
Technische Universität München

Fakultät für Informatik

Bachelor’s Thesis in Informatics

Recommendation and Recovery of
Traceability Links

Henning Femmer

Technische Universität München

Fakultät für Informatik

Bachelor’s Thesis in Informatics

Recommendation and Recovery of
Traceability Links

Empfehlung und Wiederherstellung von
Traceability Links

Author: Henning Femmer

Supervisor: Prof. Bernd Brügge, Ph.D.

Advisor: Jonas Helming

Submission Date: 21.10.2009

I assure the single handed composition of this bachelor’s thesis only supported by
declared resources.

Munich, October 21, 2009

. .
(Candidate’s Signature)

v

Abstract

Traceability is the ability to trace artifacts during the software life cycle. To establish
traceability, artifacts are connected by traceability links. Finding these links, however, is
costly and non-trivial. Different approaches addressing this problem have been presented in
science, mostly trying to find similarities in the textual content. These strategies assume
that all implicitly linked artifacts have similar content, which does not hold for all cases.

This thesis discusses different use cases, where a computer system can support the creation
of traceability links. Requirements to this system are proposed and a framework establish-
ing this functionality with the various strategies is presented and evaluated. Furthermore,
trying to overcome shortcomings of content-based approaches, we develop and evaluate new
approaches. They contain not only content-based, but also history- and structure-based
algorithms. These approaches are even combined in order to combine advantages of either
strategy.

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Description . 4
1.3 Goals . 4
1.4 Structure of this work . 4

2 Introduction to Traceability Link Recommendation and Recovery 7
2.1 Traceability . 7

2.1.1 What is Traceability? . 7
2.1.2 Why Traceability? . 8
2.1.3 What impediments to Traceability exist? 8

2.2 Link Recommendation and Recovery . 9
2.3 Information Retrieval . 11
2.4 Recommendation Strategies . 11

2.4.1 Content-based Strategies . 11
2.4.2 Non content-based Approaches . 15
2.4.3 Combinations . 17

2.5 Selection Strategies . 17
2.6 Evaluation of Link Recommendation . 18

2.6.1 Methods of Evaluation . 18
2.6.2 Precision and Recall . 19

3 Related Work 21
3.1 Content-based Approaches . 21

3.1.1 Basic Approaches . 21
3.1.2 Probabilistic and Vector Space Model (VSM) 22
3.1.3 Latent Semantic Indexing (LSI) . 22
3.1.4 Extensions . 22
3.1.5 Problems of Content-based Approaches 23

3.2 Structure-based Approaches . 23
3.3 History-based Approaches . 23

4 UNICASE 25
4.1 What is UNICASE? . 25
4.2 The UNICASE model . 26

4.2.1 Unified Model . 26
4.2.2 Unified Repository . 28

ix

Contents

4.2.3 Unified Views . 28

II Analysis 31

5 Requirements 33
5.1 Functional Requirements . 33
5.2 Nonfunctional Requirements . 34

5.2.1 Interface . 34
5.2.2 Implementation . 34
5.2.3 Usability . 34
5.2.4 Reliability . 34
5.2.5 Performance . 34
5.2.6 Supportability . 35
5.2.7 Operation . 35
5.2.8 Packaging . 35
5.2.9 Legal . 35

6 Analysis System Models 37
6.1 Scenarios . 37

6.1.1 Regular Scenarios . 38
6.1.2 Boundary Scenarios . 39

6.2 Use Cases . 40
6.2.1 Use Case: Create a Single Link with Link Recommendation 41
6.2.2 Use Case: Recover Links for a Model Element 43
6.2.3 Use Case: Recover Links for the Project 44
6.2.4 Boundary Use Case: Add New Strategy 45

6.3 Analysis Object Model . 47
6.4 Analysis Dynamic Model . 47

III Prototype 49

7 System Design 51
7.1 Design Goals . 51

7.1.1 Design Goals . 51
7.1.2 Trade-off of Design-Goals . 52
7.1.3 Impact on Design . 53

7.2 System Architecture . 54

8 Object Design 57
8.1 org.unicase.model . 57

8.1.1 The ModelElement and Links . 57
8.1.2 The RecommendationManager . 58
8.1.3 The Selection Strategies . 60
8.1.4 The Utilities . 61

8.2 org.unicase.linkrecommendation . 62
8.2.1 Basic Strategies . 62

x

Contents

8.2.2 Updateable Strategies . 63
8.2.3 Combination Strategies . 63

8.3 org.unicase.ui . 65
8.3.1 MESuggestedSelectionDialog . 65
8.3.2 RecoveryWizard . 67

9 A Manual for Extending the Link Recommendation Framework 69
9.1 Eclipse Extension Points . 69
9.2 An Example . 69

9.2.1 Writing a Strategy . 70
9.2.2 Creating the Extension . 70

IV Evaluation 75

10 Evaluation 77
10.1 Links under Consideration . 77

10.1.1 Functional Requirement to Use Case 77
10.1.2 Action Item to Functional Requirement 77

10.2 Analysed Projects . 79
10.3 Methods for Evaluation . 79

10.3.1 State-based Evaluation . 79
10.3.2 History-based Evaluation . 79

10.4 State-based Evaluation . 80
10.4.1 General Findings . 80
10.4.2 Latent Semantic Indexing (LSI) . 81
10.4.3 The Selection . 82
10.4.4 History-Based Approach . 83
10.4.5 Structural Approaches . 83
10.4.6 Combining Strategies . 85
10.4.7 Optimisations . 87

10.5 History-based Evaluation . 88
10.6 Conclusion . 89

11 Outlook and Conclusion 91
11.1 Conclusion . 91
11.2 Outlook . 92

V Appendix 93

List of Figures 95

List of Tables 97

Bibliography 99

xi

Part I.

Introduction

1

1. Introduction

� Humans have 100 different brain centres that all work in slightly different ways.
You shouldn’t be working on a single solution; you should be working on a host of
gadgets. �

Marvin Minsky on Common Sense and Computers that Emote [Rou06]

This chapter presents the motivation of this thesis; furthermore, it covers the problem
description, goals and structure of this work.

1.1. Motivation

Traceability is the ability to follow an artifact through the life-cycle of a software project
[GF94]. Different artifacts are connected by traceability links. This means that one can
trace relations between e.g. functional requirements and use cases over the complete time.
The need for traceability in software projects is widely accepted (e.g. [DP98]). Nevertheless,
creating traceability is a costly and non-trivial task as most of the work to create links
between artifacts needs to be done manually. Hence, many projects decide not to make the
effort, resulting in the problem that developers are to rely on their own knowledge about the
system [SCK+04]. Inadequate traceability plays indeed an important role concerning time
problems of software projects [LFOT07]. Moreover traceability helps to identify side-effects
of changes by showing links between artifacts [SCK+04].

To overcome this problem, automated or semi-automated link recommendation and recov-
ery can be a solution. It tries to reduce the effort of establishing traceability, by suggesting
certain links, so that the user is only needed in special cases or as a control instance. One
can differentiate two distinct use cases:

On the one hand a user needs support (in terms of recommendations) when planning to
create a certain link between two artifacts. In most cases the user would have to enter the
name of the artifacts or search through a long list in order to find the correct artifacts for
linking. As regular projects involve thousands of artifacts, this search can take a significant
amount of time. Instead, we propose that some elements with a higher probability should be
suggested on top of the list, so that in many cases the user needs only to accept the suggested
elements. This use case mostly occurs right after or during creation of an artifact and is
initialised by the author of this artifact. We refer to this use case as link recommendation.

On the other hand we need suggestions for links of a wide field of artifacts after they have
been created (after-the-fact). This is rather initialised by the project leader and executed
over entire sections of the project or over all link types of one artifact. A reason to run this
can be project constraints, like the requirement to have all source code objects traced to
test cases. We refer to this use case as link recovery. However, as link recovery is only an
aggregation of many link recommendations, we will use the latter as the umbrella term.

3

1. Introduction

1.2. Problem Description

Intensive research has been carried out on the area of link recovery and link recommendation
(see chapter 3). Nevertheless, hardly any solution has been integrated into a complete case-
tool [LOT08]. Hence nearly all scientific work focuses on links of artifacts describing the
target system, like functional requirements or source code, and hardly any paper has been
written about tracing links to organisational artifacts, like work items or tasks. The entirety
of artifacts of the former will be referred to as the system model, the latter will be called the
project model (see chapter 4). Another result is that to all our knowledge all authors trace
links after-the-fact, based on the final (finished) artifacts.

Secondly all yet known approaches have their premises and thus their shortcomings
[DKNH09]. For example, obviously sometimes the user wants to connect elements, which
have hardly any similarity of content at all. As all information is gained by such premises,
these approaches fail if the premises do not hold, i.e. a content-based approach fails, if
the elements have no similar content. To overcome this problem, many authors suggest
the combination of various strategies to further increase the performance of methods (e.g.:
[LOT08]). To all our knowledge this has not been done and evaluated in any scientific paper
in research.

A third point is, that all presented approaches rely on an artifact- or document-based
representation of content, such as requirements documents or source code. No experiences
have yet been shared applying common strategies in a model based approach (like the unified
model), despite the fact that elements in the unified model have certain peculiarities. To
name one of them, elements in the unified model might have a reduced amount of textual
description, because much information does not need to be written redundantly, due to the
possibility to refine elements with links.

1.3. Goals

This thesis aims to propose a system for link recommendation and recovery of artifacts of all
kinds. The software system of interest should support the user in the creation of traceability
links in two different ways: link recommendation and link recovery. A case-tool in the unified
model (i.e. UNICASE) shall be extended to achieve this functionality.

As new research is likely to find new strategies, an extendible system is needed to guarantee
the flexibility to be up-to-date and deliver strategies later-on. Furthermore the system needs
to provide the option to combine different strategies in order to overcome shortcomings of
the individual approaches.

1.4. Structure of this work

This work is structured into five different parts:
The first part, “Introduction”, shortly explains traceability and names the existing prob-

lems as well as the resulting goals for the thesis at hand. Furthermore deeper introductions
into traceability and link recommendation are given, explaining terms and strategies and
listing related work. A section describing UNICASE finishes the first part.

The second part, “Analysis”, contains the requirements for the present project. It shows
in detail functional and nonfunctional requirements and depicts the targeted solution by

4

1.4. Structure of this work

showing certain scenarios and use cases. These are evaluated in an analysis of the resulting
software system.

The third part, “Prototype”, approaches the software solution from distance to detail. The
system design is shown and certain design decisions are explained. Afterwards the object
design explains the source code in detail.

The fourth part, “Evaluation”, reviews the entire project and tries to measure and evaluate
the success of the chosen approach. It also tries to give an outlook on which further work
can and will be done for additional success of the presented work.

The last part “Appendix” lists the references from this work.

5

2. Introduction to Traceability Link
Recommendation and Recovery

� What’s in a name?
That which we call a rose
By any other name would smell as sweet. �

Shakespeare, Romeo And Juliet

This chapter shortly introduces into traceability presenting its benefits and impediments.
It then explains traceability recommendation and recovery and how it can overcome the
hindrances presented before. Also typical activities involved into the process of link recom-
mendation and recovery are explained. To specify these rather general ideas, we then explain
the various approaches used in this thesis in detail, i.e. strategies of recommendation and
selection. This leads to the question, how recommendations can be compared and evaluated,
which is discussed in the last part of this chapter.

The following example will clarify the different stages of a recommendation and will be
used throughout this chapter for examples. Given a project about a supermarket, and that
we want to connect the use case “Open Doors” with an appropriate functional requirement.
To simplify the scenario, let us imagine there were only five functional requirements in this
project:

1. “Door opens ’automatically’ ” (the correct option)

2. “Pay desk has emergency button.”

3. “Doors are secured by alarm”

4. “CashRegister can be opened remotely”

5. “CashRegister is immediately sending (all) changes”

2.1. Traceability

Traceability is an important field in software engineering, many publications have been
written about this topic. This section gives an overview over traceability.

2.1.1. What is Traceability?

The definition of traceability depends on which aspect one wants to emphasise:

7

2. Introduction to Traceability Link Recommendation and Recovery

• Purpose-driven: focuses on the motivation of traceability, for instance proving that
requirements have been implemented.

• Solution-driven: focuses on how traceability is meant to be created, for instance
ability of connecting artifacts.

• Information-driven: focuses on the artifact and the links to be created, for instance
linking requirements, tests, et cetera.

• Direction-driven: focuses on the process of following an item through its life cycle,
for instance tracing a requirement to the software component.

Gotel and Finkelstein sum up these aspects in their definition:

Definition Traceability is the ability to describe and follow the life of an artifact (require-
ments, code, tests, models, reports, plans, etc.) developed during the software life-cycle in
both forward and backward directions (e.g. from requirements to the modules of the software
architecture and the code components implementing them and vice-versa) [GF94].

Traceability is often used in the context of requirements traceability, which was introduced
by the US Government’s Department of Defence [GF94]. In requirements traceability func-
tional requirements are linked to scenarios and use cases, can then be linked to classes or
models and from there to tests, plans or also all kind of organisational artifacts.

2.1.2. Why Traceability?

The need for Traceability is widely accepted in academics. Besides the benefits of require-
ment tracing mentioned above, its profits can be used in various fields:

• Program comprehension: If a programmer is new to a project or system, traceab-
ility links can support the process of familiarising with the system. The programmer
can look up directly which class is inserted where and for which requirement. Also
the maintenance of legacy computer systems benefit from this assistance, especially
when design analysis is performed like proposed e.g. by [CJ90].

• Reuse of Existing Software: Traceability from code to other artifacts helps indexing
and thus searching through existing code. Furthermore can tracing code to artifacts
help finding candidates for reuse [ACC+02].

• Impact Analysis: When requirements are changed in a late phase of the project, it
is important to know on which parts of the project this has an impact, for example to
know which tests need to be changed. Using existing traceability links, the probable
impacts can be analysed and calculated [ACCDL00].

2.1.3. What impediments to Traceability exist?

Though the need for traceability in software engineering is widely accepted [DP98], there
are several impediments to the spread of traceability in real world projects.

[Wri91] identifies the lack of commitment by all parties as a major drawback, [RGP86]
names the granularity of traceable entities, another reason is the missing of integration of
traceability in common tools [GF94]. UNICASE overcomes most of these problems, as all

8

2.2. Link Recommendation and Recovery

artifacts are stored within one tool. The hindrance left is, that all links have to be drawn
manually and personally by the user. This is a costly process, as creation of these links in
bigger projects is time-consuming [SCK+04]. For this reason an automatic or semi-automatic
support in the traceability process is required.

2.2. Link Recommendation and Recovery

Link recommendation and link recovery tries to solve the traceability problem by automat-
ically or semi-automatically creating traceability links. This is a non-trivial process.

The process of link recommendation involves four major steps (see figure 2.1):

1. Selection of the artifact, from which the links starts. This artifact is referred to as the
base element.

2. Selection of possible (and requested) artifacts: In most cases the user wants to connect
only a certain type of artifacts with the base element. According to this, a list with
all possible and requested elements needs to be retrieved. We refer to these artifacts
as the candidate elements or candidates.

3. Calculation of a recommendation function: A recommendation strategy calculates
values between zero and one for each candidate, indicating which element is how likely
to be connected to the base element. We will explain these strategies in section 2.4.

4. Selection of Suggestions: Lastly a selection strategy needs to decide, which elements
are proposed to the user and which are not. The different possibilities for selection
strategies are explained in section 2.5.

Coming back to our example: We can identify that “Open Doors” is the base element and
retrieved all functional requirements as candidates. Afterwards a recommendation strategy
is applied on the artifacts. Imagine it had the following results:

Functional Requirement Value Returned from Strategy

1: “Door opens ’automatically’ ” 0.55

2: “Pay desk has emergency button” 0.1

3: “Doors are secured by alarm.” 0.6

4: “CashRegister can be opened remotely” 0.3

5: “CashRegister is immediately sending (all) changes” 0.00

Table 2.1.: Link Recommendation: An Example 1

The last step is now to select some of these and suggest them to the user. For example,
it does not make sense to present functional requirement #5. Assuming that we suggest all
candidates above a value of 0.5, then the suggestion would be functional requirement #1
and functional requirement #3.

