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1 Introduction

Nitpick [3] is a counterexample generator for Isabelle/HOL [5] that is designed to
handle formulas combining inductive datatypes, inductively defined predicates,
and quantifiers. It builds on Kodkod [6], a highly optimized first-order relational
model finder developed by the Software Design Group at MIT. It is conceptually
similar to Refute [7], from which it borrows many ideas and code fragments, but
it benefits from Kodkod’s optimizations and a new encoding scheme. The name
Nitpick is shamelessly appropriated from a now retired tool developed in the
1990s by the Software Design Group.

Nitpick is easy to use—you simply enter nitpick after a putative theorem and
wait a few seconds. Nonetheless, there are situations where knowing how it
works behind the scenes and how it reacts to various options helps increase the
test coverage. This manual also explains how to install the tool on your work-
station. Should the motivation fail you, think of the many hours of hard work
Nitpick will save you. Proving non-theorems is hard work.

Be aware that the tool is experimental and its judgments might be wrong. The
known bugs and limitations at the time of writing are listed in §7. Comments and
bug reports concerning Nitpick or this manual should be directed to blannospamchette@
in.tum.de.

Acknowledgment. The author would like to thank Mark Summerfield for sug-
gesting several textual improvements.

2 Installing the Tool

To install Nitpick 1.1.0, download and extract the archive http://isabelle.in.
tum.de/~blanchet/nitpick-1.1.0.tgz, enter the nitpick-1.1.0 directory, and
run the build script. The script performs the following steps:

1. It installs the Kodkod library, the Kodkodi front-end, and the portable SAT4J
solver in the $ISABELLE_HOME/contrib/kodkodi directory.

2. It builds the Isabelle images HOL-Nitpick (for Isabelle/HOL) and HOL-Nom-
inal-Nitpick (for Nominal Isabelle) in the $ISABELLE_OUTPUT directory.

3. It builds the associated keyword files isar-keywords-HOL-Nitpick.el and
isar-keywords-HOL-Nominal-Nitpick.el in the $ISABELLE_HOME_USER/etc
directory.

To activate Nitpick, you must invoke isabelle emacs with the option -L HOL-
Nitpick or -L HOL-Nominal-Nitpick. The examples presented in this manual can
be found in the theory file Nitpick/examples/ManualNits.thy.
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3 First Steps

This section introduces Nitpick by presenting small examples. If possible, you
should try out the examples on your workstation. Your theory file should start
the standard way:

theory Scratch
imports Main
begin

To obtain the same results as presented here, disable multithreading and make
sure that SAT4J is used as the SAT solver by adding the line

nitpick_params [sat_solver = SAT4J, max_threads = 1]

after the begin keyword. Being written in Java, SAT4J is the most portable SAT
solver supported by Nitpick and the only one that is guaranteed to be available
if you followed the instructions in §2. Faster SAT solvers can also be installed, as
explained in §5.5. If you have already configured SAT solvers in Isabelle (e.g., for
Refute), these will also be available to Nitpick.

Throughout this manual, we will manually invoke the nitpick command. Nitpick
also provides an automatic mode that can be enabled by specifying

nitpick_params [auto]

at the beginning of the theory file. In this mode, Nitpick is run for up to 5 seconds
(by default) on every newly entered theorem, much like Auto Quickcheck.

3.1 Propositional Logic

Let’s start with a trivial example from propositional logic:

lemma “P←→ Q”
nitpick

If Nitpick is correctly installed, you should get the following output:

Nitpick found a counterexample:

Free variables:
P = True
Q = False

Nitpick can also be invoked on individual subgoals, as in the example below:

apply auto

goal (2 subgoals):
1. P =⇒ Q
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2. Q =⇒ P

nitpick 1

Nitpick found a counterexample:

Free variables:
P = True
Q = False

nitpick 2

Nitpick found a counterexample:

Free variables:
P = False
Q = True

oops

3.2 Type Variables

If you are left unimpressed by the previous example, don’t worry. The next one
is more mind- and computer-boggling:

lemma “P x =⇒ P (THE y. P y)”

The putative lemma involves the definite description operator, THE, presented
in section 5.10.1 of the Isabelle tutorial [5]. The operator is defined by the axiom
(THE x. x = a) = a. The putative lemma is merely asserting the indefinite
description operator axiom with THE substituted for SOME.

The free variable x and the bound variable y have type ′a. For formulas contain-
ing type variables, Nitpick enumerates the possible domains for each type vari-
able, up to a given cardinality (8 by default), looking for a finite countermodel:

nitpick [verbose]

Trying 8 scopes:
card ′a = 1;
card ′a = 2;
card ′a = 3;
card ′a = 4;
card ′a = 5;
card ′a = 6;
card ′a = 7;
card ′a = 8.

Nitpick found a counterexample for card ′a = 3:

Free variables:
P = {a2, a3}
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x = a3

Total time: 552 ms.

Nitpick found a counterexample in which ′a has cardinality 3. (For cardinalities
1 and 2, the formula holds.) In the counterexample, the three values of type ′a are
written a1, a2, and a3.

The message “Trying n scopes: . . . ” is shown only if the option verbose is enabled.
You can specify verbose each time you invoke nitpick, or you can set it globally
using the command

nitpick_params [verbose]

This command also displays the current default values for all of the options sup-
ported by Nitpick. The options are listed in §5.

3.3 Constants

By just looking at Nitpick’s output, it might not be clear why the counterexample
in §3.2 is genuine. Let’s invoke Nitpick again, this time telling it to show the
values of the constants that occur in the formula:

lemma “P x =⇒ P (THE y. P y)”
nitpick [show_consts]

Nitpick found a counterexample for card ′a = 3:

Free variables:
P = {a2, a3}
x = a3

Constant:
THE y. P y = a1

We can see more clearly now. Since the predicate P isn’t true for a unique value,
THE y. P y can denote any value of type ′a, even a1. Since P a1 is false, the entire
formula is falsified.

As an optimization, Nitpick directly assigned a value to the expression THE y. P y
(i.e., The (λy. P y)), rather than to the The constant. If we disable this optimization
by using the command

nitpick [special_depth = −1, show_consts]

we get The as expected:

Constant:
The = undefined({} := a3, {a3} := a3, {a2} := a2,

{a2, a3} := a1, {a1} := a1, {a1, a3} := a3,
{a1, a2} := a3, {a1, a2, a3} := a3)
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Notice that The (λy. P y) = The {a2, a3} = a1, just like before.1

Our misadventures with THE suggest adding ‘∃!x.’ (“there exists a unique x such
that”) at the front of our putative lemma’s assumption:

lemma “∃!x. P x =⇒ P (THE y. P y)”

The fix appears to work:

nitpick

Nitpick found no counterexample.

We can further increase our confidence in the formula by exhausting all cardinal-
ities up to 100:

nitpick [card ′a = 1–100]2

Nitpick found no counterexample.

Let’s see if Sledgehammer [10] can find a proof:

sledgehammer

Sledgehammer: external prover “e” for subgoal 1:
∃!x. P x =⇒ P (THE y. P y)
Try this command: apply (metis the_equality)

apply (metis the_equality)

No subgoals!

