_ptr;
124 char* end_of_path;
125 int name_len;
126

127 if (path == NULL)
128 {
129 return OS_FS_ERR_INVALID_POINTER;
130 }
131

132

133 if (strlen(path) > OS_MAX_PATH_LEN)
134 {
135 return OS_FS_ERROR;
136 }
137

138 /* checks to see if there is a ’/’ somewhere in the path */
139 name_ptr = strrchr(path , ’/’);
140 if (name_ptr == NULL)
141 {
142 return OS_FS_ERROR;
143 }
144

145 /* strrchr returns a pointer to the last ’/’ char , so we
advance one char */

146 name_ptr = name_ptr + sizeof(char);
147

148 /* end_of_path points to the null terminator at the end of the
path */

149 end_of_path = strrchr(path ,’\0’);
150

151 /* pointer subraction to see how many characters there are in
the name */

152 name_len = ((int) end_of_path - (int)name_ptr) / sizeof(char);
153

154 if( name_len > OS_MAX_FILE_NAME)
155 {
156 return OS_FS_ERROR;
157 }
158

159 return OS_FS_SUCCESS;
160

161 }/* end OS_check_name_length */

Listing 7: OS_TranslatePath for POSIX

1 /*rtems */
2 int32 OS_TranslatePathR(const char *VirtualPath , char *LocalPath)
3 {
4 /*
5 ** Check to see if the path pointers are NULL
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6 */
7 if (VirtualPath == NULL)
8 {
9 // assert (0);

10 return OS_FS_ERR_INVALID_POINTER;
11 }
12

13 if (LocalPath == NULL)
14 {
15 return OS_FS_ERR_INVALID_POINTER;
16 }
17

18 /*
19 ** Check to see if the path is too long
20 */
21 if (strlen(VirtualPath) >= OS_MAX_PATH_LEN)
22 {
23 return OS_FS_ERR_PATH_TOO_LONG;
24 }
25

26 /*
27 ** All valid Virtual paths must start with a ’/’ character
28 */
29 if ( VirtualPath [0] != ’/’ )
30 {
31 return OS_FS_ERR_PATH_INVALID;
32 }
33

34 /*
35 ** In the RTEMS version of the OSAL , the virtual paths are the

same
36 ** as the physical paths. So translating a path is simply

copying it over.
37 */
38 strncpy(LocalPath , VirtualPath , strlen(VirtualPath));
39 LocalPath[strlen(VirtualPath)] = ’\0’; /* Truncate it with a

NULL. */
40 /*
41 #ifdef DEBUG
42 printf (" VirtualPath: %s, Length: %d\n",VirtualPath , (int)

strlen(VirtualPath));
43 printf (" LocalPath: %s, Length: %d\n",LocalPath , (int)strlen

(LocalPath));
44 #endif
45 */
46 return OS_FS_SUCCESS;
47

48 } /* end OS_TranslatePath */

Listing 8: OS_TranslatePath for RTEMS
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E.2 List of Analyzed Functions

We give a list of all analyzed functions. A X means that a function is analyzed, a � means
that no function was available and a � means that only a mock implementations exists. A
mock implementation is a function that does not intend to really implement the function,
e.g. it always returns SUCCESS without following the specification.

Method Posix VxWorks6 RTEMS

OS_API_Init X X X
OS_BinSemCreate X X X
OS_BinSemDelete X X X
OS_BinSemFlush X X X
OS_BinSemGetIdByName X X X
OS_BinSemGetInfo X X X
OS_BinSemGive X X X
OS_BinSemTake X X X
OS_BinSemTimedWait X X X
OS_check_name_length X X X
OS_chkfs � X �
OS_chmod X X X
OS_close X X X
OS_closedir X X X
OS_CompAbsDelayedTime X ∅ X
OS_CountSemCreate X X X
OS_CountSemDelete X X X
OS_CountSemGetIdByName X X X
OS_CountSemGetInfo X X X
OS_CountSemGive X X X
OS_CountSemTake X X X
OS_CountSemTimedWait X X X
OS_cp X X X
OS_creat X X X
OS_FDGetInfo X X X
OS_FileOpenCheck X X X
OS_FindCreator X X X
OS_FPUExcGetMask � X �
OS_FPUExcSetMask � X �
OS_FS_GetErrorName X ∅ X
OS_FS_GetPhysDriveName X X X
OS_FS_Init X X X
OS_fsBlocksFree X X X
OS_fsBytesFree X X X
OS_GetErrorName X X X
OS_GetLocalTime X X X
OS_HeapGetInfo � X X
OS_initfs X X X
OS_IntAttachHandler � X X
OS_IntDisable � X X
OS_IntEnable � X X
OS_IntLock � X X
OS_IntUnlock � X X
OS_lseek X X X
OS_Milli2Ticks X X X
OS_mkdir X X X
OS_mkfs_posix X X X
OS_ModuleInfo X X X
OS_ModuleLoad X X X
OS_ModuleTableInit X X X
OS_ModuleUnload X X X
OS_mount X X X