As the general way is now clear, it is now of interest which recommendation and selection
strategies exist.

9

2. Introduction to Traceability Link Recommendation and Recovery

activity Make Suggestion

select base
element

get candidates

make
recommendation

make selection

all artifacts

set of
suggestions

Figure 2.1.: Making a Suggestion, UML activity diagram

10

2.3. Information Retrieval

2.3. Information Retrieval

In the history of link recommendation and recovery very often information retrieval (IR)
methods have been used to determine content similarities of artifacts. IR is concerned
with representation, storage, organisation, and access to information [SCK+04], for instance
in typical Internet search machines or libraries. It can be traced back to 3000 BC when
Sumerians created classifications for indexing and finding clay tablets [Sin01].

Assuming that related artifacts share a number of terms in their descriptions, the process
of link recommendation shows remarkable similarities to information retrieval [HDS06], as
both try to find certain keywords in different documents. Hence it suggests itself to use
the methods of IR in link recommendation. Some strategies for text comparison in IR are:
[HDO03]

• Boolean Model (BM)

• Probabilistic Model (PM)

• Vector Space Model (VSM)

• Latent Semantic Indexing (LSI)

The first, boolean model, suggests to create a binary term-to-document matrix indicating
if a term appears in a certain document, and hence sorting the results by the number
or percentage of hits [HDO03]. However, this model has various shortcomings due to its
simplicity. For example, if a term, say “and” appears in nearly every candidate it is probably
not a very important term. It furthermore does not make a difference in how often a certain
term appears in both the base and candidate elements. Because of these reasons the boolean
model will not be followed in the further part of this thesis.

The same refers to the probabilistic model, a different approach also working with a term-
to-document matrix, but this time integer-based. It tries to calculate probabilities based
on a different probability estimation techniques [Sin01]. But as various experiments showed
that vector space model outperforms the probabilistic model (e.g. [ACLM99]), we will follow
the remaining two strategies, VSM and LSI, which will be explained in the next section.

2.4. Recommendation Strategies

Various techniques can be used to find some sort of similarity or connection between different
elements. They can be divided in content-based and non content-based strategies, dependent
on whether they use the textual content for their calculations or not. Non content-based
approaches use other information, like the artifact’s history or the structure of the project,
and the position of this artifact within the project.

2.4.1. Content-based Strategies

Content based approaches extract the textual contents of elements and try to compare these
texts. However, to count and compare words from a text, these so called keywords need to
be extracted first.

11

2. Introduction to Traceability Link Recommendation and Recovery

Preprocessing: Keyword Extraction

All content based approaches need to select, extract and normalise the textual content from
the underlying data. In order to retrieve as much information from the text as possible, we
need to transform words in different grammatical forms to one single term. For instance
recommendation, recommended and recommend need to be transformed to one single term.
This transformation is called stemming.

The extraction process consists of the following stages (see figure 2.2):

1. Extract text from artifact

2. Replace stop chars (like ’/’, ’,’ etc.) with empty spaces

3. Split the text by spaces

4. Go over each word and:

a) Check for stop words, e.g. “and”, “is”, as those should not alter the results

b) Split camel-case words

c) Make it all lower case letters

d) Stem the words, i.e. try to reduce all forms of a word to one singular form

This keyword extraction must be executed in all content based approaches prior to cal-
culation. For stemming we applied a very basic (and thus fast) algorithm. Noteworthy is
also that only words with a certain length have been stemmed to prevent destroying abbre-
viations. The stemming algorithm replaces certain endings, according to the following table
(replaced by ε means replaced by nothing):

Suffix Replaced by Example

sses ss possesses → possess

ied y identified → identify

ies y identifies → identify

ed ε walked → walk

s ε walks → walk

ing ε walking → walk, meeting → meet

ings ε meetings → meet

ion ε encryption → encrypt

ment ε astonishment → astonish
Table 2.2.: Stemming: List of Suffixes and Replacements

Going back to the example: Functional requirement #5 is going to show how the process
works.

12

2.4. Recommendation Strategies

activity Extract Keywords

extract text replace
stopchars

split by spaces

artifact

set of keywords

words
left?

take next word

no

stem

is stopword?

add to
keyword set

noyes

yes

split camel case
words

make word lower
case

Figure 2.2.: Extracting Keywords, UML activity diagram

13

2. Introduction to Traceability Link Recommendation and Recovery

Step Words (separated by commas) Note

0 CashRegister is immediately sending
(all) changes

initial text

1 CashRegister is immediately sending all
changes

removed brackets (stop chars)

2 CashRegister, is, immediately, sending,
all, changes

split

3 cash register, is, immediately, sending,
all, changes

processing CashRegister

4 cash register, immediately, sending, all,
changes

processing is (stop word)

5 cash register, immediately, sending, all,
changes

processing immediately

6 cash register, immediately, send, all,
changes

processing sending

7 cash register, immediately, send, all,
change

processing changes

Table 2.3.: Link Recommendation: An Example 2

Vector Space Model (VSM) with tf-idf-weighting

Studies (e.g. [ACLM99]) have shown that from the basic approaches the Vector Space Model
(VSM) is the most useful. For this strategy a list of words is referred to as a “document”, so
each candidate is transformed into a list of terms. We assume that these terms are already
preprocessed in the way mentioned above. To calculate suggestions in VSM a term-by-
document matrix is created, counting the occurrences of each term in each document. Now
two transformations are made on this document to diminish the following problems:

1. Some documents contain many words, some only a few; nevertheless should both be
equally treated.

2. Some words happen to appear in many documents. These are probably overseen stop
words or words that occur frequently in certain application domains. These words
should not have a high impact on the overall result.

These problems are dealt with by tf-idf-weighting, which is computed as following: For
each calculation there is a dictionary containing all words of all documents. Each document
d consists of a set of values < v1, v2, . . . , vN > containing one value for each term from the
dictionary. The values are then calculated by

vi = tf(i, d) ∗ idf(i)

- with tf(i, d) denoting the term frequency: The number of occurrences of the i-th term of
the dictionary in document d, divided by the number of terms appearing in d and

14

2.4. Recommendation Strategies

- with idf(i) denoting the inverse term frequency mostly calculated by

idf(i) = log2(
D

df(i)
)

- where df(i) counts the number of documents in which term i appears and D the number
of documents in total [HDO03].

However some authors suggest to use different weighting functions, like Okapi-Weighting
or Pivoted Normalisation Weighting [Sin01]. No matter how the terms are weighted, finally
all documents are collected in a number of vectors or a matrix containing the weights. The
similarity between two documents can now be easily calculated as the cosine between the
referring vectors in the matrix. As all values are positive within the created matrix, the
cosine is always a value between 0 and 1 describing the difference of direction of the vectors.
Moreover the cosine can be calculated by the normalised dot product of these vectors:

cos(a, b) =
∑N

i=1 ai ∗ bi√∑N
i=1 a

2
i ∗

∑N
i=1 b

2
i

Latent Semantic Indexing (LSI)

Latent Semantic Analysis is a IR technique first proposed by Deerwester et alt in [DDF+90].
In IR it is widely known under the term Latent Semantic Indexing (LSI). In LSI the term-
document-matrix is taken and decomposed with Singular-Value-Decomposition (SVD). This
results in the three matrixes

A = U ∗ S ∗ V T

where U ’s columns are the left eigenvectors, S’ diagonal entries are the singular values and
V’s columns are the right eigenvectors of the Matrix A. The singular values in S can be
seen as the impact certain parts of the matrix have. In fact, these parts can be seen as
some “latent semantic” structure underneath. Keeping just the k strongest values in S and
equally in U and V , one can construct what is called an LSI subspace:

Ak = Uk ∗ Sk ∗ V T
k

This resulting subspace can be seen as a noise reduction of the former matrix, as the weakest
factors are eliminated. Latter the new matrix is queried via the cosine, similar to documents
in VSM. Nevertheless the selection of the factor k is still an open issue in science [LD06],
and also the calculation of the SVD is a computationally complex task.

2.4.2. Non content-based Approaches

Content-based strategies depend very much on the content description of the data the system
is working on. However, sometimes connections between elements can not be found in
the textual content, so other possibilities have to be developed. One of them is trying
to find similarities between objects in the change behaviour in the past (history-based
approaches), others try to find connections over the project’s structure (structure-based
approaches).

15

2. Introduction to Traceability Link Recommendation and Recovery

2.4.2.1. History-based Strategy

History-based approaches access the project’s history for information.

Association Rule Mining (ARM) Association Rule Mining is a technique to find artifacts
frequently changed together. It is based on the idea, that artifacts changed together have
some sort of common content. The versioning system of UNICASE can be used as a database
for ARM: Whenever a new set of changes (change package) is applied to the project, they
are iterated and a value is calculated, determining how far away the elements are in the
change list. This value is saved or added to the already existing value for this combination
of artifacts. Accordingly, when a suggestion has to be made, the strategy looks up this
value for each combination of base element and candidate. After retrieving all values from
the database, they are normalised, so that all values are ∈ [0, 1]. Based on experiences in
[DKNH09], we limited the distance of two changes of elements to a maximum of ten, all
changes of a bigger distance were ignored.

2.4.2.2. Structure-based Strategies

In contrast to content-based approaches and the history-based approach we developed structure-
based approaches. They look at the project in its entirety (SRR) or compare connections of
certain special links (RAR).

Related Assignees Recommendation (RAR) A developer has many action items assigned
to him. The Related Assignees Recommendation (RAR) assumes that a functional require-
ment is mainly assigned to a single user. Hence, whenever an action item of a certain user
needs to be connected to a functional requirement, those items the user already worked on,
are more probable candidates than others (see figure 2.3).

:Functional
Requirement

:WorkItem

:WorkItem

:Developer
?

isAssigned

Figure 2.3.: Action Items, Developers and Functional Requirements, UML class diagram

This approach only works for action items, which are already assigned to a developer.
Starting from the assigned developer, we consider all other action items, which are assigned
to the developer. We count all links from these action items to functional requirements and
normalise this number. This is accomplished by dividing all counts by their local maximum.
This leads to a suggestion between 0 and 1 for all linked functional requirements.

Shared References Recommendation (SRR) The shared references recommendation is
based on the assumption that related artifacts are linked to an intersecting set of other

16

2.5. Selection Strategies

artifacts. Imagining the unified model as a graph of all connected elements in both system
and project model, we can identify clouds around artifacts, containing all linked artifacts
recursing to a certain depth (see figure 2.4).

candidate 2

candidate 1

base

Figure 2.4.: Semantic Clouds in the SRR approach

During development we reckoned that elements whose clouds have a greater intersection
are more likely to be connected to each other; consequently, we create clouds for each can-
didate and see if they intersect, and if so, how strongly. Again, the result is normalised by
the maximum. The question of how to limit the size of the clouds will be evaluated in the
appropriate section. We suggest two possibilities: either limit the cloud by radius (through
the depth of iteration) or by size i.e. through the number of elements.

2.4.3. Combinations

There are a couple of possible solutions for the combination of different recommendation
strategies. We suggest combining the normalised double values from different strategies
with a mathematical function. The further question is which mathematical function to use.
The first possibility is to take the maximum. The idea behind this proposal is the assumption
that the return of a high value by a certain strategy indicates evidence of a link between two
elements. The other option is to weight each strategy with a certain ratio. This leads to the
most natural combination: Calculating the arithmetic mean. However other ratios might be
adequate, for example when it is known that a certain strategy produces very high values.

2.5. Selection Strategies

As discussed before, the recommendation process contains four steps. The last two of those
involve a recommendation strategy and selection strategy. After the various recommendation
strategies were explained in the last section, this section describes the different selection
strategies.

After all probabilities or values for a certain link have been calculated, one needs to decide
which links are selected for the recommendation. This action is known as link selection.
[LD06] categorises the possible strategies based on [LFOT04]:

17

2. Introduction to Traceability Link Recommendation and Recovery

• Absolute threshold: All suggestions above a certain probability T are selected.

• Relative threshold: All suggestions above a certain probability ε are selected, but in
this case ε is relative to the metric used, e.g. the highest 30% of the values of a metric.

• Scale threshold: All suggestions above a certain probability ε are selected, with ε this
time scaled between 0 and the maximum similarity M, i.e.

ε = c ∗M(0 ≤ c ≤ 1)

• Cut point: The topmost x elements are selected.

• Cut percentage: The topmost x% of all elements are selected.

Coming back to the example: Assuming the recommendation strategy returns the results
from table 2.1, taking the selection strategies from above and some random example para-
meters, they would suggest the following functional requirements for creating traceability
links:

Selection Strategy Parameters Suggestion

absolute threshold threshold=0.5 #1, #3

relative threshold highest 40%: values over 0.6 #3

scale threshold c = 0.4: values over 0.4 ∗ 0.6 = 0.24 #1, #3, #4

cut point cp=1 #3

cut percentage percentage=50% #3, #1, (#4-boundary case)

Table 2.4.: Link Recommendation: An Example 3

2.6. Evaluation of Link Recommendation

After using a recommendation and a selection strategy, the question is now, how to analyse
these recommendation and suggestions strategies properly, in order to find out which strategy
is the best. Furthermore do we need exact measurement to qualify the different strategies.

2.6.1. Methods of Evaluation

Given some strategies for recommendation and selection, we want to know how good our
approaches are. To achieve this, we need comparison data to say which link would be
suggested in a certain suggestion and which of those would have been a right suggestion.
Retrieving this data can be done in two possible ways:

1. Questioning of users

2. Simulation with data from recent projects

18

2.6. Evaluation of Link Recommendation

In option one, a group of people are recorded while using the software. Whenever the
link recommendation feature is used, one needs to store which element the user wanted to
connect and which elements were suggested. The problem of this approach is that it is costly
and time consuming: For every single strategy we need a significant number of test cases
and users, who execute the strategies. Another problem is that all the users in the tests need
to know the projects and data used to make sure that the comparison data they produce is
valid.

Because of these shortcomings we used the second method: Existing projects are taken
and analysed with the links created in these projects. This can be either done by taking the
last state of the project (state-based evaluation) or by recreating the project using the
project history and making decisions at the time of creation (history-based evaluation).
Regarding the former, for all existing links under consideration, suggestions are made and
compared with the real existing links. Regarding the latter, for every state of the project,
where a link was created, at that very point a suggestion is made and compared with the
created link. Further details on which links we measured in what way, will be given in
chapter 10.

Now that we have comparison data with correct links and suggested links, we have to find
measurements to compare these values for different strategies. One example: If a strategy
always suggests all artifacts for creating links, it will always find every possible link. But
this has the problem of creating to many incorrect links. On the other side, if never suggests
any artifact, it will never make the mistake of suggesting incorrect links, but neither will
it find any correct link. To measure these contrary aspects, two metrics are widely used in
science.

2.6.2. Precision and Recall

Precision and recall are common measurements for efficiency in Information Retrieval con-
texts. They are widely used for comparing the quality of certain approaches [MM03].

Precision

Precision is a rate of exactness. It is a number ∈ [0, 1] calculated by the number of correctly
proposed elements divided by the total number of suggested elements, i.e.:

Precision =
|RelevantElements

⋂
SuggestedElements|

|SuggestedElements|
(2.1)

In the context of the present thesis, to get the precision we calculate a value for each test:

Precision =
|CorrectLinks

⋂
SuggestedLinks|

|SuggestedLinks|
(2.2)

The resulting value is a probability of how certain a user can be selecting a random
suggested element that this element is what he1 wants.

1For pure readability reasons we will furthermore stick to the generic masculine.

19

2. Introduction to Traceability Link Recommendation and Recovery

Recall

On the contrary, recall is a measurement for completeness. It is used to estimate the question,
whether an algorithm selects all relevant elements. Thus the ratio is calculated via:

Recall =
|RelevantElements

⋂
SuggestedElements|

|RelevantElements|
(2.3)

or in our case:
Recall =

|CorrectLinks
⋂

SuggestedLinks|
|CorrectLinks|

(2.4)

The result of this measurement is an indicator for how certain a user can be hat, if he
selects all the system’s suggestions, all information possible is retrieved.

Example

Coming back to the example: We will examine calculation of precision and recall on the
example suggestion made in table 2.4 using equations 2.2 and 2.4. Remember, that functional
requirement #1 was the correct element.