This must be our lucky day.

3.4 Skolemization

Are all invertible functions onto? Let’s find out:

lemma “∃g. ∀x. g ( f x) = x =⇒ ∀y. ∃x. y = f x”
nitpick

Nitpick found a counterexample for card ′a = 2 and card ′b = 1:

Free variable:
f = undefined(b1 := a1)

Skolem constants:
g = undefined(a1 := b1, a2 := b1)
y = a2

1The undefined symbol’s presence is explained as follows: In higher-order logic, any function
can be built from the undefined function using repeated applications of the function update op-
erator f (x := y), just like any list can be built from the empty list using z # zs.

2The symbol ‘–’ can be entered as - (hyphen), -- (hyphen hyphen), or \<midarrow>.
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Although f is the only free variable occurring in the formula, Nitpick also dis-
plays values for the bound variables g and y. These values are available to Nit-
pick because it performs skolemization as a preprocessing step.

In the previous example, skolemization only affected the outermost quantifiers.
This is not always the case, as illustrated below:

lemma “∃x. ∀ f . f x = x”
nitpick

Nitpick found a counterexample for card ′a = 2:

Skolem constant:
λx. f = undefined(a1 := undefined(a1 := a2, a2 := a1),

a2 := undefined(a1 := a1, a2 := a1))

The variable f is bound within the scope of x; therefore, f depends on x, as sug-
gested by the notation λx. f . If x = a1, then f is the function that maps a1 to a2
and vice versa; otherwise, x = a2 and f maps both a1 and a2 to a1. In both cases,
f x 6= x.

The source of the Skolem constants is sometimes more obscure:

lemma “refl r =⇒ sym r”
nitpick

Nitpick found a counterexample:

Free variable:
r = {(a1, a1), (a2, a1), (a2, a2)}

Skolem constants:
sym.x = a2
sym.y = a1

What happened here is that Nitpick expanded the sym constant to its definition:

sym r ≡ ∀x y. (x, y) ∈ r −→ (x, y) ∈ r.

As their names suggest, the Skolem constants sym.x and sym.y are simply the
bound variables x and y from sym’s definition.

Although skolemization is a useful optimization, you can disable it by invoking
Nitpick with skolem_depth = −1. See §5.5 for details.

3.5 Natural Numbers and Integers

Because of the axiom of infinity, the type nat does not admit any finite models.
To deal with this, Nitpick considers prefixes {0, 1, . . . , K− 1} of nat (where K =
card nat) and maps all other numbers to the undefined value (>). The type int is
handled in a similar way: If K = card int, the fragment of int known to Nitpick is
{−dK/2e+ 1, . . . , +bK/2c}. Undefined values lead to a three-valued logic.
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Here is an example involving int:

lemma “[[i ≤ j; n ≤ (m::int)]] =⇒ i ∗ n + j ∗m ≤ i ∗m + j ∗ n”
nitpick

Nitpick found a counterexample:

Free variables:
i = 0
j = 1
m = 1
n = 0

With infinite types, we don’t always have the luxury of a genuine counterexample
and must often content ourselves with a potential one. The tedious task of finding
out whether the potential counterexample is in fact genuine can be outsourced to
auto by passing the option check_potential. For example:

lemma “∀n. Suc n 6= n =⇒ P”
nitpick [card nat = 100, check_potential]

Nitpick found a potential counterexample:

Free variable:
P = False

Confirmation by “auto”: The above counterexample is genuine.

You might wonder why the counterexample is first reported as potential. The root
of the problem is that the bound variable in ∀n. Suc n 6= n ranges over an infinite
type. If Nitpick finds an n such that Suc n = n, it evaluates the assumption to
False; but otherwise, it does not know anything about values of n ≥ card nat and
must therefore evaluate the assumption to >, not True. Since the assumption can
never be satisfied, the putative lemma can never be falsified.

Incidentally, if you distrust the so-called genuine counterexamples, you can en-
able check_genuine to verify them as well. However, be aware that auto will often
fail to prove that the counterexample is genuine or spurious.

Some conjectures involving elementary number theory make Nitpick look like a
giant with feet of clay:

lemma “P Suc”
nitpick [card = 1–6]

Nitpick found no counterexample.

For any cardinality k, Suc is the partial function {0 7→ 1, 1 7→ 2, . . . , k− 1 7→ >},
which evaluates to > when it is passed as argument to P. As a result, P Suc is
always >. The next example is similar:

lemma “P (op +::nat⇒ nat⇒ nat)”
nitpick [card nat = 1]
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Nitpick found a counterexample:

Free variable:
P = {}

nitpick [card nat = 2]

Nitpick found no counterexample.

The problem here is that op + is total when nat is taken to be {0} but becomes
partial as soon as we add 1, because 1 + 1 /∈ {0, 1}.

Because numbers are infinite and are approximated using a three-valued logic,
there is usually no need to systematically enumerate domain sizes. If Nitpick
cannot find a genuine counterexample for card nat = k, it is very unlikely that one
could be found for smaller domains. (The P (op +) example above is an exception
to this principle.) Nitpick nonetheless enumerates all cardinalities from 1 to 8
for nat, mainly because smaller cardinalities are fast to handle and give rise to
simpler counterexamples. This is explained in more detail in §3.9.

3.6 Inductive Datatypes

Like natural numbers and integers, inductive datatypes with recursive construc-
tors admit no finite models and must be approximated by a subterm-closed frag-
ment. For example, using a cardinality of 10 for ′a list, Nitpick looks for all coun-
terexamples that can be built using at most 10 different lists.

Let’s see with an example involving hd (which returns the first element of a list)
and @ (which concatenates two lists):

lemma “hd (xs @ [y, z]) = hd xs”
nitpick

Nitpick found a counterexample for card ′a = 3:

Free variables:
xs = []
y = a3
z = a2

To see why the second counterexample is genuine, we enable show_consts and
show_datatypes:

Datatype:
′a list = {[], [a2], [a3, a2], >}

Constants:
hd = undefined([] := a1, [a2] := a2, [a3, a2] := a3)
? @ [y, z] = undefined([] := [a3, a2], [a2] := >, [a3, a2] := >)

Since hd [] is undefined in the logic, it may be given any value, including a1.
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The second constant, ? @ [y, z], is simply the append operator whose second argu-
ment is fixed to be [y, z] (i.e., λxs. xs @ [y, z]). Appending [a3, a2] to [a2] would nor-
mally give [a2, a3, a2], but this value is not representable in the fragment of ′a list
considered by Nitpick, which is shown under the “Datatype” heading; hence the
result is >. Similarly, appending [a3, a2] to itself gives >.

Given card ′a = 3 and card ′a list = 3, Nitpick considers the following fragments
(omitting >):

{[], [a1], [a2]};
{[], [a1], [a3]};
{[], [a2], [a3]};
{[], [a1], [a1, a1]};

{[], [a1], [a2, a1]};
{[], [a1], [a3, a1]};
{[], [a2], [a1, a2]};
{[], [a2], [a2, a2]};

{[], [a2], [a3, a2]};
{[], [a3], [a1, a3]};
{[], [a3], [a2, a3]};
{[], [a3], [a3, a3]}.