Method Posix VxWorks6 RTEMS

OS_MutSemCreate X X X
OS_MutSemDelete X X X
OS_MutSemGetIdByName X X X
OS_MutSemGetInfo X X X
OS_MutSemGive X X X
OS_MutSemTake X X X
OS_mv X X X
OS_NetworkGetHostName X X X
OS_NetworkGetID X X �
OS_open X X X
OS_opendir X X X
OS_printf X X X
OS_QueueCreate X X X
OS_QueueDelete X X X
OS_QueueGet X X X
OS_QueueGetIdByName X X X
OS_QueueGetInfo X X X
OS_QueuePut X X X
OS_read X X X
OS_readdir X X X
OS_remove X X X
OS_rename X X X
OS_rmdir X X X
OS_rmfs X X X
OS_SetLocalTime X X X
OS_ShellOutputToFile X X X
OS_stat X X X
OS_SymbolLookup X X X
OS_SymbolTableDump � � �
OS_TaskCreate X X X
OS_TaskDelay X X X
OS_TaskDelete X X X
OS_TaskExit X X X
OS_TaskGetId X X X
OS_TaskGetIdByName X X X
OS_TaskGetInfo X X X
OS_TaskInstallDeleteHandler X X X
OS_TaskRegister X X X
OS_TaskSetPriority X X X
OS_Tick2Micros X X X
OS_TimerAPIInit X X X
OS_TimerCreate X X X
OS_TimerDelete X X X
OS_TimerGetIdByName X X X
OS_TimerGetInfo X X X
OS_TimerSet X X X
OS_TimerSignalHandler X X X
OS_TimespecToUsec X X ∅
OS_TranslatePath X X X
OS_unmount X X X
OS_UsecToTimespec X X X
OS_write X X X

Table E.1: All analyzed functions of OSAL
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E.3 Issues in OSAL

This section lists all issues we found in OSAL. For details, please refer to Section 8.4.1.

E.3.1 Return Code Issues

These functions have discrepancies in their return codes. The table lists those functions
where differences exist, and names the return codes that appear in the respective imple-
mentations.
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Table E.2: Summary of return code issues in OSAL
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E.3.2 Precondition Checking Issues

This table lists functions that differ in their preconditions.

Method Variable Name Posix VxWorks6 RTEMS

OS_CountSemCreate OS_MAX_API_NAME > ≥ ≥
OS_CountSemGetIdByName OS_MAX_API_NAME > ≥ ≥
OS_BinSemCreate OS_MAX_API_NAME > ≥ ≥
OS_BinSemGetIdByName OS_MAX_API_NAME > ≥ ≥
OS_MutSemCreate OS_MAX_API_NAME > ≥ ≥
OS_MutSemGetIdByName OS_MAX_API_NAME > ≥ ≥
OS_QueueCreate OS_MAX_API_NAME > ≥ ≥
OS_QueueGetIdByName OS_MAX_API_NAME > ≥ ≥
OS_TaskCreate OS_MAX_API_NAME > ≥ ≥
OS_TaskGetIdByName OS_MAX_API_NAME > ≥ ≥

OS_fsBlocksFree OS_MAX_PATH_LEN ≥

OS_initfs devname, volname ≥
OS_initfs devname, volname == null == null
OS_mount devname, mountpoint == null

Table E.3: Summary of issues with precondition checking in OSAL

E.3.3 Parameter Checking Issues

These functions check the parameters in a differing way.

Method Posix VxWorks6 RTEMS

OS_creat OS_READ_ONLY
OS_WRITE_ONLY
OS_READ_WRITE

OS_READ_ONLY
OS_WRITE_ONLY
OS_READ_WRITE

OS_open OS_READ_ONLY
OS_WRITE_ONLY
OS_READ_WRITE

OS_READ_ONLY
OS_WRITE_ONLY
OS_READ_WRITE

Table E.4: Summary of issues with parameter checking in OSAL

126



E.3 Issues in OSAL

E.3.4 Configuration Issues

These functions contain OSAL constants that are only used within this function. Maybe
one should relocate the constants into the implementation.