Suggestion Precision Recall

#1, #3 0.5 1

#3 0 0

#1, #3, #4 1
3 1

#3 0 0

#3, #1, #4 1
3 1

Table 2.5.: Link Recommendation: An Example 4

20

3. Related Work

� It has all been the work of others. �

Otto Hahn, father of nuclear chemistry and Nobel Price winner

A lot of work has been written recently about link recovery. This chapter lists results of
recent and contemporary papers. They differ not only in the certain strategies, but also in
the fields in which the strategies were applied.

All strategies try to measure the relevance of the candidates to the base element. To re-
commend or find links automatically between these objects, a certain connection has to exist.
Different approaches make different assumptions about these similarities. Content-based ap-
proaches argue that linked documents have equalities in their textual content. History-based
approaches belief that interrelated artifacts are mostly changed together. Other strategies
analyse the structure of a project.

The following list of sources is doubtless not exhaustive. For a great overview over the
topic see [LFOT07].

3.1. Content-based Approaches

Most of the content-based approaches try to measure some sort of similarity between different
documents. In recent time very often Information Retrieval (IR) techniques have been used
to determine this value. Therefore certain describing keywords are either manually entered
by the user or extracted from related content and context.

From IR context mainly three different methods are of interest: Probabilistic Model,
Vector-Space-Model and recently Latent Semantic Indexing.

3.1.1. Basic Approaches

In an early paper, [SSC96] try to determine mismatch between design and code by apply-
ing reverse engineering and logic-based static analysis. A certain visualisation is created
providing help to determine these mismatches.

Murphy et al. researched in [MNS01] on so called software reflexion models trying to trace
source code to design. A five-step iterative procedure is used, creating regular expressions
to find links between design artifacts and c++ source code. It also mentions the potential
of structural information.

[Bri03] is especially focused on change analysis. Their work includes Unified Modelling
Language (UML) consistency checks and Open Constraint Language (OCL) based change
determination between different document versions. They furthermore present a prototype
providing this functionality.

21

3. Related Work

3.1.2. Probabilistic and Vector Space Model (VSM)

Antoniol et al. compare in [ACC+02] the probabilistic and vector space model for tracing
links from code to textual representations, namely c++ code to manuals and java code to
functional requirements. According to their results these approaches lead to approximately
similar results. Their studies also suggest that the probabilistic model leads to better results
in cases, in which almost any of the candidate’s keywords is linked to the target document;
hence, VSM is more successful in examples with smaller numbers of relevant keywords.
According to work in [ACLM99], [ACCL00] and [ACC+00a] VSM performs better than PM
in the majority of cases.

The same results follow from [ACCDL00], but suggesting that probabilistic model is a
little more unsteady with respect to the input, whereas VSM seems to be rather immune
against labile input. Within this work the authors analyse the change impact referring to a
library of c++ code for Efficient Data types and Algorithms (LEDA).

Settimi et al. try to broaden the application of VSM on link recovery between require-
ments, code, tests and also UML models in [SCK+04]. They also compare standard cosine
and pivot normalisation weighting schemes and make use of thesauri, all with limited success.

3.1.3. Latent Semantic Indexing (LSI)

Marcus and Maletic discuss in [MM03] the use of Latent Semantic Indexing (LSI) for link
recovery from documentation to source code. According to their work LSI performs as good
as the methods proposed by Antoniol et al., e.g. in [ACC+02], but does not need as much
preprocessing, or ’stemming’.

Lormans and van Deursen apply LSI in [LD06] on links between requirements and design
artifacts and between requirements and test-cases. They discuss different link selection
strategies (see chapter 2) and proposed a list of open research issues.

In [HDS06] Huffman Hayes et al. further analyse their tool RETRO using LSI and VSM
comparing precision, recall and a measurement building a median between those two, called
f-measure. They also use user feedback, which furthermore improves the results. Links
between different requirements are traced. Contrary to [MM03] in their results VSM per-
forms better than LSI.

One of the rare examples of a real implementation of link recovery in a real case tool
was proposed by De Lucia and others in [LOT08] for a tool named ADAMS, using Latent
Semantic Indexing. They conclude that to fully establish a proper and complete link recovery
a combination of methods is inevitable.

David [Dav08] presents an approach based on recurrent neural networks (RNN) and LSI
to estimate changes. It also uses the project history to recommend related items.

3.1.4. Extensions

There are two main content-based extensions to the above mentioned models. Some authors
try to improve their methods with thesauri, like [SCK+04]. Huffman Hayes et al. also
improve VSM with a thesaurus in [HDO03] and use these algorithms for a tracing process
from high-level to lower-level requirements. Their results show that thesauri can significantly
improve the present algorithms in terms of precision and recall. However, these improvements
heavily impact on the performance. In [HDSH04] they integrate these results into a special
purpose tool RETRO (REquirements TRacing On-target).

22

3.2. Structure-based Approaches

Other approaches use user feedback for further improvements. It is shown in e.g. [HDS06]
or [ACC00b], that this can improve the precision value.

3.1.5. Problems of Content-based Approaches

Content-based approaches suggest that all links are similar in their content. While this might
hold for some link candidates, others might not have any similar content at all [DKNH09].
Hardly anyone of the above mentioned authors doubts this fact, although a combination of
approaches was not yet presented.

3.2. Structure-based Approaches

Non content-based approaches rely on the existing structure of the project.
Von Knethen et al. build a tool for impact analysis for different kinds of artifacts in

[KGFK03]. They use assumptions over project structures and name matching to find links.
Cleland-Huang et al. introduce in [CSDZ05] three features into the probabilistic model,
which try to make use of hierarchy and clustering. Their work shows that different data sets
can lead to very diverse results, depending on the internal structure of the data.

3.3. History-based Approaches

History-based approaches use the change of elements over time to receive information about
the relations between documents. Briand et al. are in [Bri03] focused on change analysis.
Their work includes Unified Modeling Language (UML) consistency checks and Open Con-
straint Language (OCL) based change determination between different document versions.
They furthermore present a prototype providing this functionality. Various approaches, e.g.
[GHJ98], [GJK03] or [YMN+04] use Content Versioning Systems (CVS) for source code to
source code tracing. Some approaches, e.g. [DKNH09] use association rule mining. Zim-
mermann et al. use in [ZWDZ05] a number of heuristics to trace textual content to object
models. [oDRC+02] traces requirements to text, suggesting to automatically and continu-
ously analyse the flow of incoming events.

23

4. UNICASE

� Union gives strength. �

Aesop’s Fables, The Bundle of Sticks

Software projects are usually supported by Computer Aided Software Engineering (CASE)
tools. CASE tools help design, model and document software projects; they can furthermore
keep information shared and synchronised in the team.

UNICASE [BCHK08] is a CASE tool to support traceability and artifact management
during the entire software life cycle. This chapter introduces into the relevant parts of
UNICASE for this thesis. Interested reader should refer to the UNICASE developer page
for further information1.

4.1. What is UNICASE?

Figure 4.1.: UNICASE
Symbol

UNICASE is a CASE-Tool integrating models from the dif-
ferent development activities (such as requirements, use cases,
UML models, schedules, bug and feature models) into one uni-
fied model. This unified model is highly traceable by design. The
UNICASE client allows to view and edit these models in a tex-
tual, tabular and diagram visualisation. The models are stored
and versioned on a server comparable to Subversion (SVN) but
customised for models. Client and server are easily extensible
to support integrating new models into the unified model. UNI-
CASE is based on the Eclipse platform including EMF and GMF.
It can also be used as a framework to build modelling applica-
tions that reuse its repository and visualisation capabilities. The project is open-source and
released under the Eclipse Public License v 1.0 (EPL) [Aut09b].

UNICASE is able to store any kind of software artifacts. It is model-based, thus giving
the possibility for textual description and establishment of links between nearly any kind of
artifacts (referred to as model elements). New types of model elements can be added if
needed. Furthermore, a user can walk through the entire tree of model elements following
the links given. Noteworthy for our case is that UNICASE allows to access big sets of data
in terms of content, structural and history information, thus giving the possibility to use
this data in various methods and approaches for link recommendation and recovery.

1http://www.unicase.org

25

4. UNICASE

4.2. The UNICASE model

UNICASE contains three parts: [Aut09a]

1. Unified Model: The data model and data base for UNICASE

2. Unified Repository: The versioning and synchronisation system of UNICASE

3. Unified Views: The different graphical interfaces for a UNICASE project

4.2.1. Unified Model

The UNICASE model consists of two different parts, the system model and the project
model.

The system model can be understood as the entirety of all elements describing the system
under construction, for example classes, diagrams, functional requirements et cetera. In
contrast, the project model is the sum of all organisational elements related to a project,
e.g. work items, meetings, bug reports and similar artifacts.

Every element in the unified model extends the class ModelElement. For readability reas-
ons, we left this out in the following diagrams. The elements in the unified model include all
kind of artifacts, like use cases, functional and nonfunctional requirements, bug reports etc.
Of interest for this thesis are especially the model element types Functional Requirement,
Use Case, Action Item and OrgUnit, because they will be used in the evaluation in chapter
10. The following sections and diagrams shows their part in the unified model and the con-
nection between them.

Use Cases to Functional Requirements

On the one side there is a link between functional requirements and use cases: A functional
requirement can be detailed in a number of use cases. A use case describes a part or an
entire functional requirement (see figure 4.2). These elements are part of the system model,
as they only describe the system under construction and not organisational elements.

Work Items to Functional Requirements

On the other side work items, such as action items, issues, and bug reports, can be annotated
by every type of model elements. As functional requirements are also model elements, every
functional requirement can annotate a number of work items (see figure 4.3).

Work items can be assigned to so called OrgUnits, which is usually a single stake holder
or developer in the project.

26

4.2. The UNICASE model

UNICASE

System Model

Use Case

Functional
Requirement

Nonfunctional
Requirement

Class

Scenario

*

*

*

*

* *

*

*

is detailed in
constraints

is instantiated in

participating

Figure 4.2.: UNICASE: Use Cases to Functional Requirements, UML class diagram

UNICASE

Model Element

Work Item

Action ItemBug Report Issue

OrgUnit

*

* annotates

is assigned0..1 *

Project Model

Figure 4.3.: UNICASE: Work Items to Functional Requirements, UML class diagram

27

4. UNICASE

4.2.2. Unified Repository

UNICASE includes the unified repository, which is a server node for content versioning of the
unified model. It allows to store and update any instance of the unified model, independent
from its detailed specification. This means that change in the model needs not changing
the implementation of the repository. The repository features possibilities like updating,
committing and merging like any other versioning system.

Changes are delivered as operations in change packages. For this thesis only reference op-
erations, which indicate creation of traceability links, are concerned. All relevant information
can then be retrieved from these operations (see figure 4.4).

The server node in UNICASE is called the EMFStore.

ChangePackage AbstractOperation

getModelElementID()
getFeatureName()

ReferenceOperation

*1

UNICASE

Figure 4.4.: UNICASE: Changes in UNICASE, UML class diagram

4.2.3. Unified Views

UNICASE views work independent from the specific model in use. UNICASE is delivered
with various browser for basic functionality, for example the navigator (see figure 4.5) for
browsing through the project and the model editor for modification of single model elements.
It furthermore offers more sophisticated functions like graphical draw panels. Additional
views can be easily developed and added as plugins.

UNICASE also offers special views for different roles in the project, for example a tasks
view (see figure 4.6) for developers. This view offers functionalities to overview work items
and sort them by assignees, dates or status. The developer can also mark tasks as finished.
Another view is the status view (see figure 4.7) for project managers. Here a person can get
an overview over the process of a work package, like a sprint in agile methods. The view
shows how many work items have been solved, and sums up estimates entered for these work
items by the developers.

28

4.2. The UNICASE model

Figure 4.5.: UNICASE: Navigator

Figure 4.6.: UNICASE: Task View

Figure 4.7.: UNICASE: Status View

29

Part II.

Analysis

31

5. Requirements

� Revan: Whoa, slow down there. Yes, I did purchase you...
HK-47: Explanation: Then you qualify as my master and I must refer to you as
such. The legal requirements for models of my type are very specific, master.
Revan: What legal requirements do you mean?
HK-47: Answer: Simply that the distinction between ’killer’ and ’killee’ be a clear
one. I cannot kill of my own volition, naturally.
Revan: I don’t think ’killee’ is a word.
HK-47: Expletive: Damn it, master, I am an assassination droid... not a diction-
ary! �

Star Wars: Knights of the Old Republic

This chapter describes the requirements to this system following the FURPS [Gra92] model
and quality attributes suggested by [BD03]. The first section describes the functional re-
quirements of the system. The second section describes the quality attributes and constraints
(nonfunctional requirements). All requirements are meant to be verifiable.

5.1. Functional Requirements

The link recommendation system is able to support users in the creation of new traceability
links between model elements. This support is split in mainly two different use cases:

Whenever a user is working on a model element and wants to create a new link for a
model element, all possible candidate elements are listed. However, more probable elements
are presented more prominently, for example ranked according to a certain probability. If
the presented items do not suit the user, he can also search for items by name.

The link recommendation system can also help the user in creating traceability by re-
commending to establish certain links. Whenever the user activates this functionality, the
system checks for traceability links, which it would suggest, and notifies the user about the
suggestion. Afterwards the user can decide to accept or decline the presented suggestions.

The system furthermore offers the option to search through a single model element in
order to find uncreated, but very probable links. The user can start this functionality when
working on a model element. Afterwards the system presents possible links and asks the
user to accept or decline them.

33

5. Requirements

5.2. Nonfunctional Requirements

5.2.1. Interface

The system needs to provide functionality for the UNICASE project. Hence it needs to
entirely work on the data model provided by UNICASE.

5.2.2. Implementation

An implementation of this system has to be developed in java using Eclipse as integrated
development environment (IDE). Furthermore must the system be an extension to the exist-
ing status of the UNICASE project; hence, code quality rules given by the UNICASE team
apply1.

5.2.3. Usability

The main constraint in usability is that the suggestion of links may not impact on the
usability. This means that no explanation is necessary for a user to make benefit of the
system; moreover, a user not knowing of this system must not be impaired. Additionally
the user must be able to accept the system’s suggestions at any time with just one click.

5.2.4. Reliability

The reliability of UNICASE must not be biased by the system. This holds also for third-
party-extensions to this system as far as possible: If a developer writes and delivers a non-
working plugin to the link recommendation system, it should not crash the UNICASE system.

5.2.5. Performance

The system can make a single suggestion over 3600 elements under 3 seconds. This is based
on the number of candidates of projects (e.g. DOLLI II or UNICASE, see chapter 10) using
the UNICASE system. The average time needed to add a link should be lower using the
system than without.

Moreover, the suggestions a system makes for link recovery have to be very accurate. This
is very important due to the fact that the user will not use the system, if it does not provide
a certain accuracy. Thus for link recovery the strategy with the highest precision should be
chosen.

In link recommendation the precision is not as important, as the system will always suggest
a fix number of elements on top of the rest and hence the precision stays approximately the
same. The only question is here, if the correct model element is visible on the first sight or
not (which is: is the model element under this fix number of elements?). If it is not, the
user will rather search for the element by name than scrolling though a list of potentially
hundreds or thousands of items. Thus, the recall is very important and the technique with the
highest recall needs to be selected. These considerations require evaluation of the available
strategies.

1Which can be found under http://www.unicase.org

34

http://www.unicase.org

5.2. Nonfunctional Requirements

5.2.6. Supportability

The system should offer the functionality to change the strategies used for recommendation.
Furthermore, combination of strategies should be possible. Lastly, any developer firm with
the UNICASE project should be able to write a strategy and hereby improve the quality of
recommendations for the specific project.

5.2.7. Operation

No administration should be needed after the plugin is delivered.

5.2.8. Packaging

The system is delivered the same way as UNICASE, which is through the Eclipse installation
dialogue. The UNICASE system can be delivered with or without link recommendation.

5.2.9. Legal

The resulting code will be delivered open-source and should therefore be licensed under
Eclipse Public License (EPL) 1.02. This includes the constraint that no copyright protected
frameworks is allowed to be used for implementation.

