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PxTP 2013 preface

Preface

The Third International Workshop on Proof Exchange for Theorem Proving (PxTP 2013) was
held as a satellite event of the 24th International Conference on Automated Deduction (CADE-
24) on June 9 and 10, 2013 in Lake Placid, New York.

The workshop featured an invited talk by Thomas C. Hales, presentations of the eleven ac-
cepted papers that are collected in this volume, and additional presentations by Pascal Fontaine
(on behalf of Bruno Woltzenlogel Paleo), Cezary Kaliszyk (joint work with Alexander Krauss),
Geoff Sutcliffe, and Josef Urban.

The focus of the workshop were various aspects of communication, integration, and coop-
eration between reasoning systems and formalisms. It is becoming clear that the success of
deduction tools does not only depend on their power to solve large and difficult problems in an
isolated manner, but also depends on their ability to cooperate.

The workshop’s mission was thus to facilitate communication between reasoning tools, build-
ing of complex reasoning applications, and reuse of reasoning tools by developing and discussing
suitable integration, translation and communication methods, standards, protocols, and pro-
gramming interfaces. The final number of accepted submissions clearly shows that cooperation
of reasoning systems is a thriving topic drawing the attention of researchers in automatic and
interactive theorem proving.

We would like to thank the CADE organizers, the PxTP program committee, the authors
and speakers, Andrei Voronkov of EasyChair, and everyone else who contributed to the work-
shop’s success.

May 24, 2013
Munich, Germany
Nijmegen, Netherlands

Jasmin Christian Blanchette
Josef Urban
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External Tools for the Formal Proof of the
Kepler Conjecture

Thomas C. Hales

University of Pittsburgh, USA

Abstract

The Kepler conjecture asserts that no packing of congruent balls in three-dimensional
Euclidean space has density greater than that of the familiar cannonball arrangement. The
proof of the Kepler conjecture was announced in 1998, but it went several years without
publication because of the lingering doubts of referees about the correctness of the proof.
In response to these publication hurdles, the Flyspeck project seeks to give a complete
formal proof of the Kepler conjecture using the proof assistant HOL Light.

The original proof of the Kepler relies on long computer calculations, and these cal-
culations present special formalization challenges. A major part of the Flyspeck project
requires the integration of external computational tools with the proof assistant. Some of
these external tools are the GNU linear programming kit, AMPL (a modeling language
for mathematical programming), Mathematica calculations, nonlinear optimization, and
custom code in C++, C, C#, Java, and Objective Caml.

Earlier work by A. Solovyev has implemented efficient linear programming in HOL
Light. This talk will include a description of his more recent work that automates the link
between linear programming and the Flyspeck project.

J.C. Blanchette, J. Urban (eds.), PxTP 2013 (EPiC Series, vol. 14), pp. 1–1 1



LEO-II version 1.5

Christoph Benzmüller1 and Nik Sultana2

1 Freie Universität Berlin, Germany
2 Cambridge University, UK

Abstract

Leo-II cooperates with other theorem-provers to prove theorems in classical higher-
order logic. It returns hybrid proofs, which contain inferences made by Leo-II as well as
the backend provers with which it cooperates. This article describes recent improvements
made to Leo-II.

1 Introduction

Leo-II [9] is an automatic theorem-prover for classical higher-order logic, more precisely for
Church’s type theory with Choice, under Henkin semantics [1, 2]. Its cooperation with backend
provers is one of its distinguishing characteristics. These provers are regularly invoked by Leo-
II for help with finding a refutation. In this article we outline the current system and describe
recent improvements. Further details on Leo-II’s hybrid proofs are reported in [16].

2 System overview

Leo-II’s calculus [16] is a higher-order adaptation of RUE (Resolution by Unification and
Equality) [4]. RUE is an approach for extending a resolution calculus to interpret equality, and
which allows equality literals to be processed by both resolution and unification. Furthermore,
Leo-II’s calculus relies on a ‘Boolean aware’ (or, more generally, ‘theory aware’) extensional
preunification engine (extensional preunification is discussed in [5]). In recent versions, Leo-II’s
unification algorithm also interprets logical constants — for example, the algorithm in version
1.5 treats disjunction as a commutative function.

Leo-II accepts problems encoded in the CNF (clausal first-order form) and FOF (first-
order form) languages from the TPTP [18], but its principal input language is THF0, core
typed higher-order form [19].

The logical organisation of the prover is illustrated in Figure 1, and corresponds to the
modular organisation of the code. It is structured into four layers, as the figure shows:

Operating mode. The prover can be operated in two ways: (i) Leo-II can be used as a proof
assistant when run in interactive mode. It provides a command interface through which
the user can inspect and manipulate the prover’s state, making calls to the calculus’ rules
as needed. This mode is very valuable for exploring logical problems and for debugging
the prover’s automatic mode. (ii) The prover is usually run in automatic mode: this
comprises a set of strategy schedules, and a main loop which drives applications of the
calculus’ rules.

Prover interface. Both modes use a common infrastructure: they parse a problem and load
it into the prover’s state, then further manipulate the state by executing commands. A
command might involve carrying out an inference, inspecting the state, switching flags,
calling external provers, etc. Each command makes calls to lower levels of the prover.

2 J.C. Blanchette, J. Urban (eds.), PxTP 2013 (EPiC Series, vol. 14), pp. 2–10
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Figure 1: Leo-II’s architecture

Logic. The main component in this level consists of the calculus: a collection of functions
which accept and return clauses. This level also contains Leo-II’s main loop, and an
interface to external ATPs (which also translates problems to other formats).

Basis. The lowest level of Leo-II defines the representation of terms and types, and associated
operations (e.g. substitution, unification, matching, etc).

3 Improvements

The TPTP problem set [18] is the canonical benchmark by which theorem provers are evaluated.
The improvements described in this section are often accompanied by TPTP problem names
whose solution is affected by the improvement. These problems consist of THF problems (more
precisely, THF0 problems) drawn from TPTP 5.4.0. We have used E version 1.6 as the backend
ATP. Our tests were run on a 2GHz AMD Opteron with 4GB RAM, and given 60-second
timeout. Leo-II was compiled with OCaml 3.11.2.

3.1 ATP interface

Leo-II cooperates with other provers in order to maximise its potential. Recall that Leo-II
proves a theorem by refuting a set of clauses. It gradually accumulates a set of clauses, some
of which are first-order; a refutation in these first-order clauses will refute the overall problem.
Instead of attempting to refute first-order clauses itself, Leo-II invokes external first-order
ATPs to do this, since they are likely to do a far better job than Leo-II on such problems. This
leaves Leo-II to focus on higher-order reasoning.

We improved Leo-II’s translation to FOL in recognition of this benefit. Version 1.5 includes
a better translation into FOF, and added an experimental translation into TFF [20] (a TPTP
syntax for sorted first-order logic). We also improved the system interface with backend ATPs,
and experimented with additional backends.

3
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3.1.1 Translation into FOL.

It benefits Leo-II to use a translation into FOL which returns the strongest set of clauses, as
long as that translation is sound.

Alongside the old translations which were previously implemented in Leo-II, version 1.5
features a new translation module which was written from scratch. This module contains an
intermediate language to which problems are first translated, before being transformed further
and printed into a specific target syntax. HOL-to-FOL translations consist of a pipeline of
functions which bring HOL formulas into this intermediate language, applying analyses and
transformations along the way.

Leo-II’s old and new FOF encodings can be used through the command-line arguments
--translation fully-typed and --translation fof full respectively. In version 1.5, the
translation fof full is now set as default. The old translation had some undesirable qualities
which harmed the performance of the FOL ATPs with which Leo-II cooperated:

1. For some examples, the old translation did omit certain necessary information in its output
to the ATP. This information is of two kinds: the first relates to proxy terms, and the
second relates to λ-terms.

Here is a trivial example: when Leo-II is asked to prove

thf(goal, conjecture, ((=) = (=))).

and use the old translation, it would send a single clause to the ATP (after transforming
the negated conjecture in its input processing into ~($true)):

fof(7,axiom,((~ leoLit(leoTi(true,o))))).

In both the old and new translations used by Leo-II, leoTi is used to assign types to
terms — here it is saying that the term true is of type o (i.e., propositions), where ‘o’
itself is a term in the language. That is, the translation encodes types as first-order terms.
The constant leoTi is used to lift propositional terms (i.e., those typed ‘o’) into formulas.
Unfortunately, Leo-II did not include an axiom to give semantics to true; such as

fof(true, axiom, leoLit(leoTi(true,o))).

Had such an axiom been included, the FOL ATP would have been able to find a refutation.

Given the same THF problem, the new translation sends the following output to the ATP:

fof(7, axiom, ~($true)).

That is, it notices that instead of using leoLit to encode “true”, it can simply use the
FOF constant with that denotation. When it becomes necessary to use a proxy term such
as true, then it includes an axiom giving its semantics. For instance, while attempting
to prove

thf(conj_0,conjecture,(

? [F: $o > $o] :

! [P: $o > $o,Q: $o] :

( ~ ( P @ ( => @ ( F @ $true ) @ Q ) )

| ~ ( F @ ( => @ Q @ ( F @ $false ) ) )

| ( F @ Q ) ) )).

4
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Leo-II’s output to the ATP will include the axiom

fof(prox_true1, plain, ($true <=> leoLit(leoTi(true, o)))).

Note that Leo-II’s current behaviour is not perfect either: Leo-II should be able to spot
trivial refutations (as the first one above), and avoid invoking the FOL ATP and instead
use its own refutation mechanism only.

The second kind of information relates to the reduction of λ-terms into first-order form:
the previous translation simply created fresh constants for λ-terms, and did not char-
acterise these constants further. For example, while trying to prove the THF problem
mentioned earlier, the output of the previous translation includes axioms such as

fof(44,axiom,(

~ leoLit(leoTi(leoAt(leoTi(sK2_SY3,leoFt(leoFt(o,o),o)),

leoTi(abstrSX0SX0,leoFt(o,o))),o)) )).

The encoded type leoFt(o,o) indicates that the constant abstrSX0SX0 is of type o→ o.
The name abstrSX0SX0 is derived from serialising the term λSX0.SX0, but no further
definition of this constant is given by the translation. The new translation λ-lifts such
terms fully, yielding the pair of axioms

fof(ll1,axiom,(

! [SX0] :

( leoLit(leoTi(leoAt(leoTi(ll1,leoFt(o,o)),

leoTi(SX0,o)),o))

<=> leoLit(leoTi(SX0,o)) ) )).

fof(44,axiom,(

~ leoLit(leoTi(leoAt(leoTi(csK2_SY3,leoFt(leoFt(o,o),o)),

leoTi(ll1,leoFt(o,o))),o)) )).

2. The old translation was verbose, and its use potentially resulted in fairly large first-
order formulas due to the encoding of type information. This verbosity causes additional
overhead to the ATPs, and this contributes to ATPs missing their timeout to find a
refutation. Arguably, the new translation is more verbose, since it tends to include more
information. To address this problem we are experimenting with lighter encoding of type
information. We have closely followed Claessen et al [11] to implement their monotonicity
analysis by producing a SAT encoding, which we send to MiniSat using an interface
adapted from Satallax [10, 3]. This translation can be used by giving Leo-II the argument
--translation fof experiment.

Problems which become provable in LEO-II using the new fof full translation include
NUM636ˆ1.p and LCL631ˆ1.p.

3.1.2 Backend ATPs.

Leo-II is mainly used in combination with E [15], and Leo-II version 1.5 features small improve-
ments in how it interacts with E. Support for SPASS [21] was added during past experiments
[8]. In version 1.5 we improved Leo-II’s ATP interface and added support for various other
backend ATPs, including remote provers on SystemOnTPTP [18].
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3.2 Support for Axiom of Choice

The default semantics for THF0 is Henkin semantics with choice. Until version 1.5, Leo-II
did not support reasoning with choice, unless näıve Skolemization was used—that is, first-order
Skolemization without employing further restrictions (as investigated by Miller [12]). This
enables limited reasoning with choice, and succeeds in some example cases, but it fails in many
others [6, Section 3.2].

In order to extend Leo-II to support the axiom (scheme) of choice (AC), instances of AC
could be automatically added to the input problem. An example is the following instance of
AC for type (ι → o) → ι (where o is the type of propositions as before, and ι is the type of
individuals):

∃E(ι→o)→ι∀P(ι→o). ∃Xι(P X)⇒ P (E P ) (1)

However, such kinds of impredicative axioms should generally be avoided in automated proof
search since they allow for simulation of the cut rule in any Henkin-complete THF prover [7].

Our approach involves adding two new rules to Leo-II: detectChoiceFn and choice. The first
rule detects and removes instances of AC, such as (1) above, and keeps a register of choice
functions CFs. CFs always contains at least one choice function symbol for each choice type.
The second rule gives the semantics to choice functions. Taken together, these rules allow
AC-valid reasoning without the risk of cut-simulation.

In more detail, rule detectChoiceFn removes choice-axiom clauses from the search space and
registers the corresponding choice function symbols f in CFs.

[PX]ff ∨ [P (f(α→o)→αP )]tt

detectChoiceFn
CFs←− CFs ∪ {f(α→o)→α}

In the notation used above, α is a metavariable ranging over types. Pα→o is a set variable.
Literals are enclosed in square brackets, and ff and tt indicate negative and position polarity
respectively. The rule abuses standard notation: the rule does not describe a logical inference,
since the conclusion of the rule indicates a side-effect which extends the set CFs of choice
functions.

Rule choice investigates whether a term ε(α→o)→αBα→o (where ε ∈ CFs is a registered choice
function or a free variable) is contained as a subterm of a literal [A]p in a clause C. In this case
it adds the instantiation of AC at type (α→ o)→ α, and with term Bα→o to the search space.
Side-conditions guard against unsound reasoning, such as the ‘uncapturing’ of free variables in
B:

C := C′ ∨ [A[E(α→o)→αB]]p
ε ∈ CFs, E = ε or E ∈ freeVars(C),
freeVars(B) ⊆ freeVars(C), Y fresh

choice
[B Y ]ff ∨ [B (ε(α→o)→αB)]tt

Rules detectChoiceFn and choice are obviously sound: detectChoiceFn simply removes clauses from
the search space, and for any choice function f , the rule choice only introduces new instances
of the corresponding choice axiom.

There is a correspondence with the handling of choice in Satallax. Satallax too considers
only selective instantiations of AC in order to avoid cut-simulation. For instance, when (1) is
assumed, the terms T which Satallax considers to be eligible instantiations for variable P are
those occurring in formulas of the following forms in a tableau branch (and where ε is a choice
function): (ε T) S1 . . . Sn or ¬((ε T) S1 . . . Sn), or the disequations (ε T) S1 . . . Sn 6= S or
S 6= (ε T) S1 . . . Sn. It is easy to see that our rule choice, which is less restrictive, subsumes

6
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these cases. We also experimented with Satallax’s approach in Leo-II but this led to worse
results. Our choice rule is more closely related to that of Mints [13]. Use of the choice rules can
be disabled using the -nuc command-line switch. A completeness proof for LEO-II’s improved
handling of choice remains future work.

Problems which become provable in LEO-II using our improved support for choice include
SYO517ˆ1.p, SYO534ˆ1.p–SYO537ˆ1.p, and SYO555ˆ1.p.

3.3 Detection of defined equality

Primitive equality in HOL refers to the use of the interpreted constant ‘=’. Equality can also
be defined in HOL—for example, as

λXαλYα∀Pα→o. P X ⇒ P Y

or

λXαλYα∀Qα→α→o. ∀Zα(Q Z Z)⇒ Q X Y

The former is known as Leibniz equality and the latter we call Andrews equality (cf. [1], Exercise
X5303). Both Leibniz and Andrews equality support cut-simulation due to their impredicative
nature [7], and should thus be avoided in proof automation. In fact, using primitive, rather
than defined, equality may save many primitive substitution steps in proofs. Such steps involve
instantiations of set variables, and this generally involves blind guessing. Examples of the
benefit of using primitive, rather than defined, equality have been given in the literature [6,
Sections 5.1 and 5.2]. In order to address this issue we added the following two rules to Leo-II’s
calculus; they instantiate the variable P with primitive equality:

C ∨ [P A]ff ∨ [P B]tt

LeibEQ
C{λX. A = X/P} ∨ [A = B]tt

C ∨ [P A A]ff

AndrEQ
C{λXλY. X = Y/P}

Soundness of LeibEQ and AndrEQ is obvious, since both rules simply realise specific instances
of primitive substitution. For improved configurability, either rule can be individually disabled
from the command-line by using the switches -nrleq and -nraeq respectively. If LeibEQ is
used in combination with the new FOF translations (see Section 3.1) several TPTP problems
whose previous SZS [17] status was ‘Unknown’ can now be solved by Leo-II. Examples include
SYO246ˆ5.p, SYO244ˆ5.p, NUM817ˆ5.p, NUM816ˆ5.p and NUM814ˆ5.p. There are also many
problems that can now be solved with primitive substitution (blind guessing) disabled when
LeibEQ and AndrEQ are available. Examples include SEV081ˆ5.p, SEV158ˆ5.p, SEV992ˆ1.p,
and SYO276ˆ5.p. Overall, these two new rules lead to significantly better coverage using the
lighter primitive-substitution search modes -ps 0 or -ps 1.

3.4 Strategy scheduling

Strategy schedules were added to Leo-II in version 1.2 and the catalogue of schedules has slowly
increased in the versions that followed. In version 1.5 we recoded the strategy-scheduling feature
to facilitate the encoding of new strategies, to improve code reuse with other parts of Leo-
II, and to have greater flexibility when encoding strategies. The new setup affords greater
flexibility: for example, the new setup can schedule varying number of strategies (depending on
the problem being processed) and each schedule could be of varying duration. This has opened
up many opportunities for experimentation and tuning.
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We are also interested in computing strategies on-the-fly based on problem characteristics,
and version 1.5 carries out some small initial checks (e.g. size of the problem, and whether it
contains instances of AC), and schedules strategies based on that limited analysis. Optimising
this further remains as future work.

3.5 Other improvements

Numerous other additions were made to Leo-II. Previously, Leo-II was entirely focused on
refutation: that is, until version 1.5, in terms of the SZS classification, Leo-II would judge a
problem to be a Theorem (if a refutation exists), Unsatisfiable (if the problem’s axioms them-
selves can be refuted), or diverge (by extending the preunification depth and reattempting a
refutation). It can now classify Satisfiable problems and detect CounterSatisfiable problems,
thus improving both Leo-II’s precision and termination behaviour. The added support for
choice was very relevant for achieving this. Leo-II decides that a problem is Satisfiable when
the problem consists of a collection of axioms (lacking a conjecture) and Leo-II succeeds in sat-
urating a set of clauses (without finding a refutation, otherwise the problem would be classified
as Unsatisfiable).

Leo-II’s unification algorithm has been redone, and can be set (from the command-line) to
disregard Boolean and functional extensionality. This has strengthened Leo-II’s behaviour in
non-extensional problems, since disabling the extensional behaviour shrinks the search space.

Numerous other improvements and fixes have been made: these range from system features
(such as the parser, status reporting, avoiding redundant computations, etc) to deeper areas in
the calculus and main loop (including factorisation, subsumption, and clause selection).

4 Future work

We have started experimenting with using term orderings to influence literal selection. We
also plan to revise Leo-II’s internals to make full use of the potential benefit they offer. For
instance, the shared term graph is currently underutilised.

More work is needed to compute better schedules, paired with better problem analyses.
Such analyses can determine the scheduling of specific strategies, which can be better tuned to
the problem.

The ATP interface can be improved further to call multiple backend ATPs in parallel.
Experiments comparing 30-second invocations of Leo-II on all THF problems, supported by
provers E (version 1.6), SPASS (version 3.5) [21] and Vampire (version 2.6) [14] showed us that
there were 37, 5 and 20 theorems that were proved exclusively by Leo-II(E), Leo-II(SPASS)
and Leo-II(Vampire), respectively. And there were 31, 95 and 98 theorems that Leo-II(E),
Leo-II(SPASS) and Leo-II(Vampire) missed, but which one of the others could prove.

Supporting various ATP backends increases the scope for peephole optimisation; we have not
yet investigated this. The translation module can be optimised further, and extended to target
more formats. Table 1 one shows how the new HOL-to-FOL translation (fof full) and its
lighter variant (fof experiment) are superior to Leo-II’s preexisting encoding (fully typed).
In future work we plan to improve fof experiment further and make it the default translation.
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SZS Status fully-typed fof full fof experiment

Thm 64.8 64.9 65.3
All 60.9 61 61.3

Table 1: Comparing FOL encodings in Leo-II 1.5 (30s timeout). Table shows the percentage
of matches between Leo-II’s SZS output and the ‘Status’ field of problems.

Timeout (s) v1.2 v1.4.3 v1.5
Thm All Thm All Thm All

30 58.4 51.1 62.1 54.4 64.3 61.3
60 58.7 51.3 65 56.9 67.1 62.9

Table 2: Percentage match between different versions of Leo-II and the Status field of TPTP
problems. Leo-II version 1.2 was the winner of the CASC competition in 2010, and version
1.4.3 was the last public release. Version 1.5 was run with the fof experiment encoding.

5 Conclusion

Version 1.5 of Leo-II includes various improvements which affect its performance and coverage.
To obtain a broader picture, we compared the results of using Leo-II version 1.5 with earlier
versions, and the results are shown in Table 2. In this experiment we counted the matches
between Leo-II’s SZS output and the TPTP problem’s SZS status (included in its header).1

All the net gains are positive, but a more thorough evaluation (on different benchmarks, and
considering various parameters) remains as future work. Within a 30s timeout, Leo-II version
1.5 can classify 196 more problems than its predecessor. The main boost ( 125

196 problems) in
this version is provided by the detection of non-theorems (i.e. satisfiable or countersatisfiable
problems).
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Redirecting Proofs by Contradiction

Jasmin Christian Blanchette

Technische Universität München, Germany

Abstract

This paper presents an algorithm that redirects proofs by contradiction. The input is a

refutation graph, as produced by an automatic theorem prover (e.g., E, SPASS, Vampire,

Z3); the output is a direct proof expressed in natural deduction extended with case analyses

and nested subproofs. The algorithm is implemented in Isabelle’s Sledgehammer, where

it enhances the legibility of machine-generated proofs.

1 Introduction

The proofs returned by automatic theorem provers (ATPs) are notoriously difficult to read. This

is an issue if an ATP solves an open mathematical problem (such as the Robbins conjecture

[11]), because users then certainly want to study the proof closely. But even in the context of

program verification, where users are normally satisfied with a “proved” or “disproved,” they

might still want to analyze proofs—for example, if they suspect errors in their axiom set.

Our interest in intelligible ATP proofs has a different origin. The tool Sledgehammer [19]

integrates ATPs with the proof assistant Isabelle/HOL [15]. Given an Isabelle conjecture,

Sledgehammer heuristically selects relevant lemmas from Isabelle’s libraries, translates them

along with the conjecture to first-order logic, and sends the resulting problem to state-of-the-art

provers such as E [24], SPASS [28], Vampire [22], and Z3 [5].

To guard against bugs in the ATPs and in Sledgehammer’s translation module, ATP proofs

are reconstructed in Isabelle. This is accomplished through either a single invocation of the

built-in resolution prover metis [8] or a structured Isar proof [20]. The latter option is useful

for larger proofs, which metis fails to re-find within a reasonable time. But most users find the

proofs unattractive and are disinclined to insert them in their theory text. As an illustration,

consider the conjecture length (tl xs)≤ length xs, which states that the tail of a list (the list from

which we remove its first element, or the empty list if the list is empty) is at most as long as the

full list. The proof found by Vampire, translated to Isar, is as follows:

proof neg_clausify

assume length (tl xs) 6≤ length xs

hence drop (length xs) (tl xs) 6= [] by (metis drop_eq_Nil)

hence tl (drop (length xs) xs) 6= [] by (metis drop_tl)

hence ∀u. xs @ u 6= xs ∨ tl u 6= [] by (metis append_eq_conv_conj)

hence tl [] 6= [] by (metis append_Nil2)

thus False by (metis tl.simps(1))

qed
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(The function drop n removes the first n elements from a list.) The neg_clausify proof method

puts the Isabelle conjecture into negated clause form to ensure that it has the same shape as

the corresponding ATP conjecture. The negation of the clause is introduced in the assume line,

and a sequence of intermediate facts each introduced by hence leads to a contradiction.

There is a considerable body of research about making resolution proofs intelligible. Early

work focused on translating detailed resolution proofs into natural deduction calculi [13, 21].

Although they are arguably more readable, these calculi operate at the logical level, whereas

humans reason mostly at the “assertion level,” invoking definitions and lemmas without provid-

ing the full logical details. A line of research focused on transforming natural deduction proofs

into assertion-level proofs [1, 7], culminating with the systems TRAMP [12] and Otterfier [31].

More related work includes the identification of obvious inferences [4,23], the successful trans-

formation of EQP’s proof of the Robbins conjecture using ILF [3], and more recently the use

of TPTP-based tools to present Mizar articles [27].

It would have been interesting to try out TRAMP and Otterfier, but these are large pieces

of unmaintained software that are hardly installable on modern machines and that only sup-

port older ATP systems. Regardless, the problem looks somewhat different in the context of

Sledgehammer. Because the provers are given hundreds of lemmas as axioms, they tend to find

short proofs with few lemmas. Moreover, Sledgehammer can coalesce consecutive inferences

if short proofs are desired. Replaying an inference is a minor issue, thanks to metis.

The first obstacle to readability is that the Isar proof, like the underlying ATP proof, is by

contradiction. This paper presents an algorithm for transforming proofs by contradiction into

direct proofs—or redirecting proofs—to improve intelligibility. Knuth, Larrabee, and Roberts

call the unnecessary use of proof by contradiction a sin against mathematical exposition [10,

§3]—but since redirection is always possible, what would a necessary use look like?

The redirection algorithm is not be tied to any one calculus or logic, as long as it admits

contraposition. In particular, it works on the Isar proofs generated by Sledgehammer or directly

on first-order TSTP proofs [26]. The direct proofs are expressed in a simple Isar-like syntax,

which can be regarded as natural deduction extended with case analyses and nested subproofs

(Section 2). The algorithm is first demonstrated on a few examples (Section 3) before it is

presented in more detail, both in prose and as Standard ML pseudocode (Section 4).

For examples with a simple linear structure, such as the Isar proof above, the proof can be

turned around by applying contraposition repeatedly:

proof –

have tl [] = [] by (metis tl.simps(1))

hence ∃u. xs @ u = xs ∧ tl u = [] by (metis append_Nil2)

hence tl (drop (length xs) xs) = [] by (metis append_eq_conv_conj)

hence drop (length xs) (tl xs) = [] by (metis drop_tl)

thus length (tl xs)≤ length xs by (metis drop_eq_Nil)

qed

The direct proof is easier to understand than the indirect one, even though it does not quite look

like a human-written proof—humans would most likely avoid the detour through drop.
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The approach works on arbitrary proofs by contradiction. A prototype demonstrated at

earlier workshops [18, 19] sometimes exhibited exponential behavior. This has been resolved:

Excluding a linear number of additional inferences that justify case analyses, each inference

in the proof by contradiction now gives rise to exactly one inference in the direct proof. The

algorithm can easily process proofs with hundreds or thousands of inferences.

The algorithm is implemented in Sledgehammer. It is also described in Section 6.8 of my

Ph.D. thesis [2], whose text largely forms the basis of this paper.

2 Proof Notations

Proof Graph. ATP proofs identify formulas by numbers. There may be several conjectures,

in which case they are interpreted disjunctively. The negated conjectures and user-provided

axioms are numbered 0, 1, 2, . . . , n− 1, and the derivations performed during proof search

(whether or not they participate in the final proof) are numbered sequentially from n. We

abstract the ATP proofs by ignoring the formulas and keeping only the numbers. We call

formulas atoms since we are not interested in their structure. The letters a, b denote atoms.

An atom is tainted if it is one of the negated conjectures or has been derived, directly or

indirectly, from a negated conjecture. For convenience, we relabel the ATP proof’s atoms so

that tainted atoms are decorated with a bar, denoting negation. Thus, if atom 3, corresponding

to the formula φ, is tainted, it is relabeled to 3, but it still stands for φ and is called an atom

despite the negative bar. After the relabeling, removing the bar negates the formula: 3 ≡ ¬φ.

A proof graph is a directed acyclic graph in which an edge a → a′ indicates that atom a is

used to derive atom a′. Proof graphs are required to have exactly one sink node, whose formula

is ⊥, and only one connected component. We adopt the convention that derived nodes appear

lower than their parent nodes in the graph and omit the arrowheads:

It is natural to write ⊥ rather than a numeric label for the sink node in examples.

In Sledgehammer, unary inferences are collapsed, and the first-order formulas are translated

back to HOL before the proof is redirected. This is outside the scope of this paper and is

explained in more detail in a companion paper [25].
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Isar Proofs. Proof graphs cannot represent proofs by case analysis and only serve for the

redirection algorithm’s input. We need more powerful notations for the output. Isar proofs

[14, §4; 29] are a linear representation of natural deduction proofs in the style of Jaśkowski [9].

Unlike Gentzen-style trees [6], they allow the sharing of common derivations. The proof on the

left-hand side is by contradiction; that on the right-hand side is the corresponding direct proof:

proof neg_clausify

assume 0

have 4 by (metis 1 2)

have 5 by (metis 3 4)

have 6 by (metis 0 4)

have 7 by (metis 0 5)

show ⊥ by (metis 6 7)

qed

proof –

have 4 by (metis 1 2)

have 5 by (metis 3 4)

have 6∨7 by metis

moreover

{ assume 6

have 0 by (metis 4 6) }

moreover

{ assume 7

have 0 by (metis 5 7) }

ultimately show 0 by metis

qed

Notice that the direct proof involves a 2-way case analysis on a disjunction. Generalized dis-

junctions of the form a1 ∨ ·· · ∨ am are called clauses and are denoted by the letters c, d, e.

Clauses are considered equal modulo associativity, commutativity, and idempotence. Sets of

clauses are denoted by Γ.

Proof redirection requires that inferences can be redirected using the contrapositive but oth-

erwise makes no assumptions about the proof calculus. Inferences that introduce new symbols

can also be redirected; for example, skolemization becomes “un-herbrandization” [25, §4].

Shorthand Proofs. The last proof format is an ad hoc shorthand notation for a subset of Isar.

In their simplest form, these shorthand proofs are a list of derivations c1, . . . ,cm ⊲ c whose

intuitive meaning is: “From the hypotheses c1 and . . . and cm, infer c.” The clauses on the

left-hand side are interpreted as a set Γ.

If a hypothesis ci is the previous derivation’s conclusion, we can omit it and write ◮ instead

of ⊲. This notation mimics Isar, with ⊲ for have or show and ◮ for hence or thus. Depending

on whether we use the abbreviated format, our running example becomes

1,2 ⊲ 4 1,2 ⊲ 4

3,4 ⊲ 5 3 ◮ 5

0,4 ⊲ 6 0,4 ⊲ 6

0,5 ⊲ 7 0,5 ⊲ 7

6,7 ⊲⊥ 6 ◮⊥

Each derivation Γ ⊲ c is essentially a sequent with Γ as the antecedent and c as the succedent.

For proofs by contradiction, the clauses in the antecedent are either the negated conjecture (0),
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atoms that correspond to background facts (1, 2, and 3), or atoms that were proved in preceding

sequents (4, 5, 6, and 7); the succedent of the last sequent is always ⊥.

Direct proofs can be presented in the same way, but the negated conjecture 0 may not

appear in any of the sequents’ antecedents, and the last sequent must have the conjecture 0 as

its succedent. In some of the direct proofs, it is useful to introduce case analyses. For example:

1,2 ⊲ 4

3 ◮ 5

⊲ 6∨7[
[6]

4 ◮ 0

[7]
5 ◮ 0

]

In general, case analysis blocks have the form




[c1]
Γ11 ⊲ d11

...

Γ1k1
⊲ d1k1

. . .

. . .

. . .

[cm]
Γm1 ⊲ dm1

...

Γmkm
⊲ dmkm




with the requirement that a sequent with the succedent c1 ∨ ·· · ∨ cm has been proved immedi-

ately above the case analysis. Each of the branches must also be a valid proof. The assumptions

[ci] may be used to discharge hypotheses in the same branch, as if they had been sequents ⊲ ci.

The case analysis will sometimes be regarded as a sequent

c1 ∨ ·· ·∨ cm,
⋃

i, j (Γij − ci −
⋃

j ′< j dij ′) ⊲ d1k1
∨ ·· ·∨dmkm

by ignoring its internal structure.

3 Examples of Proof Redirection

Before reviewing the redirection algorithm, we consider four examples of proofs by contradic-

tion and redirect them to produce a direct proof. The first example has a simple linear structure,

the second and third examples involve a “lasso,” and the last example has no apparent structure.

A Linear Proof. We start with a simple proof by contradiction expressed as a proof graph

and in our shorthand notation:

0,1 ⊲ 3

2,3 ⊲ 4

1,4 ⊲⊥
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We redirect the sequents using sequent-level contraposition to eliminate all taints (represented

as bars after the relabeling). This gives

1,3 ⊲ 0

2,4 ⊲ 3

1 ⊲ 4

We then obtain the direct proof by reversing the order of the sequents, and introduce ◮ wher-

ever possible:

proof –

have 4 by (metis 1)

hence 3 by (metis 2)

thus 0 by (metis 1)

qed

1 ⊲ 4

2 ◮ 3

1 ◮ 0

Lasso-Shaped Proofs. The next two examples look superficially like lassos but are of course

acyclic, as required of all proof graphs:

0 ⊲ 1

0 ⊲ 2

1 ⊲ 3

2 ⊲ 4

3,4 ⊲ 5

5 ⊲ 6

6 ⊲⊥

0 ⊲ 1

1 ⊲ 2

2 ⊲ 3

2 ⊲ 4

3 ⊲ 5

4 ⊲ 6

5,6 ⊲⊥

We start with the example on the left-hand side. Starting from ⊥, it is easy to redirect the stem:

⊲ 6

6 ⊲ 5

5 ⊲ 3∨4

When applying the contrapositive to eliminate the negations in 3,4 ⊲ 5, we obtain a disjunction

in the succedent: 5 ⊲ 3∨ 4. To continue from there, we introduce a case analysis. In each

branch, we can finish the proof:




[3]
3 ⊲ 1

1 ⊲ 0

[4]
4 ⊲ 2

2 ⊲ 0
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In the second lasso example, the cycle occurs near the end of the contradiction proof. A dis-

junction already arises when we redirect the last derivation. Naively finishing each branch

independently leads to a fair amount of duplication:

⊲ 5∨6


[5]
5 ⊲ 3

3 ⊲ 2

2 ⊲ 1

1 ⊲ 0

[6]
6 ⊲ 4

4 ⊲ 2

2 ⊲ 1

1 ⊲ 0




The key observation is that the two branches can share the last two inferences. This yields the

following proof (without and with ◮):

⊲ 5∨6


[5]
5 ⊲ 3

3 ⊲ 2

[6]
6 ⊲ 4

4 ⊲ 2




2 ⊲ 1

1 ⊲ 0

⊲ 5∨6


[5]
◮ 3

◮ 2

[6]
◮ 4

◮ 2




◮ 1

◮ 0

Here we were fortunate that the branches were joinable on the atom 2. To avoid duplication,

we must in general join on a disjunction a1 ∨ ·· ·∨am , as in the next example.

A Spaghetti Proof. The final example is diabolical (and slightly unrealistic, perhaps):

0 ⊲ 1

1 ⊲ 2

1 ⊲ 3

2,3 ⊲ 4

2,4 ⊲ 5

3,4 ⊲ 6

2,5,6 ⊲ 7

3,6 ⊲ 8

7,8 ⊲⊥

We start with the contrapositive of the last sequent:

⊲ 7∨8
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We perform a case analysis on 7∨8. Since we want to avoid duplication in the two branches,

we first determine which nodes are reachable in the refutation graph by navigating upward from

either 7 or 8 but not from both. The only such nodes here are 5, 7, and 8. In each branch, we

can perform derivations of the form Γ ⊲ b where Γ ∩ {5,7,8} 6= /0 without fearing duplication.

Following this rule, we can only perform one inference in the right branch before we must stop:

[8]
8 ⊲ 3∨6

Any further inferences would need to be repeated in the left branch, so it is indeed a good idea

to stop. The left branch starts as follows:

[7]
7 ⊲ 2∨5∨6

We would now like to perform the inference 5 ⊲ 2∨ 4. This would certainly not lead to any

duplication, because 5 is not reachable from 8 by navigating upward in the refutation graph.

However, we cannot discharge the hypothesis 5, having established only the disjunction 2∨5∨
6. We need a case analysis on the disjunction to proceed:

[
[5]

[2] 5 ⊲ 2∨4 [6]

]

The 2 and 6 subbranches are left alone, because there is no node that is reachable only from

2 or 6 but not from the other two nodes in {2,5,6} by navigating upward in the refutation graph.

Since only one branch is nontrivial, it is arguably more aesthetically pleasing to abbreviate the

entire case analysis to

2∨5∨6 ⊲ 2∨4∨6

Putting this all together, the outer case analysis becomes




[7]
◮ 2∨5∨6

◮ 2∨4∨6

[8]
◮ 3∨6




The left branch proves 2∨ 4∨ 6, the right branch proves 3∨ 6; hence, both branches together

prove 2∨3∨4∨6. Next, we perform the inference 6 ⊲ 3∨4. This requires a case analysis on

2∨3∨4∨6: [
[6]

[2] [3] [4] 6 ⊲ 3∨4

]

This proves 2∨ 3∨ 4. Since only one branch is nontrivial, we prefer to abbreviate the case

analysis to

2∨3∨4∨6 ⊲ 2∨3∨4
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It may help to think of such abbreviated inferences as instances of rewriting modulo associa-

tivity, commutativity, and idempotence. Here, 6 is rewritten to 3∨ 4 in 2∨ 3∨ 4∨ 6, resulting

in 2∨3∨4. Similarly, the sequent 4 ⊲ 2∨3 gives rise to the case analysis
[

[4]
[2] [3] 4 ⊲ 2∨3

]

which can be abbreviated as well. We are left with 2∨ 3. The rest is analogous to the second

lasso-shaped proof: [
[2]

2 ⊲ 1

[3]
3 ⊲ 1

]

1 ⊲ 0

Putting all of this together, we obtain the following proof, expressed in Isar and in shorthand.