Method Posix VxWorks6 RTEMS

OS_API_Init OS_UTILITY_TASK_ON
OS_UTI*TASK_PRIORITY
OS_UTI*TASK_STACK_SIZE
OS_BUFFER_MSG_DEPTH
OS_BUFFER_SIZE

OS_TaskCreate OS_FP_ENABLED OS_FP_ENABLED
OS_printf OS_UTILITY_TASK_ON
OS_ModuleLoad OS_STATIC_LOADER
OS_ModuleUnload OS_STATIC_LOADER
OS_ModuleInfo OS_STATIC_LOADER
OS_NetworkGetID OS_INCLUDE_NETWORK
OS_NetworkGetHostName OS_INCLUDE_NETWORK
OS_ModuleTableInit OS_STATIC_LOADER

Table E.5: Summary of unique constants within functions in OSAL

E.3.5 Writing of Global Variables Issues

These functions differ in the way they manipulate variables outside the function.

Method Posix VxWorks6 RTEMS

OS_API_Init OS_mut_sem_table[#].nested_value OS_task_table[#].id
OS_bin_sem_table[#].id
OS_count_sem_table[#].id
OS_mut_sem_table[#].id

OS_task_table[#].id
OS_bin_sem_table[#].id
OS_count_sem_table[#].id
OS_mut_sem_table[#].id

OS_BinSemCreate errno OS_bin_sem_table[#].id
OS_BinSemDelete OS_bin_sem_table[#].id OS_bin_sem_table[#].id
OS_BinSemTimedWait OS_count_sem_table[#].current_value
OS_CountSemCreate OS_count_sem_table[#].id
OS_CountSemDelete OS_count_sem_table[#].id OS_count_sem_table[#].id
OS_MutSemCreate OS_mut_sem_table[#].id
OS_MutSemDelete OS_mut_sem_table[#].id OS_mut_sem_table[#].id
OS_printf msg_buffer[#] msg_buffer[#]
OS_QueueCreate OS_queue_table[#].id
OS_readdir errno
OS_TaskCreate OS_task_table[#].id
OS_TaskSetPriority OS_task_table[#].priority

Table E.6: Summary of issues with global variable writing in OSAL
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E.3.6 Parameter Writing Issues

These functions differ in the way they manipulate the parameters.

Method Posix VxWorks6 RTEMS

OS_QueueGet1 *size_copied *size_copied
OS_HeapGetInfo *heap_prop.free_bytes

*heap_prop.free_blocks
*heap_prop.largest_free_block

*heap_prop.free_bytes
*heap_prop.free_blocks
*heap_prop.largest_free_block

OS_FPUExcGetMask *mask

Table E.7: Summary of issues with parameter manipulation in OSAL

E.3.7 Magic Number Issues

These functions contain values that should be replaced with constants, where possible.

E.3.8 Output Difference Issues

These functions contain differences in their output behavior.

1The value of size_copied is not reset to 0 in the error case in RTEMS.
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Method Posix VxWorks6 RTEMS Comment

OS_BinSemCreate 666
S_IRUSR | S_IWUSR | S_IRGRP
| S_IWGRP | S_IROTH | S_IWOTH

OS_CountSemCreate 666
S_IRUSR | S_IWUSR | S_IRGRP
| S_IWGRP | S_IROTH | S_IWOTH

OS_BinSemTimedWait
0
100
1000

OS_CountSemTimedWait
0
100
1000

OS_chkfs
0
1

Use error codes.

OS_cp 1
OS_HeapGetInfo 0 Use error codes.

OS_initfs
32
30

100
32
30

OS_mkfs
32
100
1

OS_ModuleUnload 0 Use error codes.

OS_MutSemDelete
−1
0

Why init? Use error codes.

OS_QueueCreate 1 Use error codes.

OS_QueueGet
1
1000
0

0 Use error codes.

OS_ShellOutputToFile 777 Use constants.
OS_TimerDelete status<

0
status< 0 status!=RTEMS_SUCCESSFUL Use error codes.

OS_TimerSet status<
0

status< 0 status!=RTEMS_SUCCESSFUL Use error codes.

OS_FindCreator 0 Use error codes.
OS_FS_Init 0 Use error codes.
OS_GetLocalTime 0 0 Use error codes.
OS_SetLocalTime 0 0 0 Use error codes.
OS_TaskDelay 0 0 Use error codes.
OS_TimerCreate 0 0 Use error codes.
OS_unmount 0 Use error codes.

Table E.8: Summary of issues with magic numbers in OSAL

Function

OS_API_Init
OS_CountSemCreate
OS_initfs
OS_ModuleLoad
OS_mount
OS_MutSemCreate
OS_QueueCreate
OS_QueueGet
OS_SymbolLookup
OS_SymbolTableDump
OS_TaskCreate
OS_TaskDelete
OS_TaskRegister
OS_TaskSetPriority
OS_TimerAPIInit
OS_TimerCreate
OS_TranslatePath
OS_unmount

Table E.9: Summary of differences in output in OSAL
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