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Nunchaku is a new higher-order counterexample generator based on a sequence of transformations
from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle,
it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper,
we present some ideas to extend Nunchaku with partial support for dependent types and type classes,
to make frontends for Coq and other systems based on dependent type theory more useful.

1 Introduction

In recent years, we have seen the emergence of “hammers”—integrations of automatic theorem provers
in proof assistants, such as Sledgehammer and HOLyHammer [7]. As useful as they might be, these tools
are mostly helpless in the face of an invalid conjecture. Novices and experts alike can enter invalid for-
mulas and find themselves wasting hours (or days) on an impossible proof; once they identify and correct
the error, the proof is often easy. To discover flaws early, some proof assistants include counterexample
generators to debug putative theorems or specific subgoals in an interactive proof. When formalizing
algebraic results in Isabelle/HOL, Guttmann et al. [21] remarked that

Counterexample generators such as Nitpick complement the ATP [automatic theorem prov-
ing] systems and allow a proof and refutation game which is useful for developing and
debugging formal specifications.

Nunchaku is a new fully automatic counterexample generator for higher-order logic (simple type
theory) designed to be integrated into several proof assistants. It supports polymorphism, (co)algebraic
datatypes, (co)recursive functions, and (co)inductive predicates. The tool is undergoing considerable
development, and we expect that it will soon be sufficiently useful to mostly replace Nitpick [8] for
Isabelle/HOL. The source code is freely available online.1

A Nunchaku frontend in a proof assistant provides a nunchaku command that can be invoked on
conjectures to debug them. It collects the relevant definitions and axioms, translates them to higher-order
logic along with the negated conjecture, invokes Nunchaku, and translates any model found to higher-
order logic. We have developed a frontend for Isabelle/HOL [32]. We are also working on a frontend for
the set-theoretic TLA+ Proof System [18] and plan to develop frontends for other proof assistants.

This short paper discusses some of the issues that must be addressed to make frontends for Coq [4]
and other systems based on dependent type theory (e.g., Agda, Lean, and Matita) applicable beyond their
simple type theory fragment. We plan to elaborate and implement the approach in a Coq frontend, as
part of the Inria technological development action “Contre-exemples utilisables par Isabelle et Coq.”

1https://github.com/nunchaku-inria/nunchaku
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2 Overview of Nunchaku

Nunchaku is the spiritual successor to Nitpick but is designed as a stand-alone OCaml program, with
its own input language. Whereas Nitpick generates a succession of finite problems for increasing car-
dinalities, Nunchaku translates its input to one first-order logic program that targets the finite model
finding fragment of CVC4 [2], a state-of-the-art SMT (satisfiability modulo theories) solver. Using
CVC4 as a backend allows Nunchaku to reason efficiently about arithmetic constraints and (co)algebraic
datatypes [36] and to detect unsatisfiability in addition to satisfiability. Support for other backends, in-
cluding Kodkod [43] (used by Nitpick) and Paradox [16], is in the works. We also plan to integrate
backends based on code execution and narrowing, as provided by Quickcheck for Isabelle/HOL [10], to
further increase the likelihood of finding counterexamples.

Nunchaku’s input syntax is inspired by that of proof assistants based on higher-order logic (e.g.,
Isabelle/HOL) and by typed functional programming languages (e.g., OCaml). The following problem
gives a flavor of the syntax:

data nat := Zero | Suc nat.
pred even : nat→ prop :=
even Zero;
∀n. odd n⇒ even (Suc n)

and odd : nat→ prop :=
∀n. even n⇒ odd (Suc n).

val m : nat.

goal even m ∧ ¬ (m = Zero).

The problem defines a datatype (nat) and two mutually recursive inductive predicates (even and odd), it
declares a constant m, and it specifies a goal to satisfy (“m is even and nonzero”). For counterexample
generation, the negated conjecture must be specified as the Nunchaku goal. For the example above,
Nunchaku outputs the model

val even := λ(n : nat). IF n = Zero ∨ n = Suc (Suc Zero) THEN true ELSE ? n.
val odd := λ(n : nat). IF n = Suc Zero THEN true ELSE ? n.
val m := Suc (Suc Zero).

The output is a finite fragment of an infinite model. The notation ‘? ’ is a placeholder for an unknown
value or function. To most users, the interesting part is the interpretation of m; but it may help to inspect
the partial model of even and odd to check if they have the expected semantics.

Given an input problem, Nunchaku parses it before applying a sequence of translations, each reduc-
ing the distance to the target fragment. In our example, the predicates even and odd are translated to
recursive functions, then the recursive functions are encoded to allow finite model finding, by limiting
their domains to an unspecified finite fragment. If Nunchaku finds a model of the goal, it translates it
back to the input language, reversing each phase.

The translation pipeline includes the following phases (adapted from a previous paper [37]):

Type inference infers types and checks definitions;

Type skolemization replaces ∃α. ϕ[α] with ϕ[τ], where τ is a fresh type;

Monomorphization specializes polymorphic definitions on their type arguments and removes unused
definitions;
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Elimination of equations translates multiple-equation definitions of recursive functions into a single
nested pattern matching;

Specialization creates instances of functions with static arguments (i.e., an argument that is passed
unchanged to all recursive calls);

Polarization specializes predicates into a version used in positive positions and a version used in nega-
tive positions;

Unrolling adds a decreasing argument to possibly ill-founded predicates;

Skolemization introduces Skolem symbols for term variables;

Elimination of (co)inductive predicates recasts a multiple-clause (co)inductive predicate definition into
a recursive equation;

λλλ-Lifting eliminates λ-abstractions by introducing named functions;

Elimination of higher-order constructs substitutes SMT-style arrays for higher-order functions;

Elimination of recursive functions encodes recursive functions to allow finite model finding;

Elimination of pattern matching rewrites pattern-matching expressions using datatype discriminators
and selectors;

Elimination of assertions encodes ASSERTING operator using logical connectives;

CVC4 invocation runs CVC4 to obtain a model.

Although our examples use datatypes and well-founded (terminating) recursion, Nunchaku also sup-
ports codatatypes and productive corecursion. In addition to finite values, cyclic α-regular codatatype
values can arise in models (e.g., the infinite stream 1,0,9,0,9,0,9, . . . ) [36].

While most of Nunchaku’s constructs are fairly conventional, one is idiosyncratic and plays a key
role in the translations described here: The ASSERTING operator, written t ASSERTING ϕ, attaches a
formula ϕ—the guard—to a term t. It allows the evaluation of t only if ϕ is satisfied. The construct
is equivalent to IF ϕ THEN t ELSE UNREACHABLE in other specification languages (e.g., the Haskell
Bounded Model Checker [14]). Internally, Nunchaku pulls the ASSERTING guards outside of terms into
the surrounding logical context, carefully distinguishing positive and negative contexts.

Nunchaku can only find classical models with functional extensionality, which are a subset of the
models of constructive type theory. This means the tool, together with the envisioned encoding, will be
sound but incomplete: All counterexamples will be genuine, but no counterexamples will be produced
for classical theorems that do not hold intuitionistically. We doubt that this will seriously impair the
usefulness of Nunchaku in practice.

3 Encoding Recursive Functions

When using finite model finding to generate counterexamples, a central issue is to translate infinite posi-
tive universal quantifiers in a sound way. The situation is hopeless for arbitrary axioms or hypotheses, but
infinite quantifiers arising in well-behaved definitions can be encoded soundly. We describe Nunchaku’s
encoding of recursive functions [37], because it is one of the most crucial phases of the translation
pipeline and it illustrates the ASSERTING construct in a comparatively simple setting.

Consider the following factorial example:



4 Extending Nunchaku to Type Theory

rec fact : int→ int :=
∀n. fact n = (IF n≤ 0 THEN 1 ELSE n ∗ fact (n−1)).

val m : int.

goal fact m > 100.

(We conveniently assume that Nunchaku has a standard notion of integer arithmetic, as provided by its
backend CVC4.) The encoding restricts quantification on fact’s domain to an unspecified, but potentially
finite, type αfact that is isomorphic to a subset of fact’s argument type and introduces projections γfact :
αfact→ int and ASSERTING guards throughout the problem, as follows:

val fact : int→ int.

axiom ∀(a : αfact). fact (γfact a) = (IF γfact a≤ 0 THEN 1
ELSE γfact a ∗ (fact (γfact a−1) ASSERTING ∃(b : αfact). γfact b = γfact a−1)).

val m : int.

goal (fact m ASSERTING ∃(b : αfact). γfact b = m) > 100.

The guards are propagated outward until they reach a polarized context, at which point they can be
asserted using standard connectives:

val fact : int→ int.

axiom ∀(a : αfact). fact (γfact a) = (IF γfact a≤ 0 THEN 1 ELSE γfact a ∗ fact (γfact a−1)
∧ ¬ γfact a≤ 0 ∧ ∃(b : αfact). γfact b = γfact a−1).

val m : int.

goal fact m > 100 ∧ ∃(b : αfact). γfact b = m.

The guards ensure that the result of recursive function calls is inspected (i.e., influences the truth value
of the problem) only if the arguments are in the subset αfact, for which the function is axiomatized.

4 Encoding Dependent Datatypes

We propose an extension to Nunchaku’s type system with a simple flavor of dependent types. We as-
sume a finite hierarchy of sorts. A Coq frontend would need to truncate the problem’s hierarchy of
universes. Our encoding is similar to the one proposed by Jacobs and Melham [24]. We, too, erase
dependent parameters from types and use additional predicates to enforce constraints that would be lost
otherwise—with the addition of dependent (co)datatypes. In (co)datatypes, we allow term parameters
(such as the length of a list, of type nat) to occur as uniform parameters or as indices (i.e., each construc-
tor can have a different value for this parameter), but type parameters should occur uniformly. We only
forbid polymorphic recursion (type indices), because it is not compatible with the monomorphization
step Nunchaku currently relies on.

In general, we consider dependent (co)datatype definitions of the form

(co)data τ x α :=
c1 : σ1→ τ t1 α
...
| ck : σk→ τ tk α.

where x := (xi)
m
i=1 is the tuple of term variables on which τ depends, α := (αi)

n
i=1 is the tuple of type

variables, the types (σk
i )

arity(ck)
i=1 are the types of the arguments of the kth constructor, and the terms



S. Cruanes and J. C. Blanchette 5

tk := (tk
i )

m
i=1 are the term arguments of the kth constructor’s return type. More elaborate definitions,

such as those interleaving type and term parameters in more intricate ways, are beyond the scope of this
approach. We are aiming for a practical balance between expressiveness and ease of implementation.

Let τ′ α be the encoding of τ where all term arguments have been removed. We introduce a predicate
invτ, defined inductively (if τ is a datatype) or coinductively (if τ is a codatatype), that enforces the
correspondence between x and τ′ α:

(co)pred invτ : Πα. α→ τ′ α→ prop :=
k∧

i=1

∀x (y1 : ai
1) . . . (yk : ak

arity(ck)
).(∧arity(ck)

j=1,yk
j :τ
invτ α yk

j

)
⇒ invτ α (ck α y)

.
The predicate invτ has one clause per constructor ck of τ, which ensures that if the invariant holds for
every argument (y j)

arity(ck)
j=1 of ck that has type τ (a recursive instance of τ), it also holds for ck α y.

When encoding terms, we process binders on dependently-typed variables recursively as follows:
∀v : τ t u. ϕ becomes ∀v : τ′ u. invτ t v ⇒ ϕ, and a function λ(x : τ t u). v is translated to λ(x :
τ′ u). (v ASSERTING invτ t x).

Functions whose type depends on terms remain parameterized by these terms after the translation,
but their definition specifies a precondition that links the term parameters to the encoded dependent type.
The use of ASSERTING to encode the precondition ensures that the function is evaluated only if the
condition is met, irrespective of the context (positive, negative, or unpolarized) of the function. Finally,
some specific constructs such as equality (in Coq, equality is a dependent datatype) are translated directly
into Nunchaku counterparts.

As an example, consider the type of vectors of length n. Here, n is an index, and α is a uniform type
parameter:

data vec : nat→ type→ type :=
nil α : vec 0 α
| ∀(n : nat) (x : α) (l : vec n α). cons α x l : vec (S n) α.

The encoded type vec′ corresponds to the datatype of finite lists, and the invariant is

pred invvec : nat→ vec′ α→ prop :=
invvec 0 (nil α)
| ∀(n : nat) (x : α) (l : vec′ α). invvec n l⇒ invvec (S n) (cons α x l) .

A formula ∀(v : vec n τ). ϕ is translated to ∀(v : vec′ τ). invvec n v⇒ ϕ. A function λ(v : vec n τ). t is
translated to λ(v : vec′ τ). (t ASSERTING invvec n v).

Thus, the function returning the length of a vector, λn (l : vec n α). n, becomes

λn (l : vec′ α). (n ASSERTING invvec n)

The append function λm n (l1 : vec m α) (l2 : vec n α). t (omitting the body) becomes

λm n (l1 : vec′ α) (l2 : vec′ α). (t ASSERTING invvec m l1∧ invvec n l2)

And the mult function that multiplies two matrices, λm n k (A : matrix m n) (B : matrix n k). t, returning
a value of type matrix m k, becomes

λm n k (A : matrix′) (B : matrix′). (t ASSERTING invmatrix m n A∧ invmatrix n k B)
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5 Encoding Dependent Records and Type Classes

Type classes are a powerful tool for abstraction in Coq, Isabelle/HOL, and other proof assistants [41,45].
However, in dependently typed proofs assistants such as Coq, they are usually encoded as dependent
records combining types, values, and proofs. We assume that type classes have been explicitly resolved
by the frontend’s type inference and focus on their representation as a record of values and propositions.
Consider the following example from basic algebra:

class monoid a where
e : a
op : a→ a→ a
left neutral : ∀x. op e x = x
assoc : ∀x y z. op (op x y) z = op x (op y z).

This definition of monoids can be encoded in a straightforward way as a dependent record—that is, a
datatype with a single four-argument constructor. The encoding from Section 4 could then be applied.
Here, we propose a more specific encoding that avoids introducing an inductive predicate invmonoid. This
transformation does not use dependent types, and its result still contains the required invariants of each
type class, thereby requiring models to satisfy them.

Following our proposed scheme, a type class is translated into a nondependent datatype with one
constructor whose arguments are the data fields (e.g., e and op for monoid). The proofs of the axioms
can be erased, since they serve no purpose for model finding, and the additional properties left neutral
and assoc are directly inserted at appropriate places in the problem.

The definition of monoid is translated to
instmonoid : Πa. a→ (a→ a→ a)→monoid a.

pred left neutralmonoid : Πa. monoid a→ prop :=
∀e op. (∀x. op e x = x)⇒ left neutralmonoid a (instmonoid a e op).

pred assocmonoid : Πa. monoid a→ prop :=
∀e op. (∀x y z. op (op x y) z = op x (op y z))⇒ assocmonoid a (instmonoid a e op).

A function definition
rec f : Πa. monoid a⇒ a→ τ :=
∀(x : a). f x = t.

is translated to
rec f : Πa. monoid a→ a→ τ :=
∀a x. f a x = (t ASSERTING left neutralmonoid a ∧ assocmonoid a) .

In a proof assistant, users must explicitly register types as instances of type classes. For example,
registering nat as a monoid instance might involve some syntax such as

instance monoid nat where
e= 0
op= (+)
left neutral= 〈proof of left neutral〉
assoc= 〈proof of assoc〉.

These would not have to be specified to Nunchaku; in a semantic setting, any type that satisfies the type
class axioms would be considered a member of the type class. (For essentially the same reason, only defi-
nitions and axioms need to be specified in Nunchaku problems, and not derived lemmas.) Nonetheless, it
might be more efficient to provide the instantiations to Nunchaku, so that it can eliminate true conditions
such as left neutralmonoid nat ∧ assocmonoid nat that can arise as a result of its monomorphization phase.
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6 Related Work

There are many competing approaches to refuting logical formulas. The main ones are finite model find-
ing and code execution. Alternatives include infinite model generation [11], counterexample-producing
decision procedures [13], model checking [17], and saturations [1].

Finite model finding consists of enumerating all potential finite models, starting with a cardinality of
one for the domains. Some model finders explore the search space directly; FINDER [40], SEM [46],
Alloy’s precursor [22], and Mace versions 3 and 4 [30] are of this type. Other tools reduce the problem
to propositional satisfiability and invoke a SAT solver; these include early versions of Mace (or MACE)
[31], Paradox [16], Kodkod [43] and its frontend Alloy [23], and FM-Darwin [3]. Finally, some theorem
provers implement finite model finding on top of their proof calculus; this is the case for KIV [35],
iProver [25], and CVC4 [38]. To make finite model finding more useful, techniques have been developed
to search for partial fragments of infinite models [6, 19, 26, 37, 42].

The idea with code execution is to generate test inputs and evaluate the goal, seen as a functional
program. For Haskell, QuickCheck [15] generates random inputs, SmallCheck [39] systematically enu-
merates inputs starting with small ones, and Lazy SmallCheck [39] relies on narrowing to avoid eval-
uating irrelevant subterms. A promising combination of bounded model checking and narrowing is
implemented in HBMC, the Haskell Bounded Model Checker [14].

In proof assistants, Refute [44] and Nitpick [8] for Isabelle/HOL are based on finite model finding.
QuickCheck-like systems have been developed for Agda [20], Isabelle/HOL [10], PVS [33], FoCaLiZe
[12], and now Coq with QuickChick [34]. Agsy for Agda [27] employs narrowing. Isabelle’s Quickcheck
combines random testing, bounded exhaustive testing, and narrowing in one tool [10]. Finally, ACL2 [29]
combines random testing and theorem proving.

Our experience with Isabelle is that Nitpick and Quickcheck have complementary strengths and
weaknesses [5, Section 3.6] and that it would be a mistake to rely on a single strategy. For example,
debugging the axiomatic specification of the C++ memory model [9] was a heavy combinatorial task
where Nitpick’s SAT solving excelled, whereas for the formalization of a Java-like language [28] it
made more sense to develop an executable specification and invoke Quickcheck. Nunchaku currently
stands firmly in the finite model finding world, but we plan to develop an alternative translation pipeline
to generate Haskell code and invoke QuickCheck, SmallCheck, Lazy SmallCheck, and HBMC.

7 Conclusion

Nunchaku supports polymorphic higher-order logic by a series of transformations that yield a first-order
problem suitable for finite model finding. This paper introduced further transformations that extend the
translation pipeline to support dependent types and type classes as found in Coq and similar systems.
More work is necessary to fully specify these transformations, prove them correct, and implement them.
We plan an integration in Coq but will happily collaborate with the developers of other systems to build
further frontends; in particular, we are already in contact with the developers of Lean, a promising new
proof assistant based on type theory.

We generally contend that too much work has gone into engineering the individual proof assistants,
and too little into developing compositional methods and tools with a broad applicability across systems.
Nunchaku is our attempt at changing this state of affairs for counterexample generation.
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Rajeev Goré, Alexander Leitsch & Tobias Nipkow, editors: IJCAR 2001, LNCS 2083, Springer, pp. 642–657,
doi:10.1007/3-540-45744-5 52.

[36] Andrew Reynolds & Jasmin Christian Blanchette (2015): A decision procedure for (co)datatypes in SMT
solvers. In Amy Felty & Aart Middeldorp, editors: CADE-25, LNCS 9195, Springer, pp. 197–213,
doi:10.1007/978-3-319-21401-6 13.

[37] Andrew Reynolds, Jasmin Christian Blanchette, Simon Cruanes & Cesare Tinelli (2016): Model finding for
recursive functions in SMT. In N. Olivetti & A. Tiwari, editors: IJCAR 2016, LNCS 9706, Springer.

http://dx.doi.org/10.1007/978-3-642-32759-9_14
http://dx.doi.org/10.1007/s10817-010-9166-1
http://dx.doi.org/10.1007/10930755_12
http://dx.doi.org/10.1007/978-3-642-24559-6_41
http://dx.doi.org/10.1007/978-3-642-24559-6_41
http://dx.doi.org/10.1007/BFb0037108
http://dx.doi.org/10.1007/978-3-642-40885-4_15
http://dx.doi.org/10.1145/1081706.1081740
http://dx.doi.org/10.1007/978-3-642-22863-6_17
http://dx.doi.org/10.1007/978-3-642-39634-2_4
http://www.cs.unm.edu/~mccune/prover9/
http://dx.doi.org/10.1007/978-3-319-22102-1_22
http://dx.doi.org/10.1007/3-540-45744-5_52
http://dx.doi.org/10.1007/978-3-319-21401-6_13


10 Extending Nunchaku to Type Theory

[38] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters & Clark Barrett (2013): Quantifier
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[42] Philippe Suter, Ali Sinan Köksal & Viktor Kuncak (2011): Satisfiability modulo recursive programs. In Eran
Yahav, editor: SAS 2011, LNCS 6887, Springer, pp. 298–315, doi:10.1007/978-3-642-23702-7 23.

[43] Emina Torlak & Daniel Jackson (2007): Kodkod: A relational model finder. In Orna Grumberg & Michael
Huth, editors: TACAS 2007, LNCS 4424, Springer, pp. 632–647, doi:10.1007/978-3-540-71209-1 49.

[44] Tjark Weber (2008): SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Technische
Universität München.

[45] Markus Wenzel (1997): Type classes and overloading in higher-order logic. In Elsa L. Gunter & Amy Felty,
editors: TPHOLs 1997, LNCS 1275, Springer, pp. 307–322, doi:10.1007/BFb0028402.

[46] Jian Zhang & Hantao Zhang (1995): SEM: A system for enumerating models. In Chris S. Mellish, editor:
IJCAI-95, 1, Morgan Kaufmann, pp. 298–303.

http://dx.doi.org/10.1007/978-3-642-38574-2_26
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1007/3-540-58156-1_63
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1007/978-3-642-23702-7_23
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/BFb0028402

	Introduction
	Overview of Nunchaku
	Encoding Recursive Functions
	Encoding Dependent Datatypes
	Encoding Dependent Records and Type Classes
	Related Work
	Conclusion

