
Picking Nits
A User’s Guide to Nitpick 1.2.2 for Isabelle/HOL 2009

Jasmin Christian Blanchette
Fakultät für Informatik, Technische Universität München

October 16, 2009

Contents

1 Introduction 2

2 Installing the Tool 3

3 First Steps 3
3.1 Propositional Logic . 4
3.2 Type Variables . 5
3.3 Constants . 6
3.4 Skolemization . 7
3.5 Natural Numbers and Integers . 8
3.6 Inductive Datatypes . 10
3.7 Typedefs, Records, Rationals, and Reals 11
3.8 Inductive and Coinductive Predicates 13
3.9 Coinductive Datatypes . 16
3.10 Boxing . 18
3.11 Scope Monotonicity . 20

4 Case Studies 21
4.1 A Context-Free Grammar . 22
4.2 AA Trees . 24

5 Option Reference 27
5.1 Mode of Operation . 28
5.2 Scope of Search . 29
5.3 Output Format . 31
5.4 Authentication . 33
5.5 Optimizations . 34
5.6 Timeouts . 38

1

6 Attribute Reference 38

7 Standard ML Interface 40
7.1 Invocation of Nitpick . 40
7.2 Registration of Coinductive Datatypes 41

8 Known Bugs and Limitations 41

1 Introduction

Nitpick [3] is a counterexample generator for Isabelle/HOL [5] that is designed
to handle formulas combining (co)inductive datatypes, (co)inductively defined
predicates, and quantifiers. It builds on Kodkod [7], a highly optimized first-
order relational model finder developed by the Software Design Group at MIT.
It is conceptually similar to Refute [8], from which it borrows many ideas and
code fragments, but it benefits from Kodkod’s optimizations and a new encoding
scheme. The name Nitpick is shamelessly appropriated from a now retired Alloy
precursor.

Nitpick is easy to use—you simply enter nitpick after a putative theorem and
wait a few seconds. Nonetheless, there are situations where knowing how it
works under the hood and how it reacts to various options helps increase the
test coverage. This manual also explains how to install the tool on your work-
station. Should the motivation fail you, think of the many hours of hard work
Nitpick will save you. Proving non-theorems is hard work.

Another common use of Nitpick is to find out whether the axioms of a locale are
satisfiable, while the locale is being developed. To check this, it suffices to write

lemma “False”
nitpick [show_all]

after the locale’s begin keyword. To falsify False, Nitpick must find a model for
the axioms. If it finds no model, we have an indication that the axioms might be
unsatisfiable.

Be aware that the tool is still in development and its judgments might be wrong.
The known bugs and limitations at the time of writing are listed in §8. Com-
ments and bug reports concerning Nitpick or this manual should be directed to
blannospamchette@in.tum.de.

Acknowledgment. The author would like to thank Mark Summerfield for sug-
gesting several textual improvements.

2

2 Installing the Tool

To install Nitpick 1.2.2, download and extract the archive http://isabelle.in.
tum.de/~blanchet/nitpick-1.2.2.tgz, enter the nitpick-1.2.2 directory, make
sure that Isabelle2009’s bin directory appears on your path, and run the build
script.1 The script performs the following steps:

1. It tries to build the efficient SAT solver PicoSAT in the $ISABELLE_HOME/
contrib/PicoSAT directory. (This step requires a C compiler. A failure to
build PicoSAT does not compromise Nitpick’s installation.)

2. It installs the Kodkod library, the Kodkodi front-end, and the Java SAT4J
solver in $ISABELLE_HOME/contrib/kodkodi.

3. It builds the Isabelle logic images HOL-Nitpick and HOL-Nominal-Nitpick
in $ISABELLE_OUTPUT.

4. It builds the associated keyword files isar-keywords-HOL-Nitpick.el and
isar-keywords-HOL-Nominal-Nitpick.el in $ISABELLE_HOME_USER/etc.

To activate Nitpick, you must invoke isabelle emacs with the option -L HOL-
Nitpick or -L HOL-Nominal-Nitpick. Nitpick requires a Java 1.5 virtual machine
and expects it to be called java. The examples presented in this manual can be
found in Nitpick/examples/ManualNits.thy.

Note to users of the Aquamacs Isabelle bundle for Mac OS X. Isabelle’s bin direc-
tory is located in /Applications/Isabelle.app/Contents/Resources/Isabelle-
2009/. To launch Isabelle with Nitpick, ensure that /Applications/Isabelle
.app/Contents/Resources/script is executable and run it with -L HOL-Nitpick
or -L HOL-Nominal-Nitpick, or pass -p /Applications/Isabelle.app/Contents/
Resources/Emacs.app/Contents/MacOS/Emacs to isabelle emacs.

3 First Steps

This section introduces Nitpick by presenting small examples. If possible, you
should try out the examples on your workstation. Your theory file should start
the standard way:

theory Scratch
imports Main
begin

To obtain the same results as presented here, make sure that PicoSAT is used as
the SAT solver and disable multithreading by adding the line

1If you get the error “Unknown logic ‘HOL’—no heap file found,” go to the Isabelle root direc-
tory and run the Isabelle build script, before you retry building Nitpick.

3

nitpick_params [sat_solver = PicoSAT, max_threads = 1]

after the begin keyword. PicoSAT is bundled with Nitpick and should be avail-
able if you followed the instructions in §2. Other SAT solvers can also be installed,
as explained in §5.5. If you have already configured SAT solvers in Isabelle (e.g.,
for Refute), these will also be available to Nitpick.

Throughout this manual, we will manually invoke the nitpick command. Nitpick
also provides an automatic mode that can be enabled by specifying

nitpick_params [auto]

at the beginning of the theory file. In this mode, Nitpick is run for up to 5 seconds
(by default) on every newly entered theorem, much like Auto Quickcheck.

3.1 Propositional Logic

Let’s start with a trivial example from propositional logic:

lemma “P←→ Q”
nitpick

If Nitpick is correctly installed, you should get the following output:

Nitpick found a counterexample:

Free variables:
P = True
Q = False

Nitpick can also be invoked on individual subgoals, as in the example below:

apply auto

goal (2 subgoals):
1. P =⇒ Q
2. Q =⇒ P

nitpick 1

Nitpick found a counterexample:

Free variables:
P = True
Q = False

nitpick 2

Nitpick found a counterexample:

Free variables:
P = False
Q = True

4

oops

3.2 Type Variables

If you are left unimpressed by the previous example, don’t worry. The next one
is more mind- and computer-boggling:

lemma “P x =⇒ P (THE y. P y)”

The putative lemma involves the definite description operator, THE, presented
in section 5.10.1 of the Isabelle tutorial [5]. The operator is defined by the axiom
(THE x. x = a) = a. The putative lemma is merely asserting the indefinite
description operator axiom with THE substituted for SOME.

The free variable x and the bound variable y have type ′a. For formulas contain-
ing type variables, Nitpick enumerates the possible domains for each type vari-
able, up to a given cardinality (8 by default), looking for a finite countermodel:

nitpick [verbose]

Trying 8 scopes:
card ′a = 1;
card ′a = 2;

...
card ′a = 8.

Nitpick found a counterexample for card ′a = 3:

Free variables:
P = {a2, a3}
x = a3

Total time: 580 ms.

Nitpick found a counterexample in which ′a has cardinality 3. (For cardinalities
1 and 2, the formula holds.) In the counterexample, the three values of type ′a are
written a1, a2, and a3.

The message “Trying n scopes: . . . ” is shown only if the option verbose is enabled.
You can specify verbose each time you invoke nitpick, or you can set it globally
using the command

nitpick_params [verbose]

This command also displays the current default values for all of the options sup-
ported by Nitpick. The options are listed in §5.

5

3.3 Constants

By just looking at Nitpick’s output, it might not be clear why the counterexample
in §3.2 is genuine. Let’s invoke Nitpick again, this time telling it to show the
values of the constants that occur in the formula:

lemma “P x =⇒ P (THE y. P y)”
nitpick [show_consts]

Nitpick found a counterexample for card ′a = 3:

Free variables:
P = {a2, a3}
x = a3

Constant:
The fallback = a1

We can see more clearly now. Since the predicate P isn’t true for a unique value,
THE y. P y can denote any value of type ′a, even a1. Since P a1 is false, the entire
formula is falsified.

As an optimization, Nitpick’s preprocessor introduced the special constant “The
fallback” corresponding to the expression THE y. P y (i.e., The (λy. P y)) when
there doesn’t exist a unique y satisfying P y. We can disable this optimization by
passing the full_descrs option:

nitpick [full_descrs, show_consts]

Nitpick found a counterexample for card ′a = 3:

Free variables:
P = {a2, a3}
x = a3

Constant:
THE y. P y = a1

As the result of another optimization, Nitpick directly assigned a value to the
subterm THE y. P y, rather than to the The constant. If we disable this second
optimization by using the command

nitpick [special_depth = −1, full_descrs, show_consts]

we finally get The:

Constant:
The = undefined({} := a3, {a3} := a3, {a2} := a2,

{a2, a3} := a1, {a1} := a1, {a1, a3} := a3,
{a1, a2} := a3, {a1, a2, a3} := a3)

6

Notice that The (λy. P y) = The {a2, a3} = a1, just like before.2

Our misadventures with THE suggest adding ‘∃!x.’ (“there exists a unique x such
that”) at the front of our putative lemma’s assumption:

lemma “∃!x. P x =⇒ P (THE y. P y)”

The fix appears to work:

nitpick

Nitpick found no counterexample.

We can further increase our confidence in the formula by exhausting all cardinal-
ities up to 50:

nitpick [card ′a = 1–50]3

Nitpick found no counterexample.

Let’s see if Sledgehammer [11] can find a proof:

sledgehammer

Sledgehammer: external prover “e” for subgoal 1:
∃!x. P x =⇒ P (THE y. P y)
Try this command: apply (metis the_equality)

apply (metis the_equality)

No subgoals!

This must be our lucky day.