All subterm-closed fragments of ′a list consisting of three values are listed and
only those. As an example of a non-subterm-closed fragment, consider F =
{[], [a1], [a1, a3]}, and observe that [a1, a3] (i.e., a1 # [a3]) has [a3] /∈ F as a subterm.

Here’s another möchtegern-lemma that Nitpick can refute without a blink:

lemma “[x] = [y]”
nitpick [show_datatypes]

Nitpick found a counterexample for card ′a = 3:

Free variables:
x = a3
y = a2

Datatype:
′a list = {[], [a3], [a2], >}

Because datatypes are approximated using a three-valued logic, there is usually
no need to systematically enumerate cardinalities: If Nitpick cannot find a gen-
uine counterexample for card ′a list = 10, it is very unlikely that one could be
found for smaller cardinalities.

3.7 Typedefs, Records, Rationals, and Reals

Nitpick generally treats types declared using typedef as datatypes whose single
constructor is the corresponding Abs_ function. For example:

typedef three = “{0::nat, 1, 2}”
by blast

definition A :: three where “A ≡ Abs_three 0”
definition B :: three where “B ≡ Abs_three 1”
definition C :: three where “C ≡ Abs_three 2”

lemma “[[P A; P B]] =⇒ P x”
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nitpick [show_datatypes]

Nitpick found a counterexample:

Free variables:
P = {« 0 », « 1 »}
x = « 2 »

Datatypes:
nat = {0, 1, 2, >}
three = {« 0 », « 1 », « 2 », >}

In the output above, « n » abbreviates Abs_three n.

Records, which are implemented as typedefs behind the scenes, are handled in
much the same way:

record point =
Xcoord :: int
Ycoord :: int

lemma “Xcoord (|Xcoord = x, Ycoord = y|) = y”
nitpick [show_datatypes]

Nitpick found a counterexample:

Free variables:
x = 1
y = 0

Datatypes:
int = {0, 1, >}
point = {(|Xcoord = 1, Ycoord = 0|),

(|Xcoord = 0, Ycoord = 0|), >}

Finally, Nitpick provides rudimentary support for rationals and reals using a sim-
ilar approach:

lemma “4 ∗ x + 3 ∗ (y::real) 6= 1/2”
nitpick [show_datatypes]

Nitpick found a counterexample:

Free variables:
x = 1/2
y = −1/2

Datatypes:
nat = {0, 1, 2, 3, 4, 5, 6, 7, >}
int = {0, 1, 2, 3, 4, −3, −2, −1, >}
real = {1, 0, 4, −3/2, 3, 2, 1/2, −1/2, >}
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3.8 Inductively Defined Predicates

Inductively defined predicates (and sets) are particularly problematic for coun-
terexample generators. They can make Quickcheck [2] loop endlessly and Refute
[7] run out of resources. The crux of the problem is that they are defined using a
least fixed point construction.

Nitpick addresses this problem by first acknowledging that not all inductively
defined predicates are equal. Consider the even predicate below:

inductive even where
“even 0” |
“even n =⇒ even (Suc (Suc n))”

This predicate enjoys the desirable property of being well-founded, which means
that the introduction rules don’t give rise to infinite chains of the form

· · · =⇒ even k′′ =⇒ even k′ =⇒ even k.

For even, this is obvious: Any chain ending at k will be of length k/2 + 1:

even 0 =⇒ even 2 =⇒ · · · =⇒ even (k− 2) =⇒ even k.

Wellfoundedness is desirable because it enables Nitpick to use a very efficient
fixed point computation.3 Moreover, Nitpick can prove wellfoundedness of most
well-founded predicates, just as Isabelle’s function package usually discharges
termination proof obligations automatically.

Let’s try an example:

lemma “∃n. even n ∧ even (Suc n)”
nitpick [card nat = 100, verbose, show_consts]

The inductively defined predicate “even” was proved well-founded. Nit-
pick can compute it efficiently.

Trying 1 scope:
card nat = 100.

Nitpick found a potential counterexample for card nat = 100:

Constant:
even = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,

36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98}

Nitpick could not find a better counterexample.

Total time: 2327 ms.
3If an inductive predicate is well-founded, then it has exactly one fixed point, which is simul-

taneously the least and the greatest fixed point. In these circumstances, the computation of the
least fixed point amounts to the computation of an arbitrary fixed point, which can be performed
using a straightforward recursive equation.
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We see that Nitpick correctly computed the set of even numbers less than 100.
Nitpick cannot rule out the existence of a natural number n ≥ 100 such that both
even n and even (Suc n) are true. To help Nitpick, we could bound the existential
quantifier:

lemma “∃n≤ 99. even n ∧ even (Suc n)”
nitpick [card nat = 100]

Nitpick found a counterexample:

Empty assignment

So far we were blessed by the wellfoundedness of even. What happens if we use
the following definition instead?

inductive even′ where
“even′ (0::nat)” |
“even’ 2” |
“[[even′ m; even′ n]] =⇒ even′ (m + n)”

This definition is not well-founded: From even′ 0 and even′ 0, we can derive that
even′ 0. Nonetheless, the predicates even and even′ are equivalent.

Let’s check a property involving even′. To make up for the foreseeable computa-
tional hurdles entailed by non-wellfoundedness, we decrease nat’s cardinality to
a mere 10:

lemma “¬ even′ 8”
nitpick [card nat = 10, verbose, show_consts]

The inductively defined predicate “even′” could not be proved well-founded.
Nitpick will unroll it.

Trying 5 scopes:
card nat = 10 and iter even′ = 1;
card nat = 10 and iter even′ = 2;
card nat = 10 and iter even′ = 4;
card nat = 10 and iter even′ = 8;
card nat = 10 and iter even′ = 9.

Nitpick found a counterexample for card nat = 10 and iter even′ = 2:

Constant:
λi. even′ = undefined(2 := {0, 2, 4, 6, 8, 1?, 3?, 5?, 7?, 9?},

1 := {0, 2, 4, 1?, 3?, 5?, 6?, 7?, 8?, 9?},
0 := {0, 2, 1?, 3?, 4?, 5?, 6?, 7?, 8?, 9?})

Total time: 1161 ms.

Nitpick’s output is very instructive. First, it tells us that the predicate is unrolled,
meaning that it is computed iteratively from the empty set. Then it lists five
scopes specifying different bounds on the numbers of iterations: 1, 2, 4, 8, and 9.
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The output also shows how each iteration contributes to even′. The notation
λi. even′ indicates that the value of the predicate depends on an iteration counter.
Iteration 0 provides the basis elements, 0 and 2. Iteration 1 contributes 4 (= 2 + 2).
Iteration 2 throws 6 (= 2 + 4 = 4 + 2) and 8 (= 4 + 4) into the mix. Further itera-
tions would not contribute any new elements.

Some values are marked with superscripted question marks (‘?’). These are the
elements for which the predicate evaluates to >. Thus, even′ evaluates to either
True or >, never False.