2To be found under http://www.eclipse.org/legal/epl-v10.html

35

http://www.eclipse.org/legal/epl-v10.html

6. Analysis System Models

� An absolute can only be given in an intuition, while all the rest has to do with
analysis. �

Henri Bergson, French philosopher and Nobel Price winner

This chapter indicates scenarios of usage of the link recommendation and recovery system.
On this basis use cases are identified and an abstract object and dynamic model is suggested.

6.1. Scenarios

This section lists a number of scenarios showing the deserved behaviour of the system based
on the functional requirements from section 5.1. Scenarios are concrete descriptions, depict-
ing how a typical user handles the system, and in what way the system is expected to react.
They are hence instances of use cases [BD03].

A special class of scenarios are boundary scenarios. They describe special scenarios of
shutdown and installation, or in our case system extension.

37

6. Analysis System Models

6.1.1. Regular Scenarios

The first scenario describes the moment when a user is supported in link creation.

Name of Scenario Creating a Single Link with Link Recommendation

Actors alice:User

Flow of Events

1. Alice, a UNICASE user, is working on the element “Write tests
for our Ultimate Problem Solving Function”. She wants to link
this action item with the appropriate functional requirement.

2. Alice navigates to the “Add functional requirement” section of
the action item.

3. She spots the requirement “Ultimate Problem Solving Func-
tion”, which is displayed on the first place and preselected.

4. She hits the enter-key, thus accepting the suggestion.

5. When navigating back to the work item she finds the item
linked.

Table 6.1.: Scenario: Creating a Single Link with Link Recommendation

The second scenario shows how a user can get suggestions for all references of a certain
model element.

Name of Scenario Link Recovery for a Model Element

Actors bob:User

Flow of Events

1. Bob, a UNICASE user, is changing the textual description of
the action item “Proof that NP does not equal P.”. Bob wants
that this work item should be linked to as many related ele-
ments as possible.

2. Bob selects the function to recommend links for this model
element.

3. Bob selects the correct model links to be created.

4. When navigating back to the work item he finds that all selected
links are created.

Table 6.2.: Scenario: Link Recovery for a Model Element

38

6.1. Scenarios

The third scenario depicts a recovery of links after-the-fact. In this scenario links for the
entire project are created.

Name of Scenario Link Recovery

Actors charlie:User

Flow of Events

1. Charlie has a look over the project he manages using UNI-
CASE. He realizes that though traceability is very important,
his team did let him down regarding this part. At this point
he wants to create links between tests and functional require-
ments.

2. Charlie uses the Link Recovery function for this project. When
asked for the elements he wants to trace, he selects tests to
functional requirements and the appropriate reference between
these elements.

3. Charlie selects the correct links from a list.

Table 6.3.: Scenario: Link Recovery

6.1.2. Boundary Scenarios

This scenario is a boundary scenario. It shows the functionality of how a user can extend
the system.

Name of Scenario Extension

Actors dave:Developer

Flow of Events

1. Dave is a developer using UNICASE. His projects are mostly
documented in a language mostly spoken by the indigenous
people of the Christmas Islands. For this language common ap-
proaches of Information Retrieval (like VSM) do not work prop-
erly and hence recommendation performs quite badly. Thus
he wants to extend the recommendation system with his own
strategy.

2. Dave writes a recommendation and extends the existing system
with his implementation.

3. All suggestions are now created using his home-brew algorithm.

Table 6.4.: Scenario: Extension

39

6. Analysis System Models

6.2. Use Cases

A use case is an abstraction of one or more scenarios [BD03]. According to this definition
we abstract the above mentioned scenarios to the following use cases. Furthermore, concrete
information to each single use case is given in the subsections underneath.

User

Recover Links for a
Model Element

Create Links with Link
Recommendation

<<boundary>>
Add New Strategy

Recover Links for
Project

Developer
Figure 6.1.: The System’s Use Cases, UML use case diagram

40

6.2. Use Cases

6.2.1. Use Case: Create a Single Link with Link Recommendation

The scenario from table 6.1 can be abstracted to the following use case. Using Abbott’s
Technique [Abb83] we can furthermore identify the different objects contained in the system.

Use case Create a Single Link with Link Recommendation

Actors User
System

Flow of Events 1. User activates the LinkButton in a model element’s editor.

2. System ranks all for this field possible Elements and shows all
elements in a SuggestedElementsView, more probable elements
on top, marked with a metric showing some kind of ranking.
The most probable element is preselected. All other appropriate
items are shown in alphabetical order underneath.

3. User either confirms the preselected element by hitting the
enter key, or selects his preferred element and presses the
accept button or cancels by clicking the close button.

4. System creates the desired link (if any), closes the dialog and
goes back to the model element’s editor.

Entry condition
• The model element’s editor is opened.

Exit condition
• The links are created are desired.
• The SuggestedElementsView is closed.

Quality require-
ments • Performance and quality of rankings.

• Extensibility: Developers can add their own strategies.
• Usability: A right suggestion can be accepted with just one

single key press.
• Usability: No explanation is needed for a user to use this

feature.

Exceptions
• There are no elements available for linking.

Table 6.5.: Use case: Create a Single Link with Link Recommendation

From this use case we can identify the following participating analysis objects:

• LinkButton: The button in the ModelElementEditorView, which starts a dialog ask-
ing what element to connect with this ModelElement.

41

6. Analysis System Models

• ModelElement: The basic artifact.

• TraceabilityLink: A link between two ModelElements.

• ModelElementEditorView: A view showing descriptions and offering functions for a
ModelElement.

• SuggestedElementsView: A view showing all possible elements to connect with this
element. It offers a possibility to show some items on top of other items.

• CloseButton: This button is located on the SuggestedElementsView, it closes the
window.

• AcceptButton: A button accepting the selection, located on the
SuggestedElementsView.

• EnterKey: The key on the keyboard.

• LinkRecommendationController: Controls the data flow in this use case.

42

6.2. Use Cases

6.2.2. Use Case: Recover Links for a Model Element

The second use cases derives from the scenario shown in table 6.2.

Use case Recover Links for a Model Element

Actors User
System

Flow of Events 1. User clicks on a button at the top of the model element’s
editor.

2. System checks for elements of the model not yet set, if it can
find a very probable connection. In case the controller is able to
find one of those, it adds the elements, but including some kind
of marker so that the user gets notifications about the system’s
selection.

3. User accepts or declines the system’s selection for each of the
elements clicking the accept or the cancel button.

4. System saves the suggestion in case the user accepts the recom-
mendation. Otherwise it deletes the suggestion.

Entry condition
• The model element’s editor is opened.

Exit condition
• The links are created as desired.

Quality require-
ments • Performance: High precision.

• Extensibility: Developers can add their own strategies.
• Usability: A right suggestion can be accepted with just one

single key press.

Exceptions
• There are no elements available for linking.

Table 6.6.: Use case: Recover Links for a Model Element

We identify the following participating analysis objects:

• ModelElement

• TraceabilityLink

• ModelElementEditorView

• Marker: A marker as an eye catcher.

• CancelSuggestionButton: A button to remove the suggestion.

43

6. Analysis System Models

• AcceptSuggestionButton: A button to accept the suggestion.

• SingleLinkRecoveryController: Controls the data flow in this use case.

6.2.3. Use Case: Recover Links for the Project

The third use cases derives from the scenario shown in table 6.3.

Use case Recover Links for the Project

Actors User
System

Flow of Events 1. User opens a project wide recovery view by selecting it in
the appropriate menu of the tool.

1. User selects which elements / leafs he wants to analyse and
which links he wants to find.

2. System analyses where it can search for links and which links
are candidates and lists those with a high probability in the view
offering an opportunity to accept or decline them.

3. User accepts or refuses suggested links by clicking an accept or
decline button.

4. System saves the decision.

Entry condition • none

Exit condition
• The links are created as desired.

Quality require-
ments • Performance: High precision.

• Extensibility: Developers can add their own strategies.
• Usability: A suggestion can be accepted or declined with

just one single key press.

Exceptions
• There are no elements available for linking.

Table 6.7.: Use case: Recover Links for the Project

We can identify the following analysis objects:

• ProjectWideRecoveryView: A view offering possibilities for selection of element types
and reference types. Furthermore suggestions can be placed, accepted and declined.

• ModelElement

44

6.2. Use Cases

• TraceabilityLink

• AcceptSuggestionButton

• DeclineSuggestionButton

• ProjectLinkRecoveryController: Controls the data flow in this use case.

6.2.4. Boundary Use Case: Add New Strategy

This use case is derived from the boundary use case described in table 6.4.

Use case Add New Strategy

Actors Developer
System

Flow of Events 1. Developer writes a recommendation strategy for the system.

2. Developer extends the system with his strategy.

3. System uses the developer-specified strategy for suggestions.

Entry condition • none

Exit condition
• System uses developer-specified strategy for suggestions.

Quality require-
ments • Implementation: The developer programs in java using the

eclipse-framework.
• Interface: The developer uses the provided interfaces.

Exceptions
• More than one strategy is registered.

Table 6.8.: Use case: Add New Strategy

Participating analysis objects:

• RecommendationStrategy: An abstract object describing a way of finding probabilities
for traceability links.

• RecommendationManager: Manages the number of strategies in use and selects, which
strategy is used for which recommendation.

• ExtensionView: Shows existing extensions and offers functionality for changing them.

• ExtensionController: Controls the data flow in this use case.

45

6. Analysis System Models

The recommendation strategy is organised in a strategy pattern fashion (see figure 6.2).
Thus the concrete implementation of the strategy does not affect the implementation of
the controllers or their corresponding views. Moreover, the recommendation manager can
change and decide which strategy to use during run time. It will determine this depending
on the policy, which is the link type.

recommendation strategies

getSuggestion(LinkType)

StrategyManager

getMatchingMap()

RecommendationStrategy

LSI VSM

«policy»
LinkType

«client»
Controller

Figure 6.2.: The Strategy Pattern, UML class diagram

46

6.3. Analysis Object Model

6.3. Analysis Object Model

This section will differentiate the participating analysis objects identified in the last section
into entity, boundary and control objects.

Use Case Object-Type Objects
Creating a
Single Link
with Link
Recom-
mendation

Entity Objects ModelElement, TraceabilityLink

Boundary Objects ModelElementEditorView,
SuggestedElementsView, LinkButton,
AcceptButton, CloseButton, EnterKey

Control Objects LinkRecommendationController

Recover
Links for a
Model
Element

Entity Objects ModelElement, TraceabilityLink

Boundary Objects ModelElementEditorView, Marker, CloseButton,
AcceptButton

Control Objects SingleLinkRecoveryController

Recover
Links for the
Project

Entity Objects ModelElement, TraceabilityLink

Boundary Objects ProjectWideRecoveryView, AcceptButton,
DeclineButton

Control Objects ProjectLinkRecoveryController

Add New
Strategy

Entity Objects RecommendationStrategy

Boundary Objects ExtensionView

Control Objects RecommendationManager, ExtensionController

Table 6.9.: Entity, Boundary & Control Objects

6.4. Analysis Dynamic Model

This section describes the interaction within the use cases explained in the last section.
It explains how the objects operate with each other. As all use cases are similar in their
procedure, this section will only show the process behind the use case Recover Links for the
project (see section 6.2.3).

The sequence diagram (see figure 6.3) shows the interaction between the identified analysis
objects from the last section. First the user opens the recovery view. The user selects element
and link types. Afterwards the recommendation manager calculates the suggestions, which
are displayed to the user. Afterwards the user can accept some of the links suggested. The
links a user declines are abandoned, this fairly easy procedure is not displayed in the diagram
for space reasons.

47

6. Analysis System Models

interaction Recover links for project

:ProjectWide
RecoveryView

select element types

select link types

open

:ProjectLink
RecoveryController

set element types

set link types

:User

:Recommendation
Manager

get suggestion

set suggestion

show
suggestion

loop

[suggestions]
accept

accept

create link

<<create>>

Figure 6.3.: Recover Links for the Project, UML sequence diagram

48

Part III.

Prototype

49

7. System Design

� Systems seem, like certain worms, to be formed by a kind of generatio aequivoca
- by the mere confluence of conceptions, and to gain completeness only with the
progress of time. �

Immanuel Kant, The Critique of Pure Reason

This chapter describes and balances design goals and gives insight into the design of the
system in its entirety.

7.1. Design Goals

This section describes certain design goals, according to [BD03] and resulting from section
5.2. The section furthermore balances the design goals and presents their impact on the
resulting system.

7.1.1. Design Goals

• Performance criteria: The best algorithms shall be used for recommendation. This
needs to be evaluated.

• Cost criteria: The system must not involve any additional cost to UNICASE. Further-
more the development is limited due to the deadline of this thesis.

• Maintenance criteria: The System must be extensible and modifiable. As techniques
change and better algorithms are likely to be developed over the next years, there
might be need for change of strategies in future. Change of algorithms in order to
improve strategies for a special project is also important to improve the adaptabil-
ity. Furthermore, the system has to comply with the UNICASE code standards for
readability reasons. Additionally, the system needs to be loosely coupled from the
UNICASE project itself, to enable the possibility of delivering the project without link
recommendation. Lastly, the recommendation needs to be accessible from the entire
UNICASE system, may it be the user interface, the versioning system or the server
side service.

• End user criteria: The system’s main function is to support the user in order to make
his work flow faster. Hence, usefulness is the major measurement. The user’s average
work flow needs to accelerate. In order to establish this usability requires that the user
needs no or hardly any time to understand how to use the framework.

51

7. System Design

7.1.2. Trade-off of Design-Goals

The above listed design goals obviously conflict at certain aspects.

Performance

The performance includes two different aspects: On the one side, the system needs to react
in a certain amount of time, so that the user is not interrupted in his work; on the other side
the system’s recommendation needs to have a certain quality, so that the results are useful.
Usually these are contradicting requirements as better results require more computation.
We need to keep this trade-off in mind when deciding which strategies to use. It limits us
in the sense, that we can not use algorithms too complex to calculate when time matters.

Still, time does not matter as strongly for the link recovery use cases. Here, if challenged,
we should decide on the quality of results, whereas for the link recommendation use case
we do not want the user to stop his work and wait for the machine to calculate the results;
hence, in this use case we should decide to take the better scaling algorithm.

Precision versus Recall

Obviously both precision and recall are anti proportional to each other through the selec-
tion threshold: If the system decides to suggest all values with a probability above a high
threshold, the chance that all offered links are correct, is quite high. This is represented by
a high precision value. On the contrary, the recall value is going to decrease through the low
number of suggested links.

The same refers to the option to lower the threshold: If the system suggests all links above
a low threshold, the recall is going to rise, but the precision value is going to fall. This comes
from the natural fact that the more elements are selected, the higher is the probability that
all desired elements are chosen.

So the question is now where to set the threshold. To answer this question we have to
think about the severity of problems we might get from making mistakes. In probability
theory this incorrect guessing is sized in the number of false positives and negatives. We
identify the incorrectly suggested links as false positives and the incorrectly not suggested
links as false negatives.

In addition we have correctly selected links. The elements which are properly guessed to
be relevant, in this case the correctly suggested links, are called true positives. The elements
which are properly guessed to be not relevant, in this case the links correctly identified to
be not correct, are called true negatives.

The damage of a false positive can be measured in the time it takes the user to correct it,
whereas the benefit of a true positive can be measured as the time a user saves in comparison
to the time the user would have needed if he had chosen the link manually.

The damage of a false negative can be the time it takes to find it manually instead of
selecting or accepting the suggestion. The benefit of a true negative is just that it does not
cause any damage as being a false positive. The aim should always be to minimise the total
value of the total damage.

Bringing back the precision and recall into this calculation:

52

7.1. Design Goals

• The higher the precision, the higher the number of false negatives, but the lower the
number of true positives.

• The higher the recall, the higher the number of true positives, but also the higher the
number of false positives.

As a conclusion to the presented phenomena the system has to carefully adjust the
threshold from case to case. If a damage of a false positive is quite high according to
the benefit of a true positive, we should set the threshold quite high, thus getting a high
precision and hereby a low number of false positives. This leads, as desired, to a low amount
of damage through false positives.

This is important for example in the link recommendation use case, as it does not really
matter if the system misses out a suggestion as long as the other suggestions are correct.
But if the damage of false positives is relatively low in comparison to the benefit of a true
positive, we should lower the threshold as this leads to a higher recall, which leads to a
higher number of true positives. This is important in the link recovery use case, as a user
has a high benefit from directly selecting a link in comparison to the damage it does when
an inadequate link is suggested.