3.4 Skolemization

Are all invertible functions onto? Let’s find out:

lemma “∃g. ∀x. g (f x) = x =⇒ ∀y. ∃x. y = f x”
nitpick

Nitpick found a counterexample for card ′a = 2 and card ′b = 1:

Free variable:
f = undefined(b1 := a1)

Skolem constants:
g = undefined(a1 := b1, a2 := b1)
y = a2

2The undefined symbol’s presence is explained as follows: In higher-order logic, any function
can be built from the undefined function using repeated applications of the function update op-
erator f (x := y), just like any list can be built from the empty list using x # xs.

3The symbol ‘–’ can be entered as - (hyphen) or \<midarrow>.

7

Although f is the only free variable occurring in the formula, Nitpick also dis-
plays values for the bound variables g and y. These values are available to Nit-
pick because it performs skolemization as a preprocessing step.

In the previous example, skolemization only affected the outermost quantifiers.
This is not always the case, as illustrated below:

lemma “∃x. ∀ f . f x = x”
nitpick

Nitpick found a counterexample for card ′a = 2:

Skolem constant:
λx. f = undefined(a1 := undefined(a1 := a2, a2 := a1),

a2 := undefined(a1 := a1, a2 := a1))

The variable f is bound within the scope of x; therefore, f depends on x, as sug-
gested by the notation λx. f . If x = a1, then f is the function that maps a1 to a2
and vice versa; otherwise, x = a2 and f maps both a1 and a2 to a1. In both cases,
f x 6= x.

The source of the Skolem constants is sometimes more obscure:

lemma “refl r =⇒ sym r”
nitpick

Nitpick found a counterexample for card ′a = 2:

Free variable:
r = {(a1, a1), (a2, a1), (a2, a2)}

Skolem constants:
sym.x = a2
sym.y = a1

What happened here is that Nitpick expanded the sym constant to its definition:

sym r ≡ ∀x y. (x, y) ∈ r −→ (y, x) ∈ r.

As their names suggest, the Skolem constants sym.x and sym.y are simply the
bound variables x and y from sym’s definition.

Although skolemization is a useful optimization, you can disable it by invoking
Nitpick with skolem_depth = −1. See §5.5 for details.

3.5 Natural Numbers and Integers

Because of the axiom of infinity, the type nat does not admit any finite models.
To deal with this, Nitpick considers prefixes {0, 1, . . . , K− 1} of nat (where K =
card nat) and maps all other numbers to the undefined value (?). The type int is
handled in a similar way: If K = card int, the subset of int known to Nitpick is
{−dK/2e+ 1, . . . , +bK/2c}. Undefined values lead to a three-valued logic.

8

Here is an example involving int:

lemma “Ji ≤ j; n ≤ (m::int)K =⇒ i ∗ n + j ∗m ≤ i ∗m + j ∗ n”
nitpick

Nitpick found a counterexample:

Free variables:
i = 0
j = 1
m = 1
n = 0

With infinite types, we don’t always have the luxury of a genuine counterexample
and must often content ourselves with a potential one. The tedious task of finding
out whether the potential counterexample is in fact genuine can be outsourced to
auto by passing the option check_potential. For example:

lemma “∀n. Suc n 6= n =⇒ P”
nitpick [card nat = 100, check_potential]

Nitpick found a potential counterexample:

Free variable:
P = False

Confirmation by “auto”: The above counterexample is genuine.

You might wonder why the counterexample is first reported as potential. The root
of the problem is that the bound variable in ∀n. Suc n 6= n ranges over an infinite
type. If Nitpick finds an n such that Suc n = n, it evaluates the assumption to
False; but otherwise, it does not know anything about values of n ≥ card nat and
must therefore evaluate the assumption to ?, not True. Since the assumption can
never be satisfied, the putative lemma can never be falsified.

Incidentally, if you distrust the so-called genuine counterexamples, you can en-
able check_genuine to verify them as well. However, be aware that auto will often
fail to prove that the counterexample is genuine or spurious.

Some conjectures involving elementary number theory make Nitpick look like a
giant with feet of clay:

lemma “P Suc”
nitpick [card = 1–6]

Nitpick found no counterexample.

For any cardinality k, Suc is the partial function {0 7→ 1, 1 7→ 2, . . . , k− 1 7→ ?},
which evaluates to ? when it is passed as argument to P. As a result, P Suc is
always ?. The next example is similar:

lemma “P (op +::nat⇒ nat⇒ nat)”
nitpick [card nat = 1]

9

Nitpick found a counterexample:

Free variable:
P = {}

nitpick [card nat = 2]

Nitpick found no counterexample.

The problem here is that op + is total when nat is taken to be {0} but becomes
partial as soon as we add 1, because 1 + 1 /∈ {0, 1}.

Because numbers are infinite and are approximated using a three-valued logic,
there is usually no need to systematically enumerate domain sizes. If Nitpick
cannot find a genuine counterexample for card nat = k, it is very unlikely that one
could be found for smaller domains. (The P (op +) example above is an exception
to this principle.) Nitpick nonetheless enumerates all cardinalities from 1 to 8
for nat, mainly because smaller cardinalities are fast to handle and give rise to
simpler counterexamples. This is explained in more detail in §3.11.

3.6 Inductive Datatypes

Like natural numbers and integers, inductive datatypes with recursive construc-
tors admit no finite models and must be approximated by a subterm-closed sub-
set. For example, using a cardinality of 10 for ′a list, Nitpick looks for all counter-
examples that can be built using at most 10 different lists.

Let’s see with an example involving hd (which returns the first element of a list)
and @ (which concatenates two lists):

lemma “hd (xs @ [y, y]) = hd xs”
nitpick

Nitpick found a counterexample for card ′a = 3:

Free variables:
xs = []
y = a3

To see why the counterexample is genuine, we enable show_consts and show_
datatypes:

Datatype:
′a list = {[], [a3, a3], [a3], . . .}

Constants:
λx1. x1 @ [y, y] = undefined([] := [a3, a3], [a3, a3] := ?, [a3] := ?)
hd = undefined([] := a2, [a3, a3] := a3, [a3] := a3)

Since hd [] is undefined in the logic, it may be given any value, including a2.

10

The second constant, λx1. x1 @ [y, y], is simply the append operator whose second
argument is fixed to be [y, y]. Appending [a3, a3] to [a3] would normally give
[a3, a3, a3], but this value is not representable in the subset of ′a list considered
by Nitpick, which is shown under the “Datatype” heading; hence the result is ?.
Similarly, appending [a3, a3] to itself gives ?.

Given card ′a = 3 and card ′a list = 3, Nitpick considers the following subsets:

{[], [a1], [a2]};
{[], [a1], [a3]};
{[], [a2], [a3]};
{[], [a1], [a1, a1]};

{[], [a1], [a2, a1]};
{[], [a1], [a3, a1]};
{[], [a2], [a1, a2]};
{[], [a2], [a2, a2]};

{[], [a2], [a3, a2]};
{[], [a3], [a1, a3]};
{[], [a3], [a2, a3]};
{[], [a3], [a3, a3]}.

All subterm-closed subsets of ′a list consisting of three values are listed and only
those. As an example of a non-subterm-closed subset, consider S = {[], [a1],
[a1, a3]}, and observe that [a1, a3] (i.e., a1 # [a3]) has [a3] /∈ S as a subterm.

Here’s another möchtegern-lemma that Nitpick can refute without a blink:

lemma “Jlength xs = 1; length ys = 1K =⇒ xs = ys”
nitpick [show_datatypes]

Nitpick found a counterexample for card ′a = 3:

Free variables:
xs = [a2]
ys = [a3]

Datatypes:
nat = {0, 1, 2, . . .}
′a list = {[], [a3], [a2], . . .}

Because datatypes are approximated using a three-valued logic, there is usually
no need to systematically enumerate cardinalities: If Nitpick cannot find a gen-
uine counterexample for card ′a list = 10, it is very unlikely that one could be
found for smaller cardinalities.

3.7 Typedefs, Records, Rationals, and Reals

Nitpick generally treats types declared using typedef as datatypes whose single
constructor is the corresponding Abs_ function. For example:

typedef three = “{0::nat, 1, 2}”
by blast

definition A :: three where “A ≡ Abs_three 0”
definition B :: three where “B ≡ Abs_three 1”
definition C :: three where “C ≡ Abs_three 2”

lemma “JP A; P BK =⇒ P x”

11

nitpick [show_datatypes]

Nitpick found a counterexample:

Free variables:
P = {« 1 », « 0 »}
x = « 2 »

Datatypes:
nat = {0, 1, 2, . . .}
three = {« 2 », « 1 », « 0 », . . .}

In the output above, « n » abbreviates Abs_three n.

Records, which are implemented as typedefs behind the scenes, are handled in
much the same way:

record point =
Xcoord :: int
Ycoord :: int

lemma “Xcoord (p::point) = Xcoord (q::point)”
nitpick [show_datatypes]

Nitpick found a counterexample:

Free variables:
p = (|Xcoord = 0, Ycoord = 0|)
q = (|Xcoord = 1, Ycoord = 1|)

Datatypes:
int = {0, 1, . . .}
point = {(|Xcoord = 1, Ycoord = 1|), (|Xcoord = 0, Ycoord = 0|), . . .}

Finally, Nitpick provides rudimentary support for rationals and reals using a sim-
ilar approach:

lemma “4 ∗ x + 3 ∗ (y::real) 6= 1/2”
nitpick [show_datatypes]

Nitpick found a counterexample:

Free variables:
x = 1/2
y = −1/2

Datatypes:
nat = {0, 1, 2, 3, 4, 5, 6, 7, . . .}
int = {0, 1, 2, 3, 4, −3, −2, −1, . . .}
real = {1, 0, 4, −3/2, 3, 2, 1/2, −1/2, . . .}

12

3.8 Inductive and Coinductive Predicates

Inductively defined predicates (and sets) are particularly problematic for counter-
example generators. They can make Quickcheck [2] loop forever and Refute [8]
run out of resources. The crux of the problem is that they are defined using a least
fixed point construction.

Nitpick’s philosophy is that not all inductive predicates are equal. Consider the
even predicate below:

inductive even where
“even 0” |
“even n =⇒ even (Suc (Suc n))”

This predicate enjoys the desirable property of being well-founded, which means
that the introduction rules don’t give rise to infinite chains of the form

· · · =⇒ even k′′ =⇒ even k′ =⇒ even k.