When unrolling a predicate, Nitpick tries 1, 2, 4, 8, 12, 16, 24, and 32 iterations.
However, these numbers are bounded by the cardinality of the predicate’s do-
main. With card nat = 10, no more than 9 iterations are ever needed to compute
the value of a nat predicate. You can specify the number of iterations using the
iter option, as explained in §5.2.

3.9 Scope Monotonicity

A scope is a combination of cardinalities and number of iterations. The card and
iter options control which scopes are actually tested. In general, to exhaust all
models below a certain cardinality bound, the number of scopes that Nitpick
must consider increases exponentially with the number of type variables (and
typedecl’d types) occurring in the formula. Given the default cardinality speci-
fication of 1–8, no less than 84 = 4096 scopes must be considered for a formula
involving ′a, ′b, ′c, and ′d, resulting in as many invocations of the SAT solver.

Fortunately, many formulas exhibit a property called scope monotonicity, mean-
ing that all if the formula is falsifiable for a given scope, it is also falsifiable for all
larger scopes [4, p. 165].

Consider the formula

lemma “length xs = length ys =⇒ rev (zip xs ys) = zip xs (rev ys)”

where xs is of type ′a list and ys is of type ′b list. Without a priori knowledge of
the formula, Nitpick would need to consider 512 scopes to exhaust the specifica-
tion card = 1–8. However, our intuition tells us that any counterexample found
with a small scope would still be a counterexample in a larger scope—by simply
ignoring the fresh ′a and ′b values provided by the larger scope. Nitpick comes
to the same conclusion after a careful inspection of the formula and the relevant
definitions:

nitpick [verbose]

The types “′a” and “′b” passed the monotonicity test. Nitpick might be able
to skip some scopes.

Trying 8 scopes:
card ′a = 1, card ′b = 1, card nat = 1, card “(′a× ′b) list” = 1,
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card “′a list” = 1, and card “′b list” = 1.
card ′a = 2, card ′b = 2, card nat = 2, card “(′a× ′b) list” = 2,

card “′a list” = 2, and card “′b list” = 2.
...

card ′a = 8, card ′b = 8, card nat = 8, card “(′a× ′b) list” = 8,
card “′a list” = 8, and card “′b list” = 8.

Nitpick found a counterexample for card ′a = 5, card ′b = 5, card nat = 5, card
“(′a× ′b) list” = 5, card “′a list” = 5, and card “′b list” = 5:

Free variable:
xs = [a4, a5]
ys = [b5, b5]

Total time: 7054 ms.

In theory, it should be sufficient to test a single scope:

nitpick [card = 8]

Unfortunately, this doesn’t work so well in practice:

Nitpick ran out of resources after checking 0 of 1 scope.

If the monotonicity check fails but we suspect that the formula is in fact mono-
tonic (or we don’t mind missing some counterexamples), we can pass the lockstep
(§5.5) option. To convince yourself that this option is risky, simply consider this
example from §3.4:

lemma “∃g. ∀x::′b. g ( f x) = x =⇒ ∀y::′a. ∃x. y = f x”
nitpick [lockstep]

Nitpick found no counterexample.

nitpick

Nitpick found a counterexample for card ′a = 2 and card ′b = 1:
...

(It turns out the formula holds if and only if card ′a ≤ card ′b.) Although this is
seldom advisable, the automatic monotonicity checks can be disabled by passing
the no_lockstep (§5.5) option.

As insinuated in §3.5 and §3.6, nat, int, and inductive datatypes are normally
monotonic and treated as such. The same is true for record types, rat, and some
typedef’d types. Thus, given the cardinality specification 1–8, a formula involv-
ing nat, int, int list, rat, and rat option will lead Nitpick to consider only 8 scopes
instead of 32 768.
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4 Case Studies

As a didactic device, the previous section focused on toy formulas whose valid-
ity can easily be assessed just by looking at the formula. We will now review two
somewhat more realistic case studies that are within Nitpick’s reach: a context-
free grammar modeled by mutually inductive sets and a functional implementa-
tion of AA trees.

Since these examples are larger than the ones considered earlier, more time is
spent solving SAT problems. If you haven’t done so already, now would be a
perfect time to install MiniSat 1.14. The results presented in this section were
produced with the following settings:

nitpick_params [max_potential = 0, sat_solver = MiniSat]

4.1 A Context-Free Grammar

Our first case study is taken from section 7.4 in the Isabelle tutorial [5]. The fol-
lowing grammar, originally due to Hopcroft and Ullman, produces all strings
with an equal number of a’s and b’s:

S ::= ε | bA | aB
A ::= aS | bAA
B ::= bS | aBB

The intuition behind the grammar is that A generates all string with one more a
than b’s and B generates all strings with one more b than a’s.

The alphabet consists exclusively of a’s and b’s:

datatype alphabet = a | b

Strings over the alphabet are represented by alphabet lists. Nonterminals in the
grammar become sets of strings. The production rules presented above can be
expressed as a mutually inductive definition:

inductive_set S and A and B where
R1: “[] ∈ S” |
R2: “w ∈ A =⇒ b # w ∈ S” |
R3: “w ∈ B =⇒ a # w ∈ S” |
R4: “w ∈ S =⇒ a # w ∈ A” |
R5: “w ∈ S =⇒ b # w ∈ S” |
R6: “[[v ∈ B; v ∈ B]] =⇒ a # v @ w ∈ B”

The conversion of the grammar into the inductive definition was done manually
by Joe Blow, an underpaid undergraduate student. As a result, some errors might
have sneaked in.
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Debugging faulty specifications is part of Nitpick’s raison d’être. A good ap-
proach is to state desirable properties of the specification (here, that S is exactly
the set of strings over {a, b} with as many a’s as b’s) and check them with Nit-
pick. If the properties are correctly stated, counterexamples will point to bugs
in the specification. For our grammar example, we will proceed in two steps,
separating the soundness and the completeness of the set S. First, soundness:

theorem S_sound:
“w ∈ S −→ length [x← w. x = a] = length [x← w. x = b]”
nitpick

Nitpick found a counterexample:

Free variable:
w = [b]

It would seem that [b] ∈ S. How could this be? An inspection of the introduction
rules reveals that the only rule with a right-hand side of the form b # . . . ∈ S that
could have introduced [b] into S is R5:

“w ∈ S =⇒ b # w ∈ S”

On closer inspection, we can see that this rule is wrong. To match the production
B ::= bS, the second S should be a B. We fix the typo and try again:

nitpick

Nitpick found a counterexample:

Free variable:
w = [a, a, b]

Some detective work is necessary to find out what went wrong here. To get
[a, a, b] ∈ S, we need [a, b] ∈ B by R3, which in turn can only come from R6:

“[[v ∈ B; v ∈ B]] =⇒ a # v @ w ∈ B”

Now, this formula must be wrong: The same assumption occurs twice, and the
variable w is unconstrained. Clearly, one of the two occurrences of v in the as-
sumptions should have been a w.