The result is quite respectable, considering the spaghetti-like graph we started with:

proof –

have 7∨8 by metis

moreover

{ assume 7

hence 2∨5∨6 by metis

hence 2∨4∨6 by metis }

moreover

{ assume 8

hence 3∨6 by metis }

ultimately have 2∨3∨4∨6 by metis

hence 2∨3∨4 by metis

hence 2∨3 by metis

moreover

{ assume 2

hence 1 by metis }

moreover

{ assume 3

hence 1 by metis }

ultimately have 1 by metis

thus 0 by metis

qed

⊲ 7∨8


[7]
◮ 2∨5∨6

◮ 2∨4∨6

[8]
◮ 3∨6




◮ 2∨3∨4

◮ 2∨3[
[2]

◮ 1

[3]
◮ 1

]

◮ 0

4 The Redirection Algorithm

The process we applied in the examples above can be generalized into an algorithm. The

algorithm takes an arbitrary proof by contradiction expressed as a set of sequents as input, and

produces a proof in our Isar-like shorthand notation, with sequents and case analysis blocks.

The proof is constructed one inference at a time starting from ⊤ (the negation of ⊥) until the

conjecture—in general, the disjunction of the conjectures—is proved.
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Basic Concepts. A fundamental operation is sequent-level contraposition. Let a1, . . . ,am be

the untainted atoms and b1, . . . ,bn the tainted atoms of a proof by contradiction. The proof then

consists of the following three kinds of sequent (with n > 0):

a1, . . . ,am,b1, . . . ,bn ⊲⊥ a1, . . . ,am,b1, . . . ,bn ⊲ b a1, . . . ,am ⊲ a

Their contrapositives are, respectively,

a1, . . . ,am ⊲ b1 ∨ ·· ·∨bn a1, . . . ,am,b ⊲ b1 ∨ ·· ·∨bn a1, . . . ,am ⊲ a

We call the contrapositives of the sequents in the proof by contradiction the redirected sequents.

Based on the set of redirected sequents, we define the atomic inference graph (AIG) with,

for each redirected sequent Γ ⊲ c, an edge from each atom in Γ to each atom in c, and no

additional edges. The AIG encodes the order in which the atoms can be inferred in a direct

proof. Navigating forward (downward) in this graph along the unnegated tainted atoms bj

corresponds to navigating backward (upward) in the refutation graph along the bj’s.

Like the underlying refutation graph, the AIG is acyclic and connected. Potential cycles

would involve either only untainted atoms ai, only tainted atoms bj’s, or a mixture of both

kinds. A cycle ai1 → ··· → aik → ai1 is impossible, because the contrapositive leaves these

inferences unchanged and hence the cycle would need to occur in the (acyclic) refutation graph.

A cycle bj1 → ··· → bjk → bj1 is impossible, because the contrapositive turns all the edges

around and hence the reverse cycle would need to occur in the refutation graph. Finally, mixed

cycles necessarily involve an edge b → a, which is impossible because redirected sequents with

untained atoms a can only have untainted atoms as predecessors (cf. a1, . . . ,am ⊲ a).

Given a set of (tainted or untainted) atoms A, the zone of an atom a ∈ A with respect to A

is the set of possibly trivial descendants of a in the AIG that are not descendants of any of the

other atoms in A. As a trivial descendant of itself, a will either belong to its own zone or to no

zone all at (depending on whether it is a descendant of a node a′ ∈ A−{a}). Zones identify

inferences that can safely be performed inside a branch in a case analysis.

The Algorithm. The algorithm keeps track of the last-proved clause (initially ⊤), the set

of already proved atoms (initially the set of facts taken as axioms), and the set of remaining

sequents to use (initially all the redirected sequents provided as input). It performs these steps:

1. If there are no remaining sequents, stop.

2. If the last-proved clause is ⊤ or a single atom:

2.1. Pick a sequent Γ ⊲ c among the remaining sequents that can be proved using only

already proved atoms, preferring sequents with a single atom in their succedent.

2.2. Append Γ ⊲ c to the proof.

2.3. Make c the last-proved clause, add c to the already proved atoms if it is an atom,

and remove Γ ⊲ c from the remaining sequents.

2.4. Go to step 1.
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3. Otherwise, the last-proved succedent is of the form a1∨·· ·∨am. An m-way case analysis

is called for:1

3.1. Compute the zone of each atom ai with respect to {a1, . . . ,am}.

3.2. For each ai, compute the set Si of sequents Γ ⊲ c such that Γ consists only of

already proved atoms or atoms within ai’s zone.

3.3. Recursively invoke the algorithm m times, once for each ai, each time with ai as

the last-proved clause, ai added to the already proved atoms, and Si as the set of

remaining sequents. This step yields m (possibly empty) subproofs π1, . . . , πm.

3.4. Append the following case analysis block to the proof:[
[a1] · · · [am]
π1 · · · πm

]

3.5. Make the succedent b1 ∨ ·· ·∨bn of the case analysis block (regarded as a sequent)

the last-proved clause, add b1 to the already proved atoms if k = 1, and remove all

sequents belonging to any of the sets Si from the remaining sequents.

3.6. Go to step 1.

Whenever a redirected sequent is generated, it is removed from the set of remaining se-

quents. In step 3, the recursive calls operate on pairwise disjoint subsets Si of the remaining

sequents. Consequently, each redirected sequent appears at most once in the generated proof,

and the resulting direct proof contains the same number of inferences as the initial proof by

contradiction. In Isar, each case analysis is additionally justified by one metis inference.

In the degenerate case where no atoms are tainted (i.e., the proof exploits an inconsistency

in the axiom set), the generated proof is simply a linearization of the refutation graph, and the

last inference proves ⊥ (which is, unusually, untainted). To produce a syntactically valid Isar

proof, a trivial inference must be added to derive the conjecture from ⊥.

Pseudocode. To make the above description more concrete, the algorithm is presented in

Standard ML pseudocode below.2 The pseudocode is fairly faithful to the description above.

Atoms are represented by integers and literals by sets (lists) of integers. Go-to statements are

implemented by recursion, and the state is threaded through recursive calls as three arguments

(last, earlier, and seqs). One notable difference, justified by a desire to avoid code duplication,

is that the set of already proved atoms, called earlier, excludes the last-proved clause last.

Hence, we take last ∪ earlier to obtain the already proved atoms, where last is either the empty

list (representing ⊤) or a singleton list (representing a single atom).

Shorthand proofs are represented as lists of inferences:

datatype inference = Have of int list× int list | Cases of (int× inference list) list

1A generalization would be to perform a m′-way case analysis, with m′ < m, by keeping some disjunctions. For

example, we could perform a 3-way case analysis with a1 ∨ a2, a3, and a4 as the assumptions instead of breaking

all the disjunctions in a 4-way analysis. This could lead to nicer proofs if the disjuncts are carefully chosen.
2The actual ML code is distributed with Isabelle. A recent repository version is available at http://isabelle.

in.tum.de/repos/isabelle/file/e5303bd748f2/src/HOL/Tools/ATP/atp_proof_redirect.ML .
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The main function implementing the algorithm follows:

fun redirect last earlier seqs =
if null seqs then

[]
else if length last ≤ 1 then

let val provable = filter (fn (Γ, _)⇒ Γ ⊆ last ∪ earlier) seqs

val horn_provable = filter (fn (_, [_])⇒ true | _ ⇒ false) provable

val (Γ, c) = hd (horn_provable @ provable)
in Have (Γ, c) :: redirect c (last ∪ earlier) (seqs−{(Γ, c)}) end

else

let val zs = zones_of (length last) (map (descendants seqs) last)
val S = map (fn z ⇒ filter (fn (Γ, _)⇒Γ ⊆ earlier ∪ z) seqs) zs

val cases = map (fn (a, ss)⇒ (a, redirect [a] earlier ss)) (zip last S )
in Cases cases :: redirect (succedent_of_cases cases) earlier (seqs−

⋃
S ) end

The code uses familiar ML functions, such as map, filter, and zip. It also relies on a descendants

function that returns the descendants of the specified node in the AIG associated with seqs; its

definition is omitted. Finally, the code depends on the following straightforward functions:

fun zones_of 0 _ = []
| zones_of n (B :: Bs) = (B−

⋃
Bs) :: zones_of (n−1) (Bs @ [B])

fun succedent_of_inf (Have (_, c)) = c

| succedent_of_inf (Cases cases) = succedent_of_cases cases

and succedent_of_case (a, []) = [a]
| succedent_of_case (_, infs) = succedent_of_inf (last infs)

and succedent_of_cases cases =
⋃
(map succedent_of_case cases)

Correctness. It is not hard to convince ourselves that the proof output by redirect is correct

by inspecting the code. A Have (Γ, c) sequent is appended only if all the atoms in Γ have been

proved (or assumed) already, and a case analysis on a1∨·· ·∨am always follows a sequent with

the succedent a1∨·· ·∨am. Whenever a sequent is output, it is removed from seqs. The function

returns only if seqs is empty, at which point the conjecture must have been proved (except in

the degenerate case where the negated conjecture does not participate in the refutation).

Termination is not quite as obvious. The recursion is well-founded, because the pair

(length seqs, length last) becomes strictly smaller with respect to the lexicographic extension of

< on natural numbers for each of the three syntactic recursive calls.

• For the first recursive call, the list seqs − {(Γ, c)} is strictly shorter than seqs since

(Γ, c) ∈ seqs.

• The second call is performed for each branch of a case analysis; the ss argument is a (not

necessarily strict) subset of the caller’s seqs, and the list [a] is strictly shorter than last,

which has length 2 or more.
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• For the third call, the key property is that at least one of the zones is nonempty, from

which we obtain seqs−
⋃

S ⊂ seqs. If all the zones were empty, each atom ai would

be the descendant of at least one atom ai ′ in the AIG (with i ′ 6= i), which is impossible

because the AIG is acyclic.

As for run-time exceptions, the only worrisome construct is the hd call in redirect’s second

branch. We must convince ourselves that there exists at least one sequent (Γ, c) ∈ seqs such

that Γ ⊆ last ∪ earlier. Intuitively, this is unsurprising, because seqs is initialized from a well-

formed refutation graph: The nonexistence of such a sequent would indicate a gap or a cycle

in the refutation graph. More precisely, if there exist untainted atoms /∈ last ∪ earlier, these

can always be processed first; indeed, the preference for sequents with a single atom in their

succedent ensures that they are processed before the first case analysis. Otherwise:

• If last is [] (representing ⊤) or an untainted atom, the contrapositive a1, . . . ,am ⊲ b1 ∨
·· ·∨bn of the very last inference is applicable since it only depends on untainted atoms,

all of which have already been proved.

• Otherwise, last is a tainted atom b. The refutation graph must contain an inference

a1, . . . ,am,b1, . . . ,bn ⊲ b, whose redirected inference is a1, . . . ,am,b ⊲ b1∨·· ·∨bn. Since

it only depends on b and untainted atoms, it is applicable.

Inlining. As a postprocessing step, we can abbreviate case analyses in which only one branch

is nontrivial, transforming




[ci]
d11, . . . , d1k1

⊲ e1
...

[c1] · · · [ci−1] dn1, . . . , dnkn
⊲ en [ci+1] · · · [cm]


 into

d̃11, . . . , d̃1k1
⊲ ẽ1

...

d̃n1, . . . , d̃nkn
⊲ ẽn

where the function ˜ is the identity except for the assumption ci and the conclusions e1, . . . ,en:

c̃i = c1 ∨ ·· ·∨ cm ẽj = c1 ∨ ·· ·∨ ci−1 ∨ ej ∨ ci+1 ∨ ·· ·∨ cm

It is debatable whether such inlining is a good idea. The resulting proof has a simpler struc-

ture, with fewer nested proof blocks. However, these nested blocks can help make complex

proof more intelligible. Moreover, the n-fold repetition of the disjuncts c1, . . . ,ci−1,ci+1, . . . ,cm

clutters the proof and can slow it down.

The above procedure can be generalized to arbitrary case analysis blocks. I am grateful

to Konstantin Korovin for insights that lead me to realize this. We can rewrite an m-way case

analysis 


[c1]
Γ11 ⊲ e11

...

Γ1k1
⊲ e1k1

. . .

. . .

. . .

[cm]
Γm1 ⊲ em1

...

Γmkm
⊲ emkm
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into a sequence of m case analyses:




[ci]
Γi1 ⊲ ei1

...

[e1k1
] · · · [e(i−1)ki−1

] Γiki
⊲ eiki

[ci+1] · · · [cm]




Each of these has only one nontrivial branch and can be inlined, yielding a branch-free proof.

For the spaghetti proof of the previous section, this process yields

⊲ 7∨8

◮ 2∨5∨6∨8

◮ 2∨4∨6∨8

◮ 2∨3∨4∨6

◮ 2∨3∨4

◮ 2∨3

◮ 1∨3

◮ 1

◮ 0

The example shows clearly that we rapidly obtain large disjunctions. In practice, each of the

disjuncts would be an arbitrarily complex formula. Local definitions could be used to avoid

repeating the formulas, but the loss of modularity is deplorable. Indeed, similar concerns

about Hoare-style proof outlines for separation logic have lead to the development of ribbon

proofs [30], whose parallel ribbons evoke the branches of a case analysis.

If branch-free proofs are nonetheless desired, they can be generated more directly by iter-

atively “rewriting” the atoms, following a suggestion by Korovin. For example, starting from

the sequent ⊲ 7∨8, rewriting 7 would involve resolving ⊲ 7∨8 with 7 ⊲ 2∨5∨6, resulting in

2∨5∨6∨8. In general, rewriting a tainted atom bj within a sequent Γ ⊲ b1 ∨ ·· ·∨bn involves

resolving that sequent with the redirected sequent that has bj in its assumptions. To guarantee

that the procedure is linear, it suffices to rewrite atoms only if all their ancestors in the AIG

have already been rewritten, thereby preventing multiple rewrites of the same atom.

5 Conclusion

This paper presented an algorithm that transforms proofs by contradiction as returned by au-

tomatic theorem provers into direct proofs. It sometimes introduces case splits but avoids

duplicating inferences in the different branches of the split by joining again as early as possi-

ble. The resulting proofs are direct Isar proofs that have some of the structure Isabelle users

have come to expect. The described procedure is admittedly fairly straightforward; it would

not be surprising if it were part of folklore or a special case of existing work.

While the output is designed for replaying proofs, it also has a pedagogical value: Unlike

Isabelle’s automatic tactics, which are black boxes, the proofs delivered by Sledgehammer can
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be inspected and understood. The direct proof also forms a good basis for manual tuning.

Further steps toward robust, intelligible Isar proofs, are described in a companion paper [25].

In future work, I am interested in transformations that increase proof readability and in the

automatic discovery of concepts and lemmas, such as those available for Mizar proofs [16,17].
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Abstract

We define a translation that maps higher-order formulas provable in a classical ex-
tensional setting to semantically equivalent formulas provable in an intuitionistic inten-
sional setting. For the classical extensional higher-order proof system we define a Henkin-
complete tableau calculus. For the intuitionistic intensional higher-order proof system we
give a natural deduction calculus. We prove that tableau provability of a formula im-
plies provability of a translated formula in the natural deduction calculus. Implicit in this
proof is a method for translating classical extensional tableau refutations into intuitionistic
intensional natural deduction proofs.

1 Introduction
We describe a way of translating a simply-typed higher-order formula s into a semantically
equivalent formula s′ such that if s is provable in a classical extensional higher-order tableau
calculus, then s′ is provable in an intuitionistic intentional higher-order natural deduction cal-
culus. A potential application of such a translation is mapping refutations found by a classical
extensional tableau-based automated theorem prover like Satallax [4] to corresponding proof
terms in an intuitionistic intensional natural deduction based system like Coq [15, 3].

The problem of translating classical logic into intuitionistic logic has a long history. A
result by Glivenko [11] states that if s is a propositional tautology, then ¬¬s is intuitionistically
provable. This result does not hold for first-order formulas. Kuroda [14] showed a similar result
if one translates by double negating the formula and adding double negations to the bodies
of universal quantifiers. We recently proved that the Kuroda translation generalizes to give a
translation from classical intentional higher-order logic to intuitionistic intentional higher order
logic [5]. The generalized Kuroda translation does not suffice in the presence of functional
extensionality, for an example see [5]. The work of Gandy [9] provides a method to translate
from a higher-order logic with extensionality into a higher-order logic without extensionality.
The translation we give in this paper uses ideas similar to those of Kuroda and Gandy to deal
with both issues at once. The Gandy translation translates equality with the help of a binary
relation and a predicate that are defined by mutual recursion. Our translation is simpler in
that it translates equality with the help of a single binary relation that is defined inductively
on types.

Many logical systems of quite different character are commonly referred to as higher-order
logics. Some forms of higher-order logic allow classical reasoning while others only allow in-
tuitionistic reasoning. For example, formulas such as ∀p.p ∨ ¬p and ∀p.¬¬p → p are provable
if and only if the higher-order logic is classical. Likewise, some forms of higher-order logic
allow extensional reasoning while others do not. Formulas such as ∀fg.(∀x.fx = gx) → f = g
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and ∀pq.(p → q) ∧ (q → p) → p = q are provable if the higher-order logic is extensional and
are not provable otherwise. The formula (λx.¬¬x) = (λx.x) is only provable if the logic is
both classical and extensional. The extensionality properties can be factored into propositional
extensionality (i.e., boolean extensionality) and functional extensionality (which can itself be
factored into extensionality properties η and ξ) [1]. In this paper we consider a tableau system
with full extensionality and a natural deduction system with no extensionality.

Many automated and interactive theorem provers (e.g., Isabelle/HOL [16], LEO-II [2] and
Satallax [4]) are based on classical extensional versions of higher-order logic. Automated and
interactive theorem provers are used to create proofs, while the task of a proof checker is
checking the correctness of proofs. In order to check a proof, the proof must be represented
as an explicit object. A well-known way of representing proofs is via the Curry-Howard-de
Bruijn correspondence [13, 8]: a natural deduction proof of P can be encoded as a λ-term of
type P . It is easy to write a natural deduction system for higher-order logic for which one can
obtain proof terms in an obvious way. However, this creates a natural deduction system which
is intuitionistic (not classical) and intentional (not extensional).

One way to resolve this mismatch is to add classical extensional axioms to the natural
deduction system. Currently, Satallax produces Coq proof terms under the assumption that
one has added such axioms to Coq [20]. Using the ideas in this paper, one can avoid assuming
such axioms in Coq and still produce Coq proof terms from Satallax refutations (unless Satallax
makes use of a choice operator).

The basic definitions and lemmas used in the translation have all been formalized and proven
in Coq, as described in [18, 19]. However, there is currently no implementation of the translation
as a whole. In particular, Satallax has not yet been extended to produce Coq proof terms using
these definitions and lemmas.

Since the translation changes the formula, a Coq user could not typically call a classical
extensional theorem prover like Satallax to request a proof term for an arbitrary formula in Coq.
On the other hand, one could use the translation to automatically create a Coq development
from a development in a classical extensional simple type theory.

The rest of the paper is organized as follows. In Section 2 we give a brief overview of simply
typed λ-calculus and in Section 3 we introduce a tableau calculus T . We then present the
targeted natural deduction calculus N in Section 4. In Section 5 we present our translation.
We prove that it maps T -refutable branches to N -refutable contexts in Section 6. We conclude
in Section 7 and provide suggestions for future work.

More details about the translation in this paper and other translations can be found in the
Master’s thesis of one of the authors [18].

2 Simply Typed Lambda Calculus

2.1 Syntax

We describe simply typed λ-calculus in the style of Church [7]. The set of types T is given
inductively: o and ι are types and στ is a type whenever σ and τ are types. The types o (the
type of propositions) and ι (the type of individuals) are called base types. Types of the form
στ are called function types. Often the function type στ is written as σ → τ , but we use the
shorter notation since there are only base types and function types. We use σ and τ to range
over types.

For each type σ, let Nσ be an infinite set of names of type σ. Some of the names are logical
constants:
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• > and ⊥ are (distinct) logical constants in No.

• ∧, ∨, and → are (distinct) logical constants in Nooo.

• For each σ, =σ is a logical constant in Nσσo.

• For each σ, ∀σ and ∃σ are (distinct) logical constants in N(σo)o.

The remaining names are variables . Let Cσ be the set of logical constants of type σ and Vσ be
the (infinite) set of all variables of type σ. Let N =

⋃
σNσ, C =

⋃
σ Cσ and V =

⋃
σ Vσ.

For any C′ ⊆ C we define a family of sets of terms ΛC
′

σ for each type σ by induction.

• For every x ∈ Vσ, x ∈ ΛC
′

σ .

• For every c ∈ Cσ ∩ C′, c ∈ ΛC
′

σ .

• For every x ∈ Vσ and s ∈ ΛC
′

τ , (λx.s) ∈ ΛC
′

στ .

• For every s ∈ ΛC
′

στ and t ∈ ΛC
′

σ , (st) ∈ ΛC
′

τ .

We defined ΛC
′

σ relative to a set of logical constants. There are two particular sets of logical
constants of interest in this paper: the full set C of logical constants and the set

C− := {→,∀σ|σ is a type}.

To simplify notation, we define Λσ to be ΛCσ and Λ−σ to be ΛC
−

σ . Note that ΛC
′

σ ⊆ Λσ for any
C′ ⊆ C. An element of Λσ is called a term of type σ. A term is an element of

⋃
σ Λσ. Terms

of the form (λx.s) are called λ-abstractions. Terms of the form (st) are called applications. A
formula is a term of type o.

We write ¬s for ((→ s)⊥). We write stu for (st)u, except that ¬st means ¬(st). We
use the infix notations s ∧ t, s ∨ t, s → t and s =σ t as shorthand for ∧st, ∨st, → st and
=σ st, respectively. We also write s 6=σ t for ¬(s =σ t). Using infix notation note that ¬s
is the same term as s → ⊥. We sometimes write ∀x : σ.s and ∃x : σ.s for ∀σ(λx.s) and
∃σ(λx.s), respectively. We may also omit the type entirely from a quantified formula, equation
or disequation and write ∀x.s, ∃x.s, s = t or s 6= t when the types are clear from the context.

If s is a term, x ∈ Nσ and t is a term of type σ, then s[x := t] is defined to be the result
of substituting t for x in s via a capture-avoiding substitution. A simultaneous substitution
θ substitutes several variables simultaneously. We use the notation θ, [x := t] to mean the
simultaneous substitution that agrees with θ on all variables except (possibly) x which is mapped
to t. A term of the form (λx.s)t is called a β-redex with β-reduct s[x := t]. We say s β-reduces
to t (and write s→β t) if a subterm of s is a β-redex such that t is the result of replacing this
subterm by its β-reduct. We define s ∼β t to be the least equivalence relation containing →β .
When s ∼β t holds, we say s and t are β-equivalent . A term is β-normal if it has no β-redexes.
It is well-known that β-reduction is confluent and terminates on simply typed terms. Hence for
every s ∈ Λσ there is a β-normal form of s which is unique (up to names of bound variables).
We write dseβ to denote the β-normal form of s.

The set of free variables of a term, written FV , is defined as follows.

FV (x) := {x}
FV (s t) := FV (s) ∪ FV (t)
FV (λx.s) := FV (s)− {x}

A term s is ground if FV (s) = ∅. The set of free variables of a set of terms B is defined as
FV (B) :=

⋃
s∈B FV (s).
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2.2 Semantics
Henkin proved completeness of a form of Church’s simple theory of types [7] relative to a
semantics now known as Henkin semantics [12]. We briefly describe Henkin semantics. The
interested reader may find more details of a similar presentation in [6].

A frame is a function D defined on T such that D(o) = {0, 1}, ∀σ ∈ T : D(σ) 6= ∅
and ∀σ, τ ∈ T : D(στ) ⊆ {f | f : D(σ) → D(τ)}. An assignment into a frame D is a function
I defined on T ∪ V such that I(x) ∈ D(σ) for all types σ and variables x : σ. Let I be an
assignment into a frame D, x : σ be a variable and a ∈ D(σ). We write Ixa to denote the
assignment into D that agrees everywhere with I except possibly on x where it yields a. We
define a partial evaluation function ̂ that maps assignments I and terms s ∈ Λσ possibly to
values Î(s) in D(σ) as follows:

1. Î(x) := I(x)

2. Î(c) := f if c : σ, f ∈ D(σ) and f has the usual classical meaning of c

3. Î(s t) := Î(s)(Î(t))

4. Î(λx.s) := f if λx.s : στ , f ∈ D(στ) and ∀a ∈ D(σ) : Îxa(s) = fa

Note that Î is a partial function from typed terms into the frame. An interpretation is a pair
(D, I) where D is a frame, I is an assignment into D and Î is a total function, i.e., Îs is defined
for every s ∈ Λσ. We write Interp for the set of all interpretations.

A formula is a term of type o. We say an interpretation (D, I) satisfies a formula s if
Î(s) = 1. A set A of formulas is satisfiable if there is an interpretation (D, I) simultaneously
satisfying all the formulas in A. Otherwise, we say A is unsatisfiable. We say two terms s, t ∈ Λσ
are semantically equivalent (written s ≈ t) if Îs = Ît for all interpretations (D, I).

3 Tableau Calculus T
We briefly describe a tableau calculus for classical extensional higher-order logic which is com-
plete relative to Henkin semantics. A similar tableau calculus is presented and proven complete
in [6]. The calculus in [6] only uses the logical constants =σ and ¬ while here we include many
more logical constants. Also, we include rules such as Cut and DeMorgan which are not needed
for completeness. We include these rules because they are sound relative to Henkin semantics
and the translation we give later is able to handle the extra rules.

A branch is a set of β-normal formulas. A step is an n+ 1-tuple 〈A1, . . . , An, A〉 of branches
with n ≥ 0. Given a set of steps T , one can inductively define the set of branches which are
T -refutable as follows: If 〈A1, . . . , An, A〉 ∈ T and Ai is T -refutable for i ∈ {1, . . . , n}, then A
is T -refutable.

A rule is a set of steps. The rules are presented in the form

RuleName
C

B1 · · · Bn

to indicate the set of steps of the form 〈A1, . . . , An, A〉 where C ⊆ A and Ai = A ∪Bi for each
i ∈ {1, . . . , n}. There are also sometimes side conditions on the branch A. For example if we
say a variable y must be fresh in a rule, this means that for the step 〈A1, . . . , An, A〉 to be in
the rule there is the additional requirement that y /∈ FV (A). In most cases C is a singleton set
{s} and in the remaining cases C is either empty (e.g, Cut) or contains two formulas (e.g., Mat).
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Definition 3.1 (Tableau Calculus T ). We define the tableau calculus T as the union of the
rules in Figure 1. This also defines the corresponding notion of T -refutability. We say a formula
s is T -refutable if the branch {dseβ} is T -refutable. We say a formula s is T -provable if the
formula ¬dseβ is T -refutable.

Closed⊥
⊥

Closed¬>
¬>

Closed
s,¬s

Closed 6=
s 6= s

ClosedSym
(s = t), (t 6= s)

Cut
s ¬s

Dneg
¬¬s
s

And
s ∧ t
s, t

Or
s ∨ t
s t

Imp
s→ t

¬s t
NegAnd

¬(s ∧ t)
¬s ¬t

NegOr
¬(s ∨ t)
¬s,¬t

NegImp
¬(s→ t)

s,¬t

Forall
∀s
ds teβ

DeMorgan∀
¬∀s

∃x.¬ds xeβ
x /∈ FV (s) Exists

∃s
ds yeβ

y is fresh

DeMorgan∃
¬∃s

∀x.¬ds xeβ
x /∈ FV (s) Bool =

s =o t

s, t ¬s,¬t
BoolExt

s 6=o t

s,¬t t,¬s

Func =
s1 =στ s2

ds1 t =τ s2 teβ
FuncExt

s 6=στ t

ds x 6=τ t xeβ
x is fresh Mat

x s1 . . . sn,¬x t1 . . . tn
s1 6= t1 . . . sn 6= tn

Dec
x s1 . . . sn 6=ι x t1 . . . tn

s1 6= t1 . . . sn 6= tn
Con

s1 =ι t1, s2 6=ι t2

s1 6= s2, t1 6= s2 s1 6= t2, t1 6= t2

Figure 1: Tableau rules used to define the tableau calculus T

Many variations of the tableau rules are possible. For example, instead of the rule

DeMorgan∃ ¬∃s
∀x.¬ds xeβ x /∈ FV (s)

we could have an alternative rule

Neg∃ ¬∃s
¬ds xeβ x is fresh.

Note that if we use Neg∃, then x must be fresh rather than the weaker requirement x /∈ FV (s)
in DeMorgan∃. By using the DeMorgan∃ version, there is one fewer rule for which the freshness
condition needs to be taken care of later. One could similarly modify the rule FuncExt so that
the only rule with a freshness condition would be Exists. In this paper the form of the tableau
rules are chosen to match those considered in [18].

We briefly consider two examples of T -provable formulas.

Example 3.2. Let p be a variable of type o. We show the formula p 6= ¬p is T -provable, i.e.,
the branch A0 := {p 6= ¬p} is T -refutable. The branch A0 is T -refutable because of the NegOr
rule and the fact that A1 := A0 ∪ {p,¬¬¬p} and A2 := A0 ∪ {¬p,¬¬p} are T -refutable. We
know A2 is T -refutable using the Closed rule. We know A1 is T -refutable using the Dneg and
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Closed rules. The reason we call this a tableau refutation is that one can display the refutation as
a picture we refer to as a tableau. For this example the following is the corresponding tableau:

p 6=o ¬p
p

¬¬¬p
¬p

¬p
¬¬p

Example 3.3. Let p be a variable of type o. The formula (λp.¬¬p) =oo (λp.p) is T -provable.
In this case we simply show the tableau and note that the steps are justified by the FuncExt,
BoolExt, Dneg and Closed rules.

(λp.¬¬p) 6= (λp.p)
(¬¬p) 6= p

¬¬p
¬p

¬¬¬p
p
¬p

4 Natural Deduction Calculus N
We now present a natural deduction calculus for formulas in Λ−o . That is, we only consider
formulas that use the logical constants → and ∀σ. Such calculi were introduced by Gentzen in
1935 [10] and studied further by Prawitz [17].

A context Γ is a finite subset of Λ−o . Γ `N s holds when derivable using the rules in Figure 2.
Note that if for some context Γ and some formula s we are given a derivation of Γ `N s that

uses the wk rule, we can construct a derivation of Γ `N s that does not use the wk rule. This
follows from how the hy rule is stated. We only add the wk rule for convenience.

hy
t ∈ Γ
Γ `N t

β
Γ `N s s ∼β tΓ `N t

wk
Γ′ `N t Γ′ ⊆ Γ
Γ `N t

∀I Γ `N t x /∈ FV (Γ)
Γ `N ∀x.t

→ I
Γ, s `N t
Γ `N s→ t

∀E Γ `N ∀x.s
Γ `N s[x := t]

→ E
Γ `N s→ t Γ `N s

Γ `N t

Figure 2: Rules in our ND calculus N

We write `N s for ∅ `N s. We say a formula s ∈ Λ−o is N -provable if `N s. We say a context
Γ is N -refutable if Γ `N ∀op.p. Likewise, a formula s ∈ Λ−o is N -refutable if the context {s} is
N -refutable.

Example 4.1. Let x, y, p and q be variables with x, y ∈ Vι and p, q ∈ Vιo. We use the following
diagram to show that the formula (∀p.px→ py)→ qy → qx is N -provable.

→ I

→ E

β

∀E
hy
{∀p.px→ py} `N ∀p.px→ py

{∀p.px→ py} `N (λy.qy → qx)x→ (λy.qy → qx)y

{∀p.px→ py} `N (qx→ qx)→ (qy → qx)
wk

→ I

hy
{qx} `N qx
`N qx→ qx

{∀p.px→ py} `N qx→ qx

{∀p.px→ py} `N qy → qx

`N (∀p.px→ py)→ qy → qx
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5 Translating Terms, Formulas and Branches

In this section we introduce a meaning preserving translation that maps tableau refutable
formulas in Λo to N -refutable formulas in Λ−o . Since a tableau calculus operates on branches
instead of formulas, we will also need to define a branch translation Ψ∗ that maps branches to
contexts.

We begin by considering the most important issue: the translation of logical constants. We
will associate with each logical constant c ∈ Cσ a term ċ ∈ Λ−σ . For the propositional connectives
we can use terms which are sometimes called the Russell-Prawitz definitions [17].

→̇ := λx.λy.x→ y

⊥̇ := ∀p : o.p

>̇ := ∀p : o.p→ p
¬̇ := λx.x→ ∀p : o.p
∧̇ := λx.λy.∀p : o.(x→ y → p)→ p
∨̇ := λx.λy.∀p : o.(x→ p)→ (y → p)→ p

We also define ≡̇ to be λxy : o.(x → y)∧̇(y → x), even though we do not have a logical
constant ≡, since it will be useful below.

We will define =̇σ to be a term Rσ of type σσo. This term Rσ will also be used in the
definitions of ∀̇σ and ∃̇σ. Since =̇σ will be defined as Rσ, the meaning of Rσ in every (classical
extensional) interpretation must be equality. A simple way to satisfy this constraint is to define
Rσ to be Leibniz equality, i.e., λxy.∀q : σo.qx → qy, at each type σ. For each T -provable
formula the translation should be N -provable. If Rιι and Rι were both Leibniz equality, then
even though ∀fg : ιι.(∀x : ι.fx = gx) → f = g is clearly T -provable its translation would not
be N -provable.

This suggests that we should not define Rσ to be Leibniz equality for every type σ. Instead
we will define Rσ to be Leibniz equality only when σ is the base type ι. We will define Ro to be
logical equivalence (as expressed by ≡̇) and on function types we will use functional equivalence
modified by a double negation.

Definition 5.1. For every type σ we define inductively a term Rσ in Λ−σσo as follows:

Ro = λx y.(x→ y)∧̇(y → x)
Rι = λx y.∀q : ιo.q x→ q y
Rσ→τ = λf g.∀x y : σ.Rσ x y → ¬̇¬̇Rτ (f x)(g y)

The term Rσ corresponds to a binary relation on type σ. We sometimes speak of Rσ as a
relation rather than as a term.

It will turn out that we cannot generally prove (inN ) thatRσ is reflexive. As a consequence,
we must restrict the binders in the definitions of ∀̇σ and ∃̇σ to x satisfying Rσ x x. In terms
of Henkin semantics, this will not make a difference since we will prove that Î(Rσ) is equality
on D(σ) in every interpretation (D, I). When considering provability of formulas in N , the
restriction to x satisfying Rσ x x will be important.

Now we define =̇σ, ∀̇σ, and ∃̇σ as follows:

=̇σ := Rσ

∀̇σ := λf.∀σx.Rσxx→ ¬̇¬̇fx
∃̇σ := λf.∀op.(∀σx.Rσxx→ fx→ p)→ p
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Definition 5.2. We define our translation Ψ : Λσ → Λ−σ by recursion as follows.

Ψx := x for variables x
Ψst := (Ψs)(Ψt)

Ψλx.s := λx.Ψs
Ψc := ċ for constants c

We call Ψ compositional because it respects application and λ-abstraction. As a simple
consequence of compositionality, we know that Ψ preserves β-equivalence.

Lemma 5.3. If s and t are β-equivalent, then Ψs and Ψt are also β-equivalent.

We now prove Ψs ≈ s for all s ∈ Λσ. We first prove that Rσ behaves like equality.

Lemma 5.4. ∀σ ∈ T : ∀(D, I) ∈ Interp : ∀a, b ∈ D(σ) : (Î(Rσ) a b = 1) ⇐⇒ a = b

Proof. We prove this lemma by induction on types. Let (D, I) be an arbitrary interpretation
and let a and b be arbitrary elements in D(σ).

• Case σ = o:
It is easy to check that Îxyab ((x→ y)∧̇(y → x)) = 1 ⇐⇒ a = b.

• Case σ = ι:
We know Î(Rι) a b = 1 ⇐⇒ a = b since Rι is Leibniz equality.

• Case σ = σ1σ2:
We want to show Î(Rσ1σ2) a b = 1 ⇐⇒ a = b.

– Assume Î(Rσ1σ2) a b = 1. We need to show a = b. Let c ∈ D(σ1) be given. We
prove a(c) = b(c) as follows.

Î(Rσ1σ2) a b = 1

⇐⇒ Îfgab (∀x y.Rσ1 x y → ¬̇¬̇Rσ2(f x)(g y)) = 1

=⇒ Îfgxyabcc (Rσ1 x y → ¬̇¬̇Rσ2(f x)(g y)) = 1

⇐⇒ (Î(Rσ1) c c = 1 =⇒ Î(Rσ2)(a(c))(b(c)) = 1)

⇐⇒ (c = c =⇒ a(c) = b(c)) (IH)
⇐⇒ a(c) = b(c)

– Assume a = b. Let c, d ∈ D(σ1) be such that Î(Rσ1) c d = 1. We know c = d
by the inductive hypothesis and so ac = bd. By the inductive hypothesis we have
Î(Rσ2) (ac) (bd) = 1. Hence Î(Rσ1σ2) a b = 1.

Lemma 5.5. For every interpretation (D, I) and every a in D(σ) we have I(Rσ) a a = 1.

Proof. Follows directly from Lemma 5.4.

Lemma 5.6. For every c ∈ Cσ, ċ ≈ c.

34



From Classical Extensional to Intuitionistic Intentional C. E. Brown, C. Rizkallah

Proof. Let (D, I) be an interpretation. In order to prove Î(ċ) = Î(c) it is enough to prove
Î(ċ) has the usual classical meaning of c in I since at most one element of D(σ) can have this
property. It is easy to check this for Î(ċ) when c ∈ {→,⊥,>,¬,∧,∨}. We know Î(=̇τ ) behaves
like equality by Lemma 5.4. It remains to prove Î(∀̇τ ) and Î(∃̇τ ) behave like universal and
existential quantification. Let q ∈ D(τo) be given. We use Lemma 5.4 to obtain

Î(∀̇τ ) q = 1

⇐⇒ Îfq (∀τx.(Rτxx)→ ¬̇¬̇fx) = 1

⇐⇒ Îfq (∀τx.fx) = 1

⇐⇒ qa = 1 for every a ∈ D(τ)

and

Î(∃̇τ ) q = 1

⇐⇒ Îfq (∀op.(∀σx.(Rσxx)→ fx→ p)→ p) = 1

⇐⇒ Îfq (∀op.(∀σx.fx→ p)→ p) = 1

⇐⇒ qa = 1 for some a ∈ D(τ).