For even, this is obvious: Any chain ending at k will be of length k/2 + 1:

even 0 =⇒ even 2 =⇒ · · · =⇒ even (k− 2) =⇒ even k.

Wellfoundedness is desirable because it enables Nitpick to use a very efficient
fixed point computation.4 Moreover, Nitpick can prove wellfoundedness of most
well-founded predicates, just as Isabelle’s function package usually discharges
termination proof obligations automatically.

Let’s try an example:

lemma “∃n. even n ∧ even (Suc n)”
nitpick [card nat = 100, verbose]

The inductive predicate “even” was proved well-founded. Nitpick can com-
pute it efficiently.

Trying 1 scope:
card nat = 100.

Nitpick found a potential counterexample for card nat = 100:

Empty assignment

Nitpick could not find a better counterexample.

Total time: 2274 ms.

No genuine counterexample is possible because Nitpick cannot rule out the exis-
tence of a natural number n ≥ 100 such that both even n and even (Suc n) are true.
To help Nitpick, we can bound the existential quantifier:

4If an inductive predicate is well-founded, then it has exactly one fixed point, which is simul-
taneously the least and the greatest fixed point. In these circumstances, the computation of the
least fixed point amounts to the computation of an arbitrary fixed point, which can be performed
using a straightforward recursive equation.

13

lemma “∃n≤ 99. even n ∧ even (Suc n)”
nitpick [card nat = 100]

Nitpick found a counterexample:

Empty assignment

So far we were blessed by the wellfoundedness of even. What happens if we use
the following definition instead?

inductive even′ where
“even′ (0::nat)” |
“even′ 2” |
“Jeven′ m; even′ nK =⇒ even′ (m + n)”

This definition is not well-founded: From even′ 0 and even′ 0, we can derive that
even′ 0. Nonetheless, the predicates even and even′ are equivalent.

Let’s check a property involving even′. To make up for the foreseeable computa-
tional hurdles entailed by non-wellfoundedness, we decrease nat’s cardinality to
a mere 10:

lemma “∃n ∈ {0, 2, 4, 6, 8}. ¬ even′ n”
nitpick [card nat = 10, verbose, show_consts]

The inductive predicate “even′” could not be proved well-founded. Nitpick
might need to unroll it.

Trying 6 scopes:
card nat = 10 and iter even′ = 0;
card nat = 10 and iter even′ = 1;
card nat = 10 and iter even′ = 2;
card nat = 10 and iter even′ = 4;
card nat = 10 and iter even′ = 8;
card nat = 10 and iter even′ = 9.

Nitpick found a counterexample for card nat = 10 and iter even′ = 2:

Constant:
λi. even′ = undefined(2 := {0, 2, 4, 6, 8, 1?, 3?, 5?, 7?, 9?},

1 := {0, 2, 4, 1?, 3?, 5?, 6?, 7?, 8?, 9?},
0 := {0, 2, 1?, 3?, 4?, 5?, 6?, 7?, 8?, 9?})

Total time: 1140 ms.

Nitpick’s output is very instructive. First, it tells us that the predicate is unrolled,
meaning that it is computed iteratively from the empty set. Then it lists six scopes
specifying different bounds on the numbers of iterations: 0, 1, 2, 4, 8, and 9.

The output also shows how each iteration contributes to even′. The notation
λi. even′ indicates that the value of the predicate depends on an iteration counter.
Iteration 0 provides the basis elements, 0 and 2. Iteration 1 contributes 4 (= 2 + 2).

14

Iteration 2 throws 6 (= 2 + 4 = 4 + 2) and 8 (= 4 + 4) into the mix. Further itera-
tions would not contribute any new elements.

Some values are marked with superscripted question marks (‘?’). These are the
elements for which the predicate evaluates to ?. Thus, even′ evaluates to either
True or ?, never False.

When unrolling a predicate, Nitpick tries 0, 1, 2, 4, 8, 12, 16, and 24 iterations.
However, these numbers are bounded by the cardinality of the predicate’s do-
main. With card nat = 10, no more than 9 iterations are ever needed to compute
the value of a nat predicate. You can specify the number of iterations using the
iter option, as explained in §5.2.

In the next formula, even′ occurs both positively and negatively:

lemma “even′ (n− 2) =⇒ even′ n”
nitpick [card nat = 10, show_consts]

Nitpick found a counterexample:

Free variable:
n = 1

Constants:
λi. even′ = undefined(0 := {0, 2, 1?, 3?, 4?, 5?, 6?, 7?, 8?, 9?})
even′ ⊆ {0, 2, 4, 6, 8, . . .}

Notice the special constraint even′ ⊆ {0, 2, 4, 6, 8, . . .} in the output, whose right-
hand side represents an arbitrary fixed point (not necessarily the least one). It
is used to falsify even′ n. In contrast, the unrolled predicate is used to satisfy
even′ (n− 2).

Coinductive predicates are handled dually. For example:

coinductive nats where
“nats (x::nat) =⇒ nats x”

lemma “nats = {0, 1, 2, 3, 4}”
nitpick [card nat = 10, show_consts]

Nitpick found a counterexample:

Constants:
λi. nats = undefined(0 := {0?, 1?, 2?, 3?, 4?, 5?, 6?, 7?, 8?, 9?, . . .})
nats ⊇ {9, 5?, 6?, 7?, 8?, . . .}

As a special case, Nitpick uses Kodkod’s transitive closure operator to encode
negative occurrences of non-well-founded “linear inductive predicates,” i.e., in-
ductive predicates for which each the predicate occurs in at most one assumption
of each introduction rule. For example:

inductive odd where
“odd 1” |

15

“Jodd m; even nK =⇒ odd (m + n)”

lemma “odd n =⇒ odd (n− 2)”
nitpick [card nat = 10, show_consts]

Nitpick found a counterexample:

Free variable:
n = 1

Constants:
even = {0, 2, 4, 6, 8, . . .}
oddbase = {1, . . .}
oddstep ={(0, 0), (0, 2), (0, 4), (0, 6), (0, 8), (1, 1), (1, 3), (1, 5),

(1, 7), (1, 9), (2, 2), (2, 4), (2, 6), (2, 8), (3, 3), (3, 5),
(3, 7), (3, 9), (4, 4), (4, 6), (4, 8), (5, 5), (5, 7), (5, 9),
(6, 6), (6, 8), (7, 7), (7, 9), (8, 8), (9, 9), . . .}

odd ⊆ {1, 3, 5, 7, 9, 8?, . . .}

In the output, oddbase represents the base elements and oddstep is a transition rela-
tion that computes new elements from known ones. The set odd consists of all the
values reachable through the reflexive transitive closure of oddstep starting with
any element from oddbase, namely 1, 3, 5, 7, and 9. Using Kodkod’s transitive
closure to encode linear predicates is normally either more thorough or more ef-
ficient than unrolling (depending on the value of iter), but for those cases where
it isn’t you can disable it by passing the dont_star_linear_preds option.

3.9 Coinductive Datatypes

While Isabelle regrettably lacks a high-level mechanism for defining coinductive
datatypes, the Coinductive_List theory provides a coinductive “lazy list” datatype,
′a llist, defined the hard way. Nitpick supports these lazy lists seamlessly and
provides a hook, described in §7.2, to register custom coinductive datatypes.

(Co)intuitively, a coinductive datatype is similar to an inductive datatype but al-
lows infinite objects. Thus, the infinite lists ps = [a, a, a, . . .], qs = [a, b, a, b, . . .],
and rs = [0, 1, 2, 3, . . .] can be defined as lazy lists using the LNil :: ′a llist and
LCons :: ′a⇒ ′a llist⇒ ′a llist constructors.

Although it is otherwise no friend of infinity, Nitpick can find counterexamples
involving cyclic lists such as ps and qs above as well as finite lists:

lemma “xs 6= LCons a xs”
nitpick

Nitpick found a counterexample for card ′a = 1:

Free variables:
a = a1
xs = THE ω. ω = LCons a1 ω

16

The notation THE ω. ω = t(ω) stands for the infinite term t(t(t(. . .))). Hence, xs
is simply the infinite list [a1, a1, a1, . . .].

The next example is more interesting:

lemma “Jxs = LCons a xs; ys = iterates (λb. a) bK =⇒ xs = ys”
nitpick [verbose]

The type “ ′a” passed the monotonicity test. Nitpick might be able to skip
some scopes.

Trying 8 scopes:
card ′a = 1, card “ ′a list” = 1, and bisim_depth = 0.

...
card ′a = 8, card “ ′a list” = 8, and bisim_depth = 7.

Nitpick found a counterexample for card ′a = 2, card “ ′a list” = 2, and bisim_
depth = 1:

Free variables:
a = a2
b = a1
xs = THE ω. ω = LCons a2 ω
ys = LCons a1 (THE ω. ω = LCons a2 ω)

Total time: 726 ms.

The lazy list xs is simply [a2, a2, a2, . . .], whereas ys is [a1, a2, a2, a2, . . .], i.e., a lasso-
shaped list with [a1] as its stem and [a2] as its cycle. In general, the list segment
within the scope of the THE binder corresponds to the lasso’s cycle, whereas the
segment leading to the binder is the stem.

A salient property of coinductive datatypes is that two objects are considered
equal if and only if they lead to the same observations. For example, the lazy lists
THE ω. ω = LCons a (LCons b ω) and LCons a (THE ω. ω = LCons b (LCons a ω))
are identical, because both lead to the sequence of observations a, b, a, b, . . . (or,
equivalently, both encode the infinite list [a, b, a, b, . . .]). This concept of equality
for coinductive datatypes is called bisimulation and is defined coinductively.

Internally, Nitpick encodes the coinductive bisimilarity predicate as part of the
Kodkod problem to ensure that distinct objects lead to different observations.
This precaution is somewhat expensive and often unnecessary, so it can be dis-
abled by setting the bisim_depth option to −1. The bisimilarity check is then
performed after the counterexample has been found to ensure correctness. If
this after-the-fact check fails, the counterexample is tagged as “likely genuine”
and Nitpick recommends to try again with bisim_depth set to a nonnegative inte-
ger. Disabling the check for the previous example saves approximately 150 milli-
seconds; the speed gains can be more significant for larger scopes.