As this section tried to point out, the right choice of strategies is essential for the success
of the system. Therefore an evaluation is inevitable. We will conduct this evaluation in
chapter 10.

Extensibility versus Performance

Another issue, which is not as obvious, is the trade-off extensibility versus performance. In
order to enable extensibility, all recommendation strategies need to be reduced to the least
common denominator. To keep the extension simple, a simple interface needs to be used.
This, however, limits the strategies in their possibilities, as new strategies need to stick to
the same pattern.

7.1.3. Impact on Design

In order to establish the loose coupling wanted by the design goals, dependencies on the
recommendation framework must be minimised. Therefore a manager is created as the
centralised point of attaching and detaching strategies. This manager must be localised
within the centre part of UNICASE; thus giving the opportunity to access recommendation at
every part of the system. This does not violate the need for delivering UNICASE without link
recommendation: If delivery without recommendation is wanted, no strategies are plugged
in. This manager is furthermore the centre for extension.

For performance reasons, an evaluation will be done to find out the best strategy. For
usability reasons complex systems with user response et cetera were abandoned and simple
solutions preferred.

53

7. System Design

7.2. System Architecture

Different subsystems can be distinguished in the framework:

org.unicase.model
traceabilityrecommendation

utils

common

org.unicase.ui

LinkRecommendatonManager

RecommendationStrategy

LSIStrategy

VSMStrategy

SomeStrategy

Utils

CombinationStrategy

ModelElement

TraceabilityLink

SuggestedElementsView

ModelElementEditorView

ProjectWideRecoveryView

LinkSelectionStrategy

SomeSystem

recommendationstrategies

org.unicase.linkrecommendation

selectionstrategies

Figure 7.1.: The Framework’s Architecture, UML class diagram

54

7.2. System Architecture

In detail, the tasks of these subsystems are:

Name Purpose

org.unicase.ui In this subsystem all views are contained. It
depends on org.unicase.model for mainly
two reasons: the link recommendation and
the different model elements.

org.unicase.model The main subsystem of UNICASE. In this
subsystem are most classes, which can be
accessed from various parts of UNICASE.

org.unicase.model
.traceabilityrecommendation.common

This is the central control part of the frame-
work. In here, strategies are registered and
suggestions are made.

org.unicase.model
.traceabilityrecommendation.utils

This subsystem includes utilities and fea-
tures used by different strategies.

org.unicase.model
.traceabilityrecommendation
.selectionstrategies

This subsystem includes the interface as
well as the implementations of link selection
strategies as proposed in section 2.5.

org.unicase.linkrecommendation
.recommendationstrategies

This subsystem contains the various imple-
mentations proposed by this thesis.

SomeSystem This is an example for an extended strategy
by a third-party-developer.

Table 7.1.: The Subsystems

This system is designed as follows: The main part of the entire system is the sub-
system traceabilityrecommendation.common. It is located in the UNICASE subsystem
org.unicase.model (this subsystem also contains important UNICASE objects such as the
ModelElement). All queries for link recommendation go to this subsystem. It needs to be
placed in this subsystem, so that it can be used at every point in the UNICASE project.
This subsystem can not only be used by the user interfaces, but also by other parts of the
UNICASE system, for example by an automated procedure on the UNICASE repository
server.

In order to avoid code repetition (according to the DRY principle Don’t Repeat Yourself),
a centralised utility subsystem traceabilityrecommendation.utils is offering predesigned
classes for combination of strategies and methods for counting and stemming words.

Furthermore selection strategies and the according interface are contained in another sub-
system traceabilityrecommendation.selectionstrategies. This needs to be accessible
from the recommendation manager, thus it is placed in the system org.unicase.model as
well.

The various views identified in section 6.3 can request suggestions from the recommenda-
tion subsystem. But as most parts of the system do not need access to these views (for ex-
ample all server side parts, the so called EMFStore), they are extracted from

55

7. System Design

org.unicase.model and localised with other user interface classes in the subsystem
org.unicase.ui. As this subsystem needs admittance to org.unicase.model, there is
a dependency from the org.unicase.ui to org.unicase.model.

The strategies themselves are only extensions to the main system. This is decoupled, so
that all strategies are optional and can be exchanged at leisure. Some strategies were created
for this thesis. They can be found in the subsystem org.unicase.linkrecommendation.
For readability reasons most of the strategies were omitted in the diagram above, they are all
contained in the subsystem org.unicase.linkrecommendation. To show how an extending
system SomeSystem fits into the architecture, this was added into the diagram. All extensions
need access to the RecommendationStrategy and create an extension for the plugin provided
by org.unicase.model, hence all extensions depend on the subsystem org.unicase.model.

56

8. Object Design

� Is mios’ an t-eagal na ’n cogadh.
(Carelessness is worse than theft) �

Old Gaelic Proverb

This chapter maps the analysis objects from section 6.3 onto real objects. It is organised
according to the identified subsystems from the previous chapter.

1. org.unicase.model: In this section the recommendation manager and all attached
classes are explained.

2. org.unicase.linkrecommendation: This section shows the interrelation and struc-
ture of recommendation strategies.

3. org.unicase.ui: In this section this framework’s user interfaces are explained.

8.1. org.unicase.model

This subsystem contains the implementation of the class ModelElement, as well as the re-
commendation manager and the interface for recommendation strategies. This section will
additionally explain the selection strategies, which are implemented in org.unicase.model
as well. Lastly, this subsystem includes the utility classes.

8.1.1. The ModelElement and Links

The basic class for all ModelElements is located in the package org.unicase.model. It
is provided by the UNICASE project. The traceability links are not real entities. Linked

linkedModelElements
*

*eGet(EStructuralFeature) : Object
getName() : String
getDescriptionPlainText() : String
getLinkedModelElements() : Set<ModelElement>

ModelElement

Figure 8.1.: The Model Element, UML class diagram

57

8. Object Design

ModelElements can be retrieved by the link type (an EReference object) via the method
eGet. The result is either an EList of ModelElements or a single ModelElement. Linked
model elements can also be retrieved by the getLinkedModelElements method (see figure
8.1). The methods getName and getDescriptionPlainText provide the textual content of
a model element.

8.1.2. The RecommendationManager

Interface RecommendationStrategy

All strategies need to implement the interface RecommendationStrategy (see figure 8.2). It
contains two methods:

• getName() : String

• getMatchingMap(ModelElement, Collection<ModelElement>)
: Map<ModelElement, Double>

The first method, getName, should return the name of this strategy. It is used for output
purposes.

The second method, getMatchingMap, includes the actual calculation. The method should
return an object including mappings for a number of elements (not necessarily for all). The
base element and a list of candidates is provided for calculation. The usual modus operandi is
to iterate over all candidates and somehow calculate a number for each. For standardisation
reasons the results should be normalised to values between zero and one. Lastly the developer
returns a map with pairs of candidate and associated value. In order to be able to reuse the
implementations of Map provided by the java API the type Double is used instead of the
primitive data type double.

RecommendationManager

The recommendation manager (see figure 8.2) is the centre of the entire project. Whenever a
subsystem in UNICASE needs recommendation, it calls on of the recommendation manager’s
methods. In order to prevent that the recommendation manager checks for extensions every
time a recommendation needs to be made, it is designed as a singleton. The instance can be
retrieved with the getInstance method. The recommendation manager uses both selection
and recommendation strategies in a strategy pattern fashion. It combines context and policy,
deciding which strategy to use based on the parameters. To get a strategy for a certain
link type, the developer can use the method getRecommendationStrategy. The developer
needs to provide the base element and the targeted reference as parameters. The method
getMatchMap creates an complete suggestion. The parameters are approximately the same
to the getRecommendationStrategy method, additionally the candidates and the selection
strategy to be used (see section 8.1.3) is needed. The method returns a map giving a Double
value for a number of model elements. If null is set as selection strategy, no selection
is made and only the result of the recommendation strategy’s getMatchingMap method is
forwarded.

58

8.1. org.unicase.model

*

1

1

1

+ getName() : String
+ getMatchingMap(ModelElement, Collection<ModelElement>)
 : Map<ModelElement,Double)

«Interface»
RecommendationStrategy

getName() : String
getEReferenceName() : String
getBaseClassName() : String
getRecommendationStrategy() : RecommendationStrategy

StrategyExtension

+ getInstance() : RecommendationManager
+ getRecommendationStrategy(EReference, ModelElement)
 : RecommendationStrategy
+ getMatchMap(ModelElement, EReference, Collection<ModelElement>,
 LinkSelectionStrategy) : Map<ModelElement, Double>

«Singleton»
RecommendationManager

Figure 8.2.: The Recommendation Manager, UML class diagram

59

8. Object Design

+ getName() : String
+ selectCandidates(Map<ModelElement, Double>)
: Map<ModelElement, Double>

«Interface»
LinkSelectionStrategy

+ getName() : String
+ selectCandidates(Map<ModelElement, Double>)
: Map<ModelElement, Double>

ConstantThresholdSelection

+ getName() : String
+ selectCandidates(Map<ModelElement, Double>)
: Map<ModelElement, Double>

CutPointSelection

Figure 8.3.: The Selection Strategies, UML class diagram

8.1.3. The Selection Strategies

The selection strategies are implemented in the package org.unicase.model.util
.traceabilityrecommendation.selectionstrategies (see figure 8.3).

The LinkSelectionStrategy Interface

The selection strategy interface contains two methods:

• getName() : String

• selectCandidates(Map<ModelElement, Double>)
: Map<ModelElement, Double>

The first method getName again only returns a name of the selection strategy, in order to
be able to print it out for evaluation or debug.

The second method, selectCandidates filters the result of a link recommendation. It
takes a map from ModelElements to Double and usually removes a number of elements. The
result represents those elements the system would suggest to the user.

The Selection Strategies

This framework provides two subclasses for the interface LinkSelectionStrategy. First,
the ConstantThresholdSelection: It implements the method selectCandidates using a

60

8.1. org.unicase.model

+ getTermDocumentFrequencyVector(String[],String[]) : double[]
+ getFilteredWords(String, boolean): ArrayList<String>
+ decamilize(String) : String[]
+ getMEsText(ModelElement) : String
+ contains(String[], String) : boolean

RecUtils

Figure 8.4.: The RecUtils, UML class diagram

constant threshold like proposed in 2.5. All model elements with a value under a certain
threshold, which is passed in the constructor, are discarded. The second implementation is
the CutPointSelectionStrategy. This implementation of the selectCandidates method
sorts the model elements by their value. A parameter, again passed in the constructor,
defines the cut point x. The topmost x elements are then passed through, all others are
discarded.

8.1.4. The Utilities

This framework provides two classes with utilities for information retrieval work. The first is
the class RecUtils, which contains methods for word extraction and counting. The second
class is TDFrequencyMatrix, which is a matrix for special information retrieval purposes.

RecUtils

RecUtils (see figure 8.4) contains five different methods for different purposes:

• getTermDocumentFrequencyVector(String[] dictionary,String[] document)
: double[] This method counts the words of the first parameter in the second para-
meter, e.g. if the dictionary was {PC, MAC} and the document was {MAC,PC,MAC},
the method would return {1,2} as the first word (PC) appeared once in the document
and the second word (MAC) appeared two times.

• getFilteredWords(String, boolean) : ArrayList<String> This method extracts
the words from the first parameter. The second parameter determines whether stem-
ming is applied or not. The method filters stop words (like the, do et cetera) and
extracts commas, colons etc. (see section 2.4.1 for details).

• decamilize (String) : String[] This method cuts CamelCaseWords, the imple-
mentation is based on [Mal09], see section 2.4.1.

• getMEsText(ModelElement) : String The purpose of this method is extraction of
textual content from ModelElements.

• contains(String[], String) : boolean This helper for arrays returns true if the
first parameter contains the second, false otherwise.

61

8. Object Design

+ normalizeDocuments()
+ transformIDF()
+ transformLSI(double)
+ createTDFMatrix()
+ addWordsToDictionary(String, boolean) : int
+ dotProduct(int, int) : double
+ cos(int, int) : double
+ sumDocument(int) :double
+ lengthDocumentVector(int) : double
+ toString() : String
+ getMatrix() : double[][]

TDFrequencyMatrix

Figure 8.5.: The TDFrequencyMatrix, UML class diagram

TDFrequencyMatrix

The class TDFrequencyMatrix (see figure 8.5) is a class symbolising a term to document
matrix offering methods for content based information retrieval (see section 2.3). Each
object of this class stands for a term to document matrix. The developer first fills the
matrix with documents using the method addWordsToDictionary, the first parameter is
the text, the second parameter determines if stemming is applied. It returns the document’s
index in the matrix. The matrix is then calculated with the method createTDFMatrix, this
includes only counting of words. The method normalizeDocuments transforms the matrix,
so that the sum of each vector (or document) is one. The sum of all elements of a vector
can be retrieved with the method sumDocument giving the document’s index as parameter.
The method lengthDocumentVector calculates the length of a document’s vector (in 2-
norm). The class also offers methods for the cosine of two vectors and the dot product, the
parameters are always the indices of the documents. Furthermore transformations according
to section 2.4 are provided with the methods transformIDF and transformLSI(double).
For LSI the developer has to pass the k-value as parameter.

8.2. org.unicase.linkrecommendation

We implemented the strategies used in this thesis in org.unicase.linkrecommendation,
whereas the abstractions are implemented in a subsystem of org.unicase.model , so that
the entire system, especially the recommendation manager, has access to it. This section
shows the strategies and their class hierarchies (see figure 8.6).

8.2.1. Basic Strategies

The content based approaches LSI and VSM are both based on term-to-document matrixes,
therefore they both have an TDFrequencyMatrix, reusing this code. All approaches are based
on the interface RecommendationStrategy explained above. The history-based approach

62

8.2. org.unicase.linkrecommendation

«Interface»
RecommendationStrategy

LSI

VSM

«interface»
Updateable

ARMRAR

SRR

RecUtils

TD
Frequency
Matrix

Figure 8.6.: The Strategies, UML class diagram

ARM needs to be handled in a different manner, this will be explained in the next section.
All other approaches are implemented in the way explained in the section 2.4.

8.2.2. Updateable Strategies

Training is essential for the history-based approach ARM. To offer this functionality, we
created a different type of strategies with the interface Updateable. This only contains one
method: updateStrategyData(ChangePackage). By creating this interface, the system can
check for the strategies used whether it needs to train it, without knowing the single class
types. Combinations of strategies need to pass this functionality, this will be detailed in the
next section.

8.2.3. Combination Strategies

As one of the requirements was to create possibilities for combination of strategies, another
subtype of strategies was created. The abstract class CombinationStrategy provides this
functionality (see figure 8.7). It is implemented in the core, so that the entire system has
access to it.

It offers the possibility to combine two strategies, which are transmitted via the con-
structor. It contains one abstract method combine, which determines how the different ap-
proaches are combined. This method is then implemented, according to the considerations
from section 2.4, in the subclasses MaximumCombinationStrategy and FactorCombination-
Strategy.

In order to use also updateable strategies (see section 8.2.2), the abstract class implements
the interface Updateable as well. It implements the required update method by checking if
any of the two participating strategies are updateable, and if so, forwarding the incoming
update to the participating strategies.

63

8. Object Design

+ getName() : String
+ getMatchingMap(ModelElement, Collection<ModelElement>)
: Map<ModelElement,Double)

«Interface»
RecommendationStrategy

+ updateStrategyData
(ChangePackage)

«Interface»
Updateable

+ CombinationStrategy(RecommendationStrategy, RecommendationStrategy)
+ getMatchingMap(ModelElement,Collection<ModelElement>) : Map<ModelElement,Double)
+ combine(Map<ModelElement,Double>, Map<ModelElement,Double))
: Map<ModelElement,Double)
+ getName() : String
+ updateStrategyData(ChangePackage)

«abstract»
CombinationStrategy

+ combine(Map<ModelElement,Double>, Map<ModelElement,Double))
: Map<ModelElement,Double)
+ getName() : String

MaximumCombinationStrategy

+ FactorCombinationStrategy(RecommendationStrategy, RecommendationStrategy, double)
+ combine(Map<ModelElement,Double>, Map<ModelElement,Double))
: Map<ModelElement,Double)
+ getName() : String

FactorCombinationStrategy

Figure 8.7.: The Combination Strategies, UML class diagram

64

8.3. org.unicase.ui

«singleton»
RecommendationManager

MESuggestedSelectionDialog

«abstract»
FilteredItemsSelectionDialog

+ compare(ModelElement,
ModelElement) : int

RelevanceMapComparator

+ compare(ModelElement,
ModelElement) : int

«interface»
Comparator<ModelElement>

RelevanceWrappedLabelProvider

Figure 8.8.: The MESuggestedSelectionDialog, UML class diagram

8.3. org.unicase.ui

This section describes the user interfaces and their access to the framework. It contains two
different views. On the one side, the MESuggestedSelectionDialog. This view is designed
to show a number of elements for link recommendation, having some elements presented
more prominently. On the other side, there is a view for link recovery. This is realised in a
wizard, called RecoveryWizard.