Theorem 5.7. For every s ∈ Λσ, Ψs ≈ s.

Proof. We argue by induction on s. If s is a variable, then the result is clear. If s is a logical
constant, then the result follows by Lemma 5.6. Suppose s is tu. Let (D, I) be an interpretation.
By inductive hypothesis Î(Ψt) = Î(t) and Î(Ψu) = Î(u). Hence Î(Ψ(tu)) = Î(tu).

Finally, suppose s is λx.t of type σ1σ2 and let (D, I) be an interpretation. Let a ∈ D(σ1)

be given. By the inductive hypothesis Îxa(Ψt) = Îxa(t). Generalizing over a, we conclude
Î(Ψt) = Î(t).

Using Lemma 5.4 and Theorem 5.7 we easily obtain the following corollary.

Corollary 5.8. Let s be a formula such that FV (s) = {x1, . . . , xn}. We know

s ≈ (x1=̇x1 → · · · → xn=̇xn → ¬̇¬̇Ψs)

We now consider which properties of R are provable in N . In particular, Rσ is provably
symmetric and transitive, i.e., a PER (partial equivalence relation). As we previously men-
tioned, we cannot generally prove Rσ is reflexive in N since N lacks extensionality, but we can
prove that Rσ is reflexive when σ is o or ι. Proofs of the next two lemmas are straightforward
and can be found as Coq proofs in [18, 19].

Lemma 5.9. For each type σ we have `N ∀σxyz.Rσxy → Rσyz → Rσxz. We also have
`N ∀σxy.Rσxy → Rσyx.

Definition 5.10. A type σ is reflexive if `N ∀σx.Rσxx.

Lemma 5.11. The types ι and o are reflexive.
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One can use the model constructed in Example 5.4 of [1] to demonstrate 6`N ∀oox.Rooxx
and 6`N ∀oιx.Roιxx. For more details see [18].

When translating tableau refutations we will sometimes need to consider a term t of type
σ and need to know that Γ `N ¬̇¬̇Rσ(Ψt)(Ψt). One might try to prove this by a simple
induction on t, but such an attempt will fail at the variable case. In general, we cannot prove
Γ `N ¬̇¬̇Rσ x x. However, we are able to prove (see Theorem 5.15) Γ `N ¬̇¬̇Rσ(Ψt)(Ψt)
under the assumption that Γ `N ¬̇¬̇Rσ x x for every x ∈ FV (t). Establishing Theorem 5.15
requires generalizing the result using simultaneous substitutions (Lemma 5.14). In some sense,
Lemma 5.14 and Theorem 5.15 encapsulate a central reason why the translation works.

Lemma 5.12. For each c ∈ C we have `N Rċċ.

Proof. One must consider each case. Details are in [18].

Lemma 5.13. `N ∀fgxy.¬̇¬̇Rστfg → ¬̇¬̇Rσxy → ¬̇¬̇Rτ (fx)(gy)

Proof. This is straightforward using the definition of Rστ .

Lemma 5.14. For all terms t, for all substitutions θ1, θ2 and, for all contexts Γ:

if ∀x ∈ FV (t) : Γ `N R(θ1(x))(θ2(x)) then Γ `N ¬̇¬̇R(θ1(Ψt))(θ2(Ψt))

Proof. We prove this lemma by structural induction on t.

• If t is a variable, then the result holds by the assumption.

• If t is a logical constant, then the result hold by Lemma 5.12.

• Suppose t is t1t2. By the inductive hypothesis we know Γ `N ¬̇¬̇R(θ1(Ψt1))(θ2(Ψt1)) and
Γ `N ¬̇¬̇R(θ1(Ψt2))(θ2(Ψt2)). Hence Γ `N ¬̇¬̇R(θ1(Ψt1t2))(θ2(Ψt1t2)) by Lemma 5.13.

• Suppose t is λx.t′. Renaming variables if necessary, we assume x is chosen to avoid capture
so that θ1(Ψt) = λx.(θ1(Ψt′)) and θ2(Ψt) = λx.(θ2(Ψt′)). It suffices to prove

Γ `N R(θ1(Ψλx.t′))(θ2(Ψλx.t′)).

Let x1 and x2 be distinct fresh variables. Let Γ′ be Γ, (Rx1x2). For each i ∈ {1, 2} let θ′i
be θi, [x := xi]. It is easy to see that we have

∀y ∈ FV (t′) : Γ′ `N R(θ′1(y))(θ′2(y)),

because of the assumption about FV (t) and the fact that FV (t′) ⊆ FV (t) ∪ {x}. We
apply the inductive hypothesis to obtain Γ′ `N ¬̇¬̇Rθ′1(Ψt′)θ′2(Ψt′).

Theorem 5.15. For all terms t, and for all contexts Γ:

if ∀x ∈ FV (t) : Γ `N Rxx then Γ `N ¬̇¬̇R(Ψt)(Ψt)

Proof. Follows directly from Lemma 5.14 by using the identity substitution.

We need to extend Ψ to map branches to contexts. The most obvious extension that just
maps Ψ to all the formulas in the branch to obtain a context does not have the properties we
want. Using the model Mβf constructed in Example 5.4 of [1] one can prove 0N ¬̇¬̇Rooxx.
Consequently, the branch x 6=oo x is T -refutable but ¬̇Ψ(x =oo x) is not N -refutable.

In Definition 5.16 below we define a branch translation Ψ∗A which includes Rxx for each
free variable x in A. Following the definition we give a detailed example to further illustrate
why such extra formulas are desired.
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Definition 5.16 (The Branch Translation Ψ∗). The branch translation Ψ∗ maps a branch to
a context as follows:

Ψ∗A := {Ψs|s ∈ A} ∪ {Rσx x|x : σ and x ∈ FV (A)}

Example 5.17. Consider the formula x 6=oo x. A tableau refutation of this formula starts with
the branch {x 6=oo x}. This branch is directly T -refutable using the Closed6= rule. To mimic
the Closed 6= step in N we need to prove that Ψ∗{x 6=oo x} is N -refutable. If Ψ∗{x 6=oo x} were
defined as simply {Ψ(x 6=oo x)}, then it would not be N -refutable as mentioned above. Our
definition of Ψ∗ maps the branch {x 6=oo x} to the context {¬̇Ryy,Ryy} which is obviously
N -refutable.

Example 5.18. We consider the translation of the formula (λp.¬¬p) = (λp.p) proven in
Example 3.3.

Ψ((λp.¬¬p) = (λp.p)) is Roo(λp.¬̇¬̇p)(λp.p)
is ∀pq : o.(p≡̇q → ¬̇¬̇((¬̇¬̇p)≡̇q)).

A consequence of the final corollary in the next section is that the formula

¬̇¬̇∀pq : o.(p≡̇q → ¬̇¬̇((¬̇¬̇p)≡̇q))

is N -provable.

6 Translating Proofs

We prove that every T -refutable branch A maps to an N -refutable context Ψ∗A (see Theo-
rem 6.14). Implicitly this gives a translation from tableau refutations to natural deduction
refutations. One may attempt to prove this by an induction on the T -refutability of A, but a
problem arises. Namely, a rule such as Forall may introduce a term t with free variables that
prevent us from applying Theorem 5.15. In order to avoid this problem, we define a restricted
tableau calculus Tr.1 We prove that if A is T -refutable, then it is also Tr-refutable. We then
prove that if a branch A is Tr-refutable, then Ψ∗A is N -refutable.

Definition 6.1 (Admissible for a Branch). A term t is admissible for a branch A if for each
variable x ∈ FV (t), either x ∈ FV (A) or x is of type ι or o.

Definition 6.2 (Tableau Calculus Tr). The tableau calculus Tr contains all the tableau rules
that are in T (see Definition 3.1) except for Forall, Func=, and Cut, for which it contains restricted
forms as shown in Figure 3. This also defines the corresponding notion of Tr-refutability.

In Proposition 6.7 below we prove that every T -refutable branch is Tr-refutable. The proof
depends on a few simple lemmas.

Lemma 6.3 (Weakening). If a branch A is Tr-refutable, then every branch A′ such that A ⊆ A′
is Tr-refutable.

Proof. This is proven by induction on Tr-refutability, taking care to rename variables from the
Exists and FuncExt rules so they remain fresh.

1The proof of Lemma 6.11 will show how using Tr resolves the problem.
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Forallr
∀s

ds teβ
t is admissible for the branch Cutr

s ¬s
s is admissible for the branch

Func =r

s1 =στ s2

ds1 t =τ s2 teβ
t is admissible for the branch

Figure 3: Restricted Forall, Func=, and Cut Rules

Lemma 6.4. If ¬∃σx.x = x is in a branch A, then A is Tr-refutable.

Proof. Using DeMorgan∃ it suffices to prove A ∪ {∀σx.x 6= x} is Tr-refutable. The type σ has
the form σ1 · · ·σnα where α ∈ {o, ι}. Choose a variable y of type α and for each i ∈ {1, . . . , n}
choose a variable zi of type σi. Let t be the term λz1 · · · zn.y. We know A∪{(∀σx.x 6= x), t 6= t}
is Tr-refutable using the Closed 6= rule. The term t is of type σ and is admissible for the branch
A ∪ {∀σx.x 6= x} since y has type ι or o. Hence the rule Forallr justifies that A ∪ {∀σx.x 6= x}
is Tr-refutable.

Definition 6.5. Let X be a finite set of variables. We define EX to be the branch⋃
x∈X{(∃x.x = x), (x = x)}.

Lemma 6.6. Let A be a branch and X be a finite set of variables such that X ∩ FV (A) = ∅.
If A ∪ EX is Tr-refutable, then A is Tr-refutable.

Proof. We prove this by induction on the number of variables in X. If X is empty, then the
result is trivial since E∅ is empty. Suppose X is Y ∪ {x} where x /∈ Y . In this case EX is
EY ∪ {(∃x.x = x), (x = x)}. Since x is not free in A ∪ EY ∪ {(∃x.x = x)} and A ∪ EX is
Tr-refutable, we know A ∪ EY ∪ {∃x.x = x} is Tr-refutable via the Exists rule. By Lemma 6.4
we also know A ∪ EY ∪ {¬∃x.x = x} is Tr-refutable. By Cutr we know A ∪ EY is Tr-refutable.
Finally, we conclude A is Tr-refutable using the inductive hypothesis.

Now we are in a position to prove that if a branch is T -refutable, then it is Tr-refutable.
The proof implicitly describes an algorithm for modifying a tableau refutation so that it only
uses the restricted rules.

Proposition 6.7. If a branch A is T -refutable, then A is Tr-refutable.

Proof. The proof is by induction on T -refutability. Suppose T -refutability of A follows from
the step 〈A1, . . . , An, A〉 in T where Ai is T -refutable for each i ∈ {1, . . . , n}. By the inductive
hypothesis, we know Ai is Tr-refutable for each i ∈ {1, . . . , n}. If 〈A1, . . . , An, A〉 is a step in
Tr, then we are done. Otherwise, 〈A1, . . . , An, A〉 must be a step in one of the Forall, Func=,
or Cut rules and the new term used in the rule contains free variables not in A. We consider
the Forall rule; the others are similar. Suppose ∀σs ∈ A, n = 1 and A1 is A, dsteβ . Let X be
FV (t) \ FV (A). Clearly X is finite and X ∩ FV (A) = ∅. By weakening (Lemma 6.3) and
Tr-refutability of A1, we know A, dsteβ ∪ EX is Tr-refutable. Clearly every free variable of t is
free in A, dsteβ ∪ EX . Hence, we can use the Forallr rule to conclude A∪ EX is Tr-refutable. By
Lemma 6.6 we know A is Tr-refutable.

Corollary 6.8. The tableau calculus Tr is complete.

Proof. This is a direct consequence of Proposition 6.7 and the completeness of T .
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We can now turn to the main part of the translation from restricted tableau refutations to
natural deduction refutations. We prove that if A is Tr-refutable, then Ψ∗A is N -refutable. We
can reduce this to a local property – the property of a rule being respected.

Definition 6.9. We say a rule (a set of steps) is respected if the following holds for every step
〈A1, . . . , An, A〉 in the rule: If Ψ∗Ai `N ⊥̇ holds for all i ∈ {1, . . . , n}, then Ψ∗A `N ⊥̇ holds.

We prove that every rule defining Tr is respected. The fact that the rules are respected
follows from the N -provability of certain formulas. We prove this for the rules Exists and Forallr
in some detail. For the remaining rules we mainly give corresponding N -provable formulas.

Lemma 6.10. The Exists rule is respected.

Proof. Let s be a term, A be a branch containing ∃σs, and x be a fresh variable.
Assume that Ψ∗(A ∪ {dsxeβ}) `N ⊥̇. We want to show that Ψ∗A `N ⊥̇. Note that if y occurs
free in dsxeβ then

Ψ∗(A ∪ {dsxeβ}) = Ψ∗(A) ∪ {Ψ(dsxeβ)} ∪ {Rxx},

otherwise
Ψ∗(A ∪ {dsxeβ}) = Ψ∗(A) ∪ {Ψ(dsxeβ)}.

In either case we know Ψ∗(A)∪ {Ψ(dsxeβ)} ∪ {Rxx} `N ⊥̇ by assumption and possibly the wk
rule. By Lemma 5.3 we know Ψ(dsxeβ) is β-equivalent to Ψ(sx), i.e., (Ψs)x. Using → I and β
we have Ψ∗A `N Rσxx→ (Ψs)x→ ⊥̇. Since x /∈ FV (A) we can use ∀I to obtain

Ψ∗A `N ∀σx.Rσxx→ (Ψs)x→ ⊥̇.

Since ∃s ∈ A, we know Ψ(∃s) ∈ Ψ∗A and thus Ψ∗A `N ∃̇σ(Ψs) by the hy rule. The following
is easy to verify (for a Coq proof term see [18, 19]) :

`N ∀σof.(∀σx.Rσxx→ fx→ ⊥̇)→ (∃̇σf)→ ⊥̇.

Hence we have Ψ∗A `N ⊥̇ as desired.

The argument for the Forallr rule is similar. In this case we must make use of Theorem 5.15.

Lemma 6.11. The Forallr rule is respected.

Proof. Let s be a term, A be a branch containing ∀σs, and t be a term admissible for A. Note
that

Ψ∗(A ∪ {dsteβ}) ⊆ Ψ∗(A) ∪ {Ψ(dsteβ)} ∪ {Rxx|x ∈ FV (t)}.

By assumption and possibly the wk rule we know

Ψ∗(A) ∪ {Ψ(dsteβ)} ∪ {Rxx|x ∈ FV (t)} `N ⊥̇.

We know t is admissible. Thus for each x ∈ FV (t) either x ∈ FV (A) or x has the reflexive
type ι or o. Hence for each x ∈ FV (t) we know Ψ∗A `N Rxx. Consequently, we have
Ψ∗(A) ∪ {Ψ(dsteβ)} `N ⊥̇. Using Lemma 5.3 we know

Ψ∗A `N (Ψs)(Ψt)→ ⊥̇.

Applying Theorem 5.15 we also have

Ψ∗A `N ¬̇¬̇Rσ(Ψt)(Ψt).
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Closed: ∀op.p→ (¬̇p)→ ⊥̇
Closed⊥: ⊥̇ → ⊥̇
Closed¬>: (¬̇>̇)→ ⊥̇
Closed 6=: ∀σx.¬̇¬̇(Rσxx)→ ¬̇(Rσxx)→ ⊥̇
ClosedSym: ∀σxy.(Rσxy)→ ¬̇(Rσyx)→ ⊥̇
Cutr: ∀op.(p→ ⊥̇)→ ((¬̇p)→ ⊥̇)→ ⊥̇
DNeg: ∀op.(p→ ⊥̇)→ (¬̇¬̇p)→ ⊥̇
And: ∀p q.(p→ q → ⊥̇)→ (p∧̇q)→ ⊥̇
Or: ∀p q.(p→ ⊥̇)→ (q → ⊥̇)→ (p∨̇q)→ ⊥̇
Imp: ∀op q.((¬̇p)→ ⊥̇)→ (q → ⊥̇)→ (p→ q)→ ⊥̇
NegAnd: ∀p q.((¬̇p)→ ⊥̇)→ ((¬̇q)→ ⊥̇)→ ¬̇(p∧̇q)→ ⊥̇
NegOr: ∀p q.((¬̇p)→ (¬̇q)→ ⊥̇)→ ¬̇(p∨̇q)→ ⊥̇
NegImp: ∀op q.(p→ (¬̇q)→ ⊥̇)→ (¬̇(p→ q))→ ⊥̇
DeMorgan∀: ∀σ→of.((∃̇σ(λx.¬̇fx))→ ⊥̇)→ (¬̇(∀̇σf))→ ⊥̇
DeMorgan∃: ∀σ→of.((∀̇σ(λx.¬̇fx))→ ⊥̇)→ (¬̇(∃̇σf))→ ⊥̇
Bool=: ∀opq.(p→ q → ⊥̇)→ ((¬̇p)→ (¬̇q)→ ⊥̇)→ (Ropq)→ ⊥̇
BoolExt: ∀opq.(p→ (¬̇q)→ ⊥̇)→ (q → (¬̇p)→ ⊥̇)→ ¬̇(Ropq)→ ⊥̇
FuncExt: ∀στkh.¬̇¬̇(Rστhh)→ (∀σx.(Rσxx)→ ¬̇(Rτ (kx)(hx))→ ⊥̇)→ ¬̇(Rστkh)→ ⊥̇
Func=r: ∀στkh.∀σt.¬̇¬̇(Rσtt)→ ((Rτ (kt)(ht))→ ⊥̇)→ (Rστkh)→ ⊥̇

Mat: ∀σ1σ2...σnop.∀σ1x1y1.∀σ2x2y2. . . . .∀σnxnyn.¬̇¬̇(Rσ1σ2...σnopp)→
(¬̇(Rσ1x1y1)→ ⊥̇)→ (¬̇(Rσ2x2y2)→ ⊥̇)→ · · · → (¬̇(Rσnxnyn)→ ⊥̇)→

px1x2 . . . xn → ¬̇(py1y2 . . . yn)→ ⊥̇

Dec: ∀σ1σ2...σnιh.∀σ1x1y1.∀σ2x2y2. . . . .∀σnxnyn.¬̇¬̇(Rσ1σ2...σnιhh)→
(¬̇(Rσ1x1y1)→ ⊥̇)→ (¬̇(Rσ2x2y2)→ ⊥̇)→ · · · → (¬̇(Rσnxnyn)→ ⊥̇)→

¬̇(Rι(hx1x2 . . . xn)(hy1y2 . . . yn))→ ⊥̇

Con: ∀ιxyzw.(¬̇(Rιxz)→ ¬̇(Rιyz)→ ⊥̇)→ (¬̇(Rιxw)→ ¬̇(Rιyw)→ ⊥̇)→
(Rιxy)→ ¬̇(Rιzw)→ ⊥̇

Figure 4: Formulas provable in N used in the proof of Lemma 6.12

Since ∀s ∈ A, we know Ψ(∀s) ∈ Ψ∗A thus Ψ∗A `N ∀̇σ(Ψs) by the hy rule. The following is
easy to verify (for a Coq proof term see [18, 19]) :

`N ∀σof.∀σx.¬̇¬̇Rσxx→ (fx→ ⊥̇)→ (∀̇σf)→ ⊥̇

Hence we have Ψ∗A `N ⊥̇ as desired.

The proofs of Lemmas 6.10 and 6.11 illustrate how one proves that a rule is respected. For
the remaining rules we will simply indicate the formulas whose N -provability implies the rule
is respected.

Lemma 6.12. All of the rules in Tr are respected.

Proof. We have already proven this for Exist in Lemma 6.10 and Forallr in Lemma 6.11. For the
remaining rules one can argue similarly making use of formulas which are provable in N and
correspond to the structure of the rule. We display formulas corresponding to the remaining
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rules in Figure 4. Proof terms (in Coq) for these formulas are available in [18, 19] with the
exception of the lemmas for Mat and Dec. The lemmas for Mat and Dec have been formulated
and proven in Coq for the cases with 1 and 2 arguments.

Proposition 6.13. If A is Tr-refutable, then Ψ∗A is N -refutable.

Proof. The proof is by an easy induction on the Tr-refutation using Lemma 6.12 at each step.

We finally conclude similar results for T -refutability.
Theorem 6.14. If A is T -refutable, then Ψ∗A is N -refutable. Also, if s is a ground formula
and s is T -refutable, then Ψs is N -refutable.

Proof. This follows from Propositions 6.7 and 6.13.

We can also conclude the following using Theorem 6.14 and Corollary 5.8.

Corollary 6.15. Let s be a formula such that FV (s) = {x1, . . . , xn}. If s is T -provable, then
s ≈ (x1=̇x1 → · · · → xn=̇xn → ¬̇¬̇Ψs) and (x1=̇x1 → · · · → xn=̇xn → ¬̇¬̇Ψs) is N -provable.

7 Conclusion
Given a higher-order formula s and a classical extensional tableau proof of s, our aim was to
find a formula s′ that is semantically equivalent to s and construct an intuitionistic intentional
natural deduction proof of s′. We defined two tableau calculi T and Tr and proved that
whenever a branch is T -refutable, it is also Tr-refutable (Proposition 6.7). Moreover, we gave a
translation Ψ and proved that it maps higher-order formulas to semantically equivalent formulas
in the sense of Henkin semantics (Theorem 5.7). Furthermore, we defined a branch translation
Ψ∗ that maps branches to contexts and proved that for any Tr-refutable branch A, Ψ∗A is
N -refutable (Proposition 6.13). We concluded that for any T -provable formula s with free
variables x1, . . . , xn, the formula

Ψ(x1 = x1)→ · · · → Ψ(xn = xn)→ Ψ(¬¬s)

is semantically equivalent to s and isN -provable (Corollary 6.15). Hence for any ground formula
s that is T -provable, Ψ(¬¬s) is N -provable.

Several issues are still open for future work. One may want to determine the precise re-
lationship between our translation Ψ and the translation given by Gandy [9]. One could also
investigate to what extent the translation can be extended to handle a choice operator.

A choice operator is a logical constant εσ : (σo)σ satisfying ∀p : σo.∀x : σ.px → p(εσp).
Such operators are supported by Satallax. To extend the translation in this paper to handle εσ
one would need to find a term Ψεσ satisfying

`N Ψ(¬¬(εσ = εσ))

and
`N Ψ(¬¬∀p : σo.∀x : σ.px→ p(εσp)).

This will not generally be possible, but might be possible in special situations. For example,
one might restrict to having the choice operator only at the base type ι and assume that the
base type ι is finite.

On the more practical side, one can implement a mapping from tableau proofs to natural
deduction proof terms. This would enable proof checking the tableau proofs that Satallax
outputs using Coq. This implementation could make use of the Coq lemmas that are provided
in [18, 19].
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Abstract

The λΠ-calculus modulo is a proof language that has been proposed as a proof standard
for (re-)checking and interoperability. Resolution and superposition are proof-search meth-
ods that are used in state-of-the-art first-order automated theorem provers. We provide a
shallow embedding of resolution and superposition proofs in the λΠ-calculus modulo, thus
offering a way to check these proofs in a trusted setting, and to combine them with other
proofs. We implement this embedding as a back-end of the prover iProver Modulo.

Introduction

Proof assistants have now achieved a quite high degree of maturity, and are able to certify rather
big projects. One can for instance cite the certified compiler CompCert by Coq [14], or the seL4
micro-kernel specification in Isabelle/HOL [12]. Nevertheless, some of the current challenges
concerning proof assistants are to overcome their lack of automation, and to help them cooperate
better to share proof developments. A way of making proof assistants more automated is to
delegate proof obligation to external automated theorem provers. This is for instance what the
Sledgehammer [3] subsystem of Isabelle/HOL does, which passes on proof obligations to first-
order automated theorem provers such as E or SPASS, or SMT solvers like CVC3, Yices or Z3.
To keep confidence in the whole proof, the question arises of the combination of the proof found
by the automated prover and the rest of the proof-assistant development. For Sledgehammer,
this is done by reproving the proof obligation with an Isabelle/HOL tactic, namely Metis, only
keeping the information of which lemmas were needed by the automated prover to find the proof
and searching the proof again from scratch using only these lemmas. Of course, it would be
more interesting to directly retrieve the proof of the automated prover and to translate it into
an Isabelle/HOL proof. However, automated theorem do not often output proofs, and when
they do, it is not trivial to translate them into a proof assistant format. Furthermore, such a
translation would have to be performed for each pair automated prover/proof assistant.

Another solution would be to have a single, universal proof format in which every part of a
big proof would be translated and combined. An analogy can be drawn with the interoperability
of programming languages, that are translated into an assembly language in which the linking
is performed. Ideally, this universal standard for proofs should have the following properties:
It should be simple, so that it should be easy to write a proof checker in which one could
therefore have a high degree of confidence. Moreover, it should be expressive enough to be able
to embed the basic logics of all theorem provers and proof assistants available. To help proof
recombination, these embeddings should also be shallow. Although there is to the author’s

∗This work is supported by the French ANR project BWare.
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Figure 1: Dedukti as a universal proof language

knowledge no precise definition of what a shallow embedding is, it can be distinguished from
a deep embedding by the fact that it reuse the features of the target language. For instance,
connectives are translated as connectives, and not as constants, and the same for variables,
binders, computations, etc. Now suppose that we have two input proof languages A and B,
with respective embeddings || · ||A and || · ||B into our target standard. We would like to combine
a proof of P ⇒ Q in A and a proof of P in B to get a proof of Q. Using deep embeddings,
it would be hard to relate the translation ||P ⇒ Q||A and ||P ||B , that could a priori have
nothing in common. On the contrary, using a shallow embedding, ||P ⇒ Q||A would be equal
to ||P ||A → ||Q||A, where→ is the implication of the target language. Therefore, it only remains
to relate ||P ||A and ||P ||B which should be easier.

The λΠ-calculus modulo [7, 5] is a proposed standard for proof interoperability. It is rela-
tively simple, and an already efficient interpreter for it takes only a few hundred lines of code.
The λΠ-calculus modulo is an extension of the λΠ-calculus, a proof language for minimal first-
order logic also known as LF, λP , etc [11]. In the λΠ-calculus modulo, it is possible to have
shallow embeddings of higher-order logics, which is not possible in pure λΠ-calculus. Cousineau
and Dowek [7] have shown that any pure type system can be shallowly embedded into the λΠ-
calculus modulo, including for instance the Calculus of Construction which serves as basis of
the proof assistant Coq. Assaf [1] has proved that simple type theory (a.k.a. higher-order logic),
that is the foundation of proof assistants of the HOL family, can also be translated in the λΠ-
calculus modulo in a shallow way. The λΠ-calculus modulo seems therefore a good candidate
for a universal standard for proofs.

Following this idea, a language called Dedukti1 was designed to declare proofs of the λΠ-
calculus modulo, and a proof checker for this language, namely dkparse, was implemented.
dkparse is available at https://www.rocq.inria.fr/deducteam/Dedukti/ . Tools related
to Dedukti also include a translator of Coq proofs to Dedukti, namely CoqInE [4, http://

www.ensiie.fr/~guillaume.burel/blackandwhite_coqInE.html.en], and a translator from
OpenTheory proofs (a standard for proofs of the HOL family) to Dedukti, namely Holide [1,
https://www.rocq.inria.fr/deducteam/Holide/]. There exists also a prototype of a back-
end of the certifying programming environment FoCaLiZe to Dedukti, namely Focalide [https:
//www.rocq.inria.fr/deducteam/Focalide/]. Figure 1 summarizes the current tools avail-
able around Dedukti.

Current state-of-the-art automated theorem provers for first-order logic are based on the
superposition calculus [2], which can be seen as an extension of the resolution method [17].
This includes for instance the provers Vampire [16], SPASS [20] or E [18]. To be able to

1“Dedukti” means “to deduce” in Esperanto.
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Empty
∅ WF

Γ WF Γ ` A : s x 6∈ Γ
Declaration s ∈ {Type,Kind}

Γ, x : A WF

Γ WF
Sort

Γ ` Type : Kind
Γ WF x : A ∈ Γ

Variable
Γ ` x : A

Γ ` A : Type Γ, x : A ` B : s
Product s ∈ {Type,Kind}

Γ ` Πx : A. B : s

Γ ` T : Πx : A. B Γ ` U : AApplication
Γ ` (T U) : {U/x}B

Γ ` A : Type Γ, x : A ` B : s Γ, x : A ` T : B
Abstraction s ∈ {Type,Kind}

Γ ` λx : A. T : Πx : A. B

Γ ` T : A Γ ` A : s Γ ` B : s
Conversion s ∈ {Type,Kind} and A ≡β B

Γ ` T : B

Figure 2: Type System for the λΠ-calculus

combine proofs from these provers with the developments of a proof assistant, we therefore
want to translate them in the λΠ-calculus in a shallow manner. In this paper, we show how
this is possible. However, note that we only show how to translate resolution and superposition
proofs, and not how the translate the transformation of the original problem into clausal normal
form. As remarked in Section 3.3, this means that we only need intuitionistic logic. We also
present an implementation of this translation in the prover iProver Modulo, which is therefore
able to produce proofs in Dedukti’s format.

In next section, we present formally the λΠ-calculus modulo. In Section 2, we describe the
shallow embedding of first-order logic with equality in the λΠ-calculus modulo. Section 3 details
the translation of resolution and superposition proofs. Its implementation in iProver Modulo is
outlined in Section 4.

1 The λΠ-Calculus Modulo

The λΠ-calculus modulo [7, 5] is an extension of the λΠ-calculus, that can be seen as a proof
language for minimal first-order logic and that is also known as LF, λP , etc [11]. The λΠ-
calculus is based on the Curry-Howard-DeBruijn correspondence, which means that proofs are
represented by λ-terms and formulas by their types, and it can be seen as one of the simplest
coherent Pure Type System, which means that there is no syntactic distinction between terms
and types.

Pre-terms in the λΠ-calculus are defined by the grammar

M,N,A,B ::= x | λx : A. M | Πx : A. B | M N | Type | Kind

where x is an element of an infinite set of variables. A context is a set of couples of variables
and pre-terms. A pre-term will be called a term when it is well-typed in the type system of
Figure 2, where the judgment “Γ WF” means that a context Γ is well-formed, and the judgment
Γ ` T : A must be read as “T has type A in the context Γ”. Remark that contrarily to other
versions of LF, η-conversion is not considered.
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In the Conversion rule of the λΠ-calculus, A ≡β B means that A and B are β-convertible.
In the λΠ-calculus modulo, this conversion rule is extended by well-typed rewriting rules:

Definition 1 (Rewriting rule). A rewriting rule is a quadruple ∆ : · l ↪→A r composed of a
context ∆ and three terms l, r and A. It is well typed in a context Γ if:

• the context Γ,∆ is well-formed;

• Γ,∆ ` l : A and Γ,∆ ` r : A are derivable judgments.

Intuitively, ∆ contains the type of the free variables of l and r, and A ensures that l and
r have the same type, which warrants the preservation of types through rewriting. In the
rewriting rules that we use in the following, ∆ and A can often be inferred from l and r, in
which case we will omit them and simply write l ↪→ r. As usual, a term s is rewritten by a
rewriting rule l ↪→ r to a term t if there exists a substitution δ such that a subterm of s at a
position p is equal to δ(l) and t is equal to s where the subterm at position p is replaced by
δ(r). Note that the domain of δ is the set of variables in the context ∆ of the rule.

In the λΠ-calculus modulo, contexts can contain rewriting rules, and the type system of the
λΠ-calculus is therefore extended by a new rule adding a well-typed rewriting rule in a context:

Γ,∆ ` l : A Γ,∆ ` r : A
Rewrite

Γ, (∆ :· l ↪→A r) WF

Given a context Γ, we let ≡Γ be the smallest congruence generated by β-reduction and the
rewriting rules of Γ. The conversion rule of the λΠ-calculus is then replaced by the following
one:

Γ ` T : A Γ ` A : s Γ ` B : s
Conversion s ∈ {Type,Kind} and A ≡Γ B

Γ ` T : B

The case of the λΠ-calculus without modulo is regained when the contexts do not contain any
rewriting rules.

A file in Dedukti’s format is a declaration of a context of the λΠ-calculus modulo. Syn-
tactically, λx : a. t and Πx : a. b are respectively written x : a => t and x : a -> b, and
a rewriting rule ∆ : · l ↪→ r is declared as [∆] l --> r. The tool dkparse checks that such
a context is well-formed, in particular it checks that rewriting rules are well-typed. Dedukti’s
syntax also allows the declaration of constant definitions, with the syntax c : a := t. It can
be seen as the combination of a declaration c : a and a rewriting rule [] c --> t. However, a
definition is not expanded, and it is safe in the sense that it does not change the theory defined
by the context. Contrarily, if a constant of type B is declared, but it is not rewritten, this can
be seen as assuming the axiom B. For a function defined by means of rewriting rules, such as
proof, only an exhaustiveness checker can tell us whether the theory changes or not.

Note that dkparse assumes that the given rewriting rules are strongly terminating and con-
fluent. The philosophy behind Dedukti’s proof environment is indeed to have several tools that
are each specialized in a particular task. dkparse is only concerned with type checking, whereas
other (presently nonexistent) tools should check the convergence of the rewriting rules or the
exhaustiveness of rewriting-defined functions.

2 Translating First-Order Logic to λΠ-Calculus Modulo

2.1 Deep and Shallow Embedding of First-Order Logic

This section is based on Dorra’s work [8], which itself borrows ideas from the embedding of
pure type systems in the λΠ-calculus modulo [7].
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We use standard definitions for terms, predicates, first-order propositions (with connectives
⊥,¬,⇒,∧,∨ and quantifiers ∀,∃) as can be found in [10].

The translation of first-order logic in the λΠ-calculus modulo consists of two embeddings,
one deep | · | and one shallow || · ||, that are linked by a decoding function proof that is defined
by means of rewriting rules.

To define the deep embedding, we first define two constants ι and o of type Type that contain
respectively the translation of terms and propositions. We add constants ⊥̇ : o, ¬̇ : o → o,
⇒̇ : o → o → o, ∨̇ : o → o → o, ∧̇ : o → o → o, ∀̇ : (ι → o) → o, ∃̇ : (ι → o) → o for
the translation of connectives and quantifiers. For each function symbol f of arity n we add
a constant f : ι→ · · · → ι→︸ ︷︷ ︸

n times

ι, and for each predicate symbol p of arity n we add a constant

ṗ : ι→ · · · → ι→︸ ︷︷ ︸
n times

o. In a context X1 : ι, . . . ,Xm : ι where X1, . . . , Xm are the free variables of

a formula A, we can then translate formulas by induction:

|X| = X (if X is a variable) |f(t1, . . . , tn)| = f |t1| · · · |tn|
|p(t1, . . . , tn)| = ṗ |t1| · · · |tn| |⊥| = ⊥̇

|¬A| = ¬̇ |A| |A⇒ B| = ⇒̇ |A| |B|
|A ∨B| = ∨̇ |A| |B| |A ∧B| = ∧̇ |A| |B|
|∀X.A| = ∀̇ (λX : ι. |A|) |∃X.A| = ∃̇ (λX : ι. |A|)

The shallow embedding is defined by ||A|| = proof |A| where proof is a decoding function
of type o → Type. What makes this translation shallow is the definition of the decoding
function by means of rewriting rules, that relates the deep embedding of connectives with their
counterparts in λΠ-calculus modulo. ⇒̇ is for instance related with →, ∀̇ with Π, whereas the
other connectives are related with their impredicative encoding in λΠ, to use the connectors
of the λΠ-calculus; this makes them more shallow than using a translation to a constant. We
can add a constant p of type ι→ · · · → ι→︸ ︷︷ ︸

n times

Type to get a shallow embedding of each predicate

symbol p whose arity is n. The rules defining proof are therefore:

proof (ṗ t1 · · · tn) ↪→ p t1 · · · tn
proof ⊥̇ ↪→ Π [ : o. proof [

proof (¬̇ A) ↪→ Π [ : o. proof A→ proof [

proof (⇒̇ A B) ↪→ proof A→ proof B

proof (∨̇ A B) ↪→ Π [ : o. (proofA→ proof [)→ (proofB → proof [)→ proof [

proof (∧̇ A B) ↪→ Π [ : o. (proofA→ proofB → proof [)→ proof [

proof (∀̇ f) ↪→ ΠX : ι. proof (f X)

proof (∃̇ f) ↪→ Π [ : o. (ΠX : ι. proof (f X)→ proof [)→ proof [

where [ is a variable that does not appear in any first-order formula to avoid capture. Note that
the rules for proof (∀̇ f) and proof (∃̇ f) do not introduce a fresh variable, since X is bound by
Π. Of course, when applying such rule to a term t containing the variable X, substituting f by
t in the right-hand side should not capture the X bound by Π.

It can be proved that this translation is sound, that is that if a formula A is provable in
intuitionistic first-order logic, then there exists a term of type ||A|| in the λΠ-calculus modulo
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with the environment described above. It is also a conservative extension of intuitionistic first-
order logic, in the sense that for all first-order formula A, if the type ||A|| is inhabited in the
environment defined above, then A is provable in intuitionistic first-order logic.

Resolution and superposition are proof-search methods for first-order logic. They manipu-
late clauses. A literal is either an atomic formula (i.e. a predicate symbol applied to as many
terms as its arity) or the negation of an atomic formula. A clause is a list of literals L1; · · · ;Lm.
It corresponds to the formula ∀X1. . . . ∀Xn. L1 ∨ · · · ∨ Lm where X1, . . . , Xn are the free vari-
ables of L1, . . . , Lm. To ease the translation of resolution and superposition proofs, we translate
clauses directly into a shallow embedding: A clause L1; · · · ;Lm is translated as

||L1; · · · ;Lm|| = ΠX1 : ι. . . .ΠXn : ι. Π [ : o. [[L1]][ → · · · → [[Lm]][ → proof [

where X1, . . . , Xn are the free variables in the clause and [[P ]][ = ||P || → proof [ for a positive
literal P and [[¬P ]][ = (||P || → proof [)→ proof [ for a negative literal ¬P . The empty clause
is therefore translated as Π [ : o. proof [, which is also the translation of ⊥ as expected. It
can be shown that the translation of a clause L1; · · · ;Lm is implied by the translation of the
corresponding formula ∀X1. . . . ∀Xn. L1 ∨ · · · ∨ Lm. To get the other direction, one needs a
classical axiom, for instance in the case of a clause containing only one literal.

2.2 Equality

The equality predicate ' is so pervasive that it is often useful to have a specific treatment of
it. For instance, the resolution method was extended into the superposition method to handle
the equality better. To have a shallower translation of first-order logic with equality in the
λΠ-calculus modulo, it is possible to define the equality predicate using Leibniz law.

': ι→ ι→ Type := λx : ι. λy : ι. Πp : (ι→ o). proof (p x)→ proof (p y)

Usual properties of equality can then be proved, so that we do not need to add them as
axioms. For instance, reflexivity is proved by:

refl : Πx : ι. ' x x := λx : ι. λp : ι→ o. λt : proof (p x). t

Commutativity has the following proof:

comm : Πx : ι. Πy : ι. ' x y → ' y x

:= λx : ι. λy : ι. λe :' x y. λp : ι→ o. e (λz : ι. ⇒̇ (p z) (p x)) (λt : proof (p x). t)

3 Translating resolution and superposition proofs

3.1 Resolution

A derivation in resolution [17] tries to refute a set of clauses by inferring new clauses by means
of the following two inference rules, until the empty clause is derived.

P ;C ¬Q;D
Resolution σ = mgu(P,Q)

σ(C;D)

L;K;C
Factoring σ = mgu(L,K)

σ(L;C)

To translate resolution proofs, we decompose these rules into two steps: one instantiation step
and one propositional step:
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C
Instantiation

σ(C)

P ;C ¬P ;D
Identical Resolution

C;D

L;L;C
Identical Factoring

L;C

Of course these rules are applied modulo commutativity of ;, which means that P or L is not
necessarily the first literal of the clauses.

Given some input clauses C1, . . . , Ck, an identical-resolution derivation is a sequence of
clauses C1, . . . , Ck, Ck+1, . . . , Cn such that each clauses Ci for i > k is inferred from clauses
among C1, . . . , Ci−1 using one the three rules above. The input set of clauses is shown unsat-
isfiable if Cn is the empty clause. To translate such a derivation in the λΠ-calculus modulo,
we first declare a constant ci of type ||Ci|| for each 1 ≤ i ≤ k. Then, for each k < j ≤ n, we
define a constant cj in terms of the previously declared or defined constants cl where 1 ≤ l < j.
The definitions depend on the rule used to infer Cj , and they use the constants corresponding
to the clauses from which Cj is inferred. As mentioned above, definitions do not change the
logical context of the proof. At the end, since all other constants are defined, the only axioms
are ||Ci|| for 1 ≤ i ≤ k, and the translation of the empty clause, that is ∀[. proof [ is proved
from these axioms. This shows that the set of input clauses is indeed refuted.

In contrast to other encodings of logical calculi in the λΠ-calculus, such as Pfenning sequent
calculus [15] or some developments available on Logosphere (http://www.logosphere.org/),
our embedding is shallow in the sense that a constant is not added for each inference rules, but
resolution proofs are translated directly as terms of the λΠ-calculus modulo.

To understand the translation of the inference rules, one needs to look at the computational
content of terms whose type is the translation of a clause L1; · · · ;Lm: intuitively, they are
functions that take as arguments n first-order terms to instantiate the free variables of the
clause, a proposition [ to be proved, m functions that given a term of type ||Li|| return a proof
of [, and that return a proof of [.

The translation of the instantiation rule is relatively easy, since one just needs to apply the
image of the variable to the original clause, and to abstract over the new free variables:

L1; · · · ;Lm
Instantiation

σ(L1); · · · ;σ(Lm)

c : Πx1 : ι. . . .Πxn : ι. Π [ : o. [[L1]][ → · · · → [[Lm]][ → proof [

d : Πy1 : ι. . . .Πyk : ι. Π [ : o. [[σ(L1)]][ → · · · → [[σ(Lm)]][ → proof [

:= λy1 : ι. . . . λyk : ι. c (σ(x1)) · · · (σ(xn))

The translation of factoring is also rather simple, since we just need to merge two literals:
L1; · · · ;Li;Li; · · · ;LmIdentical Factoring
L1; · · · ;Li; · · · ;Lm

c : Πx1 : ι. . . .Πxn : ι. Π [ : o. [[L1]][ → · · · → [[Li]][ → [[Li]][ → · · · → [[Lm]][ → proof [

d : Πx1 : ι. . . .Πxn : ι. Π [ : o. [[L1]][ → · · · → [[Li]][ → · · · → [[Lm]][ → proof [

:= λx1 : ι. . . . λxn : ι. λ[ : o. λl1 : [[L1]][. · · · λlm : [[Lm]][. c x1 · · · xn [ l1 · · · li li · · · lm

To translate a resolution step, we can use the atom P and its negation to get the proof of
[. More precisely, we can use as term of type [[P ]][ = ||P || → proof [ in the translation of the
clause L1; · · · ;P ; · · · ;Lm the function that take a term tp of type ||P || and that returns the
clause M1; · · · ;¬P · · · ;Ml where the term for type [[¬P ]][ = (||P || → proof [)→ proof [ is the
function that take a term tnp of type ||P || → proof [ and return tnp tp, which is of type proof [.

L1; · · · ;Li−1;P ;Li; · · · ;Lm M1; · · · ;Mh−1;¬P ;Mh; · · · ;Ml
Identical Resolution

L1; · · · ;Lm;M1; · · · ;Ml
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c1 : Πx1 : ι. . . .Πxn : ι. Π [ : o. [[L1]][ → · · · → [[P ]][ → · · · → [[Lm]][ → proof [

c2 : Πy1 : ι. . . .Πyk : ι. Π [ : o. [[M1]][ → · · · → [[¬P ]][ → · · · → [[Ml]][ → proof [

d : Πz1 : ι. . . .Πzj : ι. Π [ : o. [[L1]][ → · · · → [[Lm]][ → [[M1]][ → · · · → [[Ml]][ → proof [

:= λz1 : ι. . . . λzj : ι. λ[ : o. λl1 : [[L1]][. · · · λlm : [[Lm]][.

λm1 : [[M1]][. · · · λml : [[Ml]][.

c1 x1 · · · xn [ l1 · · · li−1

(λtp : ||P ||. c2 y1 · · · yk [ m1 · · · mh−1

(λtnp : (||P || → proof [). tnp tp) mh · · · ml) li · · · lm

Example 1. We want to refute the set of two clauses p(X,Y ); p(X, a) and ¬p(b, Y ). A possible
derivation of the empty clause in resolution is the following:

1 p(X,Y ); p(X, a)
2 ¬p(b, Y )
3 p(X, a) applying Factoring on 1
4 ut applying Resolution on 2 and 3

If we decompose the instantiations from the inferences, we get
1 p(X,Y ); p(X, a)
2 ¬p(b, Y )
3 p(X, a); p(X, a) applying Instantiation on 1 with σ = {Y 7→ a}
4 p(X, a) applying Identical Factoring on 3
5 p(b, a) applying Instantiation on 4 with σ = {X 7→ b}
6 ¬p(b, a) applying Instantiation on 2 with σ = {Y 7→ a}
7 ut applying Identical Resolution on 5 and 6

We have a binary predicate symbol p and two constants a and b. The context of the
translation in the λΠ-calculus modulo is therefore

ι : Type

o : Type

proof : o→ Type

ṗ : ι→ ι→ o

p : ι→ ι→ Type

proof (ṗ x y) ↪→ p x y

a : ι

b : ι

We first declare the two input clauses:

c1 : ΠX : ι. ΠY : ι. Π [ : o. (p X Y → proof [)→ (p X a→ proof [)→ proof [

c2 : ΠY : ι. Π [ : o. ((p b Y → proof [)→ proof [)→ proof [

We then declare the inferred clauses and define them as explained above:

c3 : ΠX : ι. Π [ : o. (p X a→ proof [)→ (p X a→ proof [)→ proof [ := λX : ι. c1 X a

c4 : ΠX : ι. Π [ : o. (p X a→ proof [)→ proof [

50



A Shallow Embedding of Resolution and Superposition Proofs into the λΠ-Calculus Modulo Burel

:= λX : ι. λ[ : o. λl : (p X a→ proof [). c3 X [ l l

c5 : Π [ : o. (p b a→ proof [)→ proof [ := c4 b

c6 : Π [ : o. ((p b a→ proof [)→ proof [)→ proof [ := c2 a

c7 : Π [ : o. proof [ := λ[ : o. c5 [ (λtp : p b a. c6 [ (λtnp : p b a→ proof [. tnp tp))

3.2 Superposition

Superposition can be seen as an extension of resolution to handle equality better. Superposition
primarily uses four inference rules (u 6' v denotes ¬(u ' v)):

u 6' v;R
Equality Resolution σ = mgu(u, v)

σ(R)

s ' t;S u 6' v;R
Negative Superposition a

σ(u[t]p 6' v;S;R)

s ' t;S u ' v;R
Positive Superposition a

σ(u[t]p ' v;S;R)

s ' t;u ' v;R
Equality Factoring σ = mgu(s, u)

σ(t 6' v;u ' v;R)

aσ = mgu(u|p, s)

These rules are given with many conditions that restrict the cases when they can be applied.
That makes the superposition calculus usable in practice in contrast to former paramodulation-
based methods. Since we are only concerned in translating a proof, not finding one, these
restrictions do not concern us.

Also, superposition-based provers use simplification rules, in which a set of clauses is replaced
by another set of clauses. This too is not problematic for us since these simplification rules
can in most of the cases be decomposed into the application of the four basic inference rules
followed by the elimination of redundant clauses. Notable exceptions are the rules introducing
and applying definitions in for instance the prover E, that we will not consider here.

Here again, to ease the translation, we will consider an explicit instantiation step and propo-
sitional rules:

u 6' u;R
Identical Equality Resolution

R

s ' t;S u[s]p 6' v;R
Negative Replacement

u[t]p 6' v;S;R

s ' t;S u[s]p ' v;R
Positive Replacement

u[t]p ' v;S;R

s ' t; s ' v;R
Identical Equality Factoring

t 6' v; s ' v;R
Once more, these rules can be applied modulo commutativity of ; and '. For ', it can be

taken into account using the comm term (see Section 2.2). For simplicity, we assume in the
following that equalities are oriented appropriately.

Since reflexivity is provable thanks to our encoding of equality, Identical Equality Resolution is
rather easy to translate. Indeed, a term of type [[u 6' u]][ = (' u u → proof [) → proof [ can
be λp : (||u ' u|| → proof [). p (refl u).

L1; · · · ;Li−1;u 6' u;Li · · · ;LmIdentical Equality Resolution
L1; · · · ;Lm

c : Πx1 : ι. . . .Πxn : ι. Π [ : o. [[L1]][ → · · · → [[u 6' u]][ → · · · → [[Lm]][ → proof [

d : Πy1 : ι. . . .Πyk : ι. Π [ : o. [[L1]][ → · · · → [[Lm]][ → proof [

:= λy1 : ι. . . . λyk : ι. λ[ : o. λl1 : [[L1]][. · · · λlm : [[Lm]][.

c x1 . . . xn [ l1 . . . li−1 (λp : (||u ' u|| → proof [). p (refl u)) li . . . lm

For Identical Equality Factoring, we somehow need to refute s ' t from s ' v and t 6' v.
If we consider a term p of type [[t 6' v]][ = (' t v → proof [) → proof [, a term q of
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type [[s ' v]][ =' s v → proof [ and a term r of type ||s ' t|| =' s t, the term p (r (λz :
ι. ⇒̇ ('̇ z v) [) q) has type proof [.

L1; · · · ;Lh−1; s ' t;Lh; · · · ;Li−1; s ' v;Li; · · · ;LmIdentical Equality Factoring
t 6' v; s ' v;L1; · · · ;Lm

c : Πx1 : ι . . .Πxn : ι. Π [ : o. [[L1]][ →· · ·→ [[s ' t]][ →· · ·→ [[s ' v]][ →· · ·→ [[Lm]][ → proof [

d : Πy1 : ι . . .Πyk : ι. Π [ : o. [[t 6' v]][ → [[s ' v]][ → [[L1]][ → · · · → [[Lm]][ → proof [

:= λy1 : ι. . . . λyk : ι. λ[ : o. λp : [[t 6' v]][. λq : [[s ' v]][. λl1 : [[L1]][. · · · λlm : [[Lm]][.

c x1 . . . xn [ l1 . . . lh−1 (λr : ||s ' t||. p (r (λz : ι. ⇒̇ ('̇ z v) [) q)) lh . . . li−1 q li . . . lm

For Positive Replacement, we can use the following idea: given a term p of type [[u[t]p ' v]][ =
||u[t]p ' v|| → proof [, a term q of type ||u[s]p ' v|| and a term r of type ||s ' t||, the term
p (r (λz. '̇ |u[z]p| |v|) q) has type proof [.

L1; · · · ;Li−1; s ' t;Li; · · · ;Lm M1; · · · ;Mh−1;u[s]p ' v;Mh; · · · ;Ml
Positive Replacement

u[t]p ' v;L1; · · · ;Lm;M1; · · · ;Ml

c1 : Πx1 : ι . . .Πxn : ι. Π [ : o. [[L1]][ → · · · → [[s ' t]][ → · · · → [[Lm]][ → proof [

c2 : Πy1 : ι . . .Πyk : ι. Π [ : o. [[M1]][ → · · · → [[u[s]p ' v]][ → · · · → [[Ml]][ → proof [

d : Πz1 : ι . . .Πzj : ι. Π [ : o. [[u[t]p ' v]][ → [[L1]][ →· · · [[Lm]][ → [[M1]][ →· · · [[Ml]][ → proof [

:= λz1 : ι. . . . λzj : ι. λ[ : o. λp : [[u[t]p ' v]][. λl1 : [[L1]][. · · · λlm : [[Lm]][.

λm1 : [[M1]][. · · · λml : [[Ml]][.c2 y1 · · · yk [ m1 · · · mh−1 (λq : ||u[s]p ' v||.
c1 x1 · · ·xn [ l1 · · · li−1 (λr : ||s ' t||. p (r (λz. '̇ |u[z]p| |v|) q)) li · · · lm) mh · · · ml

Negative Replacement is almost the same, except that p has type [[u[t]p 6' v]][ instead of
[[u[t]p ' v]][ and q has type ||u[s]p ' v|| → proof [ instead of ||u[s]p ' v||, so that the term
p (r (λz. ⇒̇ ('̇ |u[z]p| |v|) [) q) has type proof [.

L1; · · · ;Li−1; s ' t;Li; · · · ;Lm M1; · · · ;Mh−1;u[s]p 6' v;Mh; · · · ;Ml
Negative Replacement

u[t]p 6' v;L1; · · · ;Lm;M1; · · · ;Ml

c1 : Πx1 : ι . . .Πxn : ι. Π [ : o. [[L1]][ → · · · → [[s ' t]][ → · · · → [[Lm]][ → proof [

c2 : Πy1 : ι . . .Πyk : ι. Π [ : o. [[M1]][ → · · · → [[u[s]p 6' v]][ → · · · → [[Ml]][ → proof [

d : Πz1 : ι . . .Πzj : ι. Π [ : o. [[u[t]p 6' v]][ → [[L1]][ →· · · [[Lm]][ → [[M1]][ →· · · [[Ml]][ → proof [

:= λz1 : ι. . . . λzj : ι. λ[ : o. λp : [[u[t]p 6' v]][.

λl1 : [[L1]][. · · · λlm : [[Lm]][.λm1 : [[M1]][. · · · λml : [[Ml]][.

c2 y1 · · · yk [ m1 · · · mh−1 (λq : (||u[s]p ' v|| → proof [). c1 x1 · · · xn [ l1 · · · li−1

(λr : ||s ' t||. p (r (λz. ⇒̇ ('̇ |u[z]p| |v|) [) q)) li · · · lm) mh · · · ml

Note that the shallowness of the translation of the equality predicate is heavily used in the
translation of inference rules.

Example 2. We want to refute the three clauses c ' g(a);X ' f(b, Y ) and g(Z) ' f(X,Z)
and g(c) 6' g(f(X,Y )). A possible derivation of the empty clause in superposition (without
considering ordering restrictions) is the following:
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1 c ' g(a);X ' f(b, Y )
2 g(X) ' f(Z,X)
3 g(c) 6' g(f(X,Y ))
4 c ' f(Z, a);X ' f(b, Y ) applying Positive Superposition on 2 and 1
5 f(Z, a) 6' f(b, Y ); c ' f(b, Y ) applying Equality Factoring on 4
6 c ' f(b, a) applying Equality Resolution on 5
7 g(f(b, a)) 6' g(f(X,Y )) applying Negative Superposition on 6 and 3
8 ut applying Equality Resolution on 7

If we decompose the instantiations from the inferences, we get
1 c ' g(a);X ' f(b, Y )
2 g(X) ' f(Z,X)
3 g(c) 6' g(f(X,Y ))
4 g(a) ' f(Z, a) applying Instantiation on 2 with σ = {X 7→ a}
5 c ' f(Z, a);X ' f(b, Y ) applying Positive Replacement on 4 and 1
6 c ' f(Z, a); c ' f(b, Y ) applying Instantiation on 5 with σ = {X 7→ c}
7 f(Z, a) 6' f(b, Y ); c ' f(b, Y ) applying Identical Equality Factoring on 6
8 f(b, a) 6' f(b, a); c ' f(b, a) applying Instantiation on 7 with σ = {Y 7→ a;Z 7→ b}
9 c ' f(b, a) applying Identical Equality Resolution on 8

10 g(f(b, a)) 6' g(f(X,Y )) applying Negative Replacement on 9 and 3
11 g(f(b, a)) 6' g(f(b, a)) applying Instantiation on 10 with σ = {X 7→ b;Y 7→ a}
12 ut applying Identical Equality Resolution on 11

We have a unary function symbol g, a binary function symbol f and three constants a, b
and c. The context of the translation in the λΠ-calculus modulo is therefore

ι : Type

o : Type

proof : o→ Type

'̇ : ι→ ι→ o

': ι→ ι→ Type := λx : ι. λy : ι. Πp : (ι→ o). proof (p x)→ proof (p y)

⇒̇ : o→ o→ o

proof ('̇ x y) ↪→' x y

proof (⇒̇ A B) ↪→ proof A→ proof B

refl : Πx : ι. ' x x := λx : ι. λp : ι→ o. λt : proof (p x). t

g : ι→ ι

f : ι→ ι→ ι

a : ι

b : ι

c : ι

We first declare the three input clauses:

c1 : ΠX : ι. ΠY : ι. Π [ : o. (' c (g a)→ proof [)→ (' X (f b Y )→ proof [)→ proof [

c2 : ΠX : ι. ΠZ : ι. Π [ : o. (' (g X) (f Z X)→ proof [)→ proof [

c3 : ΠX : ι. ΠY : ι. Π [ : o. ((' (g c) (g (f X Y ))→ proof [)→ proof [)→ proof [
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We then declare the inferred clauses and define them as explained above:

c4 : ΠZ : ι. Π [ : o. (' (g a) (f Z a)→ proof [)→ proof [ := λZ : ι. c2 a Z

c5 : ΠX : ι.ΠY : ι.ΠZ : ι.Π [ : o.(' c (f Z a)→ proof [)→(' X (f b Y )→proof [)→proof [

:= λX : ι.λY : ι.λZ : ι.λ[ : o.λp : (' c (f Z a)→ proof [). λl : (' X (f b Y )→ proof [).

c1 X Y [ (λq :' c (g a). c4 Z [ (λr :' (g a) (f Z a). p (r (λu : ι. '̇ c u) q))) l

c6 : ΠY : ι. ΠZ : ι. Π [ : o. (' c (f Z a)→ proof [)→ (' c (f b Y )→ proof [)→ proof [

:= λY : ι. λZ : ι. c5 c Y Z

c7 : ΠY : ι.ΠZ : ι.Π [ : o.((' (f Z a) (f b Y )→proof [)→proof [)→(' c (f b Y )→proof [)

→proof [ := λY : ι. λZ : ι. λ[ : o. λp : ((' (f Z a) (f b Y )→ proof [)→ proof [).

λq : (' c (f b Y )→ proof [).

c6 Y Z [ (λr :' c (f Z a). p (r (λu : ι. ⇒̇ ('̇ u (f b Y )) [) q)) q

c8 : Π [ : o. ((' (f b a) (f b a)→ proof [)→ proof [)→ (' c (f b a)→ proof [)→ proof [

:= c7 a b

c9 : Π [ : o. (' c (f b a)→ proof [)→ proof [ := λ[ : o. λl : (' c (f b a)→ proof [).

c8 [ (λp : (' (f b a) (f b a)→ proof [). p (refl (f b a))) l

c10 : ΠX : ι. ΠY : ι. Π [ : o. ((' (g (f b a)) (g (f X Y ))→ proof [)→ proof [)→ proof [

:= λX : ι. λY : ι. λ[ : o. λp : ((' (g (f b a)) (g (f X Y ))→ proof [)→ proof [).

c3 X Y [ (λq : (' (g c) (g (f X Y ))→ proof [).

c9 [ (λr :' c (f b a). p (r (λu. ⇒̇ ('̇ (g u) (g (f X Y ))) [) q)))

c11 : Π [ : o. ((' (g (f b a)) (g (f b a))→ proof [)→ proof [)→ proof [ := c10 b a

c12 : Π [ : o. proof [

:= λ[ : o. c11 [ (λp : (' (g (f b a)) (g (f b a))→ proof [). p (refl (g (f b a))))

3.3 Resolution Proofs Are Constructive Proofs

In the translation of resolution and superposition proofs above, we do not need any axiom for
classical logic, which means that we have an intuitionistic proof. Furthermore, since the trans-
lation of a clause is intuitionistically implied by the translation of its corresponding formula,
that means that the proof of unsatisfiability of a set of clauses by the resolution method is
intuitionistic. However, the resolution method is in general used to refute the negation of a
formula: to prove A, one proves that the clausal normal form of ¬A is unsatisfiable. To go to
the proof of unsatisfiability of ¬A to a proof of A, one needs a classical axiom (even without
considering the clausification of ¬A).

This remark about constructiveness of resolution proofs is not so surprising. Indeed, given
the clauses C1, . . . , Cm with correspond formulas A1, . . . Am, proving the unsatisfiability of
C1, . . . , Cm amounts to proving the sequent A1, . . . , Am ` in the sequent calculus. But for
this particular class of sequents, intuitionistic and classical logics coincide. Indeed, since there
are only atomic formulas under negations, and there are no implications, there can only be
atomic formulas in the right-hand side of sequents in a proof of A1, . . . , Am `. Since only one of
them can be used in each axiom rule closing a branch of the proof, we can restrict ourselves to
sequents containing at most one formula in the right-hand side, as in the intuitionistic fragment.
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4 Implementation in iProver Modulo

We have successfully implemented the technique above in iProver Modulo. iProver [13] is a prover
for first-order logic based the combination of two proof-search methods, namely instantiation-
generation and resolution. iProver Modulo [6] is a patch to iProver to integrate Polarized Reso-
lution Modulo [9]. iProver Modulo is available at http://www.ensiie.fr/~guillaume.burel/

blackandwhite_iProverModulo.html.en. When iProver Modulo finds a pure resolution proof
(for instance, when the instantiation-generation method is switched off), we are able to translate
it to the λΠ-calculus modulo using the technique presented in this paper.

As said above, resolution- and superposition-based provers do not only use the inference
rules presented above, but uses also simplification rules that can be used to replace a set of
clause by another. For instance, iProver Modulo uses

L;C σ(L);σ(C);D
Subsumption Resolution

L;C σ(C);D

where P = ¬P and ¬P = P . After the simplification is performed, σ(L);σ(C);D is no longer
in the working space of the prover to search for a proof, but it can be used to translate a proof
once it has been found. It is possible to infer the clause σ(C);D but using the derivation

L;C
Instantiation

σ(L);σ(C) σ(L);σ(C);D
Identical Resolution

σ(C);σ(C);D
Identical Factoring *

σ(C);D

and this derivation can be translated as usual.
In practice, when iProver Modulo is run with the option --dedukti-out-proof true, if a

proof using only the resolution method is found, it is output in Dedukti’s syntax (in which
λx : a. t and Πx : a. b are respectively written x : a => t and x : a -> b) and can be checked
by the dkparse tool. For instance, for the unsatisfiability of the two clauses in Example 1, iProver
Modulo outputs:

o : Type.

proof : (o -> Type).

i : Type.

a : i.

b : i.

p : (i -> (i -> Type)).

clause3 : X1 : i -> X0 : i -> bot_var : o -> (p X0 a -> proof bot_var)

-> (p X0 X1 -> proof bot_var) -> proof bot_var.

clause2 : X0 : i -> bot_var : o -> (p X0 a -> proof bot_var) -> proof bot_var

:= X0 : i => bot_var : o => lit1 : (p X0 a -> proof bot_var)

=> clause3 a X0 bot_var lit1 lit1.

clause4 : X0 : i -> bot_var : o ->

((p b X0 -> proof bot_var) -> proof bot_var) -> proof bot_var.

clause1 : bot_var : o -> proof bot_var

:= bot_var : o => clause2 b bot_var (tp : p b a =>

clause4 a bot_var (tnp : (p b a -> proof bot_var) => tnp tp)).

The input clauses are clause3 and clause4, and the false formula Π[ : o. proof [ is proved by
clause1. Note that contrarily to what is detailed above to ease the comprehension, instantia-
tions are integrated in the inference rules: clause2 is inferred from clause3 by Factoring (with
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σ = {X1 7→ a}), and clause1 from clause2 and clause4 by Resolution (with σ mapping the X0

of clause2 to b and the X0 of clause4 to a).
Note that in iProver Modulo, clauses can be normalized w.r.t. a term rewriting system given as

input as part of the theory in which the proof is searched for. To handle this in the translation
to Dedukti, one just need to add term rewriting rules in the context, the translation of the proof
remaining unchanged. Indeed, proof checking will normalize clauses appropriately (provided
the rewriting system is convergent).

Conclusion

We have presented a shallow embedding of the proofs found by state-of-art first-order automated
theorem provers into the λΠ-calculus modulo (however without the transformation in clausal
normal form). We also have described its implementation in iProver Modulo. This work is a first
step towards the interoperability of automated theorem provers and proof assistants. We can
now envisage to combine proofs coming from Coq, HOL, and iProver Modulo, by linking their
translations in Dedukti. To that purpose, as explained in the introduction, the fact that the
embeddings are shallow will be extremely useful. We now consider further works.

Note that we do not claim any adequacy theorem, in the sense that we could relate a proof
in the λΠ-calculus modulo to a resolution or superposition proof. We only claim the correctness
of the translation. Since we have a shallow embedding, the only adequacy that we need is that
of the translation of first-order logic. If a malicious user changes a proof, and it is checked by
dkparse, it will still be a valid proof (but perhaps not of the same theorem) even if it does not
correspond to a resolution proof.

An implementation of the translation of superposition proofs would let us see if such an
embedding can really be used in practice. A good candidate for integrating this translation is
Zipperposition, a first-order theorem prover based on superposition, written in OCaml and devel-
oped as a experimental platform to test ideas around the superposition calculus. Zipperposition
is available at https://www.rocq.inria.fr/deducteam/Zipperposition/.

Moreover, first-order theorem provers generally do not take as inputs only set of clauses
to be proved unsatisfiable, but they also can handle full first-order formulas. To be able to
translates these proofs into the λΠ-calculus modulo, we should be able to express in the λΠ-
calculus modulo the transformation of formulas into clausal normal form. This raises two
issues: first, some transformations need classical logic. To handle them, a possibility is to add
a classical axiom, for instance nnpp : Πp : o. Π [ : o. ((proof p → proof [) → proof [) →
proof p. A more difficult point is that for some transformations, the resulting set of formulas
is not logically equivalent to the first one, but is only equisatisfiable. This is the case for
instance of the elimination of an existential quantifier using a Skolem symbol. To solve this,
one should probably transform the proof back to reintegrate the existential variables introduced
by Skolemization.

A remaining challenge is to be able to obtain Dedukti proof from other automated theorem
provers than iProver Modulo. Instead of implementing the idea of this paper to other provers, a
solution could be to use iProver Modulo to output a Dedukti proof for each inference step of a
proof found by another prover, as could be described in the TSTP format [19], supported by
many provers nowadays. Then, by recombining each of these steps, we would obtain a whole
proof of the original formula, at least if only inference rules that are really logical implications
are used. Nevertheless, this is not immediate, because for the moment we only translate proofs
of unsatisfiability of set of clauses, and the combination of such proofs would require to link
clauses with the clausal normal form of their negation: a proof that C1 and C2 leads to C3 will
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indeed be a proof that C1, C2 and the clausal normal form of ¬C3 is unsatisfiable.

References

[1] Ali Assaf and Guillaume Burel. Translating HOL to Dedukti. Submitted, 2013.

[2] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation, 4(3):1–31, 1994.

[3] Jasmin Christian Blanchette, Sascha Bhme, and Lawrence C. Paulson. Extending Sledgehammer
with SMT solvers. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE, volume
6803 of LNCS, pages 116–130. Springer, 2011.

[4] Mathieu Boespflug and Guillaume Burel. CoqInE: Translating the calculus of inductive con-
structions into the λΠ-calculus modulo. In David Pichardie and Tjark Weber, editors, Second
International Workshop on Proof Exchange for Theorem Proving, 2012.

[5] Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The λΠ-calculus modulo as
a universal proof language. In David Pichardie and Tjark Weber, editors, Second International
Workshop on Proof Exchange for Theorem Proving, 2012.

[6] Guillaume Burel. Experimenting with deduction modulo. In Nikolaj Bjørner and Viorica Sofronie-
Stokkermans, editors, CADE, volume 6803 of LNCS, pages 162–176. Springer, 2011.

[7] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-Pi-calculus
modulo. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of LNCS, pages 102–117.
Springer, 2007.
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Abstract

We present the design philosophy of a proof checker based on a notion of foundational
proof certificates. At the heart of this design is a semantics of proof evidence that arises
from recent advances in the theory of proofs for classical and intuitionistic logic. That
semantics is then performed by a (higher-order) logic program: successful performance
means that a formal proof of a theorem has been found. We describe how the λProlog
programming language provides several features that help guarantee such a soundness
claim. Some of these features (such as strong typing, abstract datatypes, and higher-order
programming) were features of the ML programming language when it was first proposed
as a proof checker for LCF. Other features of λProlog (such as support for bindings,
substitution, and backtracking search) turn out to be equally important for describing and
checking the proof evidence encoded in proof certificates. Since trusting our proof checker
requires trusting a programming language implementation, we discuss various avenues for
enhancing one’s trust of such a checker.

1 Introduction

A range of computational systems that prove that certain formulas are, in fact, theorems are
in regular use today. Such systems range from interactive theorem provers to model checkers,
type checkers, and static analyzers. Generally, these systems produce proof evidence in many
and varying formats for classical and/or intuitionistic logics.

It is increasingly recognized that such proof systems need to be able to communicate proofs
and to find some means to trust each other. One approach to making such communications
possible is to build a particular technological bridge between two specific provers so that proofs
from one system can be exported to the other system in such a way it can be checked and
trusted. See, for example, [8] where an SMT prover was modified to output its proof evidence
as proof scripts that Isabelle could then execute and trust. A similar approach is done with
SMTCoq [2] for the type-theory based proof assistant Coq. Other approaches exist: for example,
the OpenTheory project [13] attempts to provide a framework where various HOL theorem
provers can share proofs.

In this extended abstract, we report on a multi-year effort to design, define, and check
foundational proof certificates. In this setting, we emphasize a technology-free description of
proof evidence making use of basic results and designs taken from the proof theory of sequent
calculus à la Gentzen and Girard. Recent results in the theory of focused sequent calculus proofs
are used to build the elements of our framework. We also discuss the design of our certificate
checker that exploits higher-order logic programming (specifically λProlog [18]).
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2 Trustworthy communication of theorems and proofs

Our main concern here is to communicate the validity of theorems by the transmission of proof
evidence from one machine to another machine in such a way that the human operators of these
machines can check and trust the transmitted proof. Thus, we remove the human from any
interesting involvement with the transmitted proof itself: for example, we are not concerned
with whether or not a human can understand the structure of such proofs. While having humans
read and learn from machine proofs is an interesting and important topic, we set aside that
topic for the more narrow and, hopefully, solvable problem of having machines read and check
each other’s proofs.

It seems difficult to develop trust in theorem provers and model checkers by completing
large scale formal proofs of them. It also seems undesirable to do so given that such systems
are often evolving and incorporate experimental concepts for which formal correctness may
not be established. Instead, one can turn towards checking their individual outputs, i.e., their
claims that certain “proof evidence” exists for a given proposed theorem. One solution could
be to have, for every kind of output (and, possibly, for every software version of a prover), a
specific proof checker. For example, Coq makes use of a small, trusted kernel for checking proof
evidence generated by other parts of that system. Similarly, one can increase confidence in a
SAT solver by checking the proofs that they output [6]. While it is probably desirable for every
theorem prover to contain a trusted kernel that always checks its proof claims, one still has the
problem that there are many checkers to trust and that one is still not addressing the need to
communicate proof evidence between provers.

Instead of living with a proliferation of proof formats and proof checkers, we propose to
explore to what extent we can take a foundational—instead of technological—approach to
proof checking. After all, logic and proof have been studied for a long time (longer than, say,
context-free grammars and parsing) and that literature is mature and contains a number of
deep results backed-up with a lively research community. Furthermore, symbolic logic and
proof theory have always purported to deal with the eternal and universal structures behind
reasoning.

2.1 Size of the proofs

An important aspect of proofs that makes communicating and trusting them difficult is their
size. While the size of formal proofs can vary a great deal among various provers and application
domains, formal proofs will almost always be too large for humans to check with confidence.
Thus, machines will need to do such checking. There is also evidence that in some settings,
the size of proofs can be a challenge for their transmission and storage: the literature on proof
carrying code (e.g., [22]) is shaped partly by the need to address large proof objects.

One way to address the problem of communicating and checking such large objects involves
allowing a trade-off between explicit proofs and proof reconstruction. A common principle
involved with reducing the size of proofs is the Poincaré principle (formulated by Barendregt
and Barendsen in [3]): traces of computation should not be included in a proof. One expects,
instead, the checker to redo computations which implies that the checker must incorporate into
its trusted base a programming language implementation with all its associated components
(parsers, printers, compilers, garbage collectors, etc). The Poincaré principle is not, however,
without problems: for example, if the elided computation comes from a complex algorithm then
either that algorithm is implemented outside the checker (thus augmenting the trusted base for
each such algorithm) or it is coded within the proof checker as a naive computation that will
likely run for too long.
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A more interesting approach might be to find ways to handle huge proofs efficiently, which
can be done both in a practical way using, for instance, incremental checking as proposed in [24],
and in a theoretical way by designing certificates that can be recognized in deterministic log
space (e.g., the RUP format for proofs of unsatisfiability [27]).

2.2 Proof reconstruction

Besides leaving out computation, a proof can be further reduced by replacing details, such as
“shallow” subproofs or (potentially large) witnesses, with “holes”. Filling in those holes can be
done by the checker using features such as unification and (bounded) backtracking proof search.
For example, instantiating a quantifier in a proof is a small step but describing the substitution
term might involve a lot of space. On the other hand, a proof checker using unification might
easily determine an appropriate term from context. Similarly, if the checker also involves
(bounded) backtracking search, then many small subproofs might well be reconstructed from
context, thereby removing the need to insert those subproofs explicitly into the proof certificate.

Given that proof checking will involve performing general computations and proof recon-
struction, it seems natural to use logic programming—where unification and backtracking search
are central—to build sound and flexible proof checkers. Such a conclusion is certainly not sur-
prising given that relational programming can easily be seen as a generalization of functional
programming and given that many key concepts of proof systems are relational, the central one
being the most basic relationship M : A between a term (proof) and a type (formula).

3 Proof checking as (logic) programming

While the first automated proof checker was Automath [7], the ML programming language
was the first programming language designed to provide a flexible framework for writing proof
checkers [10]. This functional programming language has lead to the implementation of the
LCF-family of tactics and tacticals that are at the core of many interactive theorem provers.
We argue here that logic programming, as opposed to functional programming, is a good choice
for doing the kind of proof checking we have described: this is particularly true when the logic
programming language chosen is λProlog [18].

3.1 Important programming language features

Below we list various aspects of programming languages that are important for the construction
of trusted proof checkers. The first three of these features are present in LCF/ML while all five
are present in λProlog.

Strong static typing. In ML, it is possible to describe a type thm of theorems. This type
can be built using constants representing axioms (of type thm) and functions of type, say,
thm -> thm -> thm denoting a binary inferences rule (such as modus ponens). Thus modeling
proofs on the familiar Hilbert-Frege style of proof is easy to capture in ML via its static type
checker and type preservation property. While the role of types is rather different in logic
programming (see [18] for a discussion of these differences), simple types are also important
in λProlog since they are used to denote “syntactic categories” such as formulas, terms, and
certificates as well as categories such as “a term-level abstract over formulas” by a type such
as term -> form. In this setting, capturing the notion that Ξ is a proof of formula B or the
notion that a formula is a theorem is done not by types but by predicates (central to all logic
programming).
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Abstract datatypes. In the LCF/ML approach to proof checking, the type thm needs to
be protected in the sense that only authorized primitive functions can construct members of
type thm. In order to enforce this, ML allows this type to be an abstract datatype, which
means that the constructors of that type are available to only certain, privileged functions. For
example, functions that compute directly with axioms and inference rules can be placed into
this abstract type and can be given access to the constructors of thm. Any other function that
can build theorems must use these privileged functions. In a similar way, the abstract datatypes
of λProlog allow one to define constructors for sequents, to allow certain clauses to describe
how provability of some sequents are able to infer provability of other sequents (encodings of
inference rules), and then to forbid any other clauses from using this sequent constructor. In
this way, the rules of inference are sealed from “code injection attacks”.

Higher-order programming. The ability to manipulate functions (in ML) and relations
(in λProlog) as first-class objects is not only a powerful programming feature but also makes
abstract datatypes far more useful. For example, if a multiset is an abstract datatype, then a
natural way to manipulate such a structure is via higher-order programs for, say, applying a
certain operation to all elements of a multiset or for selecting elements from a multiset depending
on a given predicate.

Backtracking search and unification. While functional programming languages can ac-
commodate these features, they are an essential and central aspect of logic programming. The
implementation of these two features has always been a part of the trusted core of logic pro-
gramming implementations. While historically some Prolog implementations did not provide
sound unification (since they did not implement the occurs-check within unification), most
modern Prolog systems provide a way to turn this check on. Implementations of λProlog have
always implemented sound unification.

Bindings. A proof checker for first-order (quantificational) logic needs to treat syntax with
binders. Thus it must handle operations such as checking for equality modulo λ-conversion,
instantiating quantifiers, treating eigenvariables and their associated restrictions, and unifying
terms and formulas. In particular, λProlog implements the λ-tree approach to higher-order
abstract syntax [18].

3.2 Logic foundations for these features

All the features described above are present in one logical system, namely a fragment of the
intuitionistic version of Church’s 1940 Simple Theory of Types (STT). In order to understand
(and implement) what entailment involving λProlog programs should be, one simply needs to
understand intuitionistic reasoning in STT. A large literature also exists that describes that
logic and various ways to implement it, e.g., goal-directed search [19], higher-order unifica-
tion [12, 16], backtracking search [20], term representation to support efficient λ-reduction and
unification [21], etc. While a particular implementation of logic programming is a particular
piece of technology, that logic programming language and the checker implemented in it are
not tied to that technology. Anyone familiar with the above mentioned literature of logic and
algorithms for implementing logic can build their own foundational proof checker. Other proof
systems, such as Isabelle and Twelf, make use of a similar intuitionistic foundation. As we shall
argue in Section 5, such a declarative and mature foundation can be a great asset in establishing
trust of a proof checker.
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4 The checker’s architecture

Our approach to certificate checking is based on three components—the kernel, the client, and
the clerks and experts—described in more details below.

The kernel is a λProlog implementation of the LKU focused proof system [15]. Formulas
in LKU contain a mix of classical and linear logic connectives and (first-order) quantifiers.
Unrestricted, LKU is essentially a verbose presentation of the focused classical logic LKF [14].
The LKU proof system allows for various restrictions to be placed on its structural rules.
One set of restrictions (reminiscent of Gentzen’s restricting of classical inference rules to only
single-conclusion sequents) gives rise to the LJF [14] focused proof systems for intuitionistic
logic. Another set of restrictions (reminiscent of Girard’s restricting of classical inference rules
so that weakening and contraction are not available) gives rise to a focused proof system for
(multiplicative-additive) linear logic [1]. Thus this one kernel can capture focused proof sys-
tems in these three logics. Even if one uses LKU only to capture classical and intuitionistic
proofs, aspects of linear logic still play an important role in LKU. For example, Gentzen’s
characterization of an intuitionistic sequent as having only a single conclusion is captured, in
part, by forbidding contraction of formulas on the right of the encoded sequent: LKU treats
this restriction by mixing classical and linear logic connectives. Furthermore, formulas whose
introduction rules are invertible (in both classical and intuitionistic proof systems) are treated
as purely linear within LKU: that is, they are never contracted nor weakened. The linear logic
aspects of LKU allow a simple treatment of this important aspect of invertible formulas.

The client of the checker is the programmer of a theorem prover who would like to export
a proof for checking. The client will not need to know the specifics of our checker: that is, she
will not need to know that it is based on a focused sequent calculus or that it is implemented
in λProlog. The hope is, instead, that the client will be able to “pretty-print” her proof
evidence into a document that can then be checked. Significant effort by the client should not
be necessary to transform internal justifications for provability into some strikingly different
format. For example, if the client is a resolution refutation prover, the document output for
checking should be something familiar, such as a list of numbered clauses as well as a list of
triples describing which two clauses resolve to yield a third.

In order to translate the information in the client’s proof certificate into instructions to
drive the kernel’s inference rules, we use a third component composed of clerks and experts [4].
An analogy might succinctly convey the spirit of this component of checking. Imagine an
accounting office that needs to check that a certain mound of financial documents (provided by
the client) represents a legal transaction (as judged by the kernel). The office workers called
experts are given the responsibility of looking into the mound and extracting information: they
must decide into which series of transactions to dig and they need to know when to release their
findings for storage and later reconsideration. On the other hand, the clerks are responsible
for taking information released by the experts and performing some computations on them,
including their indexing and storing. The justification of this division of effort between clerks
and experts comes from the structure of focused sequent proof systems [1, 14, 15]: experts
operate during the synchronous phase of proof construction while the clerks operation during
the asynchronous phase. Furthermore, the vocabulary of decide, release, and store is reused
as structural rules within the focused proof system. The actual definition of a proof certificate
format essentially amount to describing a flow of work between the experts and the clerks. Such
a work-flow is defined using small λProlog programs that define predicates that interface with
the kernel. That interface has been designed so that no matter how badly coded the clerks and
experts are, the soundness of the kernel is never compromised.
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The current implementation of our proof checker can be found at https://team.inria.

fr/parsifal/proofcert/.

5 Avenues to trust

We would like to be able to claim that our checker is sound: that is, if our checker succeeds in
checking a proof certificate for a formula B from some client, then B is a theorem. Trust in
such a claim is built around many elements, so we break this claim into smaller elements.

First, we must trust the logic programming language implementation and the many things
on which it depends. In our current setting, we rely on the correctness of the Teyjus implemen-
tation [26] of λProlog (which is itself implemented in OCaml and C) and a host of associated
computing subsystems: printers, parsers, compilers, garbage collectors, hardware processors,
etc. Pollack’s paper [23] explores many of the trust aspects of such components when applied
to proof checking.

Second, one must trust that the LKU proof system [15] is, in fact, correct in its claim of
representing proofs for classical, intuitionistic, and linear logics. Since developing trust in a
mathematical text is a familiar problem to academics, we do not elaborate on this here.

Third, one must trust that our logic programming implementation of LKU is correct and
that there is no way for “malicious” experts and clerks to “attack” our kernel. The λProlog
programming language provides many features that make it easy to trust this aspect of cor-
rectness: (i) Bindings, eigenvariables, and substitutions are implemented within the language
and with great care for their correct treatment. (ii) Sequent calculus inference rules (such as
those in LKU) naturally correspond to Horn clauses so it is easy to examine whether or not a
set of Horn clauses correctly captures a proof system. (iii) By exploiting abstract datatypes,
it is possible to close the set of inference rules so that no attacker can add new inference rules
to the kernel. Finally, the interface between the kernel and the clerks and experts is via a set
of predicates which are defined via λProlog clauses. Furthermore, these predicates are used
only as premises to the clauses specifying the various LKU inference rules. As a result, it is
a relatively easy matter to verify that our λProlog source files do indeed implement our LKU
kernel in a sound fashion.

We would also like to insist that by employing declarative techniques in specifying a proof
checking kernel, we are adhering to a proven approach to writing trustworthy software. Con-
sider, by analogy, writing a parser for some programming language. Often one tries to construct
such a parser in two distinct steps. First, one declares the lexical structure (using techniques
from finite state machines) and grammar (using techniques from context-free language theory).
Given these specifications, one then uses tools—such as lex and yacc—that generate code that
actually tokenizes and parses input strings. Of course, these tools are complex but since they
are so commonly used, since their formal foundation is well understood and documented, and
since a number of people depend on them to be correct, parsers achieved by this route are often
considered more trustworthy than if one implements a parser by hand. The architecture behind
our proof checking system similarly relies on declarative specifications (of inference rules and
of the clerks and experts) since their semantics is clear (by being founded on logic). The many
other tools on which we rely (such as Teyjus) are used by a number of other people for different
tasks and usually with similar concerns for correctness.

We have discussed only the soundness of proof checking. If one provides a resolution refu-
tation as a proof certificate for some formula B (the paper [4] describes how this can be done),
the only conclusion we can claim from a successful run of the kernel is that B is a theorem. The
kernel makes no claim that the certificate is, in fact, a proper resolution refutation. Specific
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knowledge of how the clerks and experts work is needed to provide such a guarantee. The
specific resolution checker that was presented in [4] will accept all resolution refutations (with
factoring) but will accept more things than are officially defined as resolution steps. Of course,
the additional items that are accepted are still sound proof evidence even if they are not proper
resolution steps.

6 Related and Future Work

There are many projects trying to get different theorem provers to communicate proofs and a few
of these have the goal of being universal. One of these is Dedukti [25] which aims at capturing all
intuitionistic proofs using λΠ-calculus modulo as its foundation [5]. While Dedukti separates
computation from deduction (the former is not part of a certificate but is executed by the
checker), it does not support directly the possibility of doing (bounded) proof reconstruction.
It is also not clear whether or not such an intuitionistic framework will treat classical logic
well. One can always use the excluded middle as an assumption within intuitionistic logic but
this means that instances of the excluded middle axiom must be part of the certificate. Also
the use of axioms leads one away from truly analytic proof theory in which subformulas of a
conjectured sequent are needed for consideration within (cut-free) proofs. Also in the general
area of enhancing intuitionistic proof representations for checking, there is also recent work on
extending the λΠ-calculus with side conditions [24] and with external predicates [11].

The proof checker described here is currently restricted to first-order logic: we are planning
to extend this work to include proof checking in logics with least and greatest fixed points as
well as higher-order quantification. We also hope to eventually extend this kind of checking to
both partial proofs and counterexamples [17]. In order to increase confidence in various aspects
of our existing checker, we plan to undertake some formal proofs involving our code in the
Abella prover [9]. From the efficiency point of view, as of now, it is not yet clear how effective
our current software architecture will handle large proof certificates or intensive checker-side
computations. Teyjus is currently under development in anticipation of some of these potential
problems.
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Abstract

We describe ongoing work on building an environment to support reasoning in proof
assistants that represent formal systems using higher-order abstract syntax (HOAS). We
use a simple and general specification language whose syntax supports HOAS. Using this
language, we can encode the syntax and inference rules of a variety of formal systems, such
as programming languages and logics. We describe our tool, implemented in OCaml, which
parses this syntax, and translates it to a Coq library that includes definitions and hints for
aiding automated proof in the Hybrid system. Hybrid itself is implemented in Coq, and
designed specifically to reason about such formal systems. Given an input specification,
the library that is automatically generated by our tool imports the general Hybrid library
and adds definitions and hints for aiding automated proof in Hybrid about the specific
programming language or logic defined in the specification. This work is part of a larger
project to compare reasoning in systems supporting HOAS. Our current work focuses on
Hybrid, Abella, Twelf, and Beluga, and the specification language is designed to be general
enough to allow the automatic generation of libraries for all of these systems from a single
specification.

1 Introduction

The Hybrid system [4] provides support for reasoning about object languages (OLs) such as
programming languages and other formal systems using higher-order abstract syntax (HOAS).
In [4], two versions of Hybrid are described, one implemented in Isabelle [8], and one imple-
mented later in the Coq Proof Assistant [1] by fairly directly porting the Isabelle version to Coq.
We focus on the Coq version here. Hybrid provides support for encoding syntax, for represent-
ing the semantics via inference rules and axioms, and for reasoning about the properties of the
OL. For example, reasoning about the metatheory of a programming language allows important
properties, such as soundness, to be established formally. Such properties are important for
providing assurance that a language can be used to build reliable and secure software systems.

The general Hybrid infrastructure is implemented as two Coq libraries. The first provides
an underlying de Bruijn representation of λ-terms parameterized by a set of constants for a
particular OL. This layer is hidden from the user. This library includes a set of definitions and
lemmas that builds an HOAS layer from this lower level, which is used to encode the syntax
of OLs. The only axiom used in the implementation is the law of excluded middle, included
by importing Coq’s library for classical logic.1 The reasoning infrastructure has multiple levels
also. The inference rules of an OL are defined at the lowest level as logic programming-like
clauses (called prog clauses here) that are provided as a parameter to an intermediate logic,

1This library was originally imported in order to keep the Coq implementation close to the Isabelle one. It
is in fact not necessary. See [2] for a constructive version of Hybrid in Coq.
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called a specification logic (SL). The second Coq library implements the SL. At the highest level
is the reasoning logic, which is Coq.

This paper presents our tool for supporting reasoning in Hybrid by translating high-level
specifications of OLs to Coq libraries. Our specification language has three sections, Syntax,
Judgments, and Rules. The first section contains the specification of new constants and their
types, representing the basic syntax constructors of the OL. The allowed types are a subset
of the types of the simply-typed λ-calculus. In HOAS, object-level binding is encoded directly
using meta-level binding, and thus arguments to constructors are allowed to have function types.
We restrict to second-order types, which means that the functions appearing as arguments must
themselves take arguments of atomic types. Hybrid itself is currently restricted to second-order
since the representation of many formal systems does not require more. The declarations in
this section are used to generate the set of constants needed for the de Bruijn level, as well as
a set of definitions for encoding syntax at the HOAS level.

The declarations in the second section introduce SL-level predicates. These are the predi-
cates used to encode the judgments in the inference rules defining the semantics of the OL. The
third section defines the OL inference rules, which are translated to prog clauses. Together, the
predicates and clauses instantiate the required parameters of the SL.

We present the specification language and our translation tool informally via an example,
which is described in Section 2. In Section 3, we describe the technical details of some of our
algorithms and their implementation. This work is part of an ongoing larger project to compare
reasoning in a variety of systems that reason using HOAS (see [3], for example). In Section 4,
we discuss the current focus of our work on the translation tool in the context of this larger
project. In Section 5, we conclude and discuss our longer term goals.

2 An Example: The Polymorphic λ-Calculus

As an example, we consider typing for the polymorphic λ-calculus as defined in [10]. The syntax
is defined by the following grammars, and typing is defined by the rules below.

Terms M,N ::= x | λx : T.M | M M | λα.M | M [T ]
Types S, T ::= α | T → T | ∀α.T

x : T ∈ Γ
tyv

Γ ` x : T

Γ `M : S → T Γ ` N : S
tya

Γ `MN : T

Γ, x : S `M : T
ty l

Γ ` λx : S.M : S → T

Γ `M : ∀α.T
tyta

Γ `M [S] : [S/α]T

Γ, α `M : T
tytl

Γ ` λα.M : ∀α.T

Figure 1 encodes the syntax and typing rules, and illustrates the use of our specification lan-
guage. In the Syntax section, the keyword type introduces new atomic types for the different
syntax classes, which are the polymorphic types (tp) and terms (tm) in this example. Abstrac-
tion in types and terms (defined by constants all, lam, and tlam) is defined using function
types. Thus in the HOAS representation, abstraction in the OL will be represented using
abstraction in the meta-language, which here is Coq’s λ-abstraction.

The typing judgment for the polymorphic λ-calculus is expressed using the typeof predicate
declared in the Judgments section. Here, the keyword type will map to the type of propositions
of the target system, which for Hybrid is the type of formulas of the SL. Note that we use the
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Syntax

tp: type.

arr: tp -> tp -> tp. all: (tp -> tp) -> tp.

tm: type.

app: tm -> tm -> tm. lam: (tm -> tm) -> tp -> tm.

tapp: tm -> tp -> tm. tlam: (tp -> tm) -> tm.

Judgments

typeof: tm -> tp -> type.

Rules

ty_a: typeof M (arr S T) -> typeof N S -> typeof (app M N) T.

ty_l: (Pi x. typeof x S -> typeof (M x) T) -> typeof (lam (\x. M x) S) (arr S T).

ty_ta: typeof M (all (\a. T a)) -> typeof (tapp M S) (T S).

ty_tl: (Pi a. typeof (M a) (T a)) -> typeof (tlam (\a. M a)) (all (\a. T a)).

End

Figure 1: A Specification for the Polymorphic λ-Calculus

type keyword in both sections, borrowing from Twelf [11], where predicates and types are at
the same level.

The inference rules appear in the last section, and here again the syntax resembles the syntax
of Twelf to some extent. As in Twelf, the contexts that are explicit in the informal presentation
of the rules are implicit in the judgment section of the specification. The rules are named, and
the arrow is used to separate hypotheses from one another and from the conclusion, which is the
last formula before the terminating dot. Binders in the polymorphic λ-calculus are represented
using the binding operator of our specification language (backslash). We use tokens starting
with uppercase letters for “schematic” variables (used to represent terms and types of the λ-
calculus in this example) and tokens starting with lowercase letters for constructors, predicates,
rule names, and bound variables.

From this fairly small specification, we generate a library that can be directly loaded into
Coq, part of which is shown in Figures 2 and 3. As mentioned earlier, Hybrid is implemented
in both Isabelle and Coq, and both implementations are described in [4]. As we present the
Coq code in this section, we will often refer to results from [4] that are relevant. For the
reader interested in looking up these results, we note that most of the formal definitions and
statements in that paper use a pretty-printed version of code that can be viewed as either
Isabelle or Coq syntax. (See pages 48–49 for a description of this notation.) In the text of [4],
when the implementations diverge, it is explicitly stated. (For example, see Section 2.2.)

The set Econ in Figure 2 is the set of constants that serve as a parameter to the de Bruijn
representation of terms. Note that there is one for each constructor in the Syntax section.
The next 3 lines perform this parameter instantiation and are the same for any Hybrid OL
library. The last 6 lines of the Constants section fill in the Hybrid definitions for the HOAS
representation of the 6 constructors. They are defined in terms of their underlying de Bruijn
representation. The constant lambda is a binding operator defined on top of the de Bruijn
representation, and its definition is part of the infrastructure hidden from the user. Types
of bound variables in Coq are not explicitly added since they can be inferred. In these Coq
definitions, there is no distinction between the types tp and tm found in the specification. All
terms have Coq type uexp (the type of de Bruijn terms parameterized by the set ECon) and all
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Require Import sl.

Section encoding.

(************************************************************************

Constants

*************************************************************************)

Inductive ECon: Set := Carr: ECon | Call: ECon | Capp: ECon |

Clam: ECon | Ctapp: ECon | Ctlam: ECon.

Definition uexp: Set := expr ECon.

Definition Var: var -> uexp := (VAR ECon).

Definition Bnd: bnd -> uexp := (BND ECon).

Definition arr:= fun T1 => fun T2 => (APP (APP (CON Carr) T1) T2).

Definition all:= fun T1 => (APP (CON Call) (lambda T1)).

Definition app:= fun T1 => fun T2 => (APP (APP (CON Capp) T1) T2).

Definition lam:= fun T1 => fun T2 => (APP (APP (CON Clam) (lambda T1)) T2).

Definition tapp:= fun T1 => fun T2 => (APP (APP (CON Ctapp) T1) T2).

Definition tlam:= fun T1 => (APP (CON Ctlam) (lambda T1)).

(**************************************************************************

The atm type and instantiation of oo.

***************************************************************************)

Inductive atm : Set :=

| is_tp : uexp -> atm

| is_tm : uexp -> atm

| typeof : uexp -> uexp -> atm.

Definition oo_ := oo atm ECon.

...

Figure 2: A Hybrid Library for Reasoning about the Polymorphic λ-Calculus Part 1

arguments to lambda have type (uexp -> uexp).
Note that not all Coq functions of type (uexp -> uexp) encode object-level λ-terms. Those

that do not are often called exotic terms. Only functions that behave uniformly or parametri-
cally on their arguments represent λ-terms. Hybrid includes a predicate abstr that rules out
exotic terms and identifies exactly those terms that represent OL terms. (See Section 2, pages
52–54 in [4] for a definition of abstr as well as other definitions it depends on.) This predicate
appears in the Coq code obtained from translating the OL inference rules to prog clauses. (See
Figure 3.)

The types atm and oo are the Hybrid types of atomic and general formulas, respectively,
of the SL. A sequent calculus for the SL is implemented in Hybrid as an inductive predicate
defining the type oo . In [4], two sample SLs are given, one for a fragment of second-order
intuitionistic logic, and another for an ordered linear logic. The former is used in the work
described here. (See Figure 5 on page 68 of [4].) The sequent calculus is analogous to a logic
programming interpreter, where the prog clauses can be viewed as a second-order logic program.
We note that contexts in the SL are explicitly represented in the inductive definition, while they
are implicit in the prog clauses. For readers familiar with Twelf, the prog clauses correspond
to a Twelf program, while the SL corresponds to Twelf’s meta-level, where OL contexts are
represented as meta-level contexts. In Hybrid, both levels are formalized, and thus contexts are
explicitly represented and reasoned about at the SL level.
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(*************************************************************************

Definition of prog

***************************************************************************)

Inductive prog : atm -> oo_ -> Prop :=

| tp_arr: forall T1, forall T2,

prog (is_tp (arr T1 T2)) (Conj (atom_ (is_tp T1)) (atom_ (is_tp T2)))

| tm_lam: forall T1, abstr T1 -> forall T2,

prog (is_tm (lam T1 T2))

(Conj (All (fun x1 => (Imp (is_tm x1) (atom_ (is_tm (T1 x1))))))

(atom_ (is_tp T2)))

...

| ty_a : forall M, forall S, forall T, forall N,

prog (typeof (app M N) T) (Conj (atom_ (typeof M (arr S T))) (atom_ (typeof N S)))

| ty_l : forall S, forall M, abstr M -> forall T,

prog (typeof (lam (fun x=> (M x)) S) (arr S T))

(All (fun x => (Imp (typeof x S) (atom_ (typeof (M x) T)))))

| ty_ta : forall M, forall T, abstr T -> forall S,

prog (typeof (tapp M S) (T S)) (atom_ (typeof M (all (fun a => (T a)))))

| ty_tl : forall M, abstr M -> forall T, abstr T ->

prog (typeof (tlam (fun a => (M a))) (all (fun a => (T a))))

(All (fun a => (atom_ (typeof (M a) (T a))))).

Hint Resolve tp_arr tp_all tm_app tm_lam tm_tapp tm_tlam ty_a ty_l

ty_ta ty_tl : hybrid.

Figure 3: A Hybrid Library for Reasoning about the Polymorphic λ-Calculus Part 2

Figure 2 defines atm as an inductive set of predicates. Continuing the logic programming
analogy, these can be viewed as predicates of a logic program. The binary predicate typeof

comes directly from the specification. Again, the types of the arguments of this predicate (tm
and tp) in the specification are mapped to uexp in the Coq library. As a result, we need to
introduce a predicate corresponding to each type in the specification to be used to identify well-
formed types and terms of the polymorphic λ-calculus. Here, the is tp and is tm predicates are
introduced for this purpose. The last definition in the figure instantiates the oo type, which
must be done after the atm parameter is defined. The elided part includes other definitions
involved in instantiating this type, as well as hints to Coq to help with automating proofs.

Figure 3 defines the prog clauses (or logic program) which serve as the final parameter
to the SL. The last 4 clauses are direct translations of the rules in the specification. The
prog predicate takes two arguments: the conclusion of an inference rule (the head of a logic
programming clause) followed by the premise or premises (the body of the logic programming
clause). The constructors Conj, Imp, and All are the connectives of the SL, and atom coerces
atm to oo . Pi in the specification language maps to All, embedded implication maps to
Imp, and multiple hypotheses are separated by Conj. Note that schematic variables in the
specification are implicitly quantified at the outermost level. Explicit quantifiers (forall in
Coq) are added to each clause of the definition of prog as part of the translation.

The other clauses, including the elided ones, are the rules for determining well-formed terms
and well-formed types. These are automatically generated from the type declarations in the
Syntax section, and represent the most complex part of the translation implemented so far.

In Hybrid, as in other logical frameworks such as Twelf, we must be sure that the syntax and
inference rules are adequately encoded in the meta-language. Proving adequacy involves proving
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that there is a one-to-one correspondence between the syntax of the OL and its representation
in the meta-language, and that an OL judgment has a proof using the inference rules if and only
if the encoded version of the judgment is provable in the logical framework. For an example
of how adequacy is proved in Hybrid, see Section 3.2 of [4]. The rules for well-formed terms
of the OL are an important component of adequacy proofs in Hybrid. In our example OL, for
instance, we must prove that whenever there is a proof in Hybrid that a term of the polymorphic
λ-calculus has a particular type, then both the term and the type are well-formed (as defined
by the clauses for is tp and is tm).

3 Implementation of the Translation Tool

In this section, we describe the overall structure of the implementation of the translation,
which as mentioned, is in OCaml. We have not given a formal definition of the syntax of the
specification language, so this description is informal. Using mllex and mlyacc, the 3 sections
of a specification are each parsed to a list of type (string * exp) list. In each pair in the
list, the first argument is the constructor, predicate, or rule name, and the second argument is
an element of the following type:

type exp = Type | Id of string | Arrow of exp * exp | App of string * exp list |

Lambda of string * exp * exp | Pi of string * exp * exp

There is a direct mapping of each operator in the specification to a constructor of exp. For
example, the combination of \ and the dot separating the bound variable from the term maps
to Lambda. The type keyword maps to Type, and all other identifiers to Id. We unify the
syntax of all three sections of the specification, even though the first two do not use Lambda

and Pi. The translation function has the following overall structure, divided here into 4 steps,
with details of step 3(e) filled in a bit further in Figure 4.

1. Parse the input file into three lists of declarations: ds1, ds2, and ds3 where each one is
the parsed input of Syntax, Judgments, and Rules, respectively.

2. Call functions to isolate the following variables:

(a) Typelist: from ds1, obtain the list of identifiers (strings) from declarations of the
form “id:type.” in the specification.

(b) Syntax listName aux: from ds1 and Typelist, obtain a list of lists of the remain-
ing identifiers (OL syntax constructor names); use Typelist to group them into
sublists according to the target types of the constructors (the types just before the
terminating dots).

(c) Syntax listExpr aux: from ds1 and Typelist, form the list of lists of types of
the constructors (expressed as elements of type exp), using the same groupings into
sublists as above in (b).

(d) Rules listName: from ds3, get the list of the identifiers corresponding to rule names.

3. Call functions to create the following strings using the variables from step 2.

(a) string1: from Syntax listName aux construct the string for the inductive def-
inition of ECon, with one case of the Coq definition for each constructor in
Syntax listName aux with names prepended by C. (See ECon in Figure 2.)

72



Translating Higher-Order Specifications Habli and Felty

(b) string2: from Syntax listName aux and Syntax listExpr aux, construct a string
with one line for each constructor, containing a Coq definition for the encoding of
syntax for that constructor. Two cases must be considered, depending on whether
the constructor’s type is first- or second-order. If there is a functional argument, the
lambda operator is used. (See the 6 definitions at the end of the Constants section
of Figure 2.)

(c) string3: from Typelist construct a string for the inductive definition of atm con-
taining all the clauses for the well-formedness predicates (those of type uexp -> atm,
see Figure 2).

(d) string4: from ds2 construct a string containing clauses of the inductive definition
of atm, one for each predicate in the Judgments section. Judgments cannot have
function arguments; their types are first-order. We simply count the number of
argument types and write “uexp ->” for each one, ending the clause with atm. (See
the last clause of the definition of atm in Figure 2.)

(e) string5: from Syntax listName aux and Syntax listExpr aux, construct a string
containing all the prog clauses for well-formedness of OL terms. See Figure 4 for
some details of the implementation. (See also Figure 3, which contains 2 of 6 such
clauses, with the rest elided.)

(f) string6: from ds3 construct a string containing one prog clause corresponding to
each rule in the Rules section. We omit the details. (See the last 4 prog clauses in
Figure 3.)

(g) string7: From Syntax listName aux and Rules listName it is straightforward to
construct the Hint string. (See the last line of Figure 3.)

4. Write the following strings to the output file in the appropriate order: strings representing
Coq comments, fixed strings (library elements that are the same for all specifications),
and the strings obtained from step 3.

4 Extensions

In this section, we discuss the extensions of our tool that we are currently working on, as well
as some other near-term goals.

There are a variety of standard lemmas that are useful for reasoning about OLs that can
be directly generated from the specification. The next step in our current work is to add
capabilities to our tool to automatically generate the statements of these lemmas from the
specification. In addition, their proofs are mostly easily automated. Part of our work involves
improving Hybrid to include better tactics for automating such proofs. In addition, we envision
augmenting the translation to automatically insert parts of a proof script into the Coq libraries.
Our current work involves studying the most effective way to combine these two techniques for
automating proofs. This approach is used in a variety of other tools such as Krakatoa [6],
which automatically generates Coq libraries for Hoare-style reasoning about correctness of Java
programs, and uses tactics designed specifically for automating proofs in this domain.

We also have done some preliminary work on extending the specification language to include
a declaration section for contexts, used to represent a set of hypotheses. Many theorems require
reasoning about contexts, and our previous work on comparing systems [3] focused particularly
on this aspect.

Examples of the kinds of “standard lemmas” that we would like to generate and prove
partially or fully automatically include lemmas for adequacy and lemmas for dealing with
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Loop 1 (outermost): For each type name tname in Typelist, each corresponding list of
constructors cnames in Syntax listName aux and list of expressions representing types
ctypes in Syntax listExpr aux, execute Loop 2. Using the first 3 declarations in Fig-
ure 1 as an example, the following data is used the first time through Loop 2:

tname = "tp" cnames = ["arr";"all"]

ctypes = [Arrow (Id "tp", Arrow (Id "tp", Id "tp"));

Arrow (Arrow (Id "tp", Id "tp"), Id "tp")]

Loop 2 1. From tname and cnames, build a list rnames of rule names for prog clauses. (In
the example, the result is ["tp_arr";"tp_all"].)

2. For each element rname of rnames and the corresponding element ctype of ctypes,
execute Loop 3.

Loop 3 1. Count the number of arguments in ctype by finding the number of external
arrows (all those except arrows in function types of arguments). Create a list args

of pairs containing variables T1, T2, . . . , Tn, one for each argument and arity of the
argument (0 for non-functional arguments). For the first elements of ctypes, we get
[("T1",0);("T2",0)] and for the second element, we get [("T1",1)].

2. Using rname, ctype, and the corresponding element of args, build a string by con-
catenating the following substrings:

• "| " ^ rname ^ ":"
• For each ("Ti",m) in args, add "forall Ti,". If m > 0, add "abstr Ti ->".
• "prog (is_" ^ tname ^ "(" ^ cname
• For each pair in args write the first element followed by a space. At the end,

add "))".
• Create a string of the form (Conj s1 (Conj s2 . . . (Conj sn−1 sn)· · · )) where
n is the number of elements of args. If n = 1, the string is just s1 with no Conj.

• If the ith element of args is ("Ti",0), si is "(atom_ (is_" ^ t ^ " Ti))"

where t is the corresponding identifier in ctype (always "tp" in this example).
• If the ith element of args is ("Ti",m) where m > 0, then cre-

ate variables x1, . . . , xm. Form si as follows: for each xj, add
the substring "(All (fun xj => (Imp (is_" ^ tj ^ "xj)"; end si with
"(atom_ (is_" ^ t ^ " (Ti x1. . .xm). . .))" where tj and t are the appro-
priate types in ctype.

For our example, from tname, the first elements of cnames and ctypes, and the
first list args above, the output string we obtain is the first clause of the inductive
definition of prog in Figure 3.

Figure 4: Building string5 from Step 3(e).

explicit contexts, as well as a variety of others. For example, the adequacy lemma mentioned
in Section 2 can be automatically generated. Many proofs in Hybrid proceed by induction
over the SL with inversion over both the definitions of the SL and the prog clauses of the OL.
In addition to the inversion lemmas automatically generated from a Coq inductive definition,
we state and prove specialized inversion lemmas that can greatly simplify Hybrid proofs. The
first lemma in Figure 5 is an example of such a lemma, one whose statement and proof can
be automatically generated. Note that seq is Hybrid’s predicate for SL sequents. It takes 3
arguments: the height of a proof, a context of assumptions, and the formula to be proved. The
proper predicate appearing in the lemma is important for adequacy (see [4]).

Context weakening is a general lemma that follows from the definition of the SL, and it
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Lemma ty_l_inv : forall (i:nat) (Psi:list atm) (M:uexp->uexp) (T1 T2:uexp),

(forall x : uexp, proper x ->

seq_ i Psi (Imp (typeof x T1) (atom_ (typeof (M x) T2)))) ->

exists j:nat, (i=j+1 /\

forall x : uexp, proper x ->

seq_ j (typeof x T1::Psi) (atom_ (typeof (M x) T2))).

Lemma simple_strengthen : forall (i:nat) (T x y:uexp) (Gamma:list atm),

seq_ i (is_tm x::is_tp y::Gamma) (atom_ (is_tp T)) ->

seq_ i (is_tp y::Gamma) (atom_ (is_tp T)).

Figure 5: Example OL Lemmas

is stated and proved in the SL library. Context “strengthening” on the other hand, where
assumptions that are irrelevant to the proof of a particular judgment are removed, depends on
the OL. A simple example of a strengthening lemma is given in Figure 5. For several examples
that occur in the context of a case study, see [3] (e.g., the occurrence of strengthening in
the proof of Theorem 2). Part of our extension to the specification language will include the
capability to specify at a high level what kinds of strengthening lemmas are desired, and then
automatically generate and prove or partially prove them as part of the translation.

Our specifications can be translated to libraries for other systems supporting reasoning with
HOAS, although we have not yet done so. Much of the work done here, however, can be di-
rectly reused, including, of course, the parsing of a specification to its internal representation
in OCaml, as well as much of the overall structure of the OCaml functions we have defined to
perform the translation. The systems we are currently targeting are Abella [5], Twelf [11], and
Beluga [9]. A common characteristic of all of these systems is multi-level reasoning. A straight-
forward modification of the translation is all that should be required to obtain a basic input
library for each of these systems. We mentioned earlier that our specification language adopts
several features of Twelf directly. In fact, translation to Twelf will be the most straightforward
to implement. Adding more significant support for each of these systems, such as including
specialized lemmas, will require further effort.

5 Conclusion and Future Work

We have described our translation tool, which provides support for reasoning in Hybrid about
object languages expressed using HOAS. We presented the specification language, described the
translation to a Hybrid library, and discussed the implementation as well as several extensions
planned for the near term.

In the longer term, we would also like to examine translations to more systems, in order
to facilitate a more fuller comparison of reasoning in systems supporting HOAS. Such work
may require extending the specification language. The work presented here can be considered
as a variant of the Ott project [12] tailored specifically to the needs of HOAS. Ott contains
constructs for specifying binders, and one of our longer term goals is to integrate our tool with
Ott. In the present work, we chose to start with a smaller simpler language targeted to the
needs of Hybrid, Abella, Twelf, and Beluga. Another approach is to consider using the higher-
order logic programming language λProlog [7] as both the specification language as well as the
implementation language for the translation.
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Finally, we mentioned in Section 1 that both Hybrid and the specification language restrict
the definition of syntax of OLs to second-order types. Another long-term goal is to general-
ize Hybrid to higher-order, which will then require extending our specification language and
translation.
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Abstract

Rewriting is a common functionality in proof assistants, that allows to simplify theorems
and goals. The set of equations to use in a rewrite step has to be manually specified, and
therefore often includes rules which may lead to non-termination. Even in the case of
termination another desirable property of a simplification set would be confluence. A
well-known technique from rewriting to transform a terminating system into a terminating
and confluent one is completion. But the sets of equations we find in the context of
proof assistants are typically huge and most state-of-the-art completion tools only work on
relatively small problems. In this paper we describe our initial experiments with the aim
to close the gap and use rewriting to compute a complete first-order simplification set for
a HOL-based proof assistant fully automatically.

1 Introduction

Proof assistants are computer programs that aid the user in building a proof that can be
mechanically checked. A typical proof assistant includes a number of algorithms that perform
common proof operations in an automated way. One of such mechanisms is rewriting and
conditional rewriting (often called simplification in the context of formal proof). There are two
ways of performing rewriting in a proof assistant, depending on the working style: rewriting
provided as a forward derivation rule that lets one rewrite a theorem using (possibly conditional)
equalities and rewriting as a tactic, that uses equations to rewrite the current goal to an
equivalent goal.

To perform a rewriting step, the user needs to choose the equations to rewrite with. Typically
choosing this set is done completely manually. In certain cases, however, there exist defaults
(for example Isabelle [17] simplification set) or lists of theorems to use (for example ARITH in HOL
Light [8] or hint databases in Coq [1]). Such default sets are also defined manually, and developers
try hard to avoid creating simplification sets that are non-terminating. Unfortunately this
problem is quite hard, and for example the usual simplification set defined for many theories
in Isabelle includes rules that lead to non-termination of the simp tactic.

In order to obtain an even stronger proof technique with the help of rewriting, one can
consider normal forms of expressions with relation to some theory. Completion of rewriting
is a technique that lets us derive rewrite systems that follow given sets of equations, but are
terminating and confluent. A terminating and confluent rewrite system for a theory would give
a complete decision procedure for establishing equalities in this theory, giving a strong proof
technique.

Termination of term rewrite systems (TRSs) is an undecidable property. Nevertheless a
vast number of methods have been developed to determine termination, many of which are
suitable for implementation. For example the tools TTT2 [12] or AProVE [6] implement techniques
for automatically proving the termination of a first-order rewrite system. The termination
methods implemented by these systems are sound, but the tools may produce unsound proofs
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(for example due to implementation bugs). Therefore a number of proof certification techniques
have been developed, for example CeTA [22] which can certify termination (or non-termination)
proofs provided by a termination tool.

Likewise confluence of TRSs is undecidable in general. In the presence of termination,
however, confluence and local confluence coincide according to Newman’s Lemma [16]. Based
on this information most automatic completion tools follow a common strategy: They maintain
termination of an oriented version of an initial set of equations and try to make it locally
confluent by means of deducing and adding new consequences. If this succeeds, at some point
all critical pairs will be joinable and the tool yields a terminating and confluent term rewrite
system, which has the same equational theory as the initial set of equations. There is very
little work that bridges the gap between proof assistants and termination, the most notable
being [13].

The aim of this paper is to use rewriting techniques to automatically derive a terminating
and confluent first-order rewrite system for a proof assistant. In this research we considered
HOL Light [8] and its Multivariate [9] library, as together with the Flyspeck project (developing a
formal proof of the Kepler conjecture [7]) they form a large library of mathematical knowledge.
The completion tool we used is KBCV [21], which also features an interactive mode and the
generated completion proves may be certified by CeTA.

In the setting of proof assistants we work on higher-order terms with types whereas in the
rewrite community most tools work on first-order term rewriting systems. A commonly used
input format to termination as well as completion tools is the TPDB format1 and its XML-based
successor.2

We have implemented a translation mechanism from HOL Light to the TPDB format in order
to give the theorems present in HOL Light/Multivariate to the available rewriting tools. To give
the computed results back to HOL Light we implemented the converse translation from the TPDB
format to typed λ-terms. We proposed an interaction model between HOL Light and KBCV and
did initial experiments on deriving new theorems from the critical pairs. The initial set of 3,267
orientable equations has been passed in one go to KBCV and 305 thousand critical pairs were
found which gave rise to 167 thousand HOL equations.

The rest of this paper is organized as follows. In Section 2 we describe how the theorems
of HOL Light may be translated to first-order equations in the TPDB format. Following this we
briefly recall completion in Section 3. Our main idea — the interaction between HOL Light and
KBCV — is presented in Section 4. Next we present our experiments in Section 5. Finally we
conclude in Section 6.

2 Translation from logic to rewriting

The first issue in implementing a translation mechanism from theorem statements to rewriting
is to choose which theorem statements can be used in a rewriting setting. Modern completion
tools only support unconditional equations, so we choose to work only with unconditional
orientable equations that can be encoded in a first-order format.

We start with all the theorems available in HOL Light/Multivariate. To obtain a list of all these,
we use the update database functionality of HOL Light, which can produce a list of name–
theorem pairs accessible from the top level by analyzing OCaml’s internal data structures. We
proceed by eliminating repetitions (theorems that have the same statement, but have been

1https://www.lri.fr/~marche/tpdb/format.html
2http://www.termination-portal.org/wiki/XTC_Format_Specification
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assigned different names), and selecting only the theorems that have the form of unconditional
equations (possibly universally quantified).

The two most common approaches for eliminating λ-expressions from higher-order logic
formulas are to use λ-lifting or to encode them as combinators. Such approaches are often
used to translate HOL to first-order logic [15, 10]. Lambda lifting does not seem to be possible,
as in rewriting we are not able to quantify inside a term. As the theory of SKI combinators
is equational, it might be possible to obtain a translation of λ-expressions to combinators.
In our first experiments we chose to translate the λ-expressions which can be expressed as
rewrite rules using simple transformations (β-reduce all redexes in the theorem statements and
η-expand equalities that have a λ-expression on one of the sides using extensionality) and to
ignore the rest of the equations.

Next we define the weight function, as a partial function on terms that returns polynomials
over variables (we will ignore the equations for which the function is undefined). The function
that we present ignores the types of the terms completely. In case of type-aware encodings the
function would need to include the type variables in the resulting polynomial.

Definition 2.1 (weight of a higher-order logic term).

w(t) :=


1 if t is a constant

x if t is a variable x

w(l) + w(r) if t = l r

undefined if t = λy.s

Given such a weight function, we can filter the orientable equations. We consider a HOL
theorem as an orientable equation, if after specializing all the top level universally quantified
variables the weights of the left- and right-hand sides of the equation are defined and one of
them is strictly greater than the other in the usual polynomial order sense. Not all equations
are orientable, for example the usual associativity or commutativity theorems have the same
polynomials returned by w for both sides, so they are not orientable.

In order to eliminate the higher-order applications, we use the apply functor. We employ the
algorithm introduced by Meng and Paulson [15]. For each higher-order constant c we compute
the minimum arity nc with which it appears in a problem, and the first nc arguments are passed
to c directly. If the constant is also used with more arguments in the problem, apply is used.
Blanchette [4, p. 105–106] gives simple examples when this encoding introduces incompleteness
in the encoding to ATP formats. Due to the lack of general quantifiers, however, this works
quite well for rewriting.

We can now proceed to encode the equations in the TPDB format. A file in this format starts
with a number of variable declarations, followed by a number of equations. To synchronize the
symbols appearing in the theorems, the TPDB export declares the signature of the constants,
functions and variables (for polymorphic constants or functions only one symbol for all occur-
rences; this could be strengthened with monomorphisation). The variables present in all the
equations are written to the file, followed by the equations oriented in the direction implied by
the weights. In order to verify our implementation of the polynomial ordering we proved the
following theorem.

Theorem 2.1. The theorems of HOL Light/Multivariate orientable by w(t) and translated to first-
order rewriting form a terminating TRS.

Proof. We have used TTT2 to find a proof that the system is terminating. The automatic strategy
is quite slow. Limiting TTT2 to polynomial interpretations (matrix interpretations of dimension
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DEDUCE
(E ,R)

(E ∪ {s ≈ t},R)
if s R← u→R t

COMPOSE
(E ,R∪ {s→ t})
(E ,R∪ {s→ u}) if t→R u

COLLAPSE
(E ,R∪ {s→ t})
(E ∪ {u ≈ t},R)

if s
A→R u

ORIENT
(E ∪ {s

.
≈ t},R)

(E ,R∪ {s→ t}) if s > t

DELETE
(E ∪ {s ≈ s},R)

(E ,R)

SIMPLIFY
(E ∪ {s

.
≈ t},R)

(E ∪ {u
.
≈ t},R)

if s→R u

Figure 1: The inference rules of completion.

1) over the naturals, however, is able to find a proof in a reasonable time (about 25 minutes). In
particular the SMT prover invoked by TTT2 does not find a satisfiable assignment for a bit-width
of 5, but finds one for a bit-width of 6. Parsing the system (consisting of a few thousand rewrite
rules) takes the biggest part of the running time of TTT2. We used CeTA to certify that the proof
found by TTT2 is indeed a valid termination proof of the system. CeTA requires about 10 minutes
to check the proof.

We have also implemented a combinator parser, which is able to read files generated by
termination and confluence tools and output HOL Light preterms. When reading the TPDB file,
applications give rise to Combp preterms and constants or variables give rise to Varp preterms.
When exporting the HOL theorems as a TPDB file, we have declared a signature which is used
to map the TPDB concepts (names of functions, constants, variables) back to their HOL coun-
terparts. Such preterms can later be type-checked by the standard HOL Light term parser. Due
to an encoding that does not preserve types, some of the preterms may fail to type-check (and
as we will see in Section 5, some will fail). The rewrites performed on the KBCV side are not
type-valid in the HOL setting, therefore such equations do not give rise to valid HOL critical
pairs and can be forgotten.

Given a terminating rewrite system, we can proceed to completing the system.

3 Completion

We briefly recall the basics of completion. See for example [2] for a comprehensive introduction
to completion and term rewriting.

Completion is a procedure which takes as input a (finite) set of equations E and optionally a
reduction order > (older tools need the reduction order in advance whereas modern tools try to
construct the reduction order dynamically with the help of external termination tools, see [23])
and attempts to construct a terminating and confluent TRS R with the same equational theory
as E . Provided the completion procedure succeeds, two terms are equivalent with respect to E
if and only if they reduce to the same normal form with respect to R, that is, R represents a
decision procedure for the word problem of E .

The procedure generates a finite sequence of intermediate TRSs which constitute approxi-
mations of the equational theory of E . Following Bachmair and Dershowitz [3] the completion
procedure may be modeled as a system of inference rules (see Figure 1). These inference rules
work on pairs (E ,R) where E constitutes a finite set of equations and R is a finite set of rewrite
rules. The goal of the procedure is to transform an initial pair (E ,∅) into a pair (∅,R) such
that R is terminating, confluent and equivalent to E . A completion procedure based on these
rules may either succeed (find R after finitely many steps), loop indefinitely, or fail. In Figure 1
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SIMPLIFY

DELETE E = ∅

complete

ORIENT

COMPOSE

COLLAPSEDEDUCE

TTT2to NF

new CPs

YES

choose
s ≈ t

to NF

Figure 2: KBCV’s automatic completion procedure.

a reduction order > is provided as part of the input (whereas most modern completion tools

construct this ordering on the fly as described above). We write s
A→R u to express that s is

reduced by a rule ` → r ∈ R such that ` cannot be reduced by s → t. The notation s
.
≈ t

denotes either of s ≈ t and t ≈ s.
In order to make the simplification set more complete we want to use an automatic comple-

tion tool. Most modern completion tools use some variant of the above inference system and
then commit to a specific strategy to implement a completion procedure. There are several
such tools available today, e.g., Slothrop [23], MKBTT [18], Maxcomp [11], and KBCV [21]. One of
the main issues was that most of these tools have not been designed to handle problems with
a magnitude counting thousands of equations. In the end we decided to use KBCV for several
reasons:

• It has both an automatic and an interactive mode, where the completion inference rules
may be applied freely.

• It records a history [19] of how rules were applied, which is useful to reprove the corre-
sponding equations in HOL Light.

• Its parser is fast enough to load the thousands of equations of the problem at hand in
reasonable time.

• One of the authors is the main developer of KBCV so it was relatively easy to adapt the
tool and optimize it [20].

Tools like KBCV typically work on small problems, e.g., those which can be found in the TPDB
problem database.3 When given a problem KBCV tries to complete it by issuing the inference
rules of completion in the order depicted in Figure 2.

First SIMPLIFY is used on all equations as long as a normal form with respect to the current
TRS R is reached. Next all trivial equations, i.e., equations where the left- and right-hand
sides are the same, are deleted. Now the tool checks whether E is empty, if this is the case R is
complete and the procedure finishes. Otherwise KBCV chooses an equation which it will try to
orient. The heuristic here is to select an equation with minimal left- and right-hand sides. The
depicted procedure actually runs in two threads in parallel. The first of those always tries to
orient equations from left to right and only if this does not succeed the other way round. The

3http://termination-portal.org/wiki/TPDB

81

http://termination-portal.org/wiki/TPDB


Deriving a complete HOL simplification set Kaliszyk, Sternagel

Figure 3: Control and data flow between HOL Light, KBCV, and external termination tools.

second thread behaves dually. KBCV implements a fast version of a lexicographic path ordering
to orient equations. Only if this does not succeed it gives the problem to TTT2 to establish a
terminating system which also comprises the newly oriented equation. To keep the resulting
system as small as possible KBCV now applies COMPOSE until all right-hand sides of rules are
in normal form with respect to the current TRS R. Next it also simplifies the left-hand sides
of rules using COLLAPSE. Finally DEDUCE computes critical pairs between left-hand sides of
rules and adds those to the set of equations.

4 Interaction between HOL Light and KBCV

In this section we describe how the steps performed in the completion procedure (described in
the previous section) correspond to operations in HOL. For this we run KBCV in its interactive
mode. The interaction is depicted schematically in Fig. 3.

Exporting the HOL Light simplification set. In Section 2 we have already described the
export of HOL Light equations to the TPDB format. We export all the equations that can be
written in the first-order rewriting format. We separate the orientable ones from the non-
orientable ones but write the latter as well (as they may become orientable after simplification).
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Importing the rewrite system to KBCV. KBCV can directly read the TPDB file. We issue
the orient command to orient the part of the system which could be oriented in HOL. Because
we already know that our chosen orientation will be terminating we set KBCV to use an external
termination tool that will always output “YES”.

Composing the rewrite rules. Given that the right-hand side of a rewrite rule can be
simplified with another rule the same operation can be performed in HOL assuming that the
types are correct. This means that we will later have to check that the derived rules correspond
to provable equations in HOL Light.

Collapse of rewrite rules. This operation works in a similar way as compose, only that it
produces equations which we will have to give back to HOL Light to orient and prove terminating.

Deducing critical pairs. A critical pair is a derivable equation which arises from the overlap
of left-hand sides of two rules. Some of those pairs found by KBCV will not be well-typed. To
improve the performance of SIMPLIFY we can remove such ill-typed pairs by parsing and type-
checking them in HOL Light. In our experiments we decided to use type-checking rather than
encoding of types in terms for two reasons: First, an ill-typed pair may give rise to a well-typed
equation using unification. For example an equation where we have list(α) on one side and
list(num) on the other side will give a well-typed equation by instantiating α to num. Second,
by throwing away not well-typed pairs we may remove equations that are needed to preserve
confluence. We have already discussed at the end of Section 2, why such pairs can be forgotten.
completion procedure.

Simplify and Delete. Simplify rewrites the left- and right-hand sides of equations to normal
form in order to eliminate joinable critical pairs. At this point the information about newly
obtained equations to orient can be send back to HOL together with their recorded history which
allows to reprove them.

Now we have a somehow more complete approximation of the initial theorems in HOL Light
for which we want to repeat the loop until we arrive at a complete system.

5 Experiments

We did our experiments with HOL Light revision 153 from December 2012 and Flyspeck revision
3130 from March 2013. The experiments were performed on a 48-core server with AMD Opteron
6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU. HOL Light uses only one
process, whereas KBCV uses threads to exploit all the available cores.

The number of all theorems as obtained using the update database mechanism is 17,807.
After removing repetitions and considering only the universally quantified equations there are
6,273 theorems. Our weight function returns a defined value for 4,186 theorems. Our reduction
order divides these in two parts: the 3,267 equations that are orientable and 919 that are not.

To verify our heuristic order, we used TTT2. We have exported the orientable equations in
the TPDB format and having used TTT2 with polynomial interpretations, we have found a proof.
The proof is 2.6MB in size and we have used CeTA to certify it.

We next proceeded by loading the TPDB file in KBCV. Since we already have established
termination of these rules beforehand orienting them only takes a view seconds. Deducing all
critical pairs between the left-hand sides of the oriented equations proved to be the first hurdle

83



Deriving a complete HOL simplification set Kaliszyk, Sternagel

for KBCV. The previous version of KBCV did not finish the computation of critical pairs in a few
days. To speed it up we introduced parallelization. Now KBCV is able to compute all 305,708
critical pairs in about two hours.

The critical pairs can be exported together with their history. As described in Section 2,
we have implemented a combinator parser to read back the KBCV history output as HOL Light
terms. Only the well-typed ones can be properly parsed. Trying to parse the terms takes about
4 hours and 137,888 of the newly generated equations are ill-typed. The indices of the ill-typed
equations are passed back to KBCV, which can in turn remove them.

The next bottleneck was SIMPLIFY. Using the previous version of KBCV, simplification of
this big number of equations was infeasible. With the help of caching techniques and paral-
lelization we are able to delete the joinable critical pairs; this, however, takes a few days. The
remaining step to close the cycle is to reprove the equations obtained using rewriting techniques
in HOL Light. With the history of performed simplifications, this is straightforward but has not
been done yet. So far we have performed only one iteration, so the TRS is not a confluent one.

Two example critical pairs found by KBCV are (the numbers are the internal indices used
to reference equations in KBCV, e.g., 309551 is a consequence of theorems 49 and 882 from the
initial set):

309551 : i(i(realu_lt(), i(i(realu_add(), x), y)), i(realu_ofu_num(), u_0())) =

i(i(realu_lt(), x), i(realu_neg(), y)) : 309551 : 49, 882,

which corresponds to the equation x+ y < 0⇐⇒ x < −y and

309569 : i(i(realu_lt(), i(i(realu_add(), x), y)), i(Re(), ii())) =

i(i(realu_lt(), x), i(realu_neg(), y)) : 309569 : 139, 882,

which corresponds to x + y < Re(i) ⇐⇒ x < −y. The latter of the two theorems will be
simplified using the rule that rewrites Re(i) to 0 and will be discarded.

6 Conclusion

This paper presents initial experiments in automatically deriving a terminating and confluent
simplification set for HOL Light using tools coming from termination and completion research.
We started with all the (unconditional) equations present in HOL Light/Multivariate and using a
manually defined order we proved termination for a large subset of the rules. We have presented
a possible loop for deriving confluence and we have done some experiments with the first loop
of the confluence derivation.

The simplification set that we derive, includes a number of equations translated to first-
order logic. Because higher-order matching is used for rewriting in most proof assistants,
the properties of the simplification set (like termination or confluence) derived for first-order
translations do not immediately give rise to the same properties for the original rules. There
are at least two ways to proceed in order to preserve the termination and confluence for the
obtained HOL simplification set:

• Use first-order rewriting in the proof assistant;

• Further restrict the initial simplification set to the first-order theorems.

In the future, the first thing we intend to do is to automatically prove the equations derived
by KBCV in HOL. Thanks to recording completion we know the equations used to derive the new
ones, so we have all the necessary components to use the existing HOL Light decision procedures.
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This will complete the cycle presented in Section 4 and will allow executing more iterations of
the completion procedure. Further, the remaining efficiency bottlenecks (on both HOL Light and
KBCV sides) need to be taken care of to make the procedure practical.

The approach that we presented is applicable not only to the large HOL theorem set, but
also to an arbitrary subset of it. For example, one might consider rewrite rules concerning
one specific domain of mathematics. In case completion for the whole set turns out to be
unachievable (for such a big set it might not be possible to iterate the loop until the result is
stable), the approach can be applied to the particular area, automatically deriving a decision
procedure.

We intend to try out different encodings to rewriting, that would take types into account.
Certain approaches presented for example in [5] could be directly applicable. Next, extensions
to rewriting, like higher-order rewriting [14], conditional rewriting, or AC rewriting can be
considered. Finally, we intend to investigate, how useful the automatically derived simplification
set is for proving real HOL Light problems.
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Abstract

Two complementary AI methods are used to improve the strength of the AI/ATP
service for proving conjectures over the HOL Light and Flyspeck corpora. First, several
schemes for frequency-based feature weighting are explored in combination with distance-
weighted k-nearest-neighbor classifier. This results in 16% improvement (39.0% to 45.5%
Flyspeck problems solved) of the overall strength of the service when using 14 CPUs and 30
seconds. The best premise-selection/ATP combination is improved from 24.2% to 31.4%,
i.e. by 30%. A smaller improvement is obtained by evolving targetted E prover strategies
on two particular premise selections, using the Blind Strategymaker (BliStr) system. This
raises the performance of the best AI/ATP method from 31.4% to 34.9%, i.e. by 11%, and
raises the current 14-CPU power of the service to 46.9%.

1 Introduction

Methods for automated reasoning in large theories (ARLT) have started to develop in the recent
years [8,14,20,24]. The primary driving force behind this development is the growing use of such
methods for assisting ITPs like Isabelle [15] and Mizar [22, 23]. Recently, we have added HOL
Light [7] to the pool of systems linked to the large-theory ATP methods [11], and experimented
with the strongest and most orthogonal combinations of the premise-selection methods and
various ATPs over the Flyspeck corpus [6]. The experimental work, described in [10], has shown
that 39% of the 14185 Flyspeck theorems could be proved in a push-button mode (without any
high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU workstation.

The work described in this paper improves two aspects of large-theory reasoning done on
the Flyspeck corpus: (i) the premise selection methods, i.e., selecting from a large repository the
lemmas, theorems, and definitions that are most relevant for a new conjecture, and (ii) the ATP
strategies used to solve the problems after premise selection. The techniques used to achieve
these improvements are quite straightforward. In the first case (Section 2), the improvement is
obtained by better weighting (scaling) of the large number of features that are used as an input
to the machine-learning algorithms that learn premise selection from previous proofs. Such
feature weighting seems to be quite important particularly for the k-nearest-neighbor algorithm
that we initially started to try on Flyspeck in [10]. Feature weighting seems to be a reasonably
studied subject in the machine-learning community, in particular in the information-retrieval
domain, and in some sense this work is quite a straightforward application of those studies. The
result is however quite a surprising improvement over the best AI/ATP method used so far for
Flyspeck, and also quite high improvement of the joint power of all AI/ATP methods used. An
important practical advantage of using k-nearest-neighbor over the more sophisticated kernel
methods explored recently on smaller corpora [1,13] is that k-nearest-neighbor works quite fast
with the number of features and training examples that the Flyspeck corpus provides, while
scaling up the kernel methods to the Flyspeck sizes is still work in progress.

J.C. Blanchette, J. Urban (eds.), PxTP 2013 (EPiC Series, vol. 14), pp. 87–95 87



Stronger Automation for Flyspeck Kaliszyk and Urban

The second improvement is obtained by a straightforward running of the newly developed
BliStr (Blind Strategymaker) strategy-evolving system [21] on two classes of ATP problems that
are created by different premise-selection methods. We have already been using for Flyspeck a
custom strategy-scheduling version (Epar) of the E [17] prover, consisting of strategies developed
by BliStr for the Mizar@Turing competition [18] on the 1000 Mizar@Turing training problems.
While that version turned out to be significantly stronger than standard E on Flyspeck, it was
still optimized on problems coming from a different corpus (Mizar). These Mizar problems
were additionally quite small in comparison to the sizes of Flyspeck problems produced by
the premise-selection methods that are most useful for Flyspeck. Section 3 shows that several
hundred runs of the BliStr’s strategy-evolving loop (slightly extended in comparison to [21],
to also evolve further SInE-based [8] premise-pruning parameters) on these Flyspeck problem
classes can again raise the performance of E quite considerably. The additional improvement
of the overall power of the system is smaller than for the first method, but it is still quite
significant, and more power can likely be added in the future by using strategy evolution also
for the remaining important classes of Flyspeck problems.

2 Better Feature Weights for Nearest Neighbor

Premise selection is an essential AI component that has in the past decade allowed the usage of
automated theorem provers (ATPs) over large corpora built with ITPs such as Mizar, Isabelle,
and HOL Light. The premise-selection methods select from the large repositories the lemmas,
theorems, and definitions (i.e., the premises) that are most relevant for a new conjecture. This is
a hard AI problem, for which various heuristics taking into account the semantics and syntax of
mathematical formulas can be considered. Such heuristics can involve (possibly approximative)
deductive reasoning components. For example, the MoMM system [19] generalizes hundreds of
thousands of existing mathematical lemmas, and using (deductively correct) type-aware ATP
indexing methods combined with limited deductive reasoning tries to find suitable lemmas for
a new conjecture. The SInE [8] heuristic is based on approximative reasoning about formulas,
using only the symbols contained in the formulas. In some sense it carves out the set of formulas
that (particularly in Horn-like ontologies) may be transitively related to the conjecture. A much
less deductive way of selecting premises is to learn (use machine learning) what is relevant for
what from the proofs contained already in the large repositories [1,13,20]. For this, the formulas
are characterized by suitably chosen features that can be purely syntactic, such as the symbols
and terms occuring in the formulas, or by more semantic/deductive features, such as models
and abstractions of the formulas and relations between them. The machine learners then try to
learn the association from such features to the premises that were most useful for proving the
theorems. The key parts of such methods are therefore the learning (generalization) algorithms
and the features used by the algorithms.

In order to get additional premise-selection power for the first large-scale AI/ATP experi-
ments done over Flyspeck, we had quickly added in [10] a custom implementation of the k-nearest
neighbor (k-NN) machine-learning method, which computes for a new example (conjecture) the
k nearest (in a given feature distance) previous examples and ranks premises by their frequency
in these examples. The motivation was that this fast (“lazy” and trivially incremental) learn-
ing method can be easily parametrized and might for some parameters behave quite differently
from the naive Bayes learner, which we had been using exclusively until then, because the
newly developed kernel-based methods [1, 13] so far do not scale to such large corpora. Our
(distance-weighted [4]) implementation weighs the contribution of the k nearest neighbors by
their feature-based similarity to the current conjecture, and computes the overall ranking of the
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available premises as a sum of the premises’ weighted contributions from these k neighbors.
The performance of this (multi-class, distance-weighted) k-NN seemed reasonable (the best

k-NN method solved 21.7% of the Flyspeck problems when combined with E) and quite comple-
mentary to premise selection based on naive Bayes. However, k-NN was weaker than the best
naive-Bayes classifier (24.1% of problems solved when combined with E). The features that we
use for characterizing Flyspeck formulas and measuring their similarity with k-NN consist of the
symbols and normalized shared terms contained in the Flyspeck formulas. To give a concrete
example (taken from Section 4.1 of [10]), the set of features characterizing the HOL theorem
DISCRETE_IMP_CLOSED:1

∀s:real^N→bool e.

&0 < e ∧ (∀x y. x IN s ∧ y IN s ∧ norm(y − x) < e =⇒ y = x)
=⇒ closed s

is the following set of strings:

"real", "num", "fun", "cart", "bool", "vector_sub", "vector_norm",

"real_of_num", "real_lt", "closed", "_0", "NUMERAL", "IN", "=", "&0",

"&0 < Areal", "0", "Areal", "Areal^A", "Areal^A - Areal^A",

"Areal^A IN Areal^A->bool", " Areal^A->bool", "_0", "closed Areal^A->bool",

"norm (Areal^A - Areal^A)", "norm (Areal^A - Areal^A) < Areal"

Here real is a type constant, IN is a term constructor, Areal^A->bool is a normalized type,
Areal^A its component type, norm (Areal^A - Areal^A) < Areal is an atomic formula, and
Areal^A - Areal^A is its normalized subterm.

The simplest way how to measure the similarity of formulas to the new conjecture is to
compute the overlap of their (sparse) feature vectors. One known property [2] of the k-NN that
was neglected by our first implementation is however the sensitivity of k-NN to feature fre-
quencies. For example, without additional weighting, the most common symbol (e.g., equality)
has in such similarity function the same weight as the most rare symbol, which is clearly not
desirable: overlap on the rarest symbol is much more significant than overlap on a symbol that
is present everywhere.

The most common way how to weight (boolean-counted) features in text retrieval with
respect to their frequency is the IDF (inverse document frequency) scheme [9]. This scheme
weights a term t in a collection of documents D using the logarithm of the inverse of the term’s
frequency in the document collection:

IDF(t,D) = log
|D|

|{d ∈ D : t ∈ d}|

For example, a term (symbol) contained only in one document (formula) will have weight
log |D|, a term contained in all of them will have weight log(1) = 0, and a term contained in
half of the documents will have weight log(2) = 1. Apart from using the standard IDF, we have
also found useful two other IDF-based weighting schemes, the (smoothed) inverse frequency:

IDF1(t,D) =
1

1 + |{d ∈ D : t ∈ d}|
and quadratically scaled (smoothed) inverse frequency:

IDF2(t,D) =
1

(1 + |{d ∈ D : t ∈ d}|)2

1http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED
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These three feature weighting schemes were combined with different values of k nearest
neighbors and (as usual) with ATPs run on different number of top-rated premises (using 30s
time limit and the same hardware as in [10]). Table 1 shows the performance of the best 12
methods after these experiments, together with the performance of the best previous method
(naive bayes 0154e). The precision of the logarithmically scaled IDF is clearly the best, and in
comparison with the non-logarithmic scaling, only relatively few nearest neighbors are needed.
The previously best method (last line in Table 1) is improved by 103 problems, which is a 30%
improvement. The proof data (denoted as ATP2 in Table 2) used for training the k-NNs were
by a negligible margin older (worse, i.e., containing more irrelevant proof dependencies that
we eventually prune) than the proof data (ATP3) used for the previously best method. The
feature extraction method was the same (the standard one).

Table 1: The top 12 AI/ATP methods, together with the previously best.

Method Premises Prover Theorem (%) Σ-SOTAC Processed

40-NN_IDF 128 E 446 (31.43) 4.24 1419
80-NN_IDF 512 E 445 (31.36) 4.25 1419
40-NN_IDF 512 E 443 (31.22) 4.20 1419
80-NN_IDF 128 E 436 (30.73) 4.22 1419
160-NN_IDF1 128 E 423 (29.81) 3.64 1419
300-NN_IDF1 128 E 422 (29.74) 3.50 1419
40-NN_IDF 512 V 419 (29.53) 3.09 1419
760-NN_IDF1 128 E 417 (29.39) 3.16 1419
160-NN_IDF1 128 E 417 (29.39) 3.49 1419
40-NN_IDF 128 V 416 (29.32) 3.01 1419
1200-NN_IDF1 128 E 416 (29.32) 4.29 1419
1000-NN_IDF2 128 E 415 (29.25) 3.21 1419
naive_bayes 154 E 343 (24.17) 1.97 1419

Method: 40-NN IDF means that 40 nearest neighbors are used with the standard IDF weighting.

Prover: V stands for Vampire [16].

Σ-SOTAC For each problem P solved by a system, its SOTAC for P is the inverse of the number of
systems that solved P. Σ-SOTAC is the sum of a system’s SOTAC over all problems.

Table 2 shows the newly computed 14-long greedy covering sequence, i.e., the joint per-
formance of the (greedily) best combination of 14 methods, ordered by their inclusion in the
greedy algorithm. While the logarithmic IDF scaling is obviously at the top, the linearly-scaled
IDF provided many useful complementary predictive methods. The overall 14-method coverage
went up from 39.0% (Table 14 in [10]) to 45.45%, i.e., by 16%. The frequency-scaling code in
the k-NN implementation responsible for this improvement takes about 5 lines of Perl, and the
whole sparse distance-weighted multiclass k-NN implementation takes about 200 lines of Perl
code. Some large improvements in the ARLT domain are still very easy.

3 Better Strategies for Different Premise Selections

BliStr (Blind Strategymaker) [21] is a recently developed system that automatically develops
strategies for E prover on a large set of related problems. Its main idea is to interleave (i)
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Table 2: The greedy sequence including the new k-NNs.

Method Premises Prover Training data Sum % Sum

40-NN_IDF 128 E ATP2 31.43 446
760-NN_IDF1 128 V ATP2 35.09 498
naive_bayes 128 Z3 ATP4 37.27 529
760-NN_IDF1 32 Z3 ATP2 38.97 553
naive_bayes 184 E ATP3 40.31 572
naive_bayes 12 E ATP3 41.22 585
160-NN_IDF1 128 Z3 ATP2 42.07 597
naive_bayes 512 E ATP0+HOL0 42.91 609
80-NN_IDF 512 V ATP2 43.48 617
760-NN_IDF1 512 E ATP2 43.97 624
40-NN_IDF1 32 V ATP2 44.39 630
1000-NN_IDF2 740 V ATP2 44.74 635
40-NN_IDF 32 E ATP2 45.10 640
40-NN 32 Z ATP2 45.45 645

iterated low-timelimit local search for new strategies on small sets of similar easy problems
with (ii) higher-timelimit evaluation of the new strategies on all problems. The accumulated
results of the global higher-timelimit runs are used to define and evolve the notion of “similar
easy problems”, and to control the selection of the next strategy to be improved.

BliStr was used to grow a set of E strategies for the Mizar@Turing competition.2 The
final improvement of the resulting strategy-scheduler (Epar) over the E’s auto-mode was 25%
on the Mizar@Turing competition problems. Epar has already been used for practically all
AI/ATP experiments over Flyspeck, i.e., whenever we refer to E above, it was run using the
Epar strategy-scheduler.

Since the Mizar@Turing pre-competition training problems were quite small (ca. 25 premises
per problem), while the best methods in Table 2 use 128 premises, it seemed potentially re-
warding to automatically evolve E strategies on such Flyspeck problem classes instead. This has
been so far tried for the two top problem classes (i.e., classes of problems generated using the
particular premise selection method described in the table) from Table 2 that use E: 40-NN_-
IDF_128_ATP2 and naive_bayes_184_ATP3. For each of them, the set of (randomly chosen)
1419 Flyspeck problems was further randomly divided into a training part (800 problems) and
a testing part (619 problems). The 800 training problems were then used for ca. 30 hours of
parallelized strategy evolution with Blistr. Since a major factor in ATP efficiency over prob-
lems with many premises is also a good SInE pre-selection,3 the E parameters tunable by BliStr
were extended in comparison to [21] to also evolve the SInE parameters. The starting set of
strategies is the same for both problem sets. These were 15 strategies previously developed by
BliStr that were giving good performance on Mizar/MPTP problems. These strategies were
however slightly weaker than the old Epar, because SInE parameters have been heuristically
added to Epar, while the 15 strategies do not contain any SInE parameters. We left it to the
extended BliStr to develop good SInE parameters.

For 40-NN_IDF_128_ATP2, the 15 initial strategies cover (in 10s) 257 of the 800 training

2http://www.cs.miami.edu/~tptp/CASC/J6/Design.html#CompetitionDivisions
3SInE-based selection is obviously interacting in various ways with the premise selection done by naive Bayes

and k-NN. This typically turns out to be a fruitful interaction of two different ranking methods, see [13].
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problems. 12 BliStr instance were run in total (on a 32-core Intel machine), producing 353
strategies eventually covering 320 of the 800 training problems when run with a 10s time limit.
For naive_bayes_184_ATP3, the 15 initial strategies cover (in 10s) 215 of the 800 training
problems. 16 BliStr instances were run in total (on a 64-core AMD machine), producing 637
strategies, covering 253 of the 800 training problems with 10s time limit. To construct a new
set of Epar strategies, we used again greedy algorithm that chooses the 14 strategies with the
(greedily) best joint coverage. Note that using for example Minisat++ [5] for solving the set-
cover problem optimally is not easy: it takes 400s for the 353 strategies (finding an 18-cover),
and Minisat++ did not finish within one hour for the 637 strategies. The 14 new greedy
strategies for 40-NN_IDF_128_ATP2 cover 313 training problems, and the 14 naive_bayes_-

184_ATP3 strategies cover 245 training problems. The new version of Epar (marked as E2
below) was then for each problem class evaluated with 30s overall time limit on the 64-CPU
AMD machine both on the training and testing problems. The results are shown in Table 3 and
Table 4. Note that in both cases the performance of the new Epar is obviously lower than the
combined 10s performance of its underlying 14 strategies, because within its 30s overall time
limit Epar gives only 2s to each of its strategies (this could obviously be made smarter, as is
done in Vampire [16]).

Table 3: The strategy evaluation for 40-NN_IDF_128_ATP2.

40-NN_IDF_128_ATP2 OldEpar NewEpar Improvement (%)

Training 254 290 36 (14.2)
Testing 192 209 17 (8.9)
Total 446 499 53 (11.9)

Table 4: The strategy evaluation for naive_bayes_184_ATP3.

naive_bayes_184_ATP3 OldEpar NewEpar Improvement (%)

Training 173 208 35 (20.2)
Testing 132 162 30 (22.7)
Total 305 370 65 (21.3)

The tables seem to suggest that some overfitting on the training problems took place for
40-NN_IDF_128_ATP2, while the new Epar testing performance on naive_bayes_184_ATP3 is
even better than its performance on the training problems. It is interesting to note that SInE is
used in 11 of the 14 new 40-NN_IDF_128_ATP2 strategies, and 12 of the 14 new naive_bayes_-

184_ATP3 strategies. Quite often the SInE parameters in the later complementary methods are
quite severe, limiting the SInE recursion to 1 or 2. This could mean that the BliStr’s loop run
separately for the current premise-selection slice without interaction with other premise slices
causes quite a lot of incompleteness. This might however be destroying some complementarity
with the other premise-selection methods specialized in low premise numbers. An obvious
remedy would be to evolve the strategies together on merged problem classes, and only later
select the best strategies for the particular classes in a way that provides minimal overlap
between them.

Finally, the new 14-long greedy covering sequence using the new Epars for 40-NN_IDF_-

128_ATP2 and naive_bayes_184_ATP3 was computed on our main evaluation machine. The
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result is shown in Table 5. While originally the new Epar developed for naive_bayes_184_ATP3
was indeed second in the greedy sequence, in the final version it became completely redundant,
because we have also run the new strategies grown for 40-NN_IDF_128_ATP2 on the 440-NN_IDF
slices. This strengthened the 440-NN_IDF_128_ATP2 slice by 46 problems (12% improvement),
and the 440-NN_IDF_512_ATP2 slice by 102 problems (33% improvement). This improvement
was again quite unexpected, and it suggests that the overfitting suspected in Table 3 is not
really a problem. The 14 methods of the final combination solve without any user interaction
46.86% of the Flyspeck problems.

Table 5: The new greedy sequence including the new Epars.

Method Premises Prover Training data Sum % Sum

40-NN_IDF 128 E2 ATP2 34.88 495
440-NN_IDF 128 E2 ATP2 38.33 544
440-NN_IDF 512 E2 ATP2 40.02 568
760-NN_IDF1 32 Z3 ATP2 41.64 591
naive_bayes 128 V ATP2 42.84 608
40-NN 512 Z ATP2 43.55 618
1000-NN_IDF2 740 V ATP2 44.11 626
naive_bayes 64 E ATP3 44.67 634
160-NN_IDF1 512 Z3 ATP2 45.10 640
naive_bayes 32 Z3 ATP0+HOL0 45.52 646
naive_bayes 512 E ATP0+HOL0 45.94 652
40-NN 32 E ATP2 46.30 657
80-NN_IDF 512 V ATP2 46.58 661
160-NN_IDF1 128 V ATP2 46.86 665

Prover: E2 is the new Epar, while is the old Epar. Z3 is the Z3 [3] SMT solver.

Training data: ATPi is worse (older, less pruned) than ATPi+1 . ATP0+HOL0 is a combination
of proof data obtained from ATPs with the proof data extracted directly by tracking proof
dependencies inside HOL.

4 Conclusion and Future Work

It is interesting that a similar treatment of features as in processing of natural language texts
helps so significantly also for formal mathematical libraries. While mathematics in its extreme
is undecidable, and has (theoretically constructed) parts that provably behave as random, it
is clear that human-organized mathematics is very far from such randomness. While the au-
tomation that we currently have is still very far from the power of human mathematicians,
the observance of such simple statistical laws may be providing evidence that the Penrose-
style arguments about the “necessarily super-Turing” power of the human mathematical mind
might more and more look like just another case of the AI effect.4 The obvious future work
concerning feature weighting is to re-run the machine learning methods tested in [13] on the
MPTP2078 benchmark (in particular, the kernel-based MOR, and van Laarhoven’s BiLi, whose

4http://en.wikipedia.org/wiki/AI_effect
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random-projection mechanism should be quite sensitive to feature distribution) with such fea-
ture weightings.

Since ATPs are in some sense universal problems solvers, it should not be very surprising that
their parameterization matters a lot. However, some of the results, like the 33% improvement
of the 440-NN_IDF_512_ATP2 slice (which was not subject to any direct tuning), were quite
unexpected. While we have added the SInE parameters to BliStr, there are still many more
E parameters that could be further tuned. A particularly interesting challenge is to grow and
guess suitable term orderings for similar classes of problems.

In general the experimental results show that large improvements can be still achieved in
the ARLT domain by quite simple methods and simple technology transfer. It seems that this
AI domain is still wide open to a number of techniques that could further considerably improve
the strenth of automation for large-theory mathematics.
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Abstract

When checking answers coming from automatic provers, or when skeptically integrating
them into proof assistants, a major problem is the wide variety of formats of certificates,
which forces to write lots of different checkers. In this paper, we propose to use the extended
resolution as a common format for every propositional prover. To be able to do this, we
detail two algorithms transforming proofs computed respectively by tableaux provers and
provers based on BDDs into this format. Since this latter is already implemented for SAT
solvers, it is now possible for the three most common propositional provers to share the
same certificates.

1 Introduction

Different theorem provers can communicate to benefit from each other capabilities. It is the case
for instance when automatic theorem provers, which can prove efficiently even hard problems,
cooperate with interactive theorem provers, well known for their trustworthiness. The powerful
Isabelle [23] tactic sledgehammer [22] implements such an interaction, by calling in parallel
various kinds of automatic provers to solve Isabelle goals.

To take advantage of efficiency without compromising soundness, the cooperation must be
skeptical : in addition to a yes/no answer, the automatic prover must return a proof witness
that can be checked or reconstructed in the proof assistant. In the sledgehammer tactic, this is
for instance the case for the SMT solver Z3 whose proof witnesses are reconstructed to produce
Isabelle theorems [4].