The next lemma illustrates the need for bisimilarity (either as a Kodkod predicate
or as an after-the-fact check) to prevent spurious counterexamples:

17

lemma “Jxs = LCons a xs; ys = LCons a ysK =⇒ xs = ys”
nitpick [bisim_depth = −1, show_datatypes]

Nitpick found a likely genuine counterexample for card ′a = 2:

Free variables:
a = a2
xs = THE ω. ω = LCons a2 ω
ys = THE ω. ω = LCons a2 ω

Codatatype:
′a llist = {THE ω. ω = LCons a2 ω, THE ω. ω = LCons a2 ω, . . .}

Try again with “bisim_depth” set to a nonnegative value to confirm that the
counterexample is genuine.

nitpick

Nitpick found no counterexample.

In the first nitpick invocation, the after-the-fact check discovered that the two
known elements of type ′a llist are bisimilar.

A compromise between leaving out the bisimilarity predicate from the Kodkod
problem and performing the after-the-fact check is to specify a lower nonnegative
bisim_depth value than the default one provided by Nitpick. In general, a value
of K means that Nitpick will require all lists to be distinguished from each other
by their prefixes of length K. Be aware that setting K to a too low value can
overconstrain Nitpick, preventing it from finding any counterexamples.

3.10 Boxing

Nitpick normally maps function and product types directly to the corresponding
Kodkod concepts. As a consequence, if ′a has cardinality 3 and ′b has cardinality
4, then ′a× ′b has cardinality 12 (= 4× 3) and ′a⇒ ′b has cardinality 64 (= 43). In
some circumstances, it pays off to treat these types in the same way as plain data-
types, by approximating them by a subset of a given cardinality. This technique
is called “boxing” and is particularly useful for functions passed as arguments to
other functions, for high-arity functions, and for large tuples. Under the hood,
boxing involves wrapping occurrences of the types ′a× ′b and ′a⇒ ′b in isomor-
phic datatypes, as can be seen by enabling the debug option.

To illustrate boxing, we consider a formalization of λ-terms represented using de
Bruijn’s notation:

datatype tm = Var nat | Lam tm | App tm tm

The lift t k function increments all variables with indices greater than or equal to
k by one:

18

primrec lift where
“lift (Var j) k = Var (if j < k then j else j + 1)” |
“lift (Lam t) k = Lam (lift t (k + 1))” |
“lift (App t u) k = App (lift t k) (lift u k)”

The loose t k predicate returns True if and only if term t has a loose variable with
index k or more:

primrec loose where
“loose (Var j) k = (j ≥ k)” |
“loose (Lam t) k = loose t (Suc k)” |
“loose (App t u) k = (loose t k ∨ loose u k)”

Next, the subst σ t function applies the substitution σ on t:

primrec subst where
“subst σ (Var j) = σ j” |
“subst σ (Lam t) =
Lam (subst (λn. case n of 0⇒ Var 0 | Suc m⇒ lift (σ m) 1) t)” |

“subst σ (App t u) = App (subst σ t) (subst σ u)”

A substitution is a function that maps variable indices to terms. Observe that σ is
a function passed as argument and that Nitpick can’t optimize it away, because
the recursive call for the Lam case involves an altered version. Also notice the lift
call, which increments the variable indices when moving under a Lam.

A reasonable property to expect of substitution is that it should leave closed terms
unchanged. Alas, even this simple property does not hold:

lemma “¬ loose t 0 =⇒ subst σ t = t”
nitpick [verbose]

Trying 8 scopes:
card nat = 1, card tm = 1, and card “nat⇒ tm” = 1;
card nat = 2, card tm = 2, and card “nat⇒ tm” = 2;

...
card nat = 8, card tm = 8, and card “nat⇒ tm” = 8.

Nitpick found a counterexample for card nat = 6, card tm = 6, and
card “nat⇒ tm” = 6:

Free variables:
σ = undefined(0 := Var 0, 1 := Var 0, 2 := Var 0, 3 := Var 0,

4 := Var 0, 5 := Var 0)
t = Lam (Lam (Var 1))

Total time: 4679 ms.

Using eval, we find out that subst σ t = Lam (Lam (Var 0)). Using the traditional
λ-term notation, t is λx y. x whereas subst σ t is λx y. y. The bug is in subst: The
lift (σ m) 1 call should be replaced with lift (σ m) 0.

19

An interesting aspect of Nitpick’s verbose output is that it assigned inceasing
cardinalities from 1 to 8 to the type nat⇒ tm. For the formula of interest, knowing
6 values of that type was enough to find the counterexample. Without boxing,
46 656 (= 66) values must be considered, a hopeless undertaking:

nitpick [dont_box]

Nitpick ran out of time after checking 4 of 8 scopes.

Boxing can be enabled or disabled globally or on a per-type basis using the box
option. In addition, setting the cardinality of a function or product type implicitly
enables boxing for that type. Nitpick normally performs reasonable choices about
which types should be boxed, but option tweaking occasionally helps.

3.11 Scope Monotonicity

The card option (together with iter, bisim_depth, and max) controls which scopes
are actually tested. In general, to exhaust all models below a certain cardinality
bound, the number of scopes that Nitpick must consider increases exponentially
with the number of type variables (and typedecl’d types) occurring in the for-
mula. Given the default cardinality specification of 1–8, no fewer than 84 = 4096
scopes must be considered for a formula involving ′a, ′b, ′c, and ′d.

Fortunately, many formulas exhibit a property called scope monotonicity, mean-
ing that if the formula is falsifiable for a given scope, it is also falsifiable for all
larger scopes [4, p. 165].

Consider the formula

lemma “length xs = length ys =⇒ rev (zip xs ys) = zip xs (rev ys)”

where xs is of type ′a list and ys is of type ′b list. A priori, Nitpick would need
to consider 512 scopes to exhaust the specification card = 1–8. However, our in-
tuition tells us that any counterexample found with a small scope would still be
a counterexample in a larger scope—by simply ignoring the fresh ′a and ′b val-
ues provided by the larger scope. Nitpick comes to the same conclusion after a
careful inspection of the formula and the relevant definitions:

nitpick [verbose]

The types “ ′a” and “ ′b” passed the monotonicity test. Nitpick might be able
to skip some scopes.

Trying 8 scopes:
card ′a = 1, card ′b = 1, card nat = 1, card “(′a× ′b) list” = 1,

card “ ′a list” = 1, and card “ ′b list” = 1.
card ′a = 2, card ′b = 2, card nat = 2, card “(′a× ′b) list” = 2,

card “ ′a list” = 2, and card “ ′b list” = 2.
...

20

card ′a = 8, card ′b = 8, card nat = 8, card “(′a× ′b) list” = 8,
card “ ′a list” = 8, and card “ ′b list” = 8.

Nitpick found a counterexample for card ′a = 5, card ′b = 5, card nat = 5, card
“(′a× ′b) list” = 5, card “ ′a list” = 5, and card “ ′b list” = 5:

Free variables:
xs = [a4, a5]
ys = [b3, b3]

Total time: 1636 ms.

In theory, it should be sufficient to test a single scope:

nitpick [card = 8]

However, this is often less efficient in practice and may lead to overly complex
counterexamples.

If the monotonicity check fails but we believe that the formula is monotonic (or
we don’t mind missing some counterexamples), we can pass the mono option.
To convince yourself that this option is risky, simply consider this example from
§3.4:

lemma “∃g. ∀x::′b. g (f x) = x =⇒ ∀y::′a. ∃x. y = f x”
nitpick [mono]

Nitpick found no counterexample.

nitpick

Nitpick found a counterexample for card ′a = 2 and card ′b = 1:
...

(It turns out the formula holds if and only if card ′a ≤ card ′b.) Although this is
rarely advisable, the automatic monotonicity checks can be disabled by passing
non_mono (§5.5).

As insinuated in §3.5 and §3.6, nat, int, and inductive datatypes are normally
monotonic and treated as such. The same is true for record types, rat, real, and
some typedef’d types. Thus, given the cardinality specification 1–8, a formula in-
volving nat, int, int list, rat, and rat list will lead Nitpick to consider only 8 scopes
instead of 32 768.

4 Case Studies

As a didactic device, the previous section focused mostly on toy formulas whose
validity can easily be assessed just by looking at the formula. We will now re-
view two somewhat more realistic case studies that are within Nitpick’s reach: a

21

context-free grammar modeled by mutually inductive sets and a functional im-
plementation of AA trees. The results presented in this section were produced
with the following settings:

nitpick_params [max_potential = 0, max_threads = 2]

4.1 A Context-Free Grammar

Our first case study is taken from section 7.4 in the Isabelle tutorial [5]. The fol-
lowing grammar, originally due to Hopcroft and Ullman, produces all strings
with an equal number of a’s and b’s:

S ::= ε | bA | aB
A ::= aS | bAA
B ::= bS | aBB

The intuition behind the grammar is that A generates all string with one more a
than b’s and B generates all strings with one more b than a’s.

The alphabet consists exclusively of a’s and b’s:

datatype alphabet = a | b

Strings over the alphabet are represented by alphabet lists. Nonterminals in the
grammar become sets of strings. The production rules presented above can be
expressed as a mutually inductive definition:

inductive_set S and A and B where
R1: “[] ∈ S” |
R2: “w ∈ A =⇒ b # w ∈ S” |
R3: “w ∈ B =⇒ a # w ∈ S” |
R4: “w ∈ S =⇒ a # w ∈ A” |
R5: “w ∈ S =⇒ b # w ∈ S” |
R6: “Jv ∈ B; v ∈ BK =⇒ a # v @ w ∈ B”

The conversion of the grammar into the inductive definition was done manually
by Joe Blow, an underpaid undergraduate student. As a result, some errors might
have sneaked in.