8.3.1. MESuggestedSelectionDialog

Eclipse offers different dialogs for extension. For this thesis a dialog is needed, which has
functionality to select an item out of many and has an influence on the sorting. These
constraints are fulfilled by the abstract class FilteredItemsSelectionDialog (see fig-
ure 8.8). The system sorts the elements using a provided Comparator. The comparator
RelevancemapComparator works as follows: If none of the elements are under the suggested
elements, the items are compared alphabetically. If one and only one item is suggested, this
one is returned to be higher. If both elements are suggested, the element with a higher
probability value is stated to be higher. For these suggestions the dialog refers to the re-
commendation manager singleton as described in the previous chapters.

Eclipse widgets use so called LabelProviders for the display of items. The UNICASE
project offers such a class. For our purpose this class was extended, so that not only the
name of an element is displayed in the dialog, but also the probability value, if any provided.

To fulfil the requirement that UNICASE can be delivered without this framework, the dia-
log also works without any recommendation, then only displaying the items in alphabetical
order. This dialog replaced the dialog for adding links from the legacy system.

65

8. Object Design

+ getNextPage(): IWizardPage
+ createControl(Composite)

«abstract»
WizardPage

+ performFinish() : boolean
+ addPages()

RecoveryWizard

+ getNextPage(): IWizardPage
+ createControl(Composite)
+ calculateSuggestions()

RecoveryResultsPage

+ performFinish() : boolean
+ addPages()

«abstract»
Wizard

+ getNextPage(): IWizardPage
+ createControl(Composite)

LinkTypeSelectionPage

+ getNextPage(): IWizardPage
+ createControl(Composite)

ElementTypeSelectionPage

Figure 8.9.: The Recovery Wizard, UML class diagram

66

8.3. org.unicase.ui

8.3.2. RecoveryWizard

The second user interface is used for both project wide link recovery and link recovery for
single items. It is implemented in the class RecoveryWizard (see figure 8.9); a Wizard is a
feature which eclipse offers for user interaction. It contains several pages, usually derived
from the abstract class WizardPage. The functionality of the RecoveryWizard follows the
description displayed in figure 6.3 in the analysis chapter. In our case, we have three distinct
page types:

• ElementTypeSelectionPage: This page shows all different model element types. It
is used for both selection of base and candidate element types. The user can tick the
items desired.

• LinkTypeSelectionPage: This page lets the user select the designated link types.
Furthermore is displayed, for which base types these link types are available.

• RecoveryResultsPage: The last page displays the suggestions from the recommend-
ation. These are calculated with the method calculateSuggestions. The user can
select the favoured suggestions and by hitting the Finish button, these links are cre-
ated. In case of uncertainty, the user may also click on the suggested elements to open
the element’s detailed editors.

WizardPage

For this thesis two methods from the abstract class WizardPage are important: getNextPage
is called whenever the user clicks the Next button and when the page is loaded. The pages
from this thesis usually store and forward the user’s selection in this method. The second
method is createControl. This method offers the developer the possibility to add design
elements to the wizard page. These are added to the Composite given as parameter.

The class WizardPage is an implementation from the interface IWizardPage.

RecoveryWizard

The class WizardPage has two important methods. performFinish is called whenever a user
presses the finish button. This method checks the selected elements from the
RecoveryResultsPage and adds the designated links. The second method, addPages, cre-
ates and initialises the wizard’s pages. This method checks if the user wants links for the
entire project or only for one element. For the latter only the results page is displayed.

These methods are overwritten from the class Wizard. The abstract class Wizard again is
an implementation of the interface IWizard.

67

9. A Manual for Extending the Link
Recommendation Framework

� Example isn’t another way to teach, it is the only way to teach �

Albert Einstein, Nobel Price winner

This chapter presents how the framework can be extended using Eclipse extension points.
In order to make the reader fully understand how to correctly write and include one’s own
extension, the extension point system is explained shortly. Afterwards the paper shows an
example extension. This is not meant as a deep introduction into the Eclipse extension point
technology; the interested reader shall be referred to [Vog09] or [GB03].

9.1. Eclipse Extension Points

Eclipse offers functionality to create extensible software with extension points and extensions.
In order to accomplish this, the developer defines an extension point within his plugin. He
creates a scheme, including different descriptors, for example a name and an id, but most
importantly including a class parameter. The class parameter references the class to be used
by the extension point. It is usually implementing an interface or extending a special super
class.

The creator of the extension point can check, which extensions for his extension point are
available and instantiate the classes, which provide the additional functionality. He does
not know in compile time which plugins are provided, but needs to evaluate this during run
time.

The developer, who wants to add functionality, adds an extension to his plugin. In this
extension he defines the name for his special extension and adds the classes, which are meant
to provide the additional functionality.

9.2. An Example

Adding a strategy to the framework just takes two steps:

1. Write a strategy.

2. Create the extension.

These will be explained in detail below.

69

9. A Manual for Extending the Link Recommendation Framework

+ getName() : String
+ getMatchingMap(ModelElement, Collection<ModelElement>)
 : Map<ModelElement, Double>

«interface»
RecommendationStrategy

+ getName() : String
+ getMatchingMap(ModelElement, Collection<ModelElement>)
 : Map<ModelElement, Double>

VsmAndRarCombinationStrategy

Figure 9.1.: Extension Manual: The Strategy Class, UML class diagram

9.2.1. Writing a Strategy

First of all the developer needs to create the functionality. To achieve this he needs to write a
class implementing the interface RecommendationStrategy from the package
org.unicase.model.common.traceabilityrecommendation. This interface requires im-
plementation of only two methods:

• getName() : String

• getMatchingMap(ModelElement, Collection<ModelElement>)
: Map<ModelElement, Double>

The first method, getName, should return the name of this strategy. It is used for output
purposes.

The second method, getMatchingMap includes the actual calculation. The method should
return an object including mappings for a number of elements (not necessarily for all).
The base element and a list of candidates are provided for calculation. The usual modus
operandi is to iterate over all candidates and somehow calculate a number for each. For
standardisation reasons the results should be normalised to values between zero and one.
Lastly the developer returns a map with pairs of candidate and associated value.

Our example developer wrote a combination of the vector space model approach and the
related assignees approach. The resulting class is shown in figure 9.1.

9.2.2. Creating the Extension

Now, that the class is created, it needs to be “plugged in” into the framework. The developer
can define the base type this strategy should be used with and additionally the link type it
is designed for. If a strategy is meant to be used for all types of elements, one can enter the
class org.unicase.model.ModelElement. If a strategy should be used for all kinds of links
the developer can enter the keyword ALL.

The following steps need to be executed in this part:

70

9.2. An Example

1. First of all the developer needs to make sure, that he does not have any recommendation
strategies for this combination of base element type and eReference type already used
in a strategy extension.

2. Then he switches to the plugin.xml or the MANIFEST.MF file and there to the extension
point tab.

3. He clicks on Add, selects the org.unicase.model.recommendationstrategy extension
point and accepts it (see figure 9.2).

4. He right-clicks on the newly appearing element in the extensions panel and selects new
→ strategy (see figure 9.3)

5. He enters a name in the extension elements details panel of the new strategy (see figure
9.4). In our case, he names it org.unicase.linkRecommendation.VsmAndRar.

6. He selects the strategy class by clicking the browse button and searching for the ap-
propriate class (see figure 9.5). For this case, this is the VsmAndRarCombinedStrategy
class.

7. He enters the reference this strategy shall be used for. If it can be used for all references,
ALL can be entered. Otherwise the developer needs to enter the eReferences name. It
can be retrieved from the getName method of the reference. As the new strategy shall
just work on the reference annotatedModelElement, this is entered here.

8. Lastly the type of model elements this strategy shall be used with, is selected in the
baseElementClass field (see fig 9.6). We take the WorkItem Interface here, thus the
strategy is used for all WorkItems (BugReports etc.).

71

9. A Manual for Extending the Link Recommendation Framework

Figure 9.2.: Extension Manual: Part 2

Figure 9.3.: Extension Manual: Part 3

Figure 9.4.: Extension Manual: Part 4

72

9.2. An Example

Figure 9.5.: Extension Manual: Part 5

Figure 9.6.: Extension Manual: Part 6

73

Part IV.

Evaluation

75

10. Evaluation

� First get your facts; then you can distort them at your leisure. �

Mark Twain

This chapter evaluates the approaches used, analysing the different strategies listed in
section 2.4. We used the two different projects UNICASE and DOLLI II for this evaluation.
These are real projects with real users and real history data. We furthermore looked at two
different kinds of links, to be explained in the next section. Afterwards we tried to find out,
which strategies (recommendation and selection) are best for which use case. From there
we derive our decisions of which strategies to use in the next deployment of UNICASE. The
results presented underneath have been submitted to the ICSE2010 in [HFKB09].

10.1. Links under Consideration

For the question on which links we wanted to work for evaluation, we kept in mind two
different aspects. Which links are useful and which links are represented in science, so that
we can compare our results. Therefore we looked at two different kinds of links in detail.

10.1.1. Functional Requirement to Use Case

The first link models the relation between a functional requirement and a use case detailing
the functional requirement. We have chosen this link, because it is common in several existing
requirement models (e.g. [LOT08]). Functional requirements are text-based descriptions
of certain functionalities of the system, while use cases describe an abstraction of a user
interacting with the system. In UNICASE the relationship between functional requirements
and use cases is m : n, meaning that a functional requirement can be detailed in more
then one use case and a use case can detail several functional requirements. Furthermore
requirements are structured in a hierarchy by the “refines” association (see figure 10.1).

10.1.2. Action Item to Functional Requirement

Action items are part of the project model and describe ongoing work in UNICASE. Action
items can be linked to functional requirements to express that a certain action item needs to
be processed to fulfil a certain functional requirement. This link can be traced by developers
to find respective parts of the specification [HDKN09] and also to notify developers about
relevant changes (see figure 10.2). We chose this link, because it is a good example of a link
between project and system model.

77

10. Evaluation

Functional
Requirement

UseCase

1

isDetailedIn

refines
System Model

Figure 10.1.: Link between Functional Requirement and Use Case, UML class diagram

ActionItemFunctional
Requirement

isObjectOf1

refines
System Model Project Model

Figure 10.2.: Link between Action Items and Functional Requirements, UML class diagram

78

10.2. Analysed Projects

10.2. Analysed Projects

The data used for evaluation is taken from two real software projects, which have used
UNICASE for modelling and management. One of which is the development project of
UNICASE itself, with a history of nearly 3000 versions and 26 participants over nearly a
year. The second one is DOLLI II, a student project with 25 participating students over 6
months and approximately 650 versions; moreover, DOLLI II’s main language is German. We
did not apply stemming in the DOLLI project. In both projects, users explicitly maintained
traceability links. We can use these existing traceability links for our evaluation by comparing
them with the recommendations from different approaches.

As all the links of interest are bidirectional, we were able to apply the recommendation
from both directions, doubling the candidates for the evaluation. In total can evaluate the
following number of links:

#Links UNICASE-Project DOLLI II-Project

AI ↔ FR 288 (144 each) 362 (181 each)

FR ↔ UC 108 (54 each) 50 (25 each)
Table 10.1.: Evaluation: Number of Links in Total

10.3. Methods for Evaluation

In order to evaluate the proposed strategies adequately we created two different cases of
evaluation. To assess the link recovery use case we analysed the most recent state of the
system (state-based evaluation). For the use case link recommendation, we iterate over the
project history and apply the recommendation on exactly the project state, in which the
user has created the original link (history-based evaluation). We compare these suggestions
with the link existing or being created at this state of the project.

10.3.1. State-based Evaluation

For the state-based evaluation the evaluation projects have been assessed in the latest version.
All existing links of the relevant type are considered. The recommendation strategies were
applied on both linked artifacts of these link instances. Afterwards the recommendation was
compared to the existing links and the metrics, according to section 2.6.2, were calculated.
We additionally recorded the average position in the recommendation. In order to retrieve
valid results, the existing link was ignored in recommendation processes for all structure-
based approaches.

10.3.2. History-based Evaluation

The state-based evaluation we presented before is suitable to evaluate different approaches
for the link recovery use case. For the use case of link recommendation, the results would
be biased, because the recommendation is based on another project state compared to the
state, when the user actually wanted to create a specific link. This is especially true for
approaches like ARM, which are based on the project history. Therefore we suggest a novel

79

10. Evaluation

approach of evaluation, which we call history-based evaluation. In this approach, we iterate
through the project history until we find a moment, where the user created a link. At
every link creation operation, we make a recommendation based on the state of the project
at this very moment. Then again we compare the result of this recommendation with the
choice of the user. We claim this way of evaluation to be more realistic then the state-
based evaluation. We reapplied the most successful strategies, VSM and VSM+RAR of the
state-based evaluation as well as the ARM approach on the UNICASE project for both link
types.

10.4. State-based Evaluation

In a first step, we compare the two content-based approaches LSI and VSM. Based on
the research shown in this section, we found VSM the better working strategy for further
evaluation. In a second step, we compare different settings for the selection strategies from
section 2.4. Using the best set-up for the selection strategies, we evaluate ARM as well
as the two structure-based approaches SRR and RAR. As a last step of the state-based
evaluation we compare combinations of the most successful strategies. In the second part,
the history-based evaluation, we apply VSM and the two most successful combinations of
strategies for the recommendation use case.

10.4.1. General Findings

We applied VSM from section 2.4 on the UNICASE case-study to get an overview of the
limits in our system due to lack of or improper documentation within the data.

Threshold = 0.5
UNICASE DOLLI II

Precision Recall Precision Recall

AI ↔ FR 0.53 0.25 0.54 0.04

FR ↔ UC 0.6 0.27 0.5 0.02
Table 10.2.: Evaluation: VSM in General

Comparing these results with related work results of other projects, values might seem
relatively low. This is due to the fact that the proposed links are fine-grained traceability
links on the level of model elements rather then coarse-grained links among relatively large
documents. Therefore elements under consideration often have very few textual content.
Consequently content-based approaches provide lower results in this context. Secondly our
values are calculated based on the selection made by the developers in the projects. It con-
tains potential flaws which might result in low values: On one hand the system might make
correct suggestions, where the (correct and suggested) link is not established in the project.
On the other hand incorrect links in the project might distort the final values and lead to
lower values than expected. Because of the different granularity of link recommendation,
our results can not be directly compared to the results of other authors. To close this gap,
we therefore compare different extensions and strategies in our context.

80

10.4. State-based Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VSM
LSI 0.25
LSI 0.75
LSI 0.9

Precision

R
ec

al
l

Figure 10.3.: FR ↔ UC, UNICASE

10.4.2. Latent Semantic Indexing (LSI)

To analyse the application of LSI in the unified model, we decided on the functional require-
ments to use case link in the UNICASE project and compared it with VSM. The importance,
but also difficulty, in determining the factor k in LSI is still an open issue in science (see e.g.
[LD06]). Hence we tried various values for k and compared the results (see figure 10.3).

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

VSM
LSI 0.25
LSI 0.75
LSI 0.9

Precision

R
ec

al
l

Figure 10.4.: AI ↔ FR, DOLLI II

The results in the DOLLI II project (see figure 10.4) were worse than in the UNICASE
project, as we did not apply any stemming. In both of the projects we could not confirm
the strong advantages of LSI, which have been proposed by other authors like [ACCDL00]
or [LD06]. Similar to the case studies presented in [HDS06] or [Lor05] this relatively bad

81

10. Evaluation

performance of LSI might also result from the small number of text and words appearing.
As a conclusion, together with the calculation complexity of LSI, we decided to stick to VSM
in our further analysis.