In addition to the fact that most automatic provers do not give (detailed enough) proof
witnesses and thus must be taken at face value, the ones that do provide such witnesses all
implement their own formats to prove the validity or the unsatisfiability of a given formula. It
thus requires much effort to write a checker for a new prover, even when some already exist for
other tools.

Besson et al. [3] proposed a format for the particular case of SMT solvers which was argued
to be both easy to generate and easy to check. This affirmation was actually backed up: the
competitive SMT solver veriT [5] is able to return a variant of these proof witnesses at small
cost, which can then be efficiently checked in Coq [1, 2]. The propositional part of this format
is based on extended resolution [28], into which theory reasoning can be plugged.

The aim of this work is to promote extended resolution as a common format for certificates
about propositional logic, based on several observations:

• on a theoretical point of view, extended resolution is known to p-simulate most existing
proof systems [29, 24];

• on a practical point of view, we can efficiently translate reasoning performed by some
proofs systems in extended resolution (see eg. [20] for DPLL with backjumping and [26]
for clausal BDDs) and efficiently check such certificates [1, 2];
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• this format is easily extendable beyond propositional logic, like theory reasoning as already
implemented for SMT solvers [3, 2] or quantifiers [10].

The work presented here extends this scheme with two other families of provers: the method
of analytic tableaux [27, 9] and the reduced ordered binary decision diagrams [6] (BDDs in short).
To do so, we detail two algorithms translating the proofs found by each of these provers into a
proof in extended resolution which is polynomial in the length of the original proof.

The objective is to have a common proof format in order to share checkers and thus save a lot
of human work. The work presented in this paper can be used to instrument already existing
provers in order to return certificates in the concrete format of [3] – which corresponds to
extended resolution – and thus directly plugged into checkers understanding it like SMTCoq [2].
As such, we could check with great confidence answers coming from these provers without having
to write new code in an interactive theorem prover; this could then be extended into tactics in
order to enjoy tableaux and BDDs automation inside Coq without compromising soundness.

SAT solver Clausal BDDs Tableau prover Reduced Ordered BDDs

SMTCoq

EXTENDED RESOLUTION

Moreover, to add safe propositional automation into another interactive prover than Coq,
one single checker would be sufficient.

Note that the goal of this paper is to give two new algorithms to generate certificates, but
not to explain how to efficiently check them after: this has already been detailed in previous
work [1, 2].

The paper is organized as follows. After explaining the extended resolution proofs (Section 2)
and their already existing applications to SAT and SMT, we present in Section 3 the method
of analytic tableaux and the algorithm to deduce a resolution certificate from a tableau proof.
The same approach is applied to the BDD method in the following section (Section 4). We
finally discuss related and future work in Section 5 before concluding.

2 Extended resolution

Extended resolution [28] is an extension of the well known resolution proof system [25] with
the possibility to add new variables representing larger terms, giving more compact proofs
than standard resolution. We first recall its definition and present our notations, before giving
examples of applications.

2.1 Definitions

We are given a countable set of propositional variables V. A literal l is a variable v (in which
case it is called a positive literal) or its negation v̄ (in which case it is called a negative literal).
A clause C is a disjunction of literals, written l1∨· · ·∨ ln when it is nonempty and � otherwise.
A conjunctive normal form (CNF in short) S is a set of clauses seen as their conjunction.

A valuation ρ : V → {>,⊥} is a total function mapping variables to one of the values true or
false. Given a valuation ρ, it is possible to define the interpretation of literals, clauses and CNFs
(respectively written |l|ρ, |C|ρ and |S|ρ) in the standard way. We say that a CNF S is satisfiable
if there exist a valuation ρ such that |S|ρ = >; otherwise, we say that S is unsatisfiable.
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The resolution rule is a deduction rule that builds a new clause from two existing clauses:

v ∨ C v̄ ∨D
C ∨D

where v does not appear in C nor D, and no variable appears with one polarity in C and the
other in D. The variable v is called the resolution variable. A comb tree of resolutions is a
resolution chain. This rule is refutationally complete: a CNF S is unsatisfiable if and only if the
empty clause can be derived by applications of the resolution rule starting with the clauses of
S.

Extended resolution extends the resolution rule with additional rules without premisses that
introduce new clauses containing fresh variables implicitly representing terms of propositional
logic.

A typical use consists in folding and unfolding logical connectives: to express that a fresh
variable x represents f1 ? · · · ? fn where ? is a connective, the rules are the tautological clauses
stating that x⇔ f1 ? · · · ? fn. Such rules are used for instance to transform a Boolean problem
into an equisatisfiable one in CNF [28, 3].

In the remaining of this paper, we are going to use these rules that fold and unfold connec-
tives for all the connectives. In this section we give the examples of the ∧,⇒ and ite (if . . . then
. . . else . . . ) connectives; the same method applies for all the others (one may refer to [28, 3]
for more details).

Example 2.1. A fresh variable x can represent the conjunction x1 ∧ x2 by introducing the
following three rules:

x̄ ∨ x1 x̄ ∨ x2 x ∨ x̄1 ∨ x̄2

respectively stating that x implies x1, x implies x2, and x1 and x2 together imply x.
Similarly, a fresh variable y can represent the implication y1 ⇒ y2 by introducing the

following three rules:

ȳ ∨ ȳ1 ∨ y2 y ∨ y1 y ∨ ȳ2

and a fresh variable z can represent the branching ite(z1, z2, z3) (stating “if z1 then z2 else z3”)
by introducing the following four rules:

z̄ ∨ z1 ∨ z3 z̄ ∨ z̄1 ∨ z2 z ∨ z1 ∨ z̄3 z ∨ z̄1 ∨ z̄2

2.2 Applications

Introduced to establish lower bounds on the minimal length of proofs, extended resolution was
shown to bypass resolution since it has the same power as the Extended Frege Systems [8, 29],
the most powerful known proof systems. It is also known to provide short proofs to problems
hard for resolution like Haken’s pigeon-hole formulae [7].

The clauses learned during conflict analysis performed by modern SAT solvers can be easily
derived by a resolution tree [20], and thus state-of-the-art SAT solvers like zChaff [14] or Min-
iSat [12] are instrumented to return resolution proofs for unsatisfiable problems. The extension
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allows to define certificates for more complex proof systems like clausal BDDs [26] or the Boolean
part of SMT solvers [3] (which do not require their inputs to be in CNF). Even if such a proof
witness can be rather huge, it takes a negligible cost to output it compared to finding that
a formula is unsatisfiable. On the other side, it can be efficiently checked, for instance inside
proof assistants [1, 2].

Extended resolution is thus a good candidate as a common proof format for propositional
reasoning. It has already been widely studied and implemented for SAT solvers. In the re-
maining of this paper, we focus on two other popular propositional proof methods: the method
of analytic tableaux and full BDDs and show that we can as well translate their reasoning into
certificates based on extended resolution.

3 Certificates for the method of analytic tableaux

The method of analytic tableaux [27, 9] is a decision procedure for various kinds of logic.
Applied to propositional logic, it can establish the unsatisfiability of any quantifier-free formula
without requiring it to be in some normal form, contrary to SAT solvers. The popularity of this
method comes from the fact that it can be extended to a large spectrum of standard features
like quantifiers or modal logic. Its efficiency and simplicity make it largely used in applications
requiring great confidence: it is for instance at the heart of the widely used blast tactic of the
Isabelle proof assistant [21].

After presenting the method for propositional logic and theoretical results concerning its
power, we explain how to deduce certificates based on extended resolution from tableaux proofs.

3.1 The method

A refutation tableau is a tree whose nodes are labeled with propositional formulas such that:

• a decomposition rule is applied at each node; and

• every branch from the root to a leaf contains at least a formula and its negation – in this
case, we say that a branch is closed.

It is established that a formula F is unsatisfiable if and only if there exists a refutation
tableau of root F . Tableaux thus give a complete method to establish the unsatisfiability of
propositional formulas.

A decomposition rule splits a formula labeling a node above in the tree (not necessarily
the current node) into one or more sub-formulas, depending on the head symbol. It can be
generically described by the node:

t1 ? · · · ? tn

f1 . . . . . . fp

where ? can be any connective, p 6 n, and any fj can be either ti or t̄i for some i, depending
on ?.

We give examples of these decomposition rules for the ∧, ∨ and ⇒ connectives.

Example 3.1. A conjunction can be projected into any of its direct sub-terms:

t1 ∧ · · · ∧ tn

ti
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An n-ary disjunction decomposes into n branches:

t1 ∨ · · · ∨ tn

t1 . . . . . . tn

Similarly, an implication decomposes into 2 branches:

t⇒ u

t̄ u

The following example proves the unsatisfiability of (a⇒ b) ∧ a ∧ b̄.

Example 3.2. A refutation tableau proving the unsatisfiability of (a⇒ b) ∧ a ∧ b̄ is:

(a⇒ b) ∧ a ∧ b̄

a⇒ b

a

b̄

ā b

(1)

(2)

(3)

(4)

(5) (6)

The first extra-edge (1) simply states the initial formula as the root. Edges (2) to (4) decompose
it as a conjunction. Edges (5) and (6) decomposes the implication a⇒ b. Finally, the backwards
dashed arrows illustrate the closure of each branch.

We theoretically know that resolution p-simulates analytic tableaux on CNF formulas (The-
orem 5.1 of [29]). The converse is not true: on some classes of problems, resolution can
build exponentially smaller proofs than tableaux. To our knowledge, there is no link between
extended resolution and full analytic tableaux.

3.2 From refutation tableaux to extended resolution

In this section, we describe a generic algorithm to transform any refutation tableau proving
the unsatisfiability of f into a proof of the empty clause in extended resolution starting from
f , without requiring f to be in normal form (contrary to [29]). It produces a proof tree
whose number of nodes is linear in the number of nodes in the original tableau proof.

3.2.1 The algorithm on an example

To understand the idea of the algorithm, we first conduct it step by step on Example 3.2.
First, we assign fresh variables to each (non-strict) sub-formula of the initial formula which

is not a literal. In our example, we thus add two fresh variables: f , a⇒ b and g , f ∧ a ∧ b̄.
Second, we build a piece of a proof tree for each edge in the tableau in the following way:

(1) We initiate the process by stating that the fresh variable assigned to the initial formula
holds: g.

100



Extended Resolution as Certificates for Propositional Logic Chantal Keller

(2) This step is the first projection of g, which can be derived from (1) in extended resolution:

ḡ ∨ f
(1)

g

f

(3) - (4) Similarly, these steps are the second and third projections of g:

ḡ ∨ a
(1)

g

a

ḡ ∨ b̄
(1)

g

b̄

(5) This step corresponds to decomposing f which has been obtained at step (2). This is
the resolution of what has been obtained at (2) with the rule of extended resolution to
decompose an implication:

f̄ ∨ ā ∨ b
(2)

f

ā ∨ b

(6) This step is obtained when closing the left branch of the tree: it is a resolution between
the piece of tree labeling the edge above a (3) and the the piece of tree labeling the edge
above ā (5):

(3)

a

(5)

ā ∨ b
b

Finally, we consider the closure of the last branch, as a resolution between the piece of tree
labeling the edge above b̄ (4) and the the piece of tree labeling the edge above b (6):

(4)

b̄

(6)

b

�

Putting everything together, we obtain the following proof of the empty clause from g:

ḡ ∨ f g

f f̄ ∨ ā ∨ b
ā ∨ b

g ḡ ∨ a
a

b

g ḡ ∨ b̄
b̄

�

3.2.2 Formal description

Algorithm As we explained, the first step is to assign fresh variables to each (non-strict)
sub-formula of the initial formula which is not a literal, and to define the very simple piece of
certificate – which is a clause containing only one literal – stating that the initial formula holds.

The second step consists in successively labeling the edges with pieces of certificates, from
top to bottom and from left to right. We consider the generic rule decomposing a connective ?:
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t1 ? · · · ? tn

f1 . . . . . . fp

(0)

(1) (p)

where (0) has already been computed. We explain how to compute (1) to (p). The label of the
left edge, (1), is a resolution between (0) and the rule of extended resolution which corresponds
to the decomposition of ?. Then, for i ∈ J2; pK, (i) is the resolution between the two pieces of
certificates leading to the two formulas that finally close the branch directly on the left. For
instance, on the following tableau shape, (2) is the resolution between (3) and (4).

a ? b

(0)

(1) (2)

(3)

(4)

Finally, we obtain the empty clause by a resolution between the two pieces of certificates
leading to the two formulas that close the last branch.

Remarks The correctness of this algorithm mainly relies on the following invariant: a piece
of certificate labeling an edge above the formula f proves a clause containing f . This ensures
that the resolutions performed are always possible.

For each edge in the tableau proof, the corresponding piece of certificate contains at most
two nodes: a resolution and possibly a rule of extended resolution. The final step adds a
resolution to the final proof. It entails that the number of nodes in the obtained proof is linear
in the number of nodes in the tableau proof.

4 Certificates for reduced ordered binary decision dia-
grams

A reduced ordered binary decision diagram is a normalized decision tree of a propositional
formula. BDDs enjoy the property to be canonical [18]: two equivalent formulas have the same
BDD – up to the order of the variables, as we will see below. As a result, it provides a decision
procedure for the unsatisfiability of propositional formulas [6], which consists in progressively
building the BDD of the formula, and check that the result is the false BDD.

This method is rather popular since it is very efficient for certain classes of SAT problems,
and well suited for circuit generation and simplification [11, 13]. Its efficiency mostly relies on
the choice of a good order for the variables, which is an active research area [19].

After presenting the method for propositional logic and theoretical results concerning its
power, we explain how to deduce certificates based on extended resolution from BDD proofs.

102



Extended Resolution as Certificates for Propositional Logic Chantal Keller

4.1 The method

A BDD is a directed acyclic graph whose nodes have either zero or two children and are labeled
with propositional variables with respect to a given order. The idea is that, for every variable
whose value has an influence on the formula, we construct the two sub-BDDs obtained by
successively putting this variable to ⊥ and >: this is called the Shannon expansion of the
variable.

Example 4.1. The BDD corresponding to (a⇒ (b∨ c))∧ (a∨ b∨ c) with the ordering a > b > c
is:

b

c

0 1

It is established that two equisatisfiable formulas have the same BDD up to the order of
the variables. It entails that every unsatisfiable formula has the 0 BDD. BDDs thus give
a complete method to establish the unsatisfiability of a formula F : it is sufficient to build the
BDD of F and check that it is 0.

The difficulty is that the naive algorithm to compute the BDD of a formula is equivalent to
computing a truth table, and thus impossible to run in practice. The idea to cope with this
issue is to build the BDD little by little and simplify it at the same time.

To build the BDD corresponding to a formula F , we thus start with the BDDs corresponding
to the variables appearing in the formulas, and we alternate between two phases:

1. building the BDD associated to a sub-formula of F of which every sub-formula has already
been treated;

2. simplifying the obtained BDD.

The first step consists in recursively running through the BDDs concerned by the connec-
tive, until we reach the leaves. The following example presents the rules corresponding to the
implication.

Example 4.2. Given two BDDs, their implication can be constructed using the following rules:

a a a

Γ1 Γ2 ∆1 ∆2 Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

⇒  

a

∆

a

Γ1 Γ2 Γ1 ⇒ ∆ Γ2 ⇒ ∆

⇒  

0⇒ ∆ 1 1⇒ ∆ ∆ Γ⇒ 0 ¬Γ Γ⇒ 1 1

The second rule applies when the top variable of ∆ is smaller than a. The symmetric rule when
this variable is greater than a is similar.

The second step is an application of the following two rules, respectively called merge and
elim, until the BDD is normalized:
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a a

Γ Γ Γ

 
merge

a

Γ

Γ 
elim

This step is the key point to avoid building exponential BDDs.
We give as an example the proof of unsatisfiability of (a⇒ b) ∧ a ∧ b̄.

Example 4.3. The following steps build the proof of unsatisfiability of (a⇒ b) ∧ a ∧ b̄:
a a

a

a

b

b

b

b

0

0

0

0

0

0

0

1

1

1

1

 

 

  

 

 

imp

neg
and

and

elim elim

We already theoretically know that extended resolution p-simulates BDDs (Corollary 1 of
[24]).

4.2 From BDDs to extended resolution

In this section, we describe a generic algorithm to transform any BDD proof of unsatisfiability
into a proof of the empty clause in extended resolution, without requiring the initial for-
mula to be in normal form. It produces a proof tree whose number of nodes is polynomial
in the number of nodes in the length of the whole BDD proof.

Peltier [24] proved that extended resolution p-simulates BDDs, and this proof of course con-
tains an algorithm to transform a BDD proof into a proof in extended resolution. We propose
here a variant which is more implementation-oriented. Some ideas remain the same, but con-
trary to [24], we build the clauses corresponding to extended rules on demand (and not at the
beginning), which changes the way we handle connectives. The construction remains polyno-
mial.

The idea is the following:

• we define how a set of clauses can represent a BDD: it mainly consists in labeling all the
nodes with names, and expressing the Shannon expansion in terms of clauses a la Tseitin;

• starting from the variables, we progressively build both the BDD and the resolution proof:
for each step of the building of a BDD, we explain how to transform a set of clauses
representing the initial BDD into a set of clauses representing the final BDD, by applying
the rules of extended resolution;

• in the end, since we obtain the 0 BDD, we have built a close proof in extended resolution of
the negation of the original formula. It only remains to resolve with the original formula.

This algorithm thus builds two kinds of objects:
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• the sets of clauses representing the intermediate BDDs: it is not mandatory to actually
construct them, but the fact that they represent the intermediate BDDs is the invariant
making this algorithm correct;

• the resolution proof produced little by little to switch between these sets of clauses: this
is the final output of the algorithm.

This time we do not first present the algorithm on an example, since the proof which is
obtain (even for a simple formula like a ∧ ā) is rather huge and unreadable; it is in fact easier
to understand each step in the general case.

4.2.1 Algorithm

A set of clauses representing a BDD relates connected nodes by clauses.
First, all the nodes have been given fresh names. Then, for each internal node, we add to

the set four clauses corresponding to the Shannon expansion that this node represent:

a

Γ1 Γ2

PΓ

PΓ1 PΓ2

adds the four clauses P̄Γ ∨ a ∨ PΓ1 ;PΓ ∨ a ∨ P̄Γ1 ; P̄Γ ∨ ā ∨ PΓ2 ;PΓ ∨ ā ∨ P̄Γ2 to the set.
Finally, we add one clause a leaf depending on its value: 0P0 adds the clause P̄0 and 1P1

adds the clause P1.

Example 4.4. • The set of clauses associated to the BDD 0P0 is {P̄0}.

• The BDD of a variable a is:

a

0 1

Pa

P0 P1

The corresponding set of clauses is {P̄a∨a∨P0;Pa∨a∨ P̄0; P̄a∨ ā∨P1;Pa∨ ā∨ P̄1; P̄0;P1}.

• We come back to Example 4.1 and give the names Pb to the node labeled with b, Pc to
the node labeled with c, P0 to the node labeled with 0 and P1 to the node labeled with
1. The set of clauses associated to this BDD is {P̄b ∨ b ∨ Pc;Pb ∨ b ∨ P̄c; P̄b ∨ b̄ ∨ P1;Pb ∨
b̄ ∨ P̄1; P̄c ∨ c ∨ P0;Pc ∨ c ∨ P̄0; P̄c ∨ c̄ ∨ P1;Pc ∨ c̄ ∨ P̄1; P̄0;P1}.

All these clauses correspond to the rules for the ite, > or ⊥ connectives in extended resolu-
tion, and are thus provable in extended resolution.

As we said, the algorithm consists in starting with the BDDs of the variables and the cor-
responding sets of clauses, and then successively apply the connectives, merge and elim rules
both on the BDDs and on the set of clauses. In the end, we will obtain the BDD 0PΓ , and thus
a proof in extended resolution of P̄Γ, where PΓ is the fresh variable associated to the initial
formula. We will finally conclude by resolving with it.

It thus remains to explain how we transform sets of clauses representing BDDs into a set of
clauses representing the BDD obtained after an application of a connective or the merge and
elim rules. In this paper, we focus on the connectives, since the simplification rules are handled
like in [24] (and it is roughly the same ideas as for connectives).
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To handle a connective f ? g, we prove by induction on the sum of the number of nodes in
Γ and ∆ that we can at the same time:

(a) transform the sets of clauses associated to Γ and ∆ into a set of clauses representing Γ ?∆;

(b) generate the extended rules corresponding to Γ ?∆;

where Γ is the BDD corresponding to f and ∆ is the BDD corresponding to g. Only the first
item is needed for the final algorithm to work, but the second item is required in the proof by
induction. This is how we avoid to first transform the formula into a set of clauses, like in [24].

We show the proof in the case of the implication: this both variant and covariant connective
illustrates well the process.

Base cases We consider only the base case 0PΓ
⇒ ∆P∆

 1PΓ⇒∆
since the others are

similar.
We first define the name PΓ⇒∆ by extended resolution:

P̄Γ⇒∆ ∨ P̄Γ ∨ P∆

(1)
PΓ⇒∆ ∨ PΓ

(2)
PΓ⇒∆ ∨ P̄∆

(3)

This already fulfills step (b).
The set of clauses representing 0 is {P̄Γ}, obtained by extended resolution on the connective

⊥. By resolving it with (2), we obtain a proof of PΓ⇒∆, which fulfills step (a).

Inductive cases The inductive cases correspond to the following labeling:

a a a

Γ1 Γ2 ∆1 ∆2 Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

⇒  

PΓ

PΓ1 PΓ2

P∆

P∆1 P∆2

PΓ⇒∆

PΓ1⇒∆1
PΓ2⇒∆2

a

∆

a

Γ1 Γ2 Γ1 ⇒ ∆ Γ2 ⇒ ∆

⇒  

PΓ

PΓ1 PΓ2

P∆

PΓ⇒∆

PΓ1⇒∆ PΓ2⇒∆

We are going to concentrate only on the first one; the second one is similar (with even fewer
resolutions).

The induction hypothesis for (b) gives us: P̄Γ1⇒∆1
∨ P̄Γ1

∨ P∆1
(1)

PΓ1⇒∆1
∨ PΓ1

(2)
PΓ1⇒∆1 ∨ P̄∆1 (3)

and

 P̄Γ2⇒∆2
∨ P̄Γ2

∨ P∆2
(4)

PΓ2⇒∆2 ∨ PΓ2 (5)
PΓ2⇒∆2 ∨ P̄∆2 (6)

The induction hypothesis for (a) is:
P̄Γ ∨ a ∨ PΓ1

(7)
PΓ ∨ a ∨ P̄Γ1

(8)
P̄Γ ∨ ā ∨ PΓ2

(9)
PΓ ∨ ā ∨ P̄Γ2 (10)

and


P̄∆ ∨ a ∨ P∆1

(11)
P∆ ∨ a ∨ P̄∆1

(12)
P̄∆ ∨ ā ∨ P∆2

(13)
P∆ ∨ ā ∨ P̄∆2 (14)

We first define (b) by extension: P̄Γ⇒∆ ∨ P̄Γ ∨ P∆ (15)
PΓ⇒∆ ∨ PΓ (16)
PΓ⇒∆ ∨ P̄∆ (17)
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and then (a) by resolution:
P̄Γ⇒∆ ∨ a ∨ PΓ1⇒∆1

(resolution of 15, 8, 11, 2, 3)
PΓ⇒∆ ∨ a ∨ P̄Γ1⇒∆1

(resolution of 17, 12, 1, 7, 16)
P̄Γ⇒∆ ∨ ā ∨ PΓ2⇒∆2

(resolution of 15, 10, 13, 5, 6)
PΓ⇒∆ ∨ ā ∨ P̄Γ2⇒∆2

(resolution of 17, 14, 4, 9, 16)

4.2.2 Remarks

As proved in [24], the whole algorithm – together with the transformation of the merge and
elim rules – builds a proof whose number of nodes is polynomial in the length of the original
BDD proof.

As we said, the correctness of this algorithm relies on the fact that the intermediate sets
of clauses always represent the intermediate BDDs, in order to obtain in the end a proof of the
negation of the initial formula.

We think that the new presentation for connectives makes this algorithm easier to im-
plement: the functions combining BDDs for each connective just have to return the clauses
generated by the (b) step in addition to the (a) step, instead of somehow looking into a large
set initially computed.

5 Discussion

5.1 Related works

Lots of related works were already presented throughout the paper.
To our knowledge, this is the first transformation of full propositional tableaux (and not

only clausal tableaux) into extended resolution, and this is the first work aiming at providing
certificates that can be checked by an external tool (instead of a theoretical comparison of
two proof systems). The Isabelle tableau prover [21] gives witnesses, but encoded directly into
Isabelle proofs, and thus not applicable to systems not based on Higher-Order Logic.

The BDD algorithm highly relies on [24], but in an implementation perspective (as we argued
in Section 4.2.2). [26] presented an implementation of a translator from clausal BDDs into
extended resolution, but this is limited to CNF formulas, and requires to treat lots of particular
cases whereas our algorithm is more generic.

Even if this work relies on different previous works for the different parts, this is a first
attempt to unify certificates for three major paradigms for propositional proving: DPLL with
backjumping, the method of tableaux, and BDDs.

Other proof formats for certificates in propositional logic have been proposed. The format
based on extended resolution used in [26] called TraceCheck (which is in particular returned
by the SAT solver BooleForce) is very close to ours, and thus could be directly used by our
algorithms. The recent Reverse Unit Propagation format [15, 16] (RUP in short) gives shorter
proofs than resolution, but is currently restricted to inputs in CNF– whereas tableaux and BDD
provers deal with the full propositional logic without requiring preprocessing.

5.2 Future works

Obviously, the next step is to instrument existing provers in order to return these certificates,
and to evaluate the efficiency (in particular, it must not be costly to output and check the
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certificate compared to finding the proof). This could then be plugged into a certified checker
like SMTCoq [2], in order to check a posteriori the answers given by the automatic provers.

The tableaux and BDD algorithms we presented here are rather naive, and we need to
understand how the variants that are actually implemented by the provers enter into this
schema. Some improvements do not affect our algorithms, like the choice of the order of the
variables in BDDs, but others may require changes.

Our algorithms could also be extended with other features, in particular quantifiers: we
know how to extend our certificates with quantifiers [10], and they are well handled by tableaux
proofs. We would also like to deal with other logics than classical logic, like intuitionistic or
modal logic, for which tableaux are quite frequently used.

A broad spectrum study should also extend this work to other proof formats, like an exten-
sion of the RUP proofs [15] to full propositional logic, as well as other proof search paradigms,
like stochastic search algorithms.

Acknowledgments The author thanks Filip Marić who asked a question that motivated this
work, and the anonymous reviewers for their insightful comments.

6 Conclusion

In this paper, we presented two new algorithms to transform into certificates in extended
resolution the proofs computed by two major propositional provers: tableaux provers and BDDs.
Since this translation is already efficiently implemented for SAT solvers based on DPLL with
backjumping, this opens the way towards a common format for certificates for propositional
solvers for which we already have efficient certified checkers.
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Abstract

OpenTheory is being used for the first time (in work to be described at ITP 2013) as a
tool in a larger project, as opposed to in an example demonstrating OpenTheory’s capabil-
ity. The tool works, demonstrating its viability. But it does not work completely smoothly,
because the use case is somewhat at odds with OpenTheory’s primary design goals. In this
extended abstract, we explore the tensions between the goals that OpenTheory-like sys-
tems might have, and question the relative importance of various kinds of use. My hope
is that describing issues arising from work in progress will stimulate fruitful discussion
relevant to the development of proof exchange systems.

1 The OpenTheory Vision: Reusable Theory Packages

OpenTheory [3] is a format for representing theories in higher-order logic, inspired by an anal-
ogy: theories are software packages, which may depend on one another, and proofs are bytecode
for a portable virtual machine. Just as a piece of software (especially a library) can be useful in
the development of another (library or application), so can the definitions and theorems in one
formal development be a useful component for another. For example, existing theories about
floating-point numbers and finite words might both be used in the development a formal model
of an instruction set architecture. The problem is that these theories may have been developed
in different provers and may not be directly compatible.

There are multiple HOL prover implementations, analogous to different platforms, includ-
ing HOL Light, HOL4, ProofPower, and Isabelle/HOL, each with a broadly similar logic and
architecture, but with significant differences in their libraries of native theories and their in-
tegrated proof development (e.g. automation) tools. The aim of OpenTheory is to support
theory engineering across provers, akin to the software engineering applicable to large software
developments. (OpenTheory does not yet support provers using different logics like Coq or
Twelf: bridging the differences between HOL-based systems is enough of a challenge already.)
Large formal developments that span multiple provers require methods of exchange, and benefit
when those methods promote reuse of native theories as opposed to isolated duplications.

OpenTheory’s approach to exchange is based on a standard format for low-level proofs
coupled with a standard library of theory packages. The standard format enables capture and
replay of proof work in any prover supporting the format. The standard library factors out
various core theories that are likely to be used by many developments and provides a standard
interface for depending on such library theories by reusing a prover’s native theories as opposed
to rederiving them on import. (For example, if the standard library has some basic theorems
about foo and HOL4 has an equivalent constant FOO, then we map foo to FOO on import
and enable reuse of all of HOL4’s FOO theorems, rather than importing foo theorems, proving
` foo = FOO, and mediating any combined reasoning through the equivalence.)
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When using OpenTheory, the goal therefore is to create a package that is independent
of any particular prover in the sense that its dependencies are all standard theories that are
supposed to be supported by every prover. Furthermore, the package should have a clear
topic and a clean interface (the theorems and definitions it exports should be meaningful,
useful results, as opposed to auxiliary constants or intermediate lemmas), because these criteria
promote reusability in different environments: if intermediate steps can be handled entirely
within OpenTheory, they never need to be proved at the endpoints.

2 The Use Case: Proof Transport, with Modifications

John Harrison [2] created a formal model of HOL in HOL Light and proved it sound1. We
(Myreen et al. [5]) are working on tools in HOL4 for verifying implementations of code derived
from shallow embeddings. Harrison’s soundness proof for HOL supports an excellent case study
for our tools wherein we will verify an implementation of HOL Light, but it lives in a different
prover. Our options to use his work are:

• Manually port the high-level script files from HOL Light to HOL4.

• Automatically port the low-level proofs from HOL Light to HOL4.

• (Manually port our verification tools from HOL4 to HOL Light: too much work.)

• (Automatically port the high-level script files: we are unaware of any tools for that.)

A manual port of the high-level scripts would have been feasible, although more work than
using the OpenTheory link. It would also have been tedious, and would not scale to larger
developments, so we went for the automatic option. OpenTheory is currently the only tool for
low-level proof transport with an exporter for HOL Light and an importer for HOL4, so it was
the obvious choice.

Transport Overview

We used Joe Hurd’s proof-logging fork of HOL Light2, rather than mainline HOL Light, because
that is the only version with an OpenTheory exporter. The key steps to transport the contents
of a single HOL Light script file are:

1. Modify the HOL Light script file so that it builds in the proof-logging fork.

2. Mark each theorem that is desired in the exported output.

3. Run the exporter to create an OpenTheory article.

4. Run the OpenTheory tool on the article to compress it and clean it of artefacts3 produced
by the HOL Light exporter.

5. Run the HOL4 importer on the article, and find which constants and theorems the article
requires as assumptions. (These should only be standard library theorems, but HOL4
does not yet automatically support everything in the standard library.)

1Specifically, his theories define the syntactic inference rules of HOL and their intended semantics, and prove
soundness (statements derived by the rules are true in the semantics) and consistency (some statement cannot
be derived).

2http://src.gilith.com/hol-light.html
3For example, the identity function NUMERAL wrapped around numerals to aid parsing and printing.
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6. Create a HOL4 script that proves the article’s assumptions, imports the article, and saves
the theorems. The result is a HOL4 theory suitable for native use.

We only transported a single script, the one defining Harrison’s inference rules for HOL. We
made little use of OpenTheory’s facilities for composing theory packages, since our focus was
getting all the results rather than packaging them nicely for others.

The Need for Modifiability

Harrison’s model of HOL does not include rules for defining new constants, but the implemen-
tation we plan to verify will support definitions. Therefore, we would like to extend his model
and soundness proof with support for definitions. The problem is that low-level proofs are
effectively unmodifiable.

After following the transport process above, the original HOL Light script files remain the
only human-modifiable sources for the theory. We must work with them to make our extensions,
and then transport the results. The transport process thus becomes part of our development
chain.

We contend that most uses of proof transport will share this feature of wanting access
to modifiable sources. Even when no major extensions need to be made to the transported
theory, it is often necessary to tweak definitions or expose internal results to make downstream
development possible or easier. Harrison’s proofs could be packaged, as they are, as a reusable
theory, but we would still want the option for an easy re-export of the proofs after—and while—
we modify and extend them to support definitions.

Specific Experiences

In this section, I describe some of the particular issues that affected our use of OpenTheory. At
present, we have successfully transported Harrison’s definition of the syntactic inference rules
of HOL (130 theorems/definitions in total). We also updated his definition to support constant
definition (and transported it again). We have not yet updated or transported the soundness
proof.

The main result of transport is the definition of the provability relation, |-, and all the
constants it depends on (such as ACONV). The theorem in HOL4 after transport, shown partially
below, looks the same as the original4 in HOL Light.

` (∀t defs. welltyped in t defs =⇒ ((defs, [ ]) |- t === t)) ∧
(∀asl1 asl2 l m1 m2 r defs.

((defs, asl1) |- l === m1) ∧ ((defs, asl2) |- m2 === r) ∧
ACONV m1 m2 =⇒
((defs, TERM UNION asl1 asl2) |- l === r)) ∧

(∀asl1 l1 r1 asl2 l2 r2 defs.
((defs, asl1) |- l1 === r1) ∧ ((defs, asl2) |- l2 === r2) ∧
welltyped (Comb l1 l2) =⇒
((defs, TERM UNION asl1 asl2) |- Comb l1 l2 === Comb r1 r2)) ∧

. . .

4Not Harrison’s original, but the extended version with support for definitions; the extension was made to
the HOL Light script file before transport.
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Some of the issues described below arise in part because the tools (the HOL Light exporter,
the OpenTheory tool, and the HOL4 importer) and the OpenTheory standard library are all
still young. I expect that if OpenTheory is used more, and the standard library gains traction,
proof transport will enjoy much better support.

Reuse of native constants and theorems On the whole, the standard ontology provided
by OpenTheory was a useful intermediary for mapping constants in HOL Light to their moral
equivalents in HOL4. For our work a direct mapping of constants would also have been fine,
but we would have had to write it. The advantage of using standard library constants is that
both the HOL Light exporter and the HOL4 importer contained (most of) the mappings we
needed before we started. We needed to manually provide only six additional mappings, mostly
for constants in the standard library that don’t exist (and hence also had to be defined) in
HOL4, for example the standard library’s BIT0 constant for numerals (since HOL4 uses BIT1

and BIT2 instead).
It was also good that many of the assumptions of the transported theory were satisfied

by corresponding native theorems in HOL4. We needed, however, to state and prove sixty
additional theorems in order to match the article’s assumptions exactly. All of these had trivial
(less than two lines) proofs, and were often rephrasings of native theorems.

For example, the standard library asks for both

` ∀p. EVERY p [ ] and ` ∀p h t. EVERY p (h::t) = p h ∧ EVERY p t,

whereas HOL4 has a single theorem

` (∀P. EVERY P [ ] = T) ∧ (∀P h t. EVERY P (h::t) = P h ∧ EVERY P t).

Slightly less trivially, the standard library asks for

` ∀p g h. ∃f. ∀x. f x = if p x then f (g x) else h x,

whereas HOL4 has a constant, WHILE, and a theorem saying it is a suitable witness for f .
The HOL4 importer might be augmented to try strategies for automatically proving such

assumptions on import. Alternatively, since all the assumptions are supposed to be in the
standard library, HOL4 might want a native copy of every theorem in the standard library. It
is unclear which of these approaches is better.

Representation of sets OpenTheory represents sets as an abstract type (A set), which
leads to a clean interface and easy import, but can make exporting scripts that represent sets
as predicates (A → bool) difficult. Harrison’s work, especially the soundness proof, makes
considerable use of sets as predicates5. We hope to port his proof, but doing so would be
non-trivial because it has not been made to work with the proof-logging fork of HOL Light and
makes extensive use of sets represented by predicates.

Source annotations The proof-logging fork of HOL Light was designed primarily for creating
theory packages for the standard library. As such, many of HOL Light’s native theories have
been modified so they can be exported as the standard library theories, and the exporter is not
designed to accept native HOL Light theories without modifications.

5His use of predicates is in addition to his definition of a new type for representing sets in the HOL semantics;
being of a separate type, the latter “sets” pose no problem.
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At best, these modifications include marking each theorem in the script that is desired as
an output of the final theory package, which for us meant marking essentially every theorem
proved in the file.

At worst, proof scripts need to be changed substantially to accommodate the standard
library’s representation of sets and the fact that some of HOL Light’s automation has not
yet been made to work with the rest of the fork. We ran into this problem when one of the
definitions required some of HOL Light’s advanced recursive function definition tools, which
did not work in the proof-logging fork. After failing to devise an alternative proof, we called
on Joe Hurd to upgrade the fork. Thankfully he was able to do so.

Article file size, and transport efficiency The transport process centres around an article
file that contains the log of primitive inferences comprising the theory. The generated article
for Harrison’s definition of HOL’s inference rules is around twelve megabytes in size. The
original script file is only thirty kilobytes in size. Having such a large file in the development
chain is unwieldy, especially when using version control since it increases our repository size
significantly. We opt to keep the article in our repository because we don’t expect everyone
using the repository to have the tools necessary to generate it (e.g. an installation of proof-
logging HOL Light). Processing (exporting, compressing, importing) the article also takes
several minutes.

Kaliszyk and Krauss [4] will present techniques for efficient proof transport, in terms of both
speed and size, at ITP 2013. We hope these will be adopted by OpenTheory, where efficiency
has been an important concern but not the highest priority.

Theorem names OpenTheory avoids names wherever possible, and refers to theorems by
their statements. This policy has the benefit of reducing opportunities for conflict. But nicely
named theorems are useful in most provers, including HOL4. A principled approach, which is
currently unimplemented, would be to pass names and other metadata (e.g. whether a theorem
should be an automatic rewrite rule) on a separate channel alongside the OpenTheory proof
data. We used the simpler hack of encoding the theorem name in the theorem itself (as the
name of an extra variable).

3 The Impossible Wish: Script Portability

In light of the need for modifiability, the holy grail of theory exchange would be automatic
methods for porting high-level script files. This corresponds to porting software between high-
level languages as opposed to compiling to a common bytecode that has an interpreter on
each platform. But just as software ports are usually done manually, I expect the variety and
complexity of script files to make automatic ports unlikely: HOL Light/HOL4 script files may
contain arbitrary OCaml/SML code.

Another approach would be to generate script files by “decompiling” low-level proofs. This
idea is relatively unexplored in the context of proofs, but the analogous field of decompilation
for software binaries may offer some ideas. Recovering an invocation of a high-level tactic from
the trace of its primitive inferences sounds like a difficult problem, but perhaps the traces are
sufficiently idiosyncratic.

The Common HOL platform, as used by HOL Zero [1], is aimed in the direction of script
file portability. It defines an API of high-level functions that a HOL-based prover might use
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in a script file. Beyond such an API, one could use a standard, purpose-built script file lan-
guage, such as the Isar formal proof language [6] used by Isabelle. Or, going further, we might
standardise on a single prover and eliminate the need for exchange at all.

Of course, diversity has its advantages: there are various factors affecting the experience of
using a prover including the interface, the speed, the automation libraries, the theory libraries,
and the degree to which hacking the prover is encouraged. There are different trade-offs to
make between these; we don’t know the single best answer and there probably isn’t one.

4 Summary of Tensions

In the table below, we characterise the two ways to consider a proof exchange system that we
have explored in our use of OpenTheory.

For Making Reusable Packages For Proof Transport
export a clean interface export everything
depend on and produce standard results depend on standard results
export once and archive export and import with every modification
export can be expensive so import is cheap export and import must be cheap
can expect script file preparation should accept script files untouched

In some ways, the differences are in degree rather than in kind. For example, reusable
packages may have a clean interface that happens to include everything, or may need occasional
modification for maintenance. But when modifications are being made in a development cycle,
where one is experimenting with the effects of changes in imported definitions on further theories
in the target system, cheap proof transport becomes more important.

Should more work be done by the importer or the exporter? OpenTheory tries to find a
balance in the middle, but perhaps biases against the exporter since the work to make a native
theory into an OpenTheory package is slightly different for each theory, and must be done for
each one, whereas the work required to import any OpenTheory package (which respects the
standard library) as a native theory can be done once and for all.

Two Modes of Use

Direct proof transport is likely to be a commonly desired function of proof exchange systems
like OpenTheory. Such usage benefits from the existence of a well-supported (by provers) well-
designed standard library of theories. However, the concerns when creating such a library can
get in the way of making the transport process smooth. Efficient transport is necessary as long
as the original sources remain the only modifiable ones.

It might be possible, however, for OpenTheory to support two modes of use. One mode
would be for creating theory packages fit for public consumption, and conforming to the stan-
dards required by a high-quality package repository. The other mode would be for porting a
theory from one prover to another wholesale, without modifications. Implementing the second
(proof transport) mode would require more ingenuity, since the source theory may depend on
particular representations and theories that are outside the standard library. However, one
could always fall back on exporting a larger, less reusable package that derives its results from
(at worst) the axioms.
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Abstract

Sledgehammer integrates external automatic theorem provers (ATPs) in the Isabelle/HOL
proof assistant. To guard against bugs, ATP proofs must be reconstructed in Isabelle.
Reconstructing complex proofs involves translating them to detailed Isabelle proof texts,
using suitable proof methods to justify the inferences. This has been attempted before
with little success, but we have addressed the main issues: Sledgehammer now transforms
the proofs by contradiction into direct proofs (as described in a companion paper [4]);
it reconstructs skolemization inferences; it provides the right amount of type annotations
to ensure formulas are parsed correctly without overwhelming them with types; and it
iteratively tests and compresses the output, resulting in simpler and faster proofs.

1 Introduction

Sledgehammer [22] is a proof tool that connects the Isabelle/HOL proof assistant [19] with
external automatic theorem provers (ATPs), including first-order resolution provers and SMT
solvers. Given an interactive proof goal, it heuristically selects hundreds of facts (lemmas,
definitions, and axioms) from Isabelle’s vast libraries, translates them to first-order logic (FOL),
and invokes the external provers. Although Sledgehammer can be trusted as an oracle,1 most
users are satisfied only once the proof has been reduced to Isabelle primitives.

When Sledgehammer was originally conceived, the plan was to have it deliver detailed
proofs in Isabelle’s Isar language [31], a textual, human-readable format inspired by Mizar [17].
Paulson and Susanto [23] designed a prototype that performs inference-by-inference translation
of ATP proofs into Isar proofs and justifies each Isar inference using metis, a proof method
based on Hurd’s Metis resolution prover [14]. This idea was abandoned for several reasons:
The resulting proofs by contradiction were unpalatable, so that users were disinclined to insert
them in their theory text; they were often syntactically incorrect due to technical issues; and a
single metis call with the short list of needed lemmas usually sufficed to re-find the proof.

Proof reconstruction with metis one-liners means that the proof must be re-found each
time the Isabelle theory text is processed. This sometimes fails for difficult proofs that metis
cannot re-find within a reasonable time and is vulnerable to small changes in the formalization.
It also provides no answer to users who would like to understand the proof—whether it be
novices who expect to learn from it, experts who must satisfy their curiosity, or merely skeptics.
But perhaps more importantly, metis supports no theories beyond equality, which is becoming
a bottleneck as automatic provers are being extended with dedicated procedures for theory

1For many years, Sledgehammer employed type-unsound encodings by default [18], making it unsuitable as an
oracle. Newer versions use optimized type-sound encodings [5].
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reasoning. The Z3-based smt proof method [7] is a powerful alternative to metis, but it depends
on the availability of Z3 on the user’s machine for proof replay, which hinders its acceptance
among users. Moreover, due to its incomplete quantifier handling, it can fail to re-find a proof
generated by a resolution prover.

The remedy to all these issues is well known: to generate detailed, structured Isar proofs
based on the machine-generated proofs, as originally envisioned by Paulson and Susanto. The
first issue is that the Isar proof, like the underlying ATP proof, is by contradiction. A companion
paper describes an algorithm that turns such proofs around [4]. The present paper describes
further enhancements that increase the intelligibility and robustness of the output and that are
implemented in Sledgehammer’s proof translation pipeline (Section 3).

• Skolemization: Sledgehammer communicates with ATPs in full FOL as opposed to
quantifier-free clause normal form (CNF). Skolemization is performed by the external
ATPs, but it must be reconstructed in Isar (Section 4).

• Type annotations: Isabelle can generate strings from formulas, but it does not always
understand its own output. Terms are often read back with overly general polymorphic
types, resulting in failures. Annotating each subterm with type constraints impedes read-
ability. Instead, Sledgehammer now employs an algorithm that introduces a minimal,
complete set of type annotations (Section 5).

• Proof preplay: Sledgehammer users waste precious time on proofs that fail or take too
long. Proof preplay addresses this by testing the generated proofs for a few seconds
before presenting them to users. If several proofs are available, users can choose the
fastest one and insert it in their theory text (Section 6).

• Proof compression: The generated proofs can be arbitrarily detailed depending on which
ATP is used. Users normally want to compress straightforward chains of deduction into
single Isar inferences, justified by a single metis call. This is performed in combination
with preplaying to obtain faster and simpler proofs (Section 7).

Although the focus is on Isabelle, most of these techniques are equally applicable to proof
construction for other Sledgehammer-like tools, such as HOL(y)Hammer for HOL Light [15]
and MizAR for Mizar [1].

2 Isabelle/HOL

The Isabelle/HOL proof assistant is based on polymorphic higher-order logic (HOL) [11] ex-
tended with axiomatic type classes [30]. The types and terms of HOL are that of the simply-
typed λ-calculus [9] augmented with type constructors, type variables, and term constants.

The types are either type variables (e.g., α, β) or n-ary type constructors, usually written in
postfix notation (e.g, α list). Nullary type constructors are also called type constants (e.g., nat).
The binary type constructor α→ β is interpreted as the (total) function space from α to β. Type
variables can carry type class constraints, which are essentially predicates on the types.
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Terms are either constants (e.g., map), variables (e.g., x), function applications (e.g., f x),
or λ-abstractions (e.g., λx. f x x). Constants and variables can be functions. HOL formulas are
simply terms of type bool. The familiar connectives and quantifiers are predefined (¬, ∧, ∨,
−→, ∀, ∃). Constants can be polymorphic; for example, map : (α→ β)→ α list→ β list applies
a unary function elementwise to a list of α elements.

Isabelle is a generic theorem prover whose metalogic is an intuitionistic fragment of HOL.
In the metalogic, propositions have type prop, universal quantification is written

∧
, implication

is written =⇒, and equality is written≡. The object logic is embedded in the metalogic using a
constant Trueprop : bool→ prop, which is normally not printed. Some foundational properties
can only be expressed in the metalogic, but they play no role in Sledgehammer. We preserve
the distinction between the two levels to avoid distracting the trained Isabelle eye, but readers
unfamiliar with Isabelle can safely ignore the distinction.

Types are inferred using Hindley–Milner inference. Type annotations : τ give rise to ad-
ditional constraints that further restrict the inferred types. A classic example where type
annotations are needed is 2 + 2 = 4. Without type annotations, the formula is parsed as
(2:α)+(2:α)= (4:α), where α belongs to the numeric type class, which defines basic numeric
operators and syntax but imposes no semantics on the “numbers.” An annotation is necessary to
make the formula provable—e.g., (2 : int)+2 = 4. A single annotation is sufficient because of
the constraints arising from the most general types of the involved operators: op + : α→ α→ α

and op = : α→ α→ bool.
For both types and terms, Isabelle distinguishes two kinds of free variable: schematic vari-

ables, which can be instantiated, and nonschematic variables, which stand for fixed, unknown
entities. When stating a conjecture and proving it, the type and term variables are normally
fixed, and once it is proved, they become schematic so that users of the lemma can instantiate
them when applying the lemma.

3 The Translation Pipeline

The translation from an ATP proof to an Isar proof involves two main intermediate data struc-
tures. The ATP proof is first parsed and translated into a proof by contradiction with the same
structure but with HOL formulas instead of first-order formulas. The proof is then transformed
into a direct proof, from which Isar proof text is synthesized. Various operations are imple-
mented on these data structures to enhance the proof.

ATP Proof. Paulson and Susanto had the foresight to choose TSTP (Thousands of Solutions
for Theorem Provers) [28] as input format for their prototype. Among the automatic provers
they wanted to integrate with Isabelle, only E [25] supported the format at the time. Nowadays,
most provers feature some support for TSTP.

TSTP specifies the basic syntax for representing proofs as a directed acyclic graph of in-
ferences. A single parser can be used to integrate all provers that can generate the syntax.
However, the format does not mandate any proof system; hence, interfacing a new ATP usu-
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ally requires some work, especially for processing inferences that introduce new symbols (e.g.,
skolemization). Isar proof construction is currently supported for the resolution provers E and
Vampire [24] and the unit-equality prover Waldmeister [13]. For the future, we are also in-
terested in the higher-order provers LEO-II [2] and Satallax [8], which are partly integrated in
Sledgehammer already [26].

SPASS generates proofs in its custom DFG format only (even though it can parse TPTP
FOF [27]). Fortunately, DFG is based on similar concepts and can be represented using the
same data structure as TSTP in memory, so it is also supported to a large extent.

Proof by Contradiction. The ATP proof is translated into an Isabelle proof by contradiction.
This step preserves the graph structure of the proof, but the nodes are labeled by HOL formulas.

Some consolidation can already take place at this level. ATPs tend to record many more
inferences than are interesting to Isabelle users. For example, trivial operations such as clausi-
fication and variable renaming produce linear inference chains that can be collapsed.

This translation corresponds largely to the work by Paulson and Susanto. We refer to their
paper [23] for details. In particular, they describe how HOL terms, types, and type classes are
reconstructed from their encoded FOL form. Their code had to be adapted to cope with the
variety of type encodings supported by newer versions of Sledgehammer [5], but nonetheless
their description fairly accurately describes the current state of affairs.

Direct Proof. The proof redirection algorithm, presented in the companion paper [4], takes a
proof by contradiction as the input and produces a direct proof. The latter can be regarded as
a fragment of Isar proofs. The abstract syntax of proofs (π) and inferences (ι) is given by the
production rules

π ::= (fix x∗)∗ (assume l: φ)∗ ι∗

ι ::= prove q∗ l: φ l∗ π∗

| obtain q∗ x∗ where l: φ l∗ π∗

where x ranges over HOL variables (which may be of function types), φ over HOL formulas,
l over Isar fact labels (names), and q over Isar qualifiers (then and show). Asterisks (∗) denote
repetition. Nested proof blocks are possible, as indicated by the syntax π∗.

A fix command fixes the specified variables in the local context, and assume enriches
the context with an assumption. Standard inferences are performed using prove. Its variant
obtain proves the existence of HOL variables for which a property holds; the variables are
added to the context.

Once the direct proof is constructed, it is iteratively compressed and preplayed. Finally,
qualifiers are introduced: then indicates that the previous fact is needed to prove the current
fact, whereas show is required for the last inference in the top-level block. The then keyword
is only a convenience; the same effect can be achieved less elegantly using labels. At the end,
useless labels are removed, and the remaining labels are changed to f1, f2, etc.
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Isar Proof. The final step of the translation pipeline produces a textual Isar proof. This step is
straightforward, but some care is needed to generate strings that can be parsed back by Isabelle.
This is especially an issue for formulas, where type annotations might be needed.

Example. The following Isabelle theory fragment declares a two-valued state datatype, de-
fines a flip function, and states a conjecture about flip:

datatype state = On | Off

fun flip : state→ state where

flip On = Off |
flip Off = On

lemma flip x 6= x

Invoking Sledgehammer launches a collection of ATPs (typically, E, SPASS, Vampire, and Z3).
The conjecture is easy, so they rapidly return. Vampire delivers the following proof, presented
in a slightly abbreviated TSTP-like format:

51 axiom flip(on)=off flip_simps_1
52 axiom flip(off)=on flip_simps_2
55 axiom ¬ off=on state_distinct_1
57 axiom ∀X3 (¬ state(X3)=on−→ state(X3)=off) state_exhaust
58 axiom state(s)= s type_of_s

774 conj ¬ flip(s)= s goal

775 neg_conj ¬¬ flip(s)= s 774 negate
776 neg_conj flip(s)= s 775 flatten
781 plain off 6=on 55 flatten
892 plain ∀X0 (¬ state(X0)=on−→ state(X0)=off) 57 rectify
893 plain ∀X0 (state(X0) 6=on−→ state(X0)=off) 892 flatten

1596 plain ∀X0 (state(X0)=on ∨ state(X0)=off) 893 ennf_trans
2238 neg_conj flip(s)= s 776 cnf_trans
2239 plain state(s)= s 58 cnf_trans
2287 plain flip(on)=off 51 cnf_trans
2288 plain flip(off)=on 52 cnf_trans
2375 plain off 6=on 781 cnf_trans
2485 plain ∀X0 (state(X0)=off ∨ state(X0)=on) 1596 cnf_trans
3342 plain on= s ∨ state(s)=off 2239, 2485 superpos
3362 plain on= s ∨ off= s 3342, 2239 fwd_demod
3402 neg_conj flip(on)=on ∨ off= s 2238, 3362 superpos
3404 neg_conj off=on ∨ off= s 3402, 2287 fwd_demod
3405 neg_conj off= s 3404, 2375 subsum_res
3407 neg_conj flip(off)=off 3405, 2238 bwd_demod
3408 neg_conj off=on 3407, 2288 fwd_demod
3409 neg_conj ⊥ 3408, 2375 subsum_res
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The formulas used from the original problem are listed first. Each line gives a formula number,
a role, and a FOL formula. Any problem formula that can be used to prove the conjecture
is an axiom for the automatic prover, irrespective of its status in Isabelle (lemma, definition,
or actual axiom). The rightmost columns indicate how the formulas was arrived at: Either it
appeared in the original problem, in which case its identifier is given (e.g., flip_simps_1), or it
was derived from one or more already proved formulas using a Vampire-specific proof rule.

If Sledgehammer’s isar_proofs option is enabled, textual Isar proof reconstruction is at-
tempted. The Isabelle proof by contradiction for the ATP proof above is as follows:

775 flip s = s ¬ goal
3402 flip On = On ∨ Off = s 775, state.exhaust
3404 Off = On ∨ Off = s 3402, flip.simps(1)
3405 Off = s 3404, state.distinct(1)
3407 flip Off = Off 775, 3405
3409 False 3407, flip.simps(2), state.distinct(1)

Linear inference chains are drastically compressed, and the lemmas

state.distinct(1): Off 6= On
state.exhaust: (y = On =⇒ P) =⇒ (y = Off =⇒ P) =⇒ P
flip.simps(1): flip On = Off
flip.simps(2): flip Off = On

are referenced by name rather than repeated. The passage from FOL to HOL also eliminates
encoded type information, such as the state function and the auxiliary axiom type_of _s. After
redirection, the proof becomes

prove [] 3407: “flip Off 6= Off” [ flip.simps(2), state.distinct(1)] []
prove [] 3405: “flip s 6= s ∨ Off 6= s [3407] []
prove [] 3404: “flip s 6= s ∨ Off 6= s ∧ Off 6= On [3405, state.distinct(1)] []
prove [] 3402: “flip s 6= s ∨ flip On 6= On∧Off 6= s [3404, flip.simps(1)] []
prove [show] 775: “flip s 6= s” [3402, state.exhaust] []

Compression and cleanup simplify the proof further:

prove [] ε: “flip Off 6= Off” [ flip.simps(2), state.distinct(1)] []
prove [then, show] ε: “flip s 6= s” [flip.simps(1), state.distinct(1), state.exhaust] []

From this simplified direct proof, the Isar proof is easy to produce:

proof –
have Off 6= flip Off by (metis flip.simps(2) state.distinct(1))
thus flip s 6= s by (metis flip.simps(1) state.distinct(1) state.exhaust)

qed
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4 Skolemization

The typical architecture of modern first-order provers combines a clausifier and a CNF-based
reasoning core. It is the clausifier’s duty to skolemize the problem and move the nonskolemiz-
able quantifiers to the front of the formulas, where they can be omitted. Sledgehammer histori-
cally performed clausification itself, using a naive exponential application of distributive laws.
This was changed a few years ago to use the ATPs’ native clausifiers, which generate a polyno-
mial number of clauses [3, §6.6.1]. Skolemization transforms a formula into an equisatisfiable,
but not equivalent, formula. As a result, it must be treated specially when reconstructing the
proof. Simply invoking metis, as done in Paulson and Susanto’s prototype, will not work to
replay skolemization inferences.

Conjecture and axioms are treated differently because of their different polarities. By con-
vention, the axioms are positive and the conjecture is negative.2 In the positive case, skolem-
ization eliminates the essentially existential quantifiers (i.e., the positive occurrences of ∃ and
the negative occurrences of ∀). In the negative case, it eliminates the essentially universal quan-
tifiers. Negative skolemization is usually called dual skolemization or herbrandization [12].

E and Vampire explicitly record skolemization inferences in their proof, and fortunately
they do it in the same way. On the other hand, SPASS’s proofs are expressed in terms of the
clausified problem; we have some ideas on how to recover the missing information but have
yet to try them out.

The Positive Case. We start with the easier, positive case. Consider the following concrete
but archetypal extract from an E or Vampire proof:

11 axiom ∀X ∃Y p(X, Y) exists_P
53 plain ∀X p(X, y(X)) 11 skolem

In Isar, a similar effect is achieved using the obtain command:

obtain y where ∀x. P x (y x) by (metis exists_P)

In the abstract Isar-like data structure that stores direct proofs, the inference is represented as

obtain [] [y] where 53: “∀x. P x (y x)” [exists_P] []

The approach works for arbitrary quantifier prefixes. All essentially existential variables are
eliminated simultaneously. For example, the ATP proof fragment

18 axiom ∀V ∃W ∀X ∃Y ∀Z q(V,W, X, Y, Z) exists_Q
90 plain ∀V ∀X ∀Z q(V, w(V), X, y(V, X), Z) 18 skolem

is translated to
2 This choice is justifiable from the point of view of an automatic prover that attempts to derive ⊥ from a set

of axioms and a negated conjecture, because all the premises it starts from and the formulas it derives are then
considered positive.

123



Robust, Semi-Intelligible Isabelle Proofs from ATP Proofs S. J. Smolka and J. C. Blanchette

obtain [] [w,y] where 90: “∀v x z. Q v (w v) x (y v x) z” [exists_Q] []

Reconstruction crucially depends not only on metis’s clausifier but also on its support for mildly
higher-order problems, because of the implicit existential quantification over the Skolem func-
tion symbols in obtain. Indeed, metis is powerful enough to prove a weak form of the HOL
axiom of choice:

lemma (∀x. ∃y. P x y) =⇒∃ f . ∀x. P x ( f x)
by metis

Of course, nothing is derived ex nihilo: metis can only prove the formula because its clausifier
depends on the axiom of choice in the first place. Furthermore, metis will succeed only if its
clausifier puts the arguments to the Skolem functions in the same order as in the proof text. This
is not difficult to ensure in practice: Both E and metis respect the order in which the universal
variables are bound, whereas Vampire uses the opposite order, which is easy to reverse.

Positive skolemization suffers from a technical limitation connected to polymorphism.
Lemmas containing polymorphic skolemizable variables cannot be reconstructed, because the
variables introduced by obtain must have a ground type. An easy workaround would be to
relaunch Sledgehammer with a monomorphizing type encoding [5, §3] to obtain a more suit-
able ATP proof. A more challenging alternative would involve detecting which monomorphic
instances of the problematic lemmas are needed and re-engineer the proof accordingly.

The Negative Case. In the ATPs, negative skolemization of the conjecture is simply reduced
to positive skolemization of the negated conjecture. For example:

25 conj ∀V ∃W ∀X ∃Y ∀Z q(V,W, X, Y, Z) goal
41 neg_conj ¬ ∀V ∃W ∀X ∃Y ∀Z q(V,W, X, Y, Z) 25 negate
43 neg_conj ¬ ∃W ∃Y q(v, W, x(W), Y, z(W, Y)) 41 skolem

However, once the proof has been turned around in Sledgehammer, the last two lines are un-
negated and exchanged: First, a proof of the (unnegated) conjecture is found for specific fixed
variables (cf. formula 43 above); then these are generalized into quantified variables (cf. for-
mula 41). A natural name for this process is un-herbrandization. In Isar, the fix command
achieves a similar effect, as in the example below:

lemma
∧

x. R x
proof –

fix x
〈core of the argument〉
show R x . . .

qed

However, this works only for the outermost universal quantifiers. Since we cannot expect users
to always state their conjectures in this format, we must generally use a nested proof block,
enclosed in curly braces. Thus, the ATP proof fragment presented above is translated to
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lemma ∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z
proof –
{ fix v x z
〈core of the argument〉
have ∃w y. Q v w (x w) y (z w y) by (metis . . .) }

thus ∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z by metis
qed

Seen from outside, the nested block proves the formula
∧

v xz. ∃wy. Q v w (x w) y (z w y). From
there, metis derives the desired formula ∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z, in which the quantifiers
alternate arbitrarily. In the data structure that stores direct Isar-like proofs, the proof would be
represented as

prove [] 41: “∀v. ∃w. ∀x. ∃y. ∀z. Q v w x y z” [][
fix [v, x,z]
〈core of the argument〉
prove [] 43: “∃w y. Q v w (x w) y (z w y)” [. . .] []

]
An easy optimization, which is not yet implemented, would be to omit the nested proof block
for conjectures of the form

∧
x1 . . . xn. φ, where φ contains no essentially universal quantifiers. It

should also be possible to move the inferences that do not depend on the herbrandized symbols
outside the nested block.

Alternative Approaches. Given a HOL problem, the metis method clausifies it and translates
it to FOL, invokes the first-order prover Metis, and replays the Metis inferences using suitable
HOL tactics. Skolemization is simulated using Hilbert’s choice operator ε [23]; for example,
∀x. ∃y. P x y is skolemized into ∀x. P x (εy. P x y). A newer experimental skolemizer exploits
Isabelle’s schematic variables to eliminate the dependency on Hilbert’s choice [3, §6.6.7], only
requiring the weak axiom of choice to move the existentials to the front. Whichever approach is
used, Sledgehammer’s textual proof construction exploits metis’s machinery (and the reduction
of HOL to FOL) instead of replicating it textually.

Other ATP-based proof methods or tactics must also cope with skolemization. Isabelle’s
smt method [7] relies on Hilbert’s choice, whereas HOL(y)Hammer’s proof reconstructor [15]
depends only on the weak axiom of choice. Another option is to trust the ATP’s clausifier,
leaving it to the user to inspect the generated clausification axioms; this is the approach imple-
mented for reconstructing proofs found by MizAR [1]. Finally, a radical approach, designed
for textual proof reconstruction in Coq, is to replace Skolem function symbols by predicate
symbols and adjust the proof accordingly, a process known as deskolemization [10].

5 Type Annotations

To ensure that types are inferred correctly when the generated HOL formulas are parsed again
by Isabelle, it is necessary to introduce type annotations. However, redundant annotations
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should be avoided: If we insisted on annotating each subterm, the simple equation xs = ys,
where xs and ys range over lists of integers, would be rendered as

((op = : int list→ int list→ bool) (xs : int list) : int list→ bool) (ys : int list) : bool

The goal is not to make the Hindley–Milner inference redundant but rather to guide it.
Paulson and Susanto’s prototype generates no type annotations at all. Isabelle provides al-

ternative print modes (e.g., one mode annotates all bound variables at the binding site) but none
of them is complete. This may seem surprising to users familiar with other proof assistants,
but Isabelle’s extremely flexible syntax, combined with type classes, means that some terms
cannot be parsed back.

We implemented a custom “print mode” for Sledgehammer, which might become an offi-
cial Isabelle mode in a future release. The underlying algorithm computes a locally minimal
set of type annotations for a formula and inserts the annotations. In Isabelle, type annotations
are represented by a polymorphic constant annτ : τ→ τ that can be thought of as the identity
function. The term annτ t is printed as t : τ. In the presentation below, the notation tτ indicates
that term t has type τ.

The Algorithm. Given a well-typed formula φ to annotate, the algorithm starts by replacing
all the types in φ by the special placeholder _ (Isabelle’s “dummy” type). It then infers the most
general types for φ using Hindley–Milner, resulting in a formula φ? in which the placeholders
are instantiated. Next, it computes the substitution ρ = {α1 7→ τ1, . . . , αm 7→ τm} such that
φ?ρ= φ, which must exists if φ is well-typed and the inferred types in φ? are the most general.
Finally, the algorithm inserts type annotations of the form : τ that cover all the type variables
αi in ρ’s domain—i.e., such that each type variable αi occurs in at least one type annotation.

The last step is where the complexity arises. The algorithm assigns a cost to each candidate
site tτ in φ where a type annotation can be inserted. The cost is given as a triple of numbers:

cost of tτ = (size of τ, size of t, preorder index of t in φ)

Triples are compared lexicographically. The first two components encode a preference for
smaller annotations and smaller annotated terms. The third component resolves ties by prefer-
ring annotations occurring closer to the beginning of the printed formula. All subterms of φ are
potential candidates to carry type annotations. (It would be desirable to consider the binding
sites of variables in quantifiers and λ-abstractions as candidates as well, but unfortunately these
are simply name–type pairs and not terms in Isabelle.) Each site tτ is also associated with the
set of type variables αi it covers.

The goal is to compute a minimal set of sites that completely covers all type variables.
The resulting cost need not be a global minimum, though; computing the minimum amounts to
solving the weighted set cover problem, which is NP-hard [16]. One could probably use a SAT
solver to solve the problem efficiently, but we prefer a more direct greedy approach, which is
polynomial and produces satisfactory results in practice.
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Starting with the set of all possible sites, the algorithm iteratively removes the most expen-
sive redundant site until the set is minimal in the sense that removing any site from it would
make it incomplete. This reverse greedy approach ensures that a minimal set will be reached
eventually. In contrast, the classical greedy approach could yield a too large set: For the term
hnat→real cnat generalized to hα→β cα, it would first pick c to cover α, only to find out that h
must be annotated as well to cover β, making the first site redundant.

The names of the variables αi introduced in φ? are irrelevant as long as they are fresh. In
a postprocessing step, variables that occurs only once as a subtype in τ1, . . . , τm are replaced
by _, and annotations : τ that cover only variables converted to _ are omitted. Thus, the formula
length ([] : α list) = 0 is printed as length [] = 0 without undesirable gain of generality.

Example. Let fst : α×β→ α and snd : α×β→ β be polymorphic constants that extract the
components of a pair. Suppose the formula φ to annotate is

∀x y. ∃p. fst p = x ∧ snd p = y

with x : nat and y : real. Inside Isabelle, the formula’s subterms carry type information (except
the bound variables):

All(nat→bool)→bool (λxnat. All(real→bool)→bool (λyreal. Ex(nat×real→bool)→bool (λpnat×real.

(op ∨)bool→bool→bool ((op =)nat→nat→bool (fstnat×real→nat p) x)
((op =)real→real→bool (sndnat×real→real p) y))))

Replacing the types with _ yields the formula

All_ (λx_
. All_ (λy_

. Ex_
(λp_

. (op ∨)_
((op =)

_
(fst_ p) x) ((op =)

_
(snd_ p) y))))

from which type inference produces the formula φ?:

All(α→bool)→bool (λxα. All(β→bool)→bool (λyβ. Ex(α×β→bool)→bool (λpα×β.
(op ∨)bool→bool→bool ((op =)α→α→bool (fstα×β→α p) x)

((op =)β→β→bool (sndα×β→β p) y))))

The substitution entailed by φ and φ? is ρ = {α 7→ nat, β 7→ real}. There are several possible
ways to annotate the formula so as to cover both α and β, including

∀x y. ∃p. fst (p : nat× real) = x ∧ snd p = y
∀x y. ∃p. (fst p : nat) = x ∧ (snd p : real) = y
∀x y. ∃p. fst p = (x : nat) ∧ snd p = (y : real)

The third formula is the one produced by the reverse greedy algorithm. It is arguably the most
aesthetically pleasing of the three, because both the annotated terms and the types are atomic.

Incidentally, the annotations could have been omitted in this example because the property
holds generally for arbitrary types α and β, but this cannot always be relied upon. Moreover,
omitting the type annotations is not completely harmless because of the poor interaction be-
tween skolemization and polymorphism.
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6 Proof Preplay

Isar proofs generated from ATP proofs sometimes fail. We already mentioned that skolem-
ization is not supported for polymorphic variables (cf. Section 4). The TSTP or DFG parser
occasionally goes wrong if it encounters unexpected (undocumented) syntax. The ATP proof
can also contain inferences that are ill-typed from an Isabelle point of view—despite the use
of globally sound encodings, individual inferences can violate the type discipline. Moreover,
the proof reconstruction code is not bug-free. And even in the absence of errors, the Isar proofs
can fail because metis fails to discharge a proof obligation within a reasonable amount of time.

As the experience with Sledgehammer-generated metis one-liners has shown, it is advanta-
geous to try out, or preplay, the proofs before presenting them to users [3, §6.6.6]. The proofs
are then printed together with timing information, including warnings about timeouts or fail-
ures. Since Sledgehammer invokes multiple ATPs in parallel, users must often choose between
several one-liners and structured Isar proofs. Based on the preplay information, they can make
an informed decision while being spared the tedium of having to test the proofs manually.

Until recently, users had to enable Isar proof reconstruction to benefit from it. The preplay
mechanism makes a new hybrid mode possible, in which an Isar proof is generated whenever
the one-liner times out or fails. Even when the Isar proof is not entirely correct, it is easier to
repair than the corresponding monolithic one-liner—for example, by adding some parentheses
to guide the parsing or by replacing a failing or too slow metis call by a hand-written proof.

The following example, based on an Isabelle formalization of the Robbins conjecture [29],
demonstrates preplaying. When invoked on the goal x t −x = −x t −−x and configured to
use Waldmeister, Sledgehammer produces the following output:

Try this: by (metis huntington sup_assoc sup_comm) (> 3 s).

Structured proof (54 steps, 1.33 s):

proof –
have f1:

∧
x1 x2. −(−x1 t x2) t −(−x1 t −x2) = x1

by (metis huntington sup_comm)
have f2:

∧
x1 x2 x3. x1 t (x2 t x3) = x3 t (x1 t x2)

by (metis sup_assoc sup_comm)
have

∧
x1 x2 x3. x1 t (x2 t x3) = x2 t x1 t x3

by (metis sup_assoc sup_comm)
hence f3:

∧
x1 x2 x3. x1 t (x2 t x3) = x2 t (x1 t x3)

by (metis sup_assoc)
have f4:

∧
x1 x2 x3. x1 t (x2 t x3) = x3 t (x2 t x1)

using f2 by (metis sup_comm)
have f5:

∧
x1 x2. x1 =−(x2 t −x1) t −(−x1 t −x2)

using f1 by (metis sup_comm)
hence f6:

∧
x1 x2. x1 =−(x2 t −x1) t −(−x2 t −x1)

by (metis sup_comm)
...

128



Robust, Semi-Intelligible Isabelle Proofs from ATP Proofs S. J. Smolka and J. C. Blanchette

hence x t −−−x = x t (−(−x t x) t −(−−x t −−x))
using f10 by metis

hence x t −−−x = x t −x
using f12 by metis

hence −−x =−(x t −x) t −(−x t −−−x)
using f6 by metis

hence −−x =−(x t −x) t −(−x t −x)
using f22 by metis

hence −−x = x
using f5 by metis

thus x t −x =−x t −−x
by (metis sup_comm)

qed

Waldmeister found a proof involving the same three lemmas over and over (huntington, sup_
assoc, and sup_comm). However, metis fails to re-find the proof within 3 seconds, as indicated
by the mention “> 3 s” on the first line. (Indeed, metis stands no chance even if given several
minutes.) In contrast, the above (abridged) 54-step Isar proof was replayed in 1.33 seconds.
Users can click it to insert it in their proof text and move on to the next conjecture.

Behind the scenes, the Isar proof preplay procedure starts by enriching the context with all
the local facts introduced in the proof (f1, f2, etc.). For each inference Φ ` φ, it measures the
time metis takes to deduce φ from Φ and stores it in a data structure. The total is printed at the
end, with a ‘>’ prefix if any of the metis calls timed out. In the rare event that a metis call failed
prematurely, Sledgehammer displays the mention “may fail” in the banner.

An alternative approach would have been to have Isabelle parse the Isar proof using its
usual interfaces, thereby covering more potential sources of error. For example, with our ap-
proach the Isabelle terms are not printed and reparsed; because of Isabelle’s flexible syntax,
parsing is problematic even if enough type annotations are inserted. On the other hand, the bet-
ter coverage would come at the price of additional overhead, and it is not clear how to achieve
it technically. More importantly, the alternative approach offers no way to collect timing infor-
mation on a per-step basis. This information is essential for proof compression, as we will see
in the next section, and recomputing it would waste the user’s time.

Currently, metis is invoked to reconstruct each ATP inference in Isabelle. With proof pre-
play in place, it should be easy to try out other proof methods. To reconstruct proofs with
theory-specific or higher-order reasoning, we would need both to appeal to existing decision
procedures in Isabelle (e.g., for linear arithmetic) and develop dedicated methods.

7 Proof Compression

The generated Isar proofs can involve dozens or hundreds of steps. It is usually beneficial to
compress them. Compressed proofs can be faster to recheck; for example, when the Robbins
proof from Section 6 is compressed from 54 to 29 steps, Isabelle also takes nearly half a second
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less to process it. Moreover, many users prefer concise Isar proofs, either because they want to
avoid cluttering their theory files or because they find the shorter proofs simpler to understand.
Of course, compression can also be harmful: A metis one-liner is nothing but an Isar proof
compressed to the extreme, and it can be both very slow and very cryptic.

Whereas intelligibility is in the eye of the beholder, speed can be measured precisely via
preplay. Our compression procedure considers candidate pairs of inferences and performs the
merger if the resulting inference is fast enough—no more than 20% slower than the original
inferences taken together. This 20% tolerance factor embodies a trade-off between processing
speed and conciseness. Given the inferences Φ1 ` φ1 and {φ1} ]Φ2 ` φ2, where φ1 is not
referenced elsewhere in the proof (in an antecedent), the merged inference is Φ1∪Φ2 ` φ2.

The algorithm consists of the following steps:

1. Initialize the worklist with all inferences Φ ` φ such that φ is referenced only once in the
rest of the proof.

2. If the worklist is empty, stop; otherwise, take an inference Φ1 ` φ1 from the worklist.

3. Let {φ1}]Φ2 ` φ2 be the unique inference that references φ1. Try to merge the two
inferences as described above. If this succeeds, add any emerging singly-referenced
facts belonging to Φ1∩Φ2 to the worklist.

4. Go to step 2.

Step 2 nondeterministically picks an inference. Our implementation prefers inferences with
long formulas, because these clutter the proof more. In step 3, merging the two inferences
may give rise to new singly-referenced facts φ that were referenced by both φ1 and φ2 (i.e.,
φ ∈Φ1∩Φ2) but not by any other inferences.

The process is guided by metis’s performance. Users who want to understand the proof
may find that too many details have been optimized away. For them, there is a Sledgehammer
option that controls the compression factor, which bounds the number of mergers before the
algorithm stops in relation to the length of the uncompressed proof.

8 Conclusion

The latest version of Sledgehammer employs a variety of techniques to improve the readability
and efficiency of the generated Isar proofs. Whenever one-line proof reconstruction fails or
times out, users are offered detailed, direct Isar proofs that discharge the goal, sometimes after
a small amount of manual tuning. Users who are interested in inspecting the proofs can force
their generation by passing an option. Related options control preplay and compression.

This work is still in progress. Many aspects could be improved further; we mentioned a few
in the previous sections. Our next priority is to identify and rectify any remaining failure cases:
Preplaying insulates users from failures, but ideally valid ATP proofs should always lead to
valid Isar proofs. We plan to integrate the proof reconstruction code with the “Judgment Day”
harness [6] to test it more thoroughly and evaluate its impact on Sledgehammer’s success rate.
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The next step will be to implement proof manipulation algorithms to simplify the proofs
further before presenting them to users. For example, users normally prefer sequential chains of
deduction to the spaghetti-like structure of some machine-generated proofs; using appropriate
algorithms, it should be possible to minimize the number of jumps or introduce block structure
to separate independent subproofs. Similar work has been carried out for human-written proofs
[20, 21], but we expect machine proofs to offer more opportunities for refactoring.
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