Debugging faulty specifications is at the heart of Nitpick’s raison d’être. A good
approach is to state desirable properties of the specification (here, that S is exactly
the set of strings over {a, b}with as many a’s as b’s) and check them with Nitpick.
If the properties are correctly stated, counterexamples will point to bugs in the
specification. For our grammar example, we will proceed in two steps, separating
the soundness and the completeness of the set S. First, soundness:

theorem S_sound:
“w ∈ S −→ length [x← w. x = a] = length [x← w. x = b]”
nitpick

22

Nitpick found a counterexample:

Free variable:
w = [b]

It would seem that [b] ∈ S. How could this be? An inspection of the introduction
rules reveals that the only rule with a right-hand side of the form b # . . . ∈ S that
could have introduced [b] into S is R5:

“w ∈ S =⇒ b # w ∈ S”

On closer inspection, we can see that this rule is wrong. To match the production
B ::= bS, the second S should be a B. We fix the typo and try again:

nitpick

Nitpick found a counterexample:

Free variable:
w = [a, a, b]

Some detective work is necessary to find out what went wrong here. To get
[a, a, b] ∈ S, we need [a, b] ∈ B by R3, which in turn can only come from R6:

“Jv ∈ B; v ∈ BK =⇒ a # v @ w ∈ B”

Now, this formula must be wrong: The same assumption occurs twice, and the
variable w is unconstrained. Clearly, one of the two occurrences of v in the as-
sumptions should have been a w.

With the correction made, we don’t get any counterexample from Nitpick. Let’s
move on and check completeness:

theorem S_complete:
“length [x← w. x = a] = length [x← w. x = b] −→ w ∈ S”
nitpick

Nitpick found a counterexample:

Free variable:
w = [b, b, a, a]

Apparently, [b, b, a, a] /∈ S, even though it has the same numbers of a’s and b’s. But
since our inductive definition passed the soundness check, the introduction rules
we have are probably correct. Perhaps we simply lack an introduction rule. Com-
paring the grammar with the inductive definition, our suspicion is confirmed: Joe
Blow simply forgot the production A ::= bAA, without which the grammar can-
not generate two or more b’s in a row. So we add the rule

“Jv ∈ A; w ∈ AK =⇒ b # v @ w ∈ A”

With this last change, we don’t get any counterexamples from Nitpick for either
soundness or completeness. We can even generalize our result to cover A and B
as well:

23

theorem S_A_B_sound_and_complete:
“w ∈ S←→ length [x← w. x = a] = length [x← w. x = b]”
“w ∈ A←→ length [x← w. x = a] = length [x← w. x = b] + 1”
“w ∈ B←→ length [x← w. x = b] = length [x← w. x = a] + 1”
nitpick

Nitpick found no counterexample.

4.2 AA Trees

AA trees are a kind of balanced trees discovered by Arne Andersson that provide
similar performance to red-black trees, but with a simpler implementation [1].
They can be used to store sets of elements equipped with a total order <. We
start by defining the datatype and some basic extractor functions:

datatype ′a tree = Λ | N “ ′a::linorder” nat “ ′a tree” “ ′a tree”

primrec data where
“data Λ = undefined” |
“data (N x _ _ _) = x”

primrec dataset where
“dataset Λ = {}” |
“dataset (N x _ t u) = {x} ∪ dataset t ∪ dataset u”

primrec level where
“level Λ = 0” |
“level (N _ k _ _) = k”

primrec left where
“left Λ = Λ” |
“left (N _ _ t _) = t”

primrec right where
“right Λ = Λ” |
“right (N _ _ _ u) = u”

The wellformedness criterion for AA trees is fairly complex. Wikipedia states it
as follows [12]:

Each node has a level field, and the following invariants must remain
true for the tree to be valid:

1. The level of a leaf node is one.

2. The level of a left child is strictly less than that of its parent.

3. The level of a right child is less than or equal to that of its parent.

4. The level of a right grandchild is strictly less than that of its
grandparent.

24

5. Every node of level greater than one must have two children.

The wf predicate formalizes this description:

primrec wf where
“wf Λ = True” |
“wf (N _ k t u) =
(if t = Λ then

k = 1 ∧ (u = Λ ∨ (level u = 1 ∧ left u = Λ ∧ right u = Λ))
else

wf t ∧ wf u ∧ u 6= Λ ∧ level t < k ∧ level u ≤ k ∧ level (right u) < k)”

Rebalancing the tree upon insertion and removal of elements is performed by two
auxiliary functions called skew and split, defined below:

primrec skew where
“skew Λ = Λ” |
“skew (N x k t u) =
(if t 6= Λ ∧ k = level t then

N (data t) k (left t) (N x k (right t) u)
else

N x k t u)”

primrec split where
“split Λ = Λ” |
“split (N x k t u) =
(if u 6= Λ ∧ k = level (right u) then

N (data u) (Suc k) (N x k t (left u)) (right u)
else

N x k t u)”

Performing a skew or a split should have no impact on the set of elements stored
in the tree:

theorem dataset_skew_split:
“dataset (skew t) = dataset t”
“dataset (split t) = dataset t”
nitpick

Nitpick ran out of time after checking 7 of 8 scopes.

Furthermore, applying skew or split to a well-formed tree should not alter the tree:

theorem wf_skew_split:
“wf t =⇒ skew t = t”
“wf t =⇒ split t = t”
nitpick

Nitpick found no counterexample.

Insertion is implemented recursively. It preserves the sort order:

25

primrec insort where
“insort Λ x = N x 1 Λ Λ” |
“insort (N y k t u) x =
(∗ (split ◦ skew) ∗) (N y k (if x < y then insort t x else t)

(if x > y then insort u x else u))”

Notice that we deliberately commented out the application of skew and split. Let’s
see if this causes any problems:

theorem wf_insort: “wf t =⇒ wf (insort t x)”
nitpick

Nitpick found a counterexample for card ′a = 4:

Free variables:
t = N a3 1 Λ Λ
x = a4

Hint: Maybe you forgot a type constraint?

It’s hard to see why this is a counterexample. The hint is of no help here. To
improve readability, we will restrict the theorem to nat, so that we don’t need to
look up the value of the op < constant to find out which element is smaller than
the other. In addition, we will tell Nitpick to display the value of insort t x using
the eval option. This gives

theorem wf_insort_nat: “wf t =⇒ wf (insort t (x::nat))”
nitpick [eval = “insort t x”]

Nitpick found a counterexample:

Free variables:
t = N 1 1 Λ Λ
x = 0

Evaluated term:
insort t x = N 1 1 (N 0 1 Λ Λ) Λ

Nitpick’s output reveals that the element 0 was added as a left child of 1, where
both have a level of 1. This violates the second AA tree invariant, which states
that a left child’s level must be less than its parent’s. This shouldn’t come as a
surprise, considering that we commented out the tree rebalancing code. Reintro-
ducing the code seems to solve the problem:

theorem wf_insort: “wf t =⇒ wf (insort t x)”
nitpick

Nitpick ran out of time after checking 6 of 8 scopes.

Insertion should transform the set of elements represented by the tree in the ob-
vious way:

theorem dataset_insort: “dataset (insort t x) = {x} ∪ dataset t”
nitpick

26

Nitpick ran out of time after checking 5 of 8 scopes.

We could continue like this and sketch a complete theory of AA trees without
performing a single proof. Once the definitions and main theorems are in place
and have been thoroughly tested using Nitpick, we could start working on the
proofs. Developing theories this way usually saves time, because faulty theorems
and definitions are discovered much earlier in the process.

5 Option Reference

Nitpick’s behavior can be influenced by various options, which can be specified
in brackets after the nitpick command. Default values can be set using nitpick_
params. For example:

nitpick_params [verbose, timeout = 60 s]

The options are categorized as follows: mode of operation (§5.1), scope of search
(§5.2), output format (§5.3), automatic counterexample checks (§5.4), optimiza-
tions (§5.5), and timeouts (§5.6).

The number of options can be overwhelming at first glance. Do not let that worry
you: Nitpick’s defaults have been chosen so that it almost always does the right
thing, and the most important options have been covered in context in §3.

The descriptions below refer to the following syntactic quantities:

• 〈string〉: A string.

• 〈bool〉: true or false.

• 〈bool_or_smart〉: true, false, or smart.

• 〈int〉: An integer. Negative integers are prefixed with a hyphen.

• 〈int_or_smart〉: An integer or smart.

• 〈int_range〉: An integer (e.g., 3) or a range of nonnegative integers (e.g.,
1–4). The range symbol ‘–’ can be entered as - (hyphen) or \<midarrow>.

• 〈int_seq〉: A comma-separated sequence of ranges of integers (e.g., 1,3,6–8).

• 〈time〉: An integer followed by min (minutes), s (seconds), or ms (millisec-
onds), or the keyword none (∞ years).

• 〈const〉: The name of a HOL constant.

• 〈term〉: A HOL term (e.g., “ f x”).

• 〈term_list〉: A space-separated list of HOL terms (e.g., “ f x” “g y”).

• 〈type〉: A HOL type.

27

Default values are indicated in square brackets. Boolean options have a negated
counterpart (e.g., auto vs. no_auto). When setting Boolean options, “= true” may
be omitted.

5.1 Mode of Operation

auto
[
= 〈bool〉

]
[false] (neg.: no_auto)

Specifies whether Nitpick should be run automatically on newly entered
theorems. For automatic runs, user_axioms (§5.1) and assms (§5.1) are im-
plicitly enabled, blocking (§5.1), verbose (§5.3), and debug (§5.3) are disabled,
max_potential (§5.3) is taken to be 0, and auto_timeout (§5.6) is used as the
time limit instead of timeout (§5.6). The output is also more concise.

See also auto_timeout (§5.6).

blocking
[
= 〈bool〉

]
[true] (neg.: non_blocking)

Specifies whether the nitpick command should block. The non-blocking
mode lets the user start proving the putative theorem while Nitpick looks
for a counterexample, but it can also be more confusing. For technical rea-
sons, automatic runs always block.

See also auto (§5.1).

falsify
[
= 〈bool〉

]
[true] (neg.: satisfy)

Specifies whether Nitpick should look for falsifying examples (countermod-
els) or satisfying examples (models). This manual assumes throughout that
falsify is enabled.

user_axioms
[
= 〈bool_or_smart〉

]
[smart] (neg.: no_user_axioms)

Specifies whether the user-defined axioms (specified using axiomatization
and axioms) should be considered. If the option is set to smart, Nitpick
performs an ad hoc axiom selection based on the constants that occur in the
formula to falsify. The option is implicitly set to true for automatic runs.

Warning: If the option is set to true, Nitpick might nonetheless ignore some
polymorphic axioms. Counterexamples generated under these conditions
are tagged as “likely genuine.” The debug (§5.3) option can be used to find
out which axioms were considered.

See also auto (§5.1), assms (§5.1), and debug (§5.3).

assms
[
= 〈bool〉

]
[true] (neg.: no_assms)

Specifies whether the relevant assumptions in structured proof should be
considered. The option is implicitly enabled for automatic runs.

See also auto (§5.1) and user_axioms (§5.1).

28

overlord
[
= 〈bool〉

]
[false] (neg.: no_overlord)

Specifies whether Nitpick should generate its temporary files in $ISABELLE_

HOME_USER, which is useful for debugging Nitpick but also unsafe if several
instances of the tool are run simultaneously. This option is disabled by de-
fault unless your home directory ends with blanchet or blanchette.

See also debug (§5.3).

5.2 Scope of Search

card 〈type〉 = 〈int_seq〉
Specifies the sequence of cardinalities to use for a given type. For nat and
int, the cardinality fully specifies the subset used to approximate the type.
For example:

card nat = 4 induces {0, 1, 2, 3}
card int = 4 induces {−1, 0, +1, +2}
card int = 5 induces {−2, −1, 0, +1, +2}.

In general:

card nat = K induces {0, . . . , K− 1}
card int = K induces {−dK/2e+ 1, . . . , +bK/2c}.

For free types, and often also for typedecl’d types, it usually makes sense
to specify cardinalities as a range of the form 1–n. Although function and
product types are normally mapped directly to the corresponding Kodkod
concepts, setting the cardinality of such types is also allowed and implicitly
enables “boxing” for them, as explained in the description of the box 〈type〉
and box (§5.2) options.

See also mono (§5.2).

card = 〈int_seq〉 [1–8]

Specifies the default sequence of cardinalities to use. This can be overridden
on a per-type basis using the card 〈type〉 option described above.

max 〈const〉 = 〈int_seq〉
Specifies the sequence of maximum multiplicities to use for a given (co)in-
ductive datatype constructor. A constructor’s multiplicity is the number of
distinct values that it can construct. Nonsensical values (e.g., max [] = 2) are
silently repaired. This option is only available for datatypes equipped with
several constructors.

max = 〈int_seq〉
Specifies the default sequence of maximum multiplicities to use for (co)in-
ductive datatype constructors. This can be overridden on a per-constructor
basis using the max 〈const〉 option described above.

29

wf 〈const〉
[
= 〈bool_or_smart〉

]
(neg.: non_wf)

Specifies whether the specified (co)inductively defined predicate is well-
founded. The option can take the following values:

• true: Tentatively treat the (co)inductive predicate as if it were well-
founded. Since this is generally not sound when the predicate is not
well-founded, the counterexamples are tagged as “likely genuine.”

• false: Treat the (co)inductive predicate as if it were not well-founded.
The predicate is then unrolled according to the iter 〈const〉 and iter op-
tions if necessary.

• smart: Try to prove that the inductive predicate is well-founded us-
ing Isabelle’s lexicographic_order and sizechange tactics. If this succeeds
(or the predicate occurs with an appropriate polarity in the formula
to falsify), use an efficient fixed point equation as specification of the
predicate; otherwise, unroll the predicates according to the iter 〈const〉
and iter options.

See also iter (§5.2), star_linear_preds (§5.5), and tac_timeout (§5.6).

wf
[
= 〈bool_or_smart〉

]
[smart] (neg.: non_wf)

Specifies the default wellfoundedness setting to use. This can be overridden
on a per-predicate basis using the wf 〈const〉 option above.

iter 〈const〉 = 〈int_seq〉
Specifies the sequence of iteration counts to use when unrolling a given
(co)inductive predicate. By default, unrolling is applied for inductive pred-
icates that occur negatively and coinductive predicates that occur positively
in the formula to falsify and that cannot be proved to be well-founded, but
this behavior is influenced by the wf option. The iteration counts are auto-
matically bounded by the cardinality of the predicate’s domain.

See also wf (§5.2) and star_linear_preds (§5.5).

iter = 〈int_seq〉 [1,2,4,8,12,16,24,32]

Specifies the sequence of iteration counts to use when unrolling (co)induc-
tive predicates. This can be overridden on a per-predicate basis using the
iter 〈const〉 option above.

bisim_depth = 〈int_seq〉 [7]

Specifies the sequence of iteration counts to use when unrolling the bisimi-
larity predicate generated by Nitpick for coinductive datatypes. A value of
−1 means that no predicate is generated, in which case Nitpick performs
an after-the-fact check to see if the known coinductive datatype values are
bidissimilar. If two values are found to be bisimilar, the counterexample is
tagged as “likely genuine.” The iteration counts are automatically bounded
by the sum of the cardinalities of the coinductive datatypes occurring in the
formula to falsify.

30

box 〈type〉
[
= 〈bool_or_smart〉

]
(neg.: dont_box)

Specifies whether Nitpick should attempt to wrap (“box”) a given function
or product type in an isomorphic datatype internally. Boxing is an effective
mean to reduce the search space and speed up Nitpick, because the isomor-
phic datatype is approximated by a subset of the possible function or pair
values; like other drastic optimizations, it can also prevent the discovery of
counterexamples. The option can take the following values:

• true: Box the specified type whenever practicable.

• false: Never box the type.

• smart: Box the type only in contexts where it is likely to help. For ex-
ample, n-tuples where n > 2 and arguments to higher-order functions
are good candidates for boxing.

Setting the card 〈type〉 option for a function or product type implicitly en-
ables boxing for that type.

See also verbose (§5.3) and debug (§5.3).

box
[
= 〈bool_or_smart〉

]
[smart] (neg.: dont_box)

Specifies the default boxing setting to use. This can be overridden on a per-
type basis using the box 〈type〉 option described above.

mono 〈type〉
[
= 〈bool_or_smart〉

]
(neg.: non_mono)

Specifies whether the specified type should be considered monotonic when
enumerating scopes. If the option is set to smart, Nitpick performs a mono-
tonicity check on the type. Setting this option to true can reduce the number
of scopes tried, but it also diminishes the theoretical chance of finding a
counterexample, as demonstrated in §3.11.

See also card (§5.2), coalesce_type_vars (§5.2), and verbose (§5.3).

mono
[
= 〈bool_or_smart〉

]
[smart] (neg.: non_box)

Specifies the default monotonicity setting to use. This can be overridden on
a per-type basis using the mono 〈type〉 option described above.

coalesce_type_vars
[
= 〈bool〉

]
[false] (neg.: dont_coalesce_type_vars)

Specifies whether type variables with the same sort constraints should be
merged. Setting this option to true can reduce the number of scopes tried
and the size of the generated Kodkod formulas, but it also diminishes the
theoretical chance of finding a counterexample.

See also mono (§5.2).

5.3 Output Format

verbose
[
= 〈bool〉

]
[false] (neg.: quiet)

Specifies whether the nitpick command should explain what it does. This

31

option is useful to determine which scopes are tried or which SAT solver is
used. This option is implicitly disabled for automatic runs.

See also auto (§5.1).

debug
[
= 〈bool〉

]
[false] (neg.: no_debug)

Specifies whether Nitpick should display additional debugging informa-
tion beyond what verbose already displays. Enabling debug also enables ver-
bose and show_all behind the scenes. The debug option is implicitly disabled
for automatic runs.

See also auto (§5.1), overlord (§5.1), and batch_size (§5.5).

show_skolems
[
= 〈bool〉

]
[true] (neg.: hide_skolem)

Specifies whether the values of Skolem constants should be displayed as
part of counterexamples. Skolem constants correspond to bound variables
in the original formula and usually help us to understand why the counter-
example falsifies the formula.

See also skolem_depth (§5.5).

show_datatypes
[
= 〈bool〉

]
[false] (neg.: hide_datatypes)

Specifies whether the subsets used to approximate (co)inductive datatypes
should be displayed as part of counterexamples. Such subsets are some-
times helpful when investigating whether a potential counterexample is
genuine or spurious, but their potential for clutter is real.

show_consts
[
= 〈bool〉

]
[false] (neg.: hide_consts)

Specifies whether the values of constants occurring in the formula (includ-
ing its axioms) should be displayed along with any counterexample. These
values are sometimes helpful when investigating why a counterexample is
genuine, but they can clutter the output.

show_all
[
= 〈bool〉

]
[false] (neg.: dont_show_all)

Enabling this option effectively enables show_skolems, show_datatypes, and
show_consts.

max_potential = 〈int〉 [1]

Specifies the maximum number of potential counterexamples to display.
Setting this option to 0 speeds up the search for a genuine counterexample.
This option is implicitly set to 0 for automatic runs. If you set this option
to a value greater than 1, you will need an incremental SAT solver: For
efficiency, it is recommended to install the JNI version of MiniSat and set
sat_solver = MiniSatJNI. Also be aware that many of the counterexamples
may look identical, unless the show_all (§5.3) option is enabled.

See also auto (§5.1), check_potential (§5.4), and sat_solver (§5.5).

32

max_genuine = 〈int〉 [1]

Specifies the maximum number of genuine counterexamples to display. If
you set this option to a value greater than 1, you will need an incremen-
tal SAT solver: For efficiency, it is recommended to install the JNI version
of MiniSat and set sat_solver = MiniSatJNI. Also be aware that many of the
counterexamples may look identical, unless the show_all (§5.3) option is en-
abled.

See also check_genuine (§5.4) and sat_solver (§5.5).

eval = 〈term_list〉
Specifies the list of terms whose values should be displayed along with
counterexamples. This option suffers from an “observer effect”: Nitpick
might find different counterexamples for different values of this option.

format 〈term〉 = 〈int_seq〉
Specifies how to uncurry the value displayed for a variable or constant.
Uncurrying sometimes increases the readability of the output for high-arity
functions. For example, given the variable y :: ′a ⇒ ′b ⇒ ′c ⇒ ′d ⇒ ′e ⇒
′ f ⇒ ′g, setting format y = 3 tells Nitpick to group the last three arguments,
as if the type had been ′a ⇒ ′b ⇒ ′c ⇒ ′d × ′e × ′ f ⇒ ′g. In general, a
list of values n1, . . . , nk tells Nitpick to show the last nk arguments as an nk-
tuple, the previous nk−1 arguments as an nk−1-tuple, and so on; arguments
that are not accounted for are left alone, as if the specification had been
1, . . . , 1, n1, . . . , nk.

See also uncurry (§5.5).

format = 〈int_seq〉 [1]

Specifies the default format to use. Irrespective of the default format, the
extra arguments to a Skolem constant corresponding to the outer bound
variables are kept separated from the remaining arguments, the for argu-
ments of an inductive definitions are kept separated from the remaining
arguments, and the iteration counter of an unrolled inductive definition is
shown alone. The default format can be overridden on a per-variable or
per-constant basis using the format 〈term〉 option described above.

5.4 Authentication

check_potential
[
= 〈bool〉

]
[false] (neg.: trust_potential)

Specifies whether potential counterexamples should be given to Isabelle’s
auto tactic to assess their validity. If a potential counterexample is shown to
be genuine, Nitpick displays a message to this effect and terminates.

See also max_potential (§5.3) and auto_timeout (§5.6).

33

check_genuine
[
= 〈bool〉

]
[false] (neg.: trust_genuine)

Specifies whether genuine and likely genuine counterexamples should be
given to Isabelle’s auto tactic to assess their validity. If a “genuine” counter-
example is shown to be spurious, the user is kindly asked to send a bug
report to the author at blannospamchette@in.tum.de.

See also max_genuine (§5.3) and auto_timeout (§5.6).

expect = 〈string〉
Specifies the expected outcome, which must be one of the following:

• genuine: Nitpick found a genuine counterexample.

• likely_genuine: Nitpick found a “likely genuine” counterexample (i.e.,
a counterexample that is genuine unless it contradicts a missing axiom
or a dangerous option was used inappropriately).

• potential: Nitpick found a potential counterexample.

• none: Nitpick found no counterexample.

• unknown: Nitpick encountered some problem (e.g., Kodkod ran out of
memory).

Nitpick emits an error if the actual outcome differs from the expected out-
come. This option is useful for regression testing.

5.5 Optimizations

sat_solver = 〈string〉 [smart]

Specifies which SAT solver to use. SAT solvers implemented in C or C++
tend to be faster than their Java counterparts, but they can be more difficult
to install. Also, if you set the max_potential (§5.3) or max_genuine (§5.3) op-
tion to a value greater than 1, you will need an incremental SAT solver, such
as MiniSatJNI (recommended) or SAT4J.

The supported solvers are listed below:

• MiniSat: MiniSat is an efficient solver written in C++. To use MiniSat,
set the environment variable MINISAT_HOME to the directory that con-
tains the minisat executable or put the executable in $ISABELLE_HOME/
contrib/MiniSat. The C++ sources and executables for MiniSat
are available at http://minisat.se/MiniSat.html. Nitpick has been
tested with versions 1.14 and 2.0 beta (2007-07-21).

• MiniSatJNI: The JNI (Java Native Interface) version of MiniSat is bun-
dled in nativesolver.tgz, which you will find on Kodkod’s web site
[9]. Unlike the standard version of MiniSat, the JNI version can be used
incrementally.

34

• PicoSAT: PicoSAT is an efficient solver written in C. It is bundled with
Kodkodi and requires no further installation or configuration steps.
Alternatively, you can install a standard version of PicoSAT and set the
environment variable PICOSAT_HOME to the directory that contains the
picosat executable or put the executable in $ISABELLE_HOME/contrib/
PicoSAT. The C sources for PicoSAT are available at http://fmv.jku.
at/picosat/ and are also bundled with Kodkodi. Nitpick has been
tested with version 913.

• zChaff : zChaff is an efficient solver written in C++. To use zChaff,
set the environment variable ZCHAFF_HOME to the directory that con-
tains the zchaff executable or put the executable in $ISABELLE_HOME/
contrib/zChaff. The C++ sources and executables for zChaff are avail-
able at http://www.princeton.edu/~chaff/zchaff.html. Nitpick has
been tested with versions 2004-05-13, 2004-11-15, and 2007-03-12.

• zChaffJNI: The JNI version of zChaff is bundled in nativesolver.tgz,
which you will find on Kodkod’s web site [9].

• RSat: RSat is an efficient solver written in C++. To use RSat, set the en-
vironment variable RSAT_HOME to the directory that contains the rsat
executable or put the executable in $ISABELLE_HOME/contrib/RSat.
The C++ sources for RSat are available at http://reasoning.cs.ucla.
edu/rsat/. Nitpick has been tested with version 2.01.

• BerkMin: BerkMin561 is an efficient solver written in C. To use
BerkMin, set the environment variable BERKMIN_HOME to the direc-
tory that contains the BerkMin561 executable or put the executable
in $ISABELLE_HOME/contrib/BerkMin. The BerkMin executables are
available at http://eigold.tripod.com/BerkMin.html.

• BerkMinAlloy: Variant of BerkMin that is included with Alloy 4 and
calls itself “sat56” in its banner text. To use this version of BerkMin, set
the environment variable BERKMINALLOY_HOME to the directory that con-
tains the berkmin executable or put the executable in $ISABELLE_HOME/
contrib/BerkMinAlloy.

• Jerusat: Jerusat 1.3 is an efficient solver written in C. To use Jerusat, set
the environment variable JERUSAT_HOME to the directory that contains
the Jerusat1.3 executable or put the executable in $ISABELLE_HOME/
contrib/Jerusat. The C sources for Jerusat are available at http://
www.cs.tau.ac.il/~ale1/Jerusat1.3.tgz.

• SAT4J: SAT4J is a reasonably efficient solver written in Java that can be
used incrementally. It is bundled with Kodkodi and requires no further
installation or configuration steps. Do not attempt to install the official
SAT4J packages, because their API is incompatible with Kodkod.

• SAT4JLight: Variant of SAT4J that is optimized for small problems. It
can also be used incrementally.

35

• HaifaSat: HaifaSat 1.0 beta is an experimental solver written in C++.
To use HaifaSat, set the environment variable HAIFASAT_HOME to the
directory that contains the HaifaSat executable or put the executable in
$ISABELLE_HOME/contrib/HaifaSat. The C++ sources for HaifaSat are
available at http://cs.technion.ac.il/~gershman/HaifaSat.htm.

• smart: If sat_solver is set to smart, Nitpick selects the first solver among
MiniSat, PicoSAT, zChaff, RSat, BerkMin, BerkMinAlloy, and Jerusat
that is recognized by Isabelle. If none is found, it falls back on SAT4J,
which should always be available. If verbose is enabled, Nitpick dis-
plays which SAT solver was chosen.

batch_size = 〈int_or_smart〉 [smart]

Specifies the maximum number of Kodkod problems that should be lumped
together when invoking Kodkodi. Each problem corresponds to one scope.
Lumping problems together ensures that Kodkodi is launched less often,
but it makes the verbose output less readable and is sometimes detrimental
to performance. If batch_size is set to smart, the actual value used is 1 if debug
(§5.3) is set and 64 otherwise.

destroy_constrs
[
= 〈bool〉

]
[true] (neg.: dont_destroy_constrs)

Specifies whether formulas involving (co)inductive datatype constructors
should be rewritten to use (automatically generated) discriminators and de-
structors. This optimization can drastically reduce the size of the Boolean
formulas given to the SAT solver.

See also debug (§5.3).

special_depth = 〈int〉 [20]

Specifies the maximum depth at which functions invoked with fixed argu-
ments should be specialized. The value−1 disables function specialization,
0 means that only constants occurring in the formula of interest are special-
ized, 1 means that constants occurring in the formula’s immediate axioms
are specialized, and in general n > 0 means that constants occurring in the
formula’s nth-level axioms are specialized. This optimization can drasti-
cally reduce the search space, especially for higher-order functions.

See also debug (§5.3) and show_consts (§5.3).

skolem_depth = 〈int〉 [4]

Specifies the maximum depth at which skolemization should take place, ex-
pressed as the number of outer quantifiers. The value −1 disables skolem-
ization, 0 means that only the outermost ∀-quantifiers (or negated ∃-quanti-
fiers) in the original (unnegated) formula are skolemized, and n > 0 means
that ∀-quantifiers within the scope of at most n ∃-quantifiers are skolem-
ized. However, for performance reasons, ∀-quantifiers that occur in the
scope of a higher-order ∃-quantifier are left unchanged.

See also debug (§5.3) and show_skolems (§5.3).

36

star_linear_preds
[
= 〈bool〉

]
[true] (neg.: dont_star_linear_preds)

Specifies whether Nitpick should use Kodkod’s transitive closure operator
to encode non-well-founded “linear inductive predicates,” i.e., inductive
predicates for which each the predicate occurs in at most one assumption of
each introduction rule. Using the reflexive transitive closure is in principle
equivalent to setting iter to the cardinality of the predicate’s domain, but it
is usually more efficient.

See also wf (§5.2), debug (§5.3), and iter (§5.2).

uncurry
[
= 〈bool〉

]
[true] (neg.: dont_uncurry)

Specifies whether Nitpick should uncurry functions. Uncurrying has on
its own no tangible effect on efficiency, but it creates opportunities for the
boxing optimization.

See also box (§5.2), debug (§5.3), and format (§5.3).

fast_descrs
[
= 〈bool〉

]
[true] (neg.: full_descrs)

Specifies whether Nitpick should optimize the definite and indefinite de-
scription operators (THE and SOME). The optimized versions usually help
Nitpick generate more counterexamples or at least find them faster, but only
the unoptimized versions are complete when all types occurring in the for-
mula are finite.

See also debug (§5.3).

peephole_optim
[
= 〈bool〉

]
[true] (neg.: no_peephole_optim)

Specifies whether Nitpick should simplify the generated Kodkod formulas
using a peephole optimizer. These optimizations can make a significant
difference. Unless you are tracking down a bug in Nitpick or distrust the
peephole optimizer, you should leave this option enabled.

sym_break = 〈int〉 [20]

Specifies an upper bound on the number of relations for which Kodkod
generates symmetry breaking predicates. According to the Kodkod docu-
mentation [10], “in general, the higher this value, the more symmetries will
be broken, and the faster the formula will be solved. But, setting the value
too high may have the opposite effect and slow down the solving.”

sharing_depth = 〈int〉 [3]

Specifies the depth to which Kodkod should check circuits for equivalence
during the translation to SAT. The default of 3 is the same as in Alloy. The
minimum allowed depth is 1. Increasing the sharing may result in a smaller
SAT problem, but can also slow down Kodkod.

flatten_props
[
= 〈bool〉

]
[false] (neg.: dont_flatten_props)

Specifies whether Kodkod should try to eliminate intermediate Boolean
variables. Although this might sound like a good idea, in practice it can
drastically slow down Kodkod.

37

max_threads = 〈int〉 [0]

Specifies the maximum number of threads to use in Kodkod. If this option
is set to 0, Kodkod will compute an appropriate value based on the number
of processor cores available.

See also batch_size (§5.5) and timeout (§5.6).

5.6 Timeouts

timeout = 〈time〉 [30 s]

Specifies the maximum amount of time that the nitpick command should
spend looking for a counterexample. Nitpick tries to honor this constraint
as well as it can but offers no guarantees. For automatic runs, auto_timeout
is used instead.

See also auto (§5.1) and max_threads (§5.5).

auto_timeout = 〈time〉 [5 s]

Specifies the maximum amount of time that Nitpick should use to find a
counterexample when running automatically. Nitpick tries to honor this
constraint as well as it can but offers no guarantees.

See also auto (§5.1).

tac_timeout = 〈time〉 [500 ms]

Specifies the maximum amount of time that the auto tactic should use when
checking a counterexample, and similarly that lexicographic_order and size-
change should use when checking whether a (co)inductive predicate is well-
founded. Nitpick tries to honor this constraint as well as it can but offers no
guarantees.

See also wf (§5.2), check_potential (§5.4), and check_genuine (§5.4).

6 Attribute Reference

Nitpick needs to consider the definitions of all constants occurring in a formula
in order to falsify it. For constants introduced using the definition command, the
definition is simply the associated _def axiom. In contrast, instead of using the
internal representation of functions synthesized by Isabelle’s primrec, function,
and nominal_primrec packages, Nitpick relies on the more natural equational
specification entered by the user.

Behind the scenes, Isabelle’s built-in packages and theories rely on the following
attributes to affect Nitpick’s behavior:

38

nitpick_const_def

This attribute specifies an alternative definition of a constant. The alter-
native definition should be logically equivalent to the constant’s actual ax-
iomatic definition and should be of the form

c ?x1 . . . ?xn ≡ t,

where ?x1, . . . , ?xn are distinct variables and c does not occur in t.

nitpick_const_simp

This attribute specifies the equations that constitute the specification of a
constant. For functions defined using the primrec, function, and nominal_
primrec packages, this corresponds to the simps rules. The equations must
be of the form

c t1 . . . tn = u.

nitpick_const_psimp

This attribute specifies the equations that constitute the partial specification
of a constant. For functions defined using the function package, this corre-
sponds to the psimps rules. The conditional equations must be of the form

JP1; . . . ; PmK =⇒ c t1 . . . tn = u.

nitpick_ind_intro

This attribute specifies the introduction rules of a (co)inductive predicate.
For predicates defined using the inductive or coinductive command, this
corresponds to the intros rules. The introduction rules must be of the form

JP1; . . . ; Pm; M (c t11 . . . t1n); . . . ; M (c tk1 . . . tkn)K =⇒ c u1 . . . un,

where the Pi’s are side conditions that do not involve c and M is an optional
monotonic operator. The order of the assumptions is irrelevant.

When faced with a constant, Nitpick proceeds as follows:

1. If the nitpick_const_simp set associated with the constant is not empty, Nit-
pick uses these rules as the specification of the constant.

2. Otherwise, if the nitpick_const_psimp set associated with the constant is not
empty, it uses these rules as the specification of the constant.

3. Otherwise, it looks up the definition of the constant:

1. If the nitpick_const_def set associated with the constant is not empty, it
uses the latest rule added to the set as the definition of the constant;
otherwise it uses the actual definition axiom.

2. If the definition is of the form
c ?x1 . . . ?xm ≡ λy1 . . . yn. lfp (λ f . t),

39

then Nitpick assumes that the definition was made using an inductive
package and based on the introduction rules marked with nitpick_ind_
intros tries to determine whether the definition is well-founded.

As an illustration, consider the inductive definition

inductive odd where
“odd 1” |
“odd n =⇒ odd (Suc (Suc n))”

Isabelle automatically attaches the nitpick_ind_intro attribute to the above rules.
Nitpick then uses the lfp-based definition in conjunction with these rules. To over-
ride this, we can specify an alternative definition as follows:

lemma odd_def ′ [nitpick_const_def]: “odd n ≡ n mod 2 = 1”

Nitpick then expands all occurrences of odd n to n mod 2 = 1. Alternatively, we
can specify an equational specification of the constant:

lemma odd_simp′ [nitpick_const_simp]: “odd n = (n mod 2 = 1)”

Such tweaks should be done with great care, because Nitpick will assume that
the constant is completely defined by its equational specification. For example, if
you make “odd (2 ∗ k + 1)” a nitpick_const_simp rule and neglect to provide rules
to handle the 2 ∗ k case, Nitpick will define odd n arbitrarily for even values of n.
The debug (§5.3) option is extremely useful to understand what is going on when
experimenting with nitpick_ attributes.

7 Standard ML Interface

Nitpick provides a rich Standard ML interface used mainly for internal purposes
and debugging. Among the most interesting functions exported by Nitpick are
those that let you invoke the tool programmatically and those that let you register
and unregister custom coinductive datatypes.

7.1 Invocation of Nitpick

The Nitpick structure offers the following functions for invoking your favorite
counterexample generator:

val pick_nits_in_term :
Proof.state→ params→ bool→ term list→ term→ string ∗ Proof.state

val pick_nits_in_subgoal :
Proof.state→ params→ bool→ int→ string ∗ Proof.state

The return value is a new proof state paired with an outcome string (“genuine”,
“likely_genuine”, “potential”, “none”, or “unknown”). The params type is a large

40

record that lets you set Nitpick’s options. The current default options can be
retrieved by calling the following function defined in the NitpickIsar structure:

val default_params : theory→ (string ∗ string) list→ params

The second argument lets you override option values before they are parsed and
put into a params record. Here is an example:

val params = NitpickIsar.default_params thy [(“timeout”, “none”)]
val (outcome, state′) = Nitpick.pick_nits_in_subgoal state params false subgoal

7.2 Registration of Coinductive Datatypes

If you have defined a custom coinductive datatype, you can tell Nitpick about it,
so that it can use an efficient Kodkod axiomatization similar to the one it uses for
lazy lists. The interface for registering and unregistering coinductive datatypes
consists of the following pair of functions defined in the Nitpick structure:

val register_codatatype : typ→ string→ styp list→ theory→ theory
val unregister_codatatype : typ→ theory→ theory

The type ′a llist of lazy lists is already registered; had it not been, you could have
told Nitpick about it by adding the following line to your theory file:

setup {∗ Nitpick.register_codatatype
@{typ “ ′a llist”} @{const_name llist_case}
(map dest_Const [@{term LNil}, @{term LCons}]) ∗}

The register_codatatype function takes a coinductive type, its case function, and
the list of its constructors. The case function must take its arguments in the order
that the constructors are listed. If no case function with the correct signature is
available, simply pass the empty string.

On the other hand, if your goal is to cripple Nitpick, add the following line to
your theory file and try to check a few conjectures about lazy lists:

setup {∗ Nitpick.unregister_codatatype @{typ “ ′a list”} ∗}

8 Known Bugs and Limitations

Here are the known bugs and limitations in Nitpick at the time of writing:

41

• Underspecified functions defined using the primrec, function, or nominal_
primrec packages can lead Nitpick to generate spurious counterexamples
for theorems that refer to values for which the function is not defined. For
example:

primrec prec where
“prec (Suc n) = n”

lemma “prec 0 = undefined”
nitpick

Nitpick found a counterexample for card nat = 2:

Empty assignment

by (auto simp: prec_def)

Such theorems are considered bad style because they rely on the internal
representation of functions synthesized by Isabelle, which is an implemen-
tation detail.

• Nitpick produces spurious counterexamples when invoked after a guess
command in a structured proof.

• The nitpick_ attributes and the Nitpick.register_codatatype function can cause
havoc if used improperly.

• Local definitions are not supported and result in an error.

• All constants and types whose names start with Nitpick. or NitpickDefs. are
reserved for internal use.

References

[1] Andersson, A.: Balanced search trees made simple. In: Dehne, F. K. H. A.,
Santoro, N., Whitesides, S. (eds.) WADS 1993, LNCS vol. 709, pp. 61–70.
Springer, Heidelberg (1993)

[2] Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J.,
Liu, Z. (eds.) SEFM 2004, pp. 230–239. IEEE C.S. (2004)

[3] Blanchette, J. C., Nipkow, T.: Nitpick: A counterexample generator for
higher-order logic based on a relational model finder (extended abstract).
In TAP 2009: Short Papers, ETH Technical Report 630 (2009)

[4] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT
Press, Cambridge, Mass. (2006)

[5] Nipkow, T., Paulson, L. C., Wenzel, M.: Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS vol. 2283. Springer, Heidelberg (2002). Latest
version http://isabelle.in.tum.de/doc/tutorial.pdf (2009)

42

[6] Paulson, L. C.: A fixedpoint approach to (co)inductive and (co)datatype
definitions. Latest version http://isabelle.in.tum.de/doc/ind-defs.pdf
(2009)

[7] Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg,
O., Huth, M. (eds.) TACAS 2007, LNCS vol. 4424, pp. 632–647. Springer,
Heidelberg (2007)

[8] Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic.
Ph.D. thesis, Dept. of Informatics, T. U. München (2008)

[9] Kodkod: Constraint Solver for Relational Logic, http://alloy.mit.edu/
kodkod/

[10] Kodkod API: Class Options, http://alloy.mit.edu/kodkod/docs/kodkod/
engine/config/Options.html

[11] The Sledgehammer: Let Automatic Theorem Provers Write Your Isabelle
Scripts, http://www.cl.cam.ac.uk/research/hvg/Isabelle/sledgehammer
.html

[12] Wikipedia: AA Tree, http://en.wikipedia.org/wiki/AA_tree

43