With the correction made, we don’t get any counterexample from Nitpick. Let’s
move on and check completeness:

theorem S_complete:
“length [x← w. x = a] = length [x← w. x = b] −→ w ∈ S”
nitpick

Nitpick found a counterexample:

Free variable:
w = [b, b, a, a]
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Apparently, [b, b, a, a] /∈ S, even though it has the same numbers of a’s and b’s. But
since our inductive definition passed the soundness check, the introduction rules
we have are probably correct. Perhaps we simply lack an introduction rule. Com-
paring the grammar with the inductive definition, our suspicion is confirmed: Joe
Blow simply forgot the production A ::= bAA, without which the grammar can-
not generate two or more b’s in a row. So we add the introduction rule

“[[v ∈ A; w ∈ A]] =⇒ b # v @ w ∈ A”

With this last change, we don’t get any counterexamples from Nitpick for either
soundness or completeness. We can even generalize our result to cover A and B
as well:

theorem S_A_B_sound_and_complete:
“w ∈ S←→ length [x← w. x = a] = length [x← w. x = b]”
“w ∈ A←→ length [x← w. x = a] = length [x← w. x = b] + 1”
“w ∈ B←→ length [x← w. x = b] = length [x← w. x = a] + 1”
nitpick

Nitpick ran out of time after checking 7 of 8 scopes.

4.2 AA Trees

AA trees are a kind of balanced trees discovered by Arne Andersson that provide
similar performance to red-black trees, but with a simpler implementation [1].
They can be used to store sets of elements equipped with a total order <. We
start by defining the datatype and some basic extractor functions:

datatype ′a tree = Λ | N “′a::linorder” nat “′a tree” “′a tree”

primrec data where
“data Λ = undefined” |
“data (N x _ _ _) = x”

primrec dataset where
“dataset Λ = {}” |
“dataset (N x _ t u) = {x} ∪ dataset t ∪ dataset u”

primrec level where
“level Λ = 0” |
“level (N _ k _ _) = k”

primrec left where
“left Λ = Λ” |
“left (N _ _ t _) = t”

primrec right where
“right Λ = Λ” |
“right (N _ _ _ u) = u”
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The wellformedness criterion for AA trees is fairly complex. Wikipedia states it
as follows [11]:

Each node has a level field, and the following invariants must remain
true for the tree to be valid:

1. The level of a leaf node is one.

2. The level of a left child is strictly less than that of its parent.

3. The level of a right child is less than or equal to that of its parent.

4. The level of a right grandchild is strictly less than that of its
grandparent.

5. Every node of level greater than one must have two children.

The wf predicate formalizes this description:

primrec wf where
“wf Λ = True” |
“wf (N _ k t u) =
(if t = Λ then

k = 1 ∧ (u = Λ ∨ (level u = 1 ∧ left u = Λ ∧ right u = Λ))
else

wf t ∧ wf u ∧ u 6= Λ ∧ level t < k ∧ level u ≤ k ∧ level (right u) < k)”

Rebalancing the tree upon insertion and removal of elements is performed by two
auxiliary functions called skew and split, defined below:

primrec skew where
“skew Λ = Λ” |
“skew (N x k t u) =
(if t 6= Λ ∧ k = level t then

N (data t) k (left t) (N x k (right t) u)
else

N x k t u)”

primrec split where
“split Λ = Λ” |
“split (N x k t u) =
(if u 6= Λ ∧ k = level (right u) then

N (data u) (Suc k) (N x k t (left u)) (right u)
else

N x k t u)”

Performing a skew or a split should have no impact on the set of elements stored
in the tree:

theorem dataset_skew_split:
“dataset (skew t) = dataset t”
“dataset (split t) = dataset t”
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nitpick

Nitpick ran out of time after checking 4 of 8 scopes.

Furthermore, applying skew or split to a well-formed tree should not alter the tree:

theorem wf_skew_split:
“wf t =⇒ skew t = t”
“wf t =⇒ split t = t”
nitpick

Nitpick ran out of time after checking 5 of 8 scopes.

Insertion is implemented recursively. It preserves the sort order:

primrec insort where
“insort Λ x = N x 1 Λ Λ” |
“insort (N y k t u) x =
(∗ (split ◦ skew) ∗) (N y k (if x < y then insort t x else t)

(if x > y then insort u x else u))”

Notice that we deliberately commented out the application of skew and split. Let’s
see if this causes any problems:

theorem wf_insort: “wf t =⇒ wf (insort t x)”
nitpick

Nitpick found a counterexample for card ′a = 4:

Free variables:
t = N a4 1 Λ (N a3 1 Λ Λ)
x = a3

It’s hard to see why this is a counterexample. To improve readability, we will
restrict the theorem to nat, so that we don’t need to look up the value of the op <
constant to find out which element is smaller than the other. In addition, we will
tell Nitpick to display the value of insort t x using the eval option. This gives

theorem wf_insort_nat: “wf t =⇒ wf (insort t (x::nat))”
nitpick [eval = “insort t x”]

Nitpick found a counterexample:

Free variables:
t = N 3 1 Λ Λ
x = 2

Evaluated term:
insort t x = N 3 1 (N 2 1 Λ Λ) Λ

Nitpick’s output reveals that the element 2 was added as a left child of 3, where
both have a level of 1. This violates the second AA tree invariant, which states
that a left child’s level must be less than its parent’s. This shouldn’t come as a
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surprise, considering that we commented out the tree rebalancing code. Reintro-
ducing the code seems to solve the problem:

theorem wf_insort: “wf t =⇒ wf (insort t x)”
nitpick

Nitpick ran out of time after checking 4 of 8 scopes.

Insertion should transform the set of elements represented by the tree in the ob-
vious way:

theorem dataset_insort: “dataset (insort t x) = {x} ∪ dataset t”
nitpick

Nitpick ran out of time after checking 4 of 8 scopes.

We could continue like this and sketch a complete theory of AA trees without
performing a single proof. Once the definitions and main theorems are in place
and have been thoroughly tested using Nitpick, we could start working on the
proofs. Developing theories this way usually saves time, because faulty theorems
and definitions are discovered much earlier in the process.

5 Option Reference

Nitpick’s behavior can be influenced by various options, which can be specified
in brackets after the nitpick command. Default values can be set using nitpick_
params. For example:

nitpick_params [verbose, timeout = 60 s]

The options are categorized as follows: mode of operation (§5.1), scope of search
(§5.2), output format (§5.3), automatic counterexample checks (§5.4), optimiza-
tions (§5.5), and timeouts (§5.6). The descriptions below refer to the following
syntactic quantities:

• 〈string〉: A string.

• 〈bool〉: true or false.

• 〈bool_or_smart〉: true, false, or smart.

• 〈int〉: An integer. Negative integers are prefixed with a hyphen.

• 〈int_or_smart〉: An integer or smart.

• 〈nat_range〉: A nonnegative integer (e.g., 3) or a range of nonnegative in-
tegers (e.g., 1–4). The range symbol ‘–’ can be entered as - (hyphen), --
(hyphen hyphen), or \<midarrow>.

• 〈nat_seq〉: A comma-separated sequence of ranges of nonnegative integers
(e.g., 1,3,6–8).
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• 〈time〉: An integer followed by s (seconds) or ms (milliseconds), or the key-
word none (∞ years).

• 〈const〉: The name of a HOL constant.

• 〈term_list〉: A space-separated list of HOL terms (e.g., “ f x” “g y”).

• 〈type〉: A HOL type.

Default values are indicated in square brackets. Boolean options have a negated
counterpart (e.g., auto vs. no_auto). When setting Boolean options, “= true” may
be omitted.

5.1 Mode of Operation

auto
[
= 〈bool〉

]
[false] (neg.: no_auto)

Specifies whether Nitpick should be run automatically on newly entered
theorems. For automatic runs, user_axioms (§5.1) and assms (§5.1) are im-
plicitly enabled, blocking (§5.1), verbose (§5.3), and debug (§5.3) are disabled,
max_potential (§5.3) is taken to be 0, and auto_timeout (§5.6) is used as the
time limit instead of timeout (§5.6). The output is also more concise.

See also auto_timeout (§5.6).

blocking
[
= 〈bool〉

]
[true] (neg.: non_blocking)

Specifies whether the nitpick command should block. The non-blocking
mode lets the user start proving the putative theorem while Nitpick looks
for a counterexample, but it can also be more confusing. For technical rea-
sons, automatic runs always block.

See also auto (§5.1).

falsify
[
= 〈bool〉

]
[true] (neg.: satisfy)

Specifies whether Nitpick should look for falsifying examples (countermod-
els) or satisfying examples (models). This manual assumes throughout that
falsify is enabled.

user_axioms
[
= 〈bool_or_smart〉

]
[smart] (neg.: no_user_axioms)

Specifies whether the user-defined axioms (specified using axioms and ax-
iomatization) should be considered. If the option is set to smart, Nitpick
performs an ad hoc axiom selection based on the constants that occur in the
formula to falsify. The option is implicitly set to true for automatic runs.

Warning: If the option is set to true, Nitpick might nonetheless ignore some
polymorphic axioms. Counterexamples generated under these conditions
are tagged as “likely genuine.” The debug (§5.3) option can be used to find
out which axioms are considered.

See also auto (§5.1) and debug (§5.3).
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assms
[
= 〈bool〉

]
[true] (neg.: no_assms)

Specifies whether the relevant assumptions in structured proof should be
considered. The option is implicitly enabled for automatic runs.

See also auto (§5.1).

overlord
[
= 〈bool〉

]
[false] (neg.: no_overlord)

Specifies whether Nitpick should generate its temporary files in $ISABELLE_

HOME_USER, which is useful for debugging Nitpick. This option is disabled
by default unless your user name happens to end with jasmin, blanchet, or
blanchette.

See also default (§5.3).

5.2 Scope of Search

card 〈type〉 = 〈nat_seq〉
Specifies the sequence of cardinalities to use for a given type, which may
be a free type (′a, ′b, etc.), a type declared using typedecl (except bool), or
the built-in types nat or int. For nat and int, the cardinality applies to the
fragment used to approximate the type. For example:

card nat = 4 induces the fragment {0, 1, 2, 3}
card int = 4 induces the fragment {−1, 0, +1, +2}
card int = 5 induces the fragment {−2, −1, 0, +1, +2}.

In general:

card nat = K induces the fragment {0, . . . , K− 1}
card int = K induces the fragment {−dK/2e+ 1, . . . , +bK/2c}.

For free types, and often also for typedecl’d types, it usually makes sense
to specify cardinalities as a range of the form 1–n.

card = 〈nat_seq〉 [1–8]

Specifies the default sequence of cardinalities to use for free types, type-
decl’d types (except bool), and the built-in types nat and int. This can be
overridden on a per-type basis using the card 〈type〉 option described above.

max 〈const〉 = 〈nat_seq〉
Specifies the sequence of maximum multiplicities to use for a given datatype
constructor. The multiplicity of a constructor is the number of distinct val-
ues that it can construct. Nonsensical values (e.g., max [] = 2) are silently
repaired. This option is only available for datatypes equipped with several
constructors.
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max 〈nat_seq〉 = 〈S〉
pecifies the default sequence of maximum multiplicities to use for datatype
constructors. This can be overridden on a per-constructor basis using the
max 〈const〉 option described above.

iter 〈const〉 = 〈nat_seq〉
Specifies the sequence of iteration counts to use when unrolling a given in-
ductive predicate. By default, unrolling takes place for inductive predicates
that cannot be proved to be well-founded, but this behavior is influenced
by the inductive_mood (§5.5) option. The iteration count is automatically
bounded by the cardinality of the predicate’s domain.

iter = 〈nat_seq〉 [1,2,4,8,12,16,24,32]

Specifies the sequence of iteration counts to use when unrolling inductive
predicates. This can be overridden on a per-predicate basis using the iter
〈const〉 option above.

lockstep
[
= 〈bool_or_smart〉

]
[smart] (neg.: no_lockstep)

Specifies whether cardinalities of different types should progress together
when enumerating scopes. If the option is set to smart, Nitpick performs a
monotonicity check on the type variables and typedecl’d types to determine
which types can progress together. Setting this option to true can dramati-
cally reduce the number of scopes tried, but it also diminishes the chances
of finding a counterexample, as demonstrated in §3.9. Use with care.

See also verbose (§5.3).

5.3 Output Format

verbose
[
= 〈bool〉

]
[false] (neg.: quiet)

Specifies whether the nitpick command should explain what it does. This
option is useful to determine which scopes are tried or which SAT solver is
used. This option is implicitly disabled for automatic runs.

See also auto (§5.1), card (§5.2), max (§5.2), and iter (§5.2).

debug
[
= 〈bool〉

]
[false] (neg.: no_debug)

Specifies whether Nitpick should display additional debugging informa-
tion beyond what verbose already displays. Enabling debug also enables ver-
bose and sets timeout to none behind the scenes.4 The debug option is implic-
itly disabled for automatic runs.

See also auto (§5.1), overlord (§5.1), and batch_size (§5.5).

4The reason for the timeout behavior is technical: The stack trace provided by Poly/ML when
an unhandled exception occurs provides more information when no time limit is set.
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show_skolems
[
= 〈bool〉

]
[true] (neg.: hide_skolem)

Specifies whether the values of Skolem constants should be displayed as
part of counterexamples. Skolem constants correspond to bound variables
in the original formula and usually help us to understand why the coun-
terexample falsifies the formula.

See also skolemize_depth (§5.5).

show_datatypes
[
= 〈bool〉

]
[false] (neg.: hide_datatypes)

Specifies whether the fragments used to approximate datatypes should be
displayed as part of counterexamples. Such fragments are sometimes help-
ful when investigating whether a potential counterexample is genuine or
spurious, but their potential for clutter is real.

show_consts
[
= 〈bool〉

]
[false] (neg.: hide_consts)

Specifies whether the values of constants associated with the original for-
mula (including its axioms) should be displayed as part of counterexam-
ples. These values are sometimes helpful when investigating whether a
potential counterexample is genuine or spurious, but they can clutter the
output.

max_potential = 〈int〉 [1]

Specifies the maximum number of potential counterexamples to display.
Setting this option to 0 speeds up the search for a genuine counterexample.
This option is implicitly set to 0 for automatic runs.

See also auto (§5.1).

eval = 〈term_list〉
Specifies the list of terms whose values should be displayed as part of coun-
terexamples. This option suffers from an “observer effect”: Nitpick might
find different counterexamples for different values of this option.

See also check_potential (§5.4).

expect = 〈string〉
Specifies the expected outcome, which must be one of the following:

• genuine: Nitpick found a genuine counterexample.

• likely_genuine: Nitpick found a likely genuine counterexample.

• potential: Nitpick found a potential counterexample.

• none: Nitpick found no counterexample.

• unknown: Nitpick encountered some problem (e.g., Kodkod ran out of
memory).

Nitpick emits an error if the actual outcome differs from the expected out-
come. This option is useful for regression testing.
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5.4 Automatic Counterexample Checks

check_potential
[
= 〈bool〉

]
[false] (neg.: trust_potential)

Specifies whether potential counterexamples should be given to Isabelle’s
auto tactic to assess their validity. If a potential counterexample is shown to
be genuine, Nitpick displays a message to this effect and terminates.

See also max_potential (§5.3) and auto_timeout (§5.6).

check_genuine
[
= 〈bool〉

]
[false] (neg.: trust_genuine)

Specifies whether genuine and likely genuine counterexamples should be
given to Isabelle’s auto tactic to assess their validity. If a “genuine” coun-
terexample is shown to be spurious, the user is kindly asked to send a bug
report to the author at blannospamchette@in.tum.de.

See also peephole_optim (§5.5) and auto_timeout (§5.6).

5.5 Optimizations

sat_solver = 〈string〉 [smart]

Specifies which SAT solver to use. SAT solvers implemented in C or C++
tend to be faster than their Java counterparts, but they can be more difficult
to install. The supported solvers are listed below:

• SAT4J: SAT4J is a reasonably efficient solver written in Java. It is bun-
dled with Kodkodi and therefore easy to install. Do not attempt to
install the official SAT4J packages, because their API is incompatible
with Kodkod.

• SAT4JLight: Variant of SAT4J that is optimized for small problems.

• MiniSat: MiniSat is a minimalistic yet efficient solver written in C++.
You can use the version for Java bundled in nativesolver.tgz, which
you will find on Kodkod’s web site [8]. Alternatively, you can in-
stall a standard version of MiniSat and set the Isabelle environment
variable MINISAT_HOME to the directory that contains the minisat exe-
cutable. The C++ sources and executables for MiniSat are available at
http://minisat.se/MiniSat.html. Nitpick has been tested with ver-
sions 1.14 and 2.0 beta (2007-07-21).

• zChaff : zChaff is an efficient solver written in C++. You can use the
version for Java bundled in nativesolver.tgz, which you will find on
Kodkod’s web site [8]. Alternatively, you can install a standard ver-
sion of zChaff and set the Isabelle environment variable ZCHAFF_HOME
to the directory that contains the zchaff executable. The C++ sources
and executables for zChaff are available at http://www.princeton.
edu/~chaff/zchaff.html. Nitpick has been tested with versions 2004-
05-13, 2004-11-15, and 2007-03-12.
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• RSat: RSat is an efficient solver written in C++. To use RSat, you must
ensure that the Isabelle environment variable RSAT_HOME is set to the
directory that contains the rsat executable. The C++ sources for RSat
are available at http://reasoning.cs.ucla.edu/rsat/. Nitpick has
been tested with version 2.01.

• BerkMin: BerkMin561 is an efficient solver written in C. To use Berk-
Min with Nitpick, you must ensure that the Isabelle environment vari-
able BERKMIN_HOME is set to the directory that contains the BerkMin561
executable. The BerkMin executables are available at http://eigold.
tripod.com/BerkMin.html.

• BerkMinAlloy: Variant of BerkMin that is included with Alloy 4 and
calls itself “sat56” in its banner text. To use this version of BerkMin
with Nitpick, you must ensure that the Isabelle environment variable
BERKMINALLOY_HOME is set to the directory that contains the berkmin ex-
ecutable.

• Jerusat: Jerusat 1.3 is an efficient solver written in C. To use Jerusat
with Nitpick, you must ensure that the Isabelle environment variable
JERUSAT_HOME is set to the directory that contains the Jerusat1.3 exe-
cutable. The C sources for Jerusat are available at http://www.cs.tau.
ac.il/~ale1/Jerusat1.3.tgz.

• HaifaSat: HaifaSat 1.0 beta is an experimental solver written in C++.
To use HaifaSat with Nitpick, you must ensure that the Isabelle envi-
ronment variable HAIFASAT_HOME is set to the directory that contains
the HaifaSat executable. The C++ sources for HaifaSat are available at
http://www.cs.technion.ac.il/~gershman/HaifaSat.htm.

• smart: If sat_solver is set to smart, Nitpick selects the first solver among
MiniSat, zChaff, RSat, BerkMin, BerkMinAlloy, and Jerusat that is con-
figured in Isabelle (i.e., whose _HOME variable is set). If none is con-
figured, it falls back on SAT4J, which should always be available. If
verbose is enabled, Nitpick displays which SAT solver was chosen.

batch_size = 〈int_or_smart〉 [smart]

Specifies the maximum number of Kodkod problems that should be lumped
together when invoking Kodkodi. Each problem corresponds to one scope.
Lumping problems together ensures that Kodkodi is launched less often,
but it makes the output more readable. If batch_size is set to smart, the actual
value used is 1 if debug (§5.3) is set and 64 otherwise.

inductive_mood = 〈string〉 [realistic]

Specifies how to handle inductively defined predicates (and sets). The pos-
sible values are listed below:

• realistic: Try to prove that the inductive predicate is well-founded us-
ing Isabelle’s lexicographic_order and sizechange tactics. If this succeeds,
use an efficient fixed point equation as specification of the predicate;
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otherwise, unroll the predicates according to the iter 〈const〉 and iter
options (§5.2).

• optimistic: Tentatively treat all inductive predicates as if they were
well-founded. This may lead to spurious counterexamples, but Kod-
kod is then invoked to check whether the example is genuine or not.
This approach is typically the most efficient, but it is also theoreti-
cally the weakest. When Kodkod detects potentially non-well-founded
predicates, it emits a message listing the offending predicates and sug-
gesting to try again with inductive_mood set to realistic or pessimistic.

• pessimistic: Treat all inductive predicates as if they were not well-
founded. The predicates are then unrolled according to the iter 〈const〉
and iter options (§5.2).

See also tac_timeout (§5.6).

special_depth = 〈int〉 [20]

Specifies the maximum depth at which functions invoked with fixed argu-
ments should be specialized. The value−1 disables function specialization,
0 means that only constants occurring in the formula of interest are special-
ized, 1 means that constants occurring in the formula’s immediate axioms
are specialized, and in general n > 0 means that constants occurring in the
formula’s nth-level axioms are specialized. This optimization often reduces
the search space drastically, especially for higher-order functions.

See also debug (§5.3) and show_consts (§5.3).

skolem_depth = 〈int〉 [4]

Specifies the maximum depth at which skolemization takes place, expressed
as the number of outer quantifiers. The value −1 disables skolemization,
0 means that only the outermost ∀-quantifiers (or negated ∃-quantifiers) in
the original (unnegated) formula are skolemized, and n > 0 means that
∀-quantifiers within the scope of at most n ∃-quantifiers are skolemized.
However, for performance reasons, ∀-quantifiers that occur in the scope of
a higher-order ∃-quantifier are left unchanged.

See also debug (§5.3) and show_skolems (§5.3).

peephole_optim
[
= 〈bool〉

]
[true] (neg.: no_peephole_optim)

Specifies whether Nitpick should perform peephole optimization of the gen-
erated Kodkod formulas. These optimizations can make a significant differ-
ence. Unless you are tracking down a bug in Nitpick or distrust the peep-
hole optimizer, you should leave this option enabled.

sym_break = 〈int〉 [20]

Specifies an upper bound on the number of relations for which Kodkod
generates symmetry breaking predicates. According to the Kodkod docu-
mentation [9], “in general, the higher this value, the more symmetries will
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be broken, and the faster the formula will be solved. But, setting the value
too high may have the opposite effect and slow down the solving.”

sharing_depth = 〈int〉 [3]

Specifies the depth to which Kodkod should check circuits for equivalence
during the translation to SAT. The default of 3 is the same as in Alloy. The
minimum allowed depth is 1. Increasing the sharing may result in a smaller
SAT problem, but can also slow down Kodkod.

flatten_props
[
= 〈bool〉

]
[false] (neg.: dont_flatten_props)

Specifies whether Kodkod should try to eliminate intermediate Boolean
variables. Although this might sound like a good idea, in practice it can
drastically slow down Kodkod.

max_threads = 〈int〉 [0]

Specifies the maximum number of threads to use in Kodkod. If this option is
set to a value less than 1, Kodkod will compute an appropriate value based
on the number of processor cores available.

5.6 Timeouts

timeout = 〈time〉 [30 s]

Specifies the maximum amount of time that the nitpick command should
spend looking for a counterexample. If debug is enabled, the time limit is not
enforced. Nitpick tries to honor this constraint as well as it can but offers no
guarantees. For automatic runs, auto_timeout is used instead.

See also auto (§5.1).

auto_timeout = 〈time〉 [5 s]

Specifies the maximum amount of time that Nitpick should use to find a
counterexample when running automatically. Nitpick tries to honor this
constraint as well as it can but offers no guarantees.

See also auto (§5.1).

tac_timeout = 〈time〉 [200 ms]

Specifies the maximum amount of time that the auto tactic should use when
checking a counterexample, and similarly that lexicographic_order and size-
change should use when checking whether an inductive predicate is well-
founded. Nitpick tries to honor this constraint as well as it can but offers no
guarantees.

See also check_potential (§5.4), check_genuine (§5.4), and inductive_mood (§5.5).
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6 Attribute Reference

Nitpick needs to consider the definitions of all constants occurring in a formula
in order to falsify it. For constants introduced using the definition command, the
definition is simply the associated _def axiom. In contrast, instead of using the
internal representation of functions synthesized by Isabelle’s primrec, function,
and nominal_primrec packages, Nitpick relies on the more natural equational
specification entered by the user.

Behind the scenes, Isabelle’s built-in packages and theories rely on the following
attributes to affect Nitpick’s behavior:

nitpick_const_def

This attribute specifies an alternative definition of a constant. The alter-
native definition should be logically equivalent to the constant’s actual ax-
iomatic definition and should be of the form

c ?x1 . . . ?xn ≡ t,

where ?x1, . . . , ?xn are distinct variables and c does not occur in t.

nitpick_const_simp

This attribute specifies the equations that constitute the specification of a
constant. For functions defined using the primrec, function, and nominal_
primrec packages, this corresponds to the simps rules. The equations must
be of the form

c t1 . . . tn = u.

nitpick_const_psimp

This attribute specifies the equations that constitute the partial specification
of a constant. For functions defined using the function package, this corre-
sponds to the psimps rules. The conditional equations must be of the form

[[P1; . . . ; Pm]] =⇒ c t1 . . . tn = u.

nitpick_ind_intro

This attribute specifies the introduction rules of an inductive predicate. For
predicates defined using the inductive command, this corresponds to the
intros rules. The introduction rules must be of the form

[[P1; . . . ; Pm; c t11 . . . t1n; . . . ; c tk1 . . . tkn]] =⇒ c u1 . . . un.

When faced with a constant, Nitpick proceeds as follows:

1. If the nitpick_const_simp set associated with the constant is not empty, Nit-
pick uses these rules as the specification of the constant.

30



2. Otherwise, if the nitpick_const_psimp set associated with the constant is not
empty, it uses these rules as the specification of the constant.

3. Otherwise, it looks up the definition of the constant:

1. If the nitpick_const_def set associated with the constant is not empty, it
uses the latest rule added to the set as the definition of the constant;
otherwise it uses the actual definition axiom.

2. If the definition is of the form
c ?x1 . . . ?xm ≡ λy1 . . . yn. lfp (λ f . t),

then Nitpick assumes that the definition was made using an inductive
package and based on the introduction rules marked with nitpick_ind_
intros tries to determine whether the definition is well-founded.

As an illustration, consider the inductive definition

inductive odd where
“odd 1” |
“odd n =⇒ odd (Suc (Suc n))”

Behind the scenes, Isabelle attaches the nitpick_ind_intro attribute to the above
rules. Nitpick then uses the lfp definition in conjunction with these rules. To
override this, we can specify an alternative definition as follows:

lemma odd_def ′ [nitpick_const_def ]: “odd n ≡ n mod 2 = 1”

Nitpick then expands all occurrences of odd n with n mod 2 = 1. Alternatively,
we can specify an equational specification of the constant:

lemma odd_simp′ [nitpick_const_simp]: “odd n = (n mod 2 = 1)”

Such tweaks should be done with great care, because Nitpick will assume that the
constant is completely defined by its equational specification. For example, if you
make “odd 1” a nitpick_const_simp rule and neglect to provide rules to handle the
other cases, Nitpick will define the predicate arbitrarily for n 6= 1. The debug (§5.3)
option is extremely useful to understand what is going on when experimenting
with nitpick_ attributes.

7 Known Bugs and Limitations

Here are the known bugs and limitations in Nitpick at the time of writing:

• Underspecified functions defined using primrec, fun, function, or nom-
inal_primrec can lead Nitpick to generate spurious counterexamples for
theorems that refer to values for which the function is not defined. For ex-
ample:
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primrec prec where
“prec (Suc n) = n”

lemma “prec 0 = undefined”
nitpick

Nitpick found a counterexample for card nat = 2:

Empty assignment

by (auto simp: prec_def )

Such theorems are considered bad style because they rely on the internal
representation of functions synthesized by Isabelle, which is an implemen-
tation detail.

• Coinduction is handled by expanding the greatest fixed point definition,
which slows down Kodkod horribly. Future versions of Nitpick are ex-
pected to unroll coinductive definitions.

• If used improperly, the nitpick_ attributes can cause havoc.
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