10.4.3. The Selection

We chose both the VSM approach and one of the other strategies from our science to compare
cut point with threshold selection in the UNICASE project on the requirement to use case
link:

Threshold Avg.
Position

Precision Recall

T=0.1 3.94 0.14 0.81

T=0.35 1.9 0.42 0.48

T=0.5 1.3 0.6 0.27
Table 10.3.: Evaluation: VSM, Threshold, FR ↔ UC, UNICASE

Cut Point Avg.
Position

Precision Recall

CP=5 3.09 0.2 0.69

CP=10 4.35 0.12 0.76
Table 10.4.: Evaluation: VSM, Cut Point, FR ↔ UC, UNICASE

RAR
T=0.1 T=0.35 T=0.5

Prec. Rec. Prec. Rec. Prec. Rec.

UNICASE 0.05 0.43 0.12 0.21 0.16 0.19

DOLLI II 0.03 0.36 0.04 0.31 0.07 0.23
Table 10.5.: Evaluation: RAR, Threshold, FR ↔ UC

RAR
Cut Point=5 Cut Point=10

Prec. Rec. Prec. Rec.

UNICASE 0.08 0.35 0.05 0.43

DOLLI II 0.07 0.25 0.05 0.29
Table 10.6.: Evaluation: RAR, Cut Point, FR ↔ UC

82

10.4. State-based Evaluation

Analysing these results, we do not see a significant impact of the selection strategies in
the VSM approach; whereas in the RAR approach it is significantly easier to select a proper
value using cut point strategy. This behaviour comes from the following: The weighting
function in RAR is relative to the results. RAR has too little information to set absolute
probabilities. In contrast, VSM is able to set absolute weights, hence e.g. the value of 0.5 in
VSM is an absolute assertion, comparable in every case. In contrast, a value of 0.5 in RAR
just says, that elements with a higher value are better, but the value itself is just a tendency,
not an absolute probability.

10.4.4. History-Based Approach

Association Rule Mining (ARM)

We then started to evaluate the different approaches and combinations. We first of all tried
to extract the information content from the project history with the Association Rule Mining
(ARM) strategy.

Avg.
Position

Precision Recall

AI → FR 1.32 0.33 0.28

FR → UC 1.65 0.65 0.2
Table 10.7.: Evaluation: ARM, CP=10, UNICASE

However, these results need to be handled with care, as the ARM strategy was trained with
the whole project history. Linked artifacts were likely to be changed in the same session
because users could have navigated that link. For this reason we used the history-based
evaluation strategy and only considered the history before the link was created.

10.4.5. Structural Approaches

In addition to the widely accepted content- and text-based approaches like VSM and LSI
and the ARM approach from our studies, we reckoned that other strategies might include
information which can be extracted; moreover, that these structure-based strategies might
provide benefit to a combined solution. Analysing these approaches is a non trivial task.
To guarantee scientific results, it must be ensured that the correct (and usually already
established link) does not contribute to the recommendation. To solve this problem and
hence produce reasonable results our algorithms include the possibility to ignore certain links.
Another impediment in evaluation is the semantics behind these approaches. Developers,
who already worked on tasks to a certain functional requirement are more probable to be
asserted to other action items related to these; more abstract: semantics is used to gain
knowledge or assumptions are made that indicate that the elements suggested are not equally
probable. Consequently these strategies can only be used in this specific semantic context
and thus lead to a smaller set of tests. In our concrete case this means that we could apply
the Related Assignees Recommendation (RAR) only in one way.

83

10. Evaluation

Shared References Recommendation (SRR)

SRR considers the artifacts, which are already linked to an element. We wanted to evaluate
how deep references should be searched through and how the weighting should be set. We
decided for the above-mentioned weighting, normalised at the maximum and took the cut
point selection to reduce the importance of this measurement. First we analysed how values
changed in the UNICASE project over iteration depth:

Depth Avg.
Position

Precision Recall

Depth=1 3.85 0.02 0.07

Depth=2 9.83 0.01 0.13

Depth=3 8.69 0.03 0.33

Depth=4 10.01 0.01 0.09

Depth=5 9.88 0.01 0.13
Table 10.8.: Evaluation: SRR, CP=10, AI → FR, UNICASE

The studies suggested that three was the clear local optimum. A detailed investigation
showed, that the strategy does not work well for elements, which are not linked at all and
those which are too widely spread. We realized that elements depending on their linking
had different sizes of clouds. Hence we changed the algorithm, so that the clouds do not go
for a certain radius (which is the depth), but keep iterating until a certain size is reached
(measured by the number of elements found) or the cloud does not grow anymore, i.e. the
set is the transitive closure. We analysed four different stages, depending on the size of the
semantic clouds:

Size Avg.
Position

Precision Recall

Size=10 9.86 0.01 0.13

Size=25 8.47 0.03 0.32

Size=50 8.46 0.04 0.35

Size=75 8.63 0.03 0.35
Table 10.9.: Evaluation: SRR with Semantic Clouds, CP=10, AI → FR, UNICASE

Analogue to the cut point strategy, we have thus a possibility at hand to limit the number
of suggestions. We see that the average position is significantly lower than in the suggestions
before. Also the recall stays approximately the same.

84

10.4. State-based Evaluation

Related Assignees Recommendation (RAR)

The second structural approach we developed was RAR, which we applied on both projects
(see 10.6).

These fairly low values result from the fact that there might always be many related
items, and also often cases in which there is no information content available through this
method. It also very much depends on the assignment behaviour in this particular project.
Nevertheless these statistics show, that there can be information content retrieved through
this approach as the values listed above are way over guessing average on 181 or 144 examples.
However this solution is not a satisfying recommendation on its own.

10.4.6. Combining Strategies

Based on our results for both content-based and structural algorithms, we evaluated dif-
ferent combinations. Based on the assumption that each high value in one of underlying
recommendations should lead to suggestion we composed two strategies into one by taking
the maximum of both values.

According to the results presented above we combined VSM with RAR and SRR with
cloud size of 50 elements.

Strategy Precision Recall

VSM 0.61 0.17

Max: VSM+SRR(50) 0.02 0.67

Max: VSM+RAR 0.24 0.35
Table 10.10.: Evaluation: T=0.5, AI → FR, UNICASE

UNICASE DOLLI II

Prec. Rec. Prec. Rec.

VSM 0.07 0.65 0.07 0.38

Max: VSM+SRR(50) 0.04 0.37 0.05 0.41

Max: VSM+RAR 0.08 0.76 0.06 0.45
Table 10.11.: Evaluation: CP=10, AI → FR

The statistics suggest that taking the maximum can lead to entirely different results. This
is due to the weighting function of the structure-based approaches. They are rather relative
values, which can not be used in an equal manner as the absolute values returned by the
VSM-Strategy. Nevertheless these statistics also show that the problem can be overcome by
combining the maximum function with a cut point strategy. However, these results reveal
that the precision of the structural approaches was too low to justify taking the maximum;
still, used with two strategies returning good absolute results, this strategy can be an option.

85

10. Evaluation

In a second step we combine two strategies with a certain factor, of which the most obvious
would be 1:1, leading to the arithmetic mean. Based on our preliminary results, we used the
cut point strategy:

Strategy Precision Recall

VSM 0.61 0.17

Max: VSM+SRR(50) 0.09 0.39

Max: VSM+RAR 0.37 0.22
Table 10.12.: Evaluation: Avg.Mean, T=0.5, AI → FR, UNICASE

UNICASE DOLLI II

Prec. Rec. Prec. Rec.

VSM 0.07 0.65 0.07 0.38

Avg: VSM+SRR(50) 0.05 0.53 0.05 0.49

Avg: VSM+RAR 0.08 0.76 0.06 0.49
Table 10.13.: Evaluation: Avg.Mean, CP=10, AI → FR

They also indicate that the combination of VSM and RAR used with cut point selection
can improve the results. We wanted to evaluate, whether the results would increase by giving
the VSM a higher importance. Therefore we tried VSM+RAR on UNICASE with different
factors and had a look at the results:

CP=5 CP=10

Avg Pos. Precision Recall Precision Recall

VSM 3.74 0.12 0.54 0.07 0.65

0.1 – 0.9 3.91 0.11 0.56 0.08 0.74

0.35 – 0.65 3.66 0.12 0.6 0.08 0.78

0.5 – 0.5 3.49 0.13 0.66 0.08 0.76

0.75 – 0.25 3.31 0.13 0.65 0.08 0.75
Table 10.14.: Evaluation: VSM+RAR, CP=10, AI → FR, UNICASE

To sum up this section, we can see that we can improve the recall and also precision by
combining different strategies. A remaining problem is the selection of a function for the
combination of different strategies.

86

10.4. State-based Evaluation

10.4.7. Optimisations

All results shown above include optimizations included during the development. They were
analysed separately.

CamelCase Extraction

Many times, in the project model as well as in the system model, java-like upper- or lower-
camel case notation is used in descriptions and titles. To get the information content from
these words, they need to be split. Whereas in most cases this is a trivial update, it has to be
used with care, e.g. in uppercase words like abbreviations. This rather easy implementable
optimisation brings quite a big benefit to the overall result:

Avg.Pos. Precision Recall

No Camel Case Extraction 5.72 0.07 0.59

Camel Case Extraction 5.29 0.07 0.65
Table 10.15.: Evaluation: CamelCase-Extraction

Empowering the name of an object

Another improvement addressed the difference between text from the name and the descrip-
tion of a model element. To make sure, that the title is more important than the description,
it was tripled in all calculations.

We evaluated this improvement with both earlier mentioned links:

Precision Recall

regular quantification 0.47 0.28

tripling the name 0.52 0.46
Table 10.16.: Evaluation: Quantification, VSM, T=0.35, FR ↔ UC

AI ↔ FR FR ↔ UC

regular quantification 5.32 4.54

tripling the name 4.63 4.61
Table 10.17.: Evaluation: Quantification, VSM, CP=10, Avg. Position

Statistics show that this improvement can give a benefit to the overall result; however, in
some cases the correct elements are ranked a little lower in suggestions. This is probably
due to elements with poor textual descriptions in the title.

87

10. Evaluation

10.5. History-based Evaluation

The state-based evaluation we presented before is suitable to evaluate different approaches
for the link recovery use case. For the use case of link recommendation the results would
be biased, as the recommendation is based on another project state compared to the state
when the user actually wanted to create a specific link. This is especially true for approaches
like ARM, which are based on the project history. Therefore we suggest a novel approach
of evaluation, called history-based evaluation. In this approach, we iterate through the
project history until the user creates a link. At every link creation operation, we make a
recommendation based on the state the project was at. Then again we compare the result
of this recommendation with the choice of the user. We claim this way of evaluation to be
more realistic then the state-based evaluation. We reapplied the most successful strategies,
VSM and VSM+RAR of the state-based evaluation as well as the ARM approach on the
UNICASE project for both link types. We applied this approach for the UNICASE project:

Method
VSM Avg.:VSM + SRR(Size: 50)

Precision Recall Precision Recall

AI ↔ FR
history 0.12 0.54 0.07 0.65

state 0.11 0.56 0.08 0.74

FR ↔ UC
history 0.12 0.6 0.08 0.78

state 0.13 0.66 0.08 0.76
Table 10.18.: Evaluation: Evaluation Methods, CP=10, UNICASE

Evaluation Method Precision Recall

history-based 0.07 0.61

state-based 0.08 0.76
Table 10.19.: Evaluation: Avg.Mean: VSM+RAR, CP=10, AI → FR, UNICASE

We observe differences between the values of the history- and the state-based evaluation.
We claim that a history-based evaluation is a more difficult but also realistic scenario for
the use case of link recommendation. This is especially true for structural and history-based
approaches. We can observe that especially the structure-based approaches lead to lower
results, this is due to the incomplete structure at the project state of the recommendation.
We can further observe that links between use cases and functional requirements are recom-
mended much worse, also compared to the second link between functional requirements and
action items. An explanation for this observation could be that functional requirements and
action items are usually filled with content, when they are linked, while especially use cases
are often filled with content after the link to a functional requirement is created.

As discussed in section 10.4.4 we wanted to deepen the evaluation of the ARM approach
over project history. We realized that the values over time were quite low. Just three

88

10.6. Conclusion

elements out of 88 could be recognised, as just for a handful of link suggestions were made.
At second view we realised, that most links were created in the same session as one or both
of the linked artifacts. As in the history-based approach only the user behaviour from the
time before the linking event is mined by ARM, the results were very low. This reveals a
drawback of the ARM strategy; it only works for elements which are existent in the system
for a certain time. Therefore the ARM approach has its strength in traceability link recovery,
but not in recommendation, based on our observed user behaviour to create links quite early.

10.6. Conclusion

Revising the evaluation we can see three major results: First of all, our optimisations were
justified. We saw that the little improvements we made, supported the recommendation in
terms of precision and recall. Thus all optimisations were kept in the framework. Secondly,
one could see that the novel approach of evaluation, the history-based evaluation, does make
a big difference in analysing the quality of link recommendation. Lastly, we do now know that
the combined approach of the vector space model and the related assignees recommendation
is the most successful of the strategies. However, as this approach can only be applied on
a single link type, we choose the VSM approach for other links. We chose this for reasons
of performance, as the vector space model can compute results in short time and as the
evaluation proved, with a good precision/recall proportion. According to the selection part
of this evaluation, we furthermore decide to use threshold selection with a high threshold for
the link recovery use case, as this was most promising in precision. Remarkable is also that
on our data, latent semantic indexing does not show the remarkable advantages proposed
by others (e.g. [ACCDL00]).

89

11. Outlook and Conclusion

� Success is like a pie, there are different layers �

Qun Zhang, Chinese Poet

This chapter summarises this thesis and indicates in which parts further research can
extend the presented work.

11.1. Conclusion

This thesis presented the idea of traceability and suggested to use traceability link recom-
mendation and recovery. It showed that to a certain extend, the latter can improve the
current use of traceability, although a perfect solution seems to be unachievable.

This thesis explained the strategies in use for traceability recovery like Vector Space Model
(VSM) and Latent Semantic Indexing (LSI). It also introduced new strategies based on recent
science like Association Rule Mining (ARM) and explained completely new approaches based
on the structure of the project, namely Related Assignees Recommendation (RAR) and
Shared References Recommendation (SRR).

Requirements to a system for link recommendation and recovery were proposed and a
prototype framework was developed. It provides functionality for third-party-developers
to extend and alternate the strategies in use. The framework also offers the possibility
for third-party-developers to introduce very specialised algorithms for particular links and
model elements. Additionally the framework provides an opportunity to use combinations
of recommendation strategies. Also implementations for the approaches mentioned above
were created.

Using this framework, important questions were analysed and answered through evalu-
ation with two major software projects from recent studies. Besides the evaluation of the
introduced algorithms, we evaluated questions from recent work. Additionally we introduced
a novel approach for evaluation, which simulates a more realistic link recommendation scen-
ario. We found that reasonable support for creating traceability links can be provided,
although a perfect solution is out of reach. This is due to single badly documented artifacts
as well as the problem, that less documentation is needed (and hence provided) in a model
based approach like UNICASE. However, we found that VSM can be improved by one of
our structural approaches and that in our case latent semantic indexing does not have the
advantages proposed by authors from related work. The ARM approach was applied unsuc-
cessfully, as it came out that the information ARM needs to make appropriate suggestions,
is mostly created after the suggestion is demanded.

The prototype implements features for full traceability recommendation and recovery sup-
port. It was included into UNICASE and is now part of the deployed version of UNICASE.

91

11. Outlook and Conclusion

11.2. Outlook

Further improvements have to and will be made in the development of strategies for link
recommendation and recovery; hence, we provided the framework with extensibility for these
strategies. Especially the structure- and history-based approaches need further research. In
our opinion the essential but very difficult point is the weighting function for structural and
history based approaches. Also more sophisticated stemming algorithms can improve the
results.

Refinements can furthermore be created by specialising the strategies to the single link
and artifact types. The RAR approach was one step in that direction. As mentioned in the
previous chapter, different weighting functions for structure based approaches could provide
enhancements as well.

Another area for development is learning from user feedback. Related work showed that
results can be improved by including user behaviour into the calculations. One option for
this can be the construction of artificial neural networks trained with recent behaviour.

92

Part V.

Appendix

93

List of Figures

2.1 Making a Suggestion, UML activity diagram 10
2.2 Extracting Keywords, UML activity diagram 13
2.3 Action Items, Developers and Functional Requirements, UML class diagram . 16
2.4 Semantic Clouds in the SRR approach . 17

4.1 UNICASE Symbol . 25
4.2 UNICASE: Use Cases to Functional Requirements, UML class diagram 27
4.3 UNICASE: Work Items to Functional Requirements, UML class diagram . . . 27
4.4 UNICASE: Changes in UNICASE, UML class diagram 28
4.5 UNICASE: Navigator . 29
4.6 UNICASE: Task View . 29
4.7 UNICASE: Status View . 29

6.1 The System’s Use Cases, UML use case diagram 40
6.2 The Strategy Pattern, UML class diagram . 46
6.3 Recover Links for the Project, UML sequence diagram 48

7.1 The Framework’s Architecture, UML class diagram 54

8.1 The Model Element, UML class diagram . 57
8.2 The Recommendation Manager, UML class diagram 59
8.3 The Selection Strategies, UML class diagram 60
8.4 The RecUtils, UML class diagram . 61
8.5 The TDFrequencyMatrix, UML class diagram 62
8.6 The Strategies, UML class diagram . 63
8.7 The Combination Strategies, UML class diagram 64
8.8 The MESuggestedSelectionDialog, UML class diagram 65
8.9 The Recovery Wizard, UML class diagram . 66

9.1 Extension Manual: The Strategy Class, UML class diagram 70
9.2 Extension Manual: Part 2 . 72
9.3 Extension Manual: Part 3 . 72
9.4 Extension Manual: Part 4 . 72
9.5 Extension Manual: Part 5 . 73
9.6 Extension Manual: Part 6 . 73

10.1 Link between Functional Requirement and Use Case, UML class diagram . . 78
10.2 Link between Action Items and Functional Requirements, UML class diagram 78
10.3 FR ↔ UC, UNICASE . 81

95

List of Figures

10.4 AI ↔ FR, DOLLI II . 81

96

List of Tables

2.1 Link Recommendation: An Example 1 . 9
2.2 Stemming: List of Suffixes and Replacements 12
2.3 Link Recommendation: An Example 2 . 14
2.4 Link Recommendation: An Example 3 . 18
2.5 Link Recommendation: An Example 4 . 20

6.1 Scenario: Creating a Single Link with Link Recommendation 38
6.2 Scenario: Link Recovery for a Model Element 38
6.3 Scenario: Link Recovery . 39
6.4 Scenario: Extension . 39
6.5 Use case: Create a Single Link with Link Recommendation 41
6.6 Use case: Recover Links for a Model Element 43
6.7 Use case: Recover Links for the Project . 44
6.8 Use case: Add New Strategy . 45
6.9 Entity, Boundary & Control Objects . 47

7.1 The Subsystems . 55

10.1 Evaluation: Number of Links in Total . 79
10.2 Evaluation: VSM in General . 80
10.3 Evaluation: VSM, Threshold, FR ↔ UC, UNICASE 82
10.4 Evaluation: VSM, Cut Point, FR ↔ UC, UNICASE 82
10.5 Evaluation: RAR, Threshold, FR ↔ UC . 82
10.6 Evaluation: RAR, Cut Point, FR ↔ UC . 82
10.7 Evaluation: ARM, CP=10, UNICASE . 83
10.8 Evaluation: SRR, CP=10, AI → FR, UNICASE 84
10.9 Evaluation: SRR with Semantic Clouds, CP=10, AI → FR, UNICASE . . . 84
10.10 Evaluation: T=0.5, AI → FR, UNICASE . 85
10.11 Evaluation: CP=10, AI → FR . 85
10.12 Evaluation: Avg.Mean, T=0.5, AI → FR, UNICASE 86
10.13 Evaluation: Avg.Mean, CP=10, AI → FR 86
10.14 Evaluation: VSM+RAR, CP=10, AI → FR, UNICASE 86
10.15 Evaluation: CamelCase-Extraction . 87
10.16 Evaluation: Quantification, VSM, T=0.35, FR ↔ UC 87
10.17 Evaluation: Quantification, VSM, CP=10, Avg. Position 87
10.18 Evaluation: Evaluation Methods, CP=10, UNICASE 88
10.19 Evaluation: Avg.Mean: VSM+RAR, CP=10, AI → FR, UNICASE 88

97

Bibliography

[Abb83] R. J Abbott. Program design by informal english descriptions. ACM New York,
NY, USA, 1983.

[ACC+00a] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Tracing
object-oriented code into functional requirements. In Program Comprehension,
2000. Proceedings. IWPC 2000. 8th International Workshop on, pages 79–86,
2000.

[ACC00b] G. Antoniol, C. Casazza, and A. Cimitile. Traceability recovery by modeling
programmer behavior. In Proceedings Seventh Working Conference on Reverse
Engineering, pages 240–247, Brisbane, Qld., Australia, 2000.

[ACC+02] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-
ing traceability links between code and documentation. Software Engineering,
IEEE Transactions on, 28(10):970–983, 2002.

[ACCDL00] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Identifying the starting
impact set of a maintenance request: a case study. In Software Maintenance
and Reengineering, 2000. Proceedings of the Fourth European, pages 227–230,
2000.

[ACCL00] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Information retrieval
models for recovering traceability linksbetween code and documentation. In
Software Maintenance, 2000. Proceedings. International Conference on, pages
40–49, 2000.

[ACLM99] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering code to
documentation links in oo systems. In Proc. of the Working Conference on
Reverse Engineering, pages 136–144, 1999.

[Aut09a] Various Authors. unicase - detailed description. http://teambruegge.
informatik.tu-muenchen.de/groups/unicase/wiki/7c90d/unicase_-_
Detailed_description.html, September 2009.

[Aut09b] Various Authors. What is unicase? http://teambruegge.informatik.
tu-muenchen.de/groups/unicase/wiki/bdc81/What_is_unicase_.html,
September 2009.

[BCHK08] B. Bruegge, O. Creighton, J. Helming, and M. Kogel. Unicase-an ecosystem
for unified software engineering research tools. In Third IEEE International
Conference on Global Software Engineering, ICGSE, 2008.

99

http://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/7c90d/unicase_-_Detailed_description.html
http://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/7c90d/unicase_-_Detailed_description.html
http://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/7c90d/unicase_-_Detailed_description.html
http://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/bdc81/What_is_unicase_.html
http://teambruegge.informatik.tu-muenchen.de/groups/unicase/wiki/bdc81/What_is_unicase_.html

Bibliography

[BD03] B. Bruegge and A.H. Dutoit. Object-Oriented Software Engineering: Using
UML, Patterns and Java. Prentice-Hall, Inc. Upper Saddle River, NJ, USA,
2003.

[Bri03] LC Briand. Impact Analysis and Change Management of UML Models. In
icsm, page 256. IEEE Computer Society, 2003.

[CJ90] E. J. Chikofsky and II JH. Reverse engineering and design recovery: A tax-
onomy. IEEE software, 7(1):13–17, 1990.

[CSDZ05] J. Cleland-Huang, R. Settimi, Chuan Duan, and Xuchang Zou. Utilizing sup-
porting evidence to improve dynamic requirements traceability. In 13th IEEE
International Conference on Requirements Engineering (RE’05), pages 135–
144, Paris, France, 2005.

[Dav08] J. David. Recommending software artifacts from repository transactions. Lec-
ture Notes in Computer Science, 5027:189–198, 2008.

[DDF+90] S. Deerwester, S. T Dumais, G. W Furnas, T. K Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. Journal of the American society for
information science, 41(6):391–407, 1990.

[DKNH09] J. David, M. Koegel, H. Naughton, and J. Helming. Traceability ReARMed.
In 2009 33rd Annual IEEE International Computer Software and Applications
Conference, 2009.

[DP98] R. Doemges and K. Pohl. Adapting traceability environments to project-specific
needs. ACM New York, NY, USA, 1998.

[GB03] E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns, and
Plugins. Addison Wesley Longman Publishing Co., Inc. Redwood City, CA,
USA, 2003.

[GF94] O. Gotel and A. Finkelstein. An analysis of the requirements traceability prob-
lem. In Proceedings of the First International Conference on Requirements
Engineering, pages 94–101, 1994.

[GHJ98] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. In Proceedings of the 14th IEEE International Confer-
ence in Software Maintainance, 1998.

[GJK03] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting
logical couplings. In Software Evolution, 2003. Proceedings. Sixth International
Workshop on Principles of, pages 13–23, 2003.

[Gra92] R. B Grady. Practical software metrics for project management and process
improvement. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1992.

[HDKN09] J. Helming, J. David, M. Koegel, and H. Naughton. Integrating system model-
ing with project management–a case study. In International Computer Software
and Applications Conference, COMPSAC 2009, 2009.

100

Bibliography

[HDO03] J.H. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements tracing via
information retrieval. In Requirements Engineering Conference, 2003. Proceed-
ings. 11th IEEE International, pages 138–147, 2003.

[HDS06] J.H. Hayes, A. Dekhtyar, and S.K. Sundaram. Advancing candidate link gen-
eration for requirements tracing: the study of methods. IEEE Transactions on
Software Engineering, 32(1):4–19, 2006.

[HDSH04] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, and S. Howard. Helping analysts
trace requirements: An objective look. In 12th IEEE International Require-
ments Engineering Conference, 2004. Proceedings, pages 249–259, 2004.

[HFKB09] J. Helming, H. Femmer, M. Koegel, and B. Bruegge. Recommendation and
recovery of traceability links. Submitted to ICSE2010, 2009.

[KGFK03] A. Von Knethen, M. Grund, I. Fraunhofer, and G. Kaiserslautern. QuaTrace:
a tool environment for (semi-) automatic impact analysis based on traces. In
Software Maintenance, 2003. ICSM 2003. Proceedings. International Confer-
ence on, page 246–255, 2003.

[LD06] M. Lormans and A. Van Deursen. Can LSI help reconstructing requirements
traceability in design and test? In Software Maintenance and Reengineering,
2006. CSMR 2006. Proceedings of the 10th European Conference on, 2006.

[LFOT04] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact
management system with traceability recovery features. In 20th IEEE Interna-
tional Conference on Software Maintenance, 2004. Proceedings, pages 306–315,
2004.

[LFOT07] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceabil-
ity links in software artifact management systems using information retrieval
methods. ACM Transactions on Software Engineering and Methodology, 16(4),
2007.

[Lor05] M. Lormans. Reconstructing requirements coverage views from design and test
using traceability recovery via LSI. In Proceedings of the 3rd international
workshop on Traceability in emerging forms of software engineering, pages 37–
42, 2005.

[LOT08] A. De Lucia, R. Oliveto, and G. Tortora. Adams re-trace: traceability link
recovery via latent semantic indexing. In Proceedings of the 30th international
conference on Software engineering, pages 839–842. ACM New York, NY, USA,
2008.

[Mal09] Elwyn Malethan. Humanise CamelCase in java. http://www.malethan.com/
article/humanise_camel_case_in_java.html, October 2009.

[MM03] A. Marcus and J.I. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In Software Engineering, 2003.
Proceedings. 25th International Conference on, pages 125–135, 2003.

101

http://www.malethan.com/article/humanise_camel_case_in_java.html
http://www.malethan.com/article/humanise_camel_case_in_java.html

Bibliography

[MNS01] G.C. Murphy, D. Notkin, and K.J. Sullivan. Software reflexion models: bridging
the gap between design and implementation. IEEE Transactions on Software
Engineering, 27(4):364–380, 2001.

[oDRC+02] J. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karls-
son. A feasibility study of automated natural language requirements analysis
in market-driven development. Requirements Engineering, 7(1):20–33, 2002.

[RGP86] C. V. Ramamoorthy, V. Garg, and A. Prakash. Programming in the large.
IEEE Transactions on Software Engineering, 72(7):769–783, 1986.

[Rou06] W. Roush. Marvin minsky on common sense and computers that emote. Tech-
nology Review, July, 2006.

[SCK+04] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, and C. De-
Palma. Supporting software evolution through dynamically retrieving traces to
UML artifacts. In Proceedings. 7th International Workshop on Principles of
Software Evolution, 2004., pages 49–54, Kyoto, Japan, 2004.

[Sin01] A. Singhal. Modern information retrieval: A brief overview. IEEE Data En-
gineering Bulletin, 24(4):35–43, 2001.

[SSC96] M. Sefika, A. Sane, and R.H. Campbell. Monitoring compliance of a software
system with its high-level design models. In Proceedings ICSE, volume 18, pages
387–396, 1996.

[Vog09] Lars Vogel. Eclipse extension points and extensions - tutorial.
http://www.vogella.de/articles/EclipseExtensionPoint/article.html, Septem-
ber 2009.

[Wri91] S. Wright. Requirements Traceability-What? why? and how?, tools and tech-
niques for maintaining traceability during design. In IEEE Colloquium, Com-
puting and Control Division, Professional Group C, volume 1, pages 1–1, 1991.

[YMN+04] A. T. T. Ying, G. C. Murphy, R. Ng, M. C. Chu-Carroll, I. B.M.T.J.W.R
Center, and N. Y. Hawthorne. Predicting source code changes by mining change
history. IEEE Transactions on Software Engineering, 30(9):574–586, 2004.

[ZWDZ05] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining version his-
tories to guide software changes. IEEE Transactions on Software Engineering,
pages 429–445, 2005.

102

	Introduction
	Introduction
	Motivation
	Problem Description
	Goals
	Structure of this work

	Introduction to Traceability Link Recommendation and Recovery
	Traceability
	What is Traceability?
	Why Traceability?
	What impediments to Traceability exist?

	Link Recommendation and Recovery
	Information Retrieval
	Recommendation Strategies
	Content-based Strategies
	Non content-based Approaches
	Combinations

	Selection Strategies
	Evaluation of Link Recommendation
	Methods of Evaluation
	Precision and Recall

	Related Work
	Content-based Approaches
	Basic Approaches
	Probabilistic and Vector Space Model (VSM)
	Latent Semantic Indexing (LSI)
	Extensions
	Problems of Content-based Approaches

	Structure-based Approaches
	History-based Approaches

	UNICASE
	What is UNICASE?
	The UNICASE model
	Unified Model
	Unified Repository
	Unified Views

	Analysis
	Requirements
	Functional Requirements
	Nonfunctional Requirements
	Interface
	Implementation
	Usability
	Reliability
	Performance
	Supportability
	Operation
	Packaging
	Legal

	Analysis System Models
	Scenarios
	Regular Scenarios
	Boundary Scenarios

	Use Cases
	Use Case: Create a Single Link with Link Recommendation
	Use Case: Recover Links for a Model Element
	Use Case: Recover Links for the Project
	Boundary Use Case: Add New Strategy

	Analysis Object Model
	Analysis Dynamic Model

	Prototype
	System Design
	Design Goals
	Design Goals
	Trade-off of Design-Goals
	Impact on Design

	System Architecture

	Object Design
	org.unicase.model
	The ModelElement and Links
	The RecommendationManager
	The Selection Strategies
	The Utilities

	org.unicase.linkrecommendation
	Basic Strategies
	Updateable Strategies
	Combination Strategies

	org.unicase.ui
	MESuggestedSelectionDialog
	RecoveryWizard

	A Manual for Extending the Link Recommendation Framework
	Eclipse Extension Points
	An Example
	Writing a Strategy
	Creating the Extension

	Evaluation
	Evaluation
	Links under Consideration
	Functional Requirement to Use Case
	Action Item to Functional Requirement

	Analysed Projects
	Methods for Evaluation
	State-based Evaluation
	History-based Evaluation

	State-based Evaluation
	General Findings
	Latent Semantic Indexing (LSI)
	The Selection
	History-Based Approach
	Structural Approaches
	Combining Strategies
	Optimisations

	History-based Evaluation
	Conclusion

	Outlook and Conclusion
	Conclusion
	Outlook

	Appendix
	List of Figures
	List of Tables
	Bibliography

