
Towards a Formalization of the

Uni�ed Modeling Language�

Ruth Breu� Ursula Hinkel� Christoph Hofmann� Cornel Klein�
Barbara Paech� Bernhard Rumpe� Veronika Thurner

Institut f�ur Informatik
Technische Universit�at M�unchen

D������ M�unchen
http���www�	informatik	tu�muenchen	de�

Abstract� The Uni
ed Modeling Language UML is a language for spec�
ifying� visualizing and documenting object�oriented systems	 UML com�
bines the concepts of OOA�OOD� OMT and OOSE and is intended as
a standard in the domain of object�oriented analysis and design	 Due
to the missing formal� mathematical foundation of UML the syntax and
the semantics of a number of UML constructs are not precisely de
ned	
This paper outlines a proposal for the formal foundation of UML that is
based on a mathematical system model	

� Introduction

The Uni�ed Modeling Language ��� is a set of description techniques suited for
specifying� visualizing and documenting object�oriented systems� The language
has been developed by G� Booch� J� Rumbaugh and I� Jacobson since October
���	 and combines the concepts of OOA
OOD ���� OMT ��	�� and OOSE �����
as well as a number of ideas from other methods and description techniques like
Harel�s statecharts ��	��

In January ���� UML has been submitted to OMG as a proposal for a stan�
dard notation of object�oriented analysis and design techniques ���� Currently�
UML focuses only on notation� Method and process issues are outlined� but not
dealt with in detail� However� it is stated that the process is to be use�case
driven� architecture centric� iterative and incremental Summary of ���� p� ��� In
our work� we refer to the most recent UML version ����

Like other software engineering methods UML provides a set of �intuitive�
graphical and textual description techniques that are supposed to be easily un�
derstandable for both system developers and expert users working in the appli�
cation domain� However� often the exact meaning of such description techniques

� This paper partly originates from a cooperation of the DFG project Bellevue and
the SysLab project� which is supported by the DFG under the Leibniz program� by
Siemens�Nixdorf and Siemens Corporate Research	



is not clearly de�ned� As a consequence� the usage of those techniques and� cor�
respondingly� the interpretation of models developed may di�er considerably�
Furthermore� without exact semantics� checks for completeness and consistency
cannot be precisely de�ned� let alone supported by a tool� Quite often� the models
emerging during system development have severe shortcomings� which inevitably
lead to erroneous software systems� Therefore� the high e�ort spent on modeling
not always yields software systems of high quality�

In order to ensure the correct usage of description techniques in modeling�
and to enable tool supported consistency checks� the de�nition of a precise se�
mantics of the notations involved is crucial� The semantics de�nes the exact
meaning of description techniques in an unambiguous way� Furthermore� the
formal framework serves as a basis for de�ning the interconnections between
di�erent notational concepts and di�erent stages of design� Last but not least a
semantic foundation checks the soundness of the description technique and thus
may lead to an improvement of the description technique itself�

Having recognized the importance of a formal foundation� the UML devel�
opers already have made �rst attempts at a formal semantics de�nition� In the
language documentation a metamodel for UML concepts is presented� The meta�
model itself is given in UML notation by a class diagram and annotations in
prose� This approach to a formal semantics of UML brings about several di��
culties�

First� the semantics of class diagrams is not precisely de�ned itself� For ex�
ample� the usage of aggregation is a frequently discussed topic� Consequently�
class diagrams provide a very weak basis for de�ning a formal semantics�

Second� the use of class diagrams limits the semantics de�nition to a descrip�
tion of static relationships between UML concepts� As a documentation of the
structure of diagrams� the UML metamodel contains valuable information for
tool developers who have to handle storage and retrieval of diagrams� However�
there exists no interpretation that models the dynamic aspects of system be�
havior in an appropriate way� Thus� the metamodel is not su�cient as a formal
semantics de�nition of UML concepts� As far as we know� also the novel ap�
proaches to a semantics de�nition pursued by the UML developers ���� do not
overcome this de�ciency�

Our approach to the formal foundation of UML is based on the well�studied
and established mathematical theory of streams and stream processing func�
tions ���� Streams have proved to be an adequate setting for the formalization of
the semantics of concurrent systems� In order to model the static and dynamic
properties of an object�oriented system in a structured way� we augment the
mathematical framework by the notion of system models� A system model char�
acterizes an abstract view of the systems under development� A system model
both describes the static structure of objects and their behavior over time� The
idea of a system model is advantageous for several reasons�

First� a system model provides an integrated view of a system� This is par�
ticularly important as the UML description techniques allow us to de�ne only
partial views of a system� The semantic mapping of partial syntactical system



views to an overall mathematical system view has the advantage that relation�
ships between di�erent description techniques can be studied in a homogeneous
setting�

Second� the concept of system models establishes an auxiliary layer on top of
the basic mathematical theory� In this semantic layer object�oriented notions like
objects� object identities and object states have a direct correspondence to math�
ematical concepts in the system model� Thus� the use of a system model helps
us to increase the readability and understandability of the semantics de�nition
considerably�

For the semantics de�nition we employ our experience gained during the Sys�
Lab project� In SysLab a formally founded design method has been developed
covering description techniques similar to those of UML ���� ��� ��� ��� ��� ����

The intention of this paper is to outline the basic ideas and the overall struc�
ture of the formal foundation of UML� Through the semantic de�nition of UML
concepts� we detected a number of language features which are not yet fully
clear� We discuss some of these aspects in the respective sections�

The paper is organized as follows� In Section � we give a short overview
of the basic modeling concepts of UML� In Section � we present a proposal
for the formal foundation of UML� The subsections of Section � focus on the
overall mathematical system view and on the di�erent description techniques
UML o�ers� Section 	 contains a summary and our conclusions�

� A Short Overview of UML

In the following we give a short sketch of the basic UML description techniques�

� class and object diagrams�
� use case diagrams�
� sequence diagrams�
� collaboration diagrams�
� state diagrams and
� activity diagrams�

Note that we concentrate on those models and description techniques that are
relevant for describing the structure and behavior of systems� Therefore� we omit
the implementation diagrams component and deployment diagrams�� which are
helpful for modeling the physical structure of a system only� Furthermore� we
focus on basic concepts� but omit some more advanced modeling features which
are beyond the scope of this work� For a detailed description of UML we refer
to ����

Class and object diagrams� A class diagram describes the static structure
of a system� consisting of a number of classes and their relationships� A class is a
description of a set of objects and contains attributes and operations� An object
diagram is a graph of instances� A static object diagram shows the detailed state
of a system at a certain point in time� whereas a dynamic object diagram� also



called collaboration diagram� models the state of a system over some period of
time�

Structural relationships between objects of di�erent classes are represented
by associations the instances of associations are called links�� The de�nition
of associations may be enhanced by attributes� association classes� role names
and cardinality multiplicity�� Generalization represents the relationship between
superclasses and subclasses� i�e� between a more general class and a more speci�c
class� Thus� the speci�c class is fully consistent with the superclass and adds
additional information� Aggregation� which is a concept of OMT� is a special form
of binary association representing the whole�part relationship� Composition is a
form of aggregation for n�ary associations� which implies strong ownership and
coincident lifetime of a part with the whole� For structuring complex systems�
class packages are introduced� which are groupings of class model elements and
may be nested�

The use case diagram captures Jacobson�s use cases� A use case diagram
shows a collection of use cases and external actors that interact with the system�
A use case describes the interactions and the behavior of a system during an en�
tire transaction that involves several objects and actors� Within a use case model�
relationships between use cases can be modeled� i�e� a use case can include other
use cases as part of its behavior description� The speci�cation of the external
behaviour of a use case may be given by a state diagram� The implementation
of a use case can be described by a collaboration diagram�

Since the use case diagram is strongly connected with the development pro�
cess� we omit it in the current stage of our semantics de�nition�

Sequence diagrams� called interaction diagrams in OOSE� show patterns of
interactions i�e� the sending of messages� among a set of objects in a temporal
order� In addition� a sequence diagram may show the lifelines of the objects
involved in the interactions�

Collaboration diagrams are similar to object diagrams in OOA
OOD
and describe the collaboration between objects� Collaboration diagrams depict
objects and links between them� Links visualize the message �ow between the
corresponding objects� Messages may have an argument list and a return value�
Message ordering in the overall transaction is described by a modi�ed Dewey
decimal numbering� specifying the sequential position of a message within its
corresponding thread� A composite object is an instance of a composite class
which implies the composition aggregation betweeen the class and its part� Pa�
rameterized collaborations represent design patterns that can be used repeatedly
in di�erent designs�

State diagrams� based on the statecharts by Harel ��	�� are similar to the
state�machine diagrams used in OOA
OOD and OMT� They describe the reac�
tion of an object� in reply to events received� in form of responses and actions�



State diagrams basically consist of states and state transitions� A state repre�
sents a condition during the existence of an object in which it waits for an event
to be received� performs some action or sati�es some condition�

An event is an occurrence that may trigger a state transition� Examples for
events are the receipt of an explicit signal� and the call upon an object�s method�
State transitions describe which events an object can receive in a particular state
and which state the object adopts after the reception of the event� The sending
of events to other objects is part of the transition�

An additional concept in state diagrams are atomic and non�interruptible
actions� which are connected to a transition� An action is executed when the
corresponding transition �res� It is also possible to invoke internal �do� actions
that are carried out within a state and take time to complete� An internal action
is initiated when the state is entered and can be interrupted by an event that
triggers a state transition�

Timing conditions on the behavior of an object can be introduced by tran�
sition times that are associated with a transition to specify the time at which
the transition is to �re� Like in statecharts� nesting of states is speci�ed by
introducing concurrent or mutually exclusive disjoint substates�

Activity diagrams are a special case of state diagrams that are to be used
in situations where most of the events represent the completion of internally�
generated actions� Thus� the behavior is dominated by internal processing� In
contrast� state diagrams are to be used for situations where mainly asynchronous
events occur�

An essential feature of UML is the concept of stereotypes� Stereotypes
are used for classifying modeling elements� thus allowing the user of UML to
extend the semantics of the metamodel and to adapt the prede�ned notational
concepts of UML to speci�c needs� For the evolution of a design the re�nement

relationship associates two descriptions of the same thing at di�erent levels of
abstraction� Re�nement includes� among others� the relation between an analysis
class and a design class�

� A Proposal for the Formal Foundation of UML

This section represents a proposal for a formal foundation of UML� First� we
describe our approach to a formalization and introduce the mathematical system
model that is used to give an integrated underlying formal semantics for all
description techniques of UML� Then� we describe how the semantics of the
description techniques of UML can be formalized with respect to the system
model�

��� Roadmap to Formalization

In the introduction we have motivated� why a formalization of UML description
techniques is useful� We argued that a precise semantics is important not only



for the developer� but also for tool vendors� methodologists people that create
the method� and method experts people that use the method and know it in
detail��

Thus� we get the following requirements for a formalization�

�� A formalization must be complete� but as abstract and understandable as
possible�

�� The formalization of a heterogeneous set of description techniques has to be
integrated to allow the de�nition of dependencies between them�

This does not mean that every syntactical statement must have a formal
meaning� Annotations or descriptions in prose are always necessary for docu�
mentation� although they do not have a formal translation� They may eventu�
ally be translated into a formal description or even into code during software
development when the system model is further re�ned�

To manage the complexity of formalization� a layer between syntactic de�
scription techniques and pure mathematics is introduced� as depicted in Figure
�� The pure mathematics is only used to de�ne the system model� This system
model is then used as an integrated underlying semantics for all description
techniques�

As a further advantage� the system model explicitly de�nes notions of soft�
ware systems in terms of mathematical concepts� e�g� object identi�ers and mes�
sages� In contrast to the more implicit semantics of many other approaches� this
leads to a better understanding of the developed systems�

System Model

Class diagrams

Sequence diagrams Class descriptions

State diagrams

Mathematics

endclass

class Account �

owner �� string�

open�o��string� a��Int��
credit�a��Int� rec��Account��

amount �� Int�

debit�a��Int� d��Account��

Formal Foundation

Fig� �� Layered formalization of description techniques



The system model formally de�nes a notion of a system that obeys the prop�
erties de�ned in Section ���� A document of a given description technique is
de�ned by relating its syntactic elements to elements of a system� such as the
existing set of classes� or other structural or behavioral entities� The semantics
of a document is then given by a subset of the system model� This subset of the
system model consists exactly of all systems that are correct implementations of
the document�

To use a set of systems and not a single one as the basis of the proposed
semantics has several advantages� For example� re�nement of documents corre�
sponds to set inclusion� Furthermore� we get the meaning of di�erent documents
modeling di�erent aspects of the system by intersection of their respective seman�
tics� But the main reason is that� in contrast to fully executable programming
languages� description techniques allow underspeci�cation of system properties
in many di�erent ways� A proper semantics thus cannot be captured by a single
system� For the same reason� it is not possible to give an operational semantics
in the sense that a document speci�es a single abstract machine that �executes�
it�

��� System Model

The system model described below is a re�nement of the SysLab system model
as presented in ����� ���� and ����� Each document� for instance an object diagram�
is regarded as a constraint on the system model� The system model provides a
common basis to de�ne an integrated semantics of all description techniques� On
this basis� notions like consistency and re�nement of documents can be precisely
de�ned�

The system model introduced below is especially adapted to the formalization
of UML� Thus� relevant aspects of UML like classes� objects� states� messages
etc� are explicitly included� A precise formalization of our UML system model is
currently under development in �����

Formally� the system model is a set of systems� A system is formally described
by a tuple of elements that describe various aspects of the system� such as the
structure and the behavior of its components as well as their interaction� In the
following� we describe the most important elements of a system with identi�er
sys�

The structure of a system is� according to object�orientation� given by a set
of objects� each with a unique identi�er� Therefore� we regard the enumerable
set ID of object identi�ers as an element of the tuple sys�

In the system model objects interact by means of asynchronous message pass�
ing� Asynchronous exchange of messages between the components of a system
means that a message can be sent independently of the actual state of the re�
ceiver� Asynchronous system models provide the most abstract system models
for systems with message exchange� since deadlock problems as in synchronous
systems do not occur� Note that synchronous message passing can be modeled
by using two asynchronous messages� a �call� and a �return�� To model commu�
nication between objects we use the theory of timed communication histories as



given in ���� The notion of explicit time in the system model allows us to deal
with real time� as proposed in UML�

We regard our objects as spatially or logically distributed and as interacting
in parallel� As described in UML� sequential systems are just a special case�
where always exactly one object is �active��

Object

Object

Object

Object

Message

Message

communication medium

System sys

Fig� �� Objects in the UML system model

Interaction between objects occurs through the exchange of messages� as
shown in Figure �� Let MSG be an element of sys� denoting the set of all possible
messages in a system� Each object with identi�er id � ID has a unique set of
messages it accepts� Its input interface is de�ned by

msgid �MSG

The behavior of an object is the relationship between the sequences of mes�
sages it receives and the sequences of messages it emits as a reaction to incoming
messages� We allow our objects to be nondeterministic� such that more than one
reaction to an input sequence is possible�

According to ��� ��� the set of timed communication histories over M is de�
noted byM�� Each communication history contains as information the time unit
in which a message occurs� as well as a linear order on the messages it contains�
A communication history thus models the observable sequence of incoming or
outgoing messages of one object� The behavior of a nondeterministic object id
is then given by the mapping of its input stream to the set of possible ouput
streams� Thus� the behavior of an object id is given by the relation between its
input and output streams

behaviorid � msg�id �MSG�

Objects encapsulate data as well as processes� Encapsulation of data means
that the state of an object is not directly visible to the environment� but can be
accessed using explicit communication� Encapsulation of process means that the



exchange of a message does not necessarily� imply the exchange of control� each
object can be regarded as a separate process� Given the set of possible states
STATE of objects in a system� the function states assigns a subset of possible
states to every object�

statesid � STATE

Furthermore� a state transition system is associated with each object� mod�
eling the connection between the behavior and the internal state of an object�
We use a special kind of automata ���� for this purpose�

Such an automaton of an object id consists of a set of input messages msgid�
a set of output messages MSG� a set of states statesid� and a set of initial states
states�id � statesid� The nondeterministic transition relation �id de�nes the be�
havior of the automaton� From the state�box behavior� given for the automaton
in terms of state transitions� the black�box behavior in terms of the behavior�
relation can be derived cf� ������

Messages are delivered by a communication medium� which is an abstraction
of message passing as it is done in real systems by the runtime system of the
programming language or by the operating system� The communication medium
bu�ers messages as long as necessary� Each message contains the receiver�s iden�
ti�er� so that the communication medium is essentially composed of a set of
message bu�ers� one for each object� The order of messages between two partic�
ular objects is always preserved by the communication medium� The contents
of messages are not modi�ed� Messages cannot be duplicated or lost� No new
messages are generated by the communication medium� This is formalized in
�����

Objects are grouped into classes� We assume that each system owns a set CN
of class names� CN may� for instance� be derived from UML class diagrams� In
object�oriented systems� each object identi�er denotes an object that belongs to
exactly one class� This is represented by the function

class � ID� CN�

Classes are structured by an inheritance relation� which we denote by � v �

read� �subclass of��� The inheritance relation is transitive� antisymmetric and
re�exive� as usual� With every class c � CN a signature �c is associated� contain�
ing all attributes and methods together with their argument and result types�
The signature induces a set of input messages for each object of the class� One
impact of inheritance is that signatures are only extended� c v d� �d � �c�

Another distinguishing feature of object�orientation is the dynamic creation
of objects� Deletion need not be modeled� as we assume that our objects are
garbage collected in the usual way� However� we may de�ne a special �nalize��
method that may be used to clean up objects� as� for instance� in Java� Initially�
a �nite subset of objects usually containing one element� exists and is active�
We regard objects to be created and to be active after having received a �rst
message� Thus� the creation of a new object essentially consists of a message
transmission from the creator to the created object� To allow this� each object
is equipped with a su�ciently large usually in�nite� set of object identi�ers
denoting the set of all object identi�ers the object may create�



creatables � ID� PID�
To prevent multiple creation� these sets of identi�ers have to be pairwise

disjoint� and objects that are initially active are not creatable at all�

��� Class and Object Model

Class and object diagrams describe the static structure of a system� The origin of
class diagrams are E
R diagrams� which have been successfully applied for years
in database design� Although class diagrams are widely accepted in practice�
the straightforward adaptation of E
R diagrams to an object�oriented context
through the correspondence entity � object� leads to deep semantic problems�
since a number of features in E
R diagrams have no exact interpretation in
the object�oriented setting� Below� the main concepts and problems of class and
object diagrams in UML are summarized� and their mapping to the system model
is sketched�

Classes and Objects Intuitively� a class c in an UML class diagram describes
a set of objects� This is re�ected in our system model by three aspects� First� the
methods and attributes of class c describe the syntactical interface of all objects
belonging to that class� This syntactical interface de�nes the signature �c as
given in the system model� Second� the state space of the objects of class c is
determined� The state of an object is structurally determined by the attributes
of the class and may contain both basic values like integers or strings� and
identi�ers of other objects� The set of all states of objects of class c is denoted by
statesid� Third� a subset IDc of the set ID of all identi�ers is de�ned� although
only implicitly by stating jIDcj � � for abstract classes� resp� jIDcj � � for
others� The set IDc is the set of all identi�ers of objects of class c� subclasses not
included�

A class diagram describes the object structure of the system to be developed�
In this respect� the semantics of the whole class diagram is the set of possible
system states� A system state consists of the state of all objects that exist at
some point in time� Formally� we describe a system state by an indexed family
fsid � id � ID� sid � statesidg�

Associations Associations between classes in UML are supported in various
other object�oriented analysis methods and originally come from the notion of
relationship types in the entity
relationship approach�

The system view of E
Rmodeling is based on a global system state and global
transactions on the system state� In this setting� relationship types are modeled
by entities set theoretic relations or tables� with the property of bidirectionality
and symmetry�

It is obvious that in the object�oriented framework associations have to be
interpreted in a di�erent way� both dynamic behavior and states are localized in
the objects� There are several alternatives to interpret associations and links in
the context of classes and objects� In order to clarify these alternatives� we use



the simple example of Figure �� where we model the distributed structure of a
warehouse by two classes Branch and Central O�ce connected by an association
coordinates�

Branch
coordinates

� �
Central O�ce

Fig� �� A class diagram modeling a distributed warehouse

� One possibility is to interpret an association as a set of data links� In the ex�
ample this means that a central o�ce object �knows about� branch objects
and vice versa� Associations therefore pose additional requirements on the
object states� Inherently� associations in this interpretation are not bidirec�
tional relations but correspond to two semantically independent� unidirec�
tional relations� See for example ����� The consistency of the two relations
is an integrity constraint imposed on linked objects� Another feature related
with associations� the speci�cation of their multiplicity� is also an integrity
constraint between linked objects and is discussed below�

� A second possibility is to model any association by a separate class� a so�
called association class� At �rst sight� this solution seems to be close to
the interpretation of relationship types in the E
R approach� However� the
paradigm of local object states requires every tuple of linked objects to be
connected via an object of the association class� Thus� in this interpretation
bidirectionality has to be modeled explicitly and the consistency problem
sketched above remains� Thus� this modeling alternative is less abstract in
the object�oriented setting than the �rst alternative and should be limited
to the case in which associations are equipped with additional attributes�

� A third solution is to interpret associations as communication links� In the
example the association coordinates then means that a central o�ce object
is able to communicate with branch objects and vice versa� Communication
links in most cases induce data links� since a prerequisite for communication
with other objects is to know about their existence�

In the sense of underspeci�cation� we de�ne the semantics of an association
as one of these solutions� The actual choice is left to the developer� e�g� when it
becomes clear which objects will send messages along the association� However�
in this paper we only talk about the �rst and simplest solution� In our system
model� an association between two classes is modeled within the set of states of
the respective objects�

Object Diagrams Conceptually� an object icon in an object diagram depicts
a single object at a certain point of time with �xed attribute values�� An ob�
ject diagram thus describes a snapshot of the system and corresponds to a set



of system states in our system model� However� the use of an object icon to�
gether with class icons usually means that an appropriate object is present in all
system states� from beginning to termination� This is formalized by adding an
appropriate identi�er to the set of initially active objects in the system model�

UML allows some relaxations and extensions of the notations of objects�
Among these extensions are the de�nition of anonymous objects i�e� objects
speci�ed solely by their class without an object identi�er�� objects without as�
sociated attribute values and the stack icon denoting multiple objects�

Anonymous objects stand for �an object� of the given class� Rather than
single system states� object diagrams with anonymous objects describe structural
properties of system states in a similar way as class diagrams do�

Aggregation and Composites UML supports two kinds of aggregation� Sha�
red aggregation and composite aggregation composition�� In a composition� the
lifetime of the parts is closely related with the lifetime of the whole� Therefore�
�the multiplicity of the aggregate may not exceed �� ���� Notation Guide� p�
	��� i�e� the parts are not shared among several aggregates� In contrast� shared
aggregation puts less constraints on the association� since it allows for sharing�
and decouples the lifetimes of the parts from the lifetime of the whole�

This di�erentiates the current version of UML from Version ����� where both
concepts have been inconsistently mixed into one� Like constraints� aggregations
and compositions are conditions on the system state� and� therefore� can easily
be mapped into the system model�

Constraints Constraints are conditions on the system state� Constraints can
refer to single objects e�g� for specifying dependencies between attributes� or
to several linked� objects� In UML� constraints are speci�ed as informal text�
In order to enable a formal modeling we consider constraints to be predicates
over the system states consisting of objects� As already discussed� further types
of constraints are induced by other features of class diagrams� e�g� by the mul�
tiplicity indicators and by dependencies between associations�

Because there are a lot of di�erent kinds of constraints� a general solution for
constraint formalization is not possible� However� the de�nition of new types of
precisely expressible constraints would considerably improve UML� This would
allow design decisions regarding static properties of a system to be captured in
a more precise and compact way�

Generalization Inheritance is the generalization relation between classes� In
our system model� inheritance is modeled by � v � and induces the following
three relations�

� Subclasses extend the interface of their superclasses� In our system model
this means that the signature of the superclass is a subset of the signature
of any of its subclasses�



� A second relation relates the state spaces of super� and subclasses� This
structural relation models the property that objects of subclasses have the
attributes of their superclasses and participate in associations belonging to
their superclasses�

� A third e�ect of inheritance concerns the sets of object identi�ers� For a
given class c� the set of associated objects is given by fid � ID j classid� v
cg� The inheritance relation induces a subset relation between the sets of
object identi�ers associated with the subclass and the superclass� This subset
relation models �subtype� polymorphism� i�e� the property that each object
of a subtype is also an object of the supertype�

The above relations describe the static properties of super� and subclasses�
In the UML documentation nothing is stated about the dynamic properties of
inheritance� i�e� how the behaviors of super� and subclasses are related� In fact�
inheritance of dynamic behavior is an issue that has been neglected in object�
oriented analysis methods so far�

Behavioral inheritance is a well�studied notion at the level of formal speci��
cations subclasses inherit the abstract properties of their superclasses� see for
example ����� ����� and at the level of programming languages subclasses may
inherit the code of methods of their superclasses�� In contrast� only �rst attempts
have been made to relate state diagrams of superclasses and state diagrams of
subclasses� One approach to this problem has been presented in ���� and �����

Class Packages Class packages group parts of a class diagram� They de�ne
a syntactical name space and� therefore� need no semantic counterpart in the
system model�

Class packages may contain classes of other packages that are assumed to
be imported� The dependency between class packages can be interpreted as the
visualization of such an import of classes� Aggregation of class packages can be
seen as the alternative presentation of hierarchically nested packages�

��� Sequence and Collaboration Diagrams

In contrast to state diagrams� which describe local behavior of objects� sequence
diagrams describe global behavior� i�e� interaction sequences between objects�
However� the methodological use of sequence diagrams has to be precisely inves�
tigated� because sequence diagrams do not provide a complete speci�cation of
behavior� but only describe exemplary scenarios� Since collaboration diagrams
and sequence diagrams express similar information� but show it in di�erent ways�
all propositions made about sequence diagrams in this section apply to collabo�
ration diagrams as well see ���� Notation Guide� p� ����

Exemplary Behavior The goal of sequence diagrams is to model typical in�
teraction sequences between a set of objects� In Figure 	 a sequence diagram�
similar to the one in the UML Notation Guide� is given� The sequence diagram



depicts a typical scenario of interaction between the three objects named Caller�
Exchange and Receiver�

Caller

caller lifts receiver

dial tone begins

dial���

dial tone ends

dial���

dial���

ringing tone

tone stops

phone rings

answer phone

ringing stops

Exchange Receiver

Fig� �� A sequence diagram modeling a phone call

While the concentration on standard cases leads to an easy�to�use notation
that is understandable by both software engineers and application experts� it has
to be stressed that a sequence diagram does not describe a necessary� but only a
possible or exemplary� interaction sequence between the involved objects� This
leads to a semantic problem if sequence diagrams should be considered as a
speci�cation technique�

In particular� a sequence diagram does not specify in which states the ob�
jects have to be in order for the described interaction sequence to occur� For
instance� in the above example the phone would not ring if the receiver was
busy� Moreover� even if these states had been speci�ed for instance by giving an
interaction sequence leading to the state�� the sequence diagram would still leave
open whether the described interaction sequence is the only possible one to oc�
cur or whether there are other possible interaction sequences� Therefore� from a
strictly formal point of view� a sequence diagram not really makes a proposition
about the executions of a system�

Note that this is a principal problem that stems from the fact that the ob�
jective of sequence diagrams is to describe exemplary behavior� This problem



can be relaxed by using additional language constructs such as repetition and
choice� thus providing a means for the description of complete sets of alternative
sequence diagrams�

We are currently developing a method for a seamless transition from exem�
plary behavior descriptions that can be expressed� for instance� using sequence
diagrams� to complete speci�cations using state diagrams�

Formalization We formalize sequence diagrams by adopting a state box view�
For each vertical line in a sequence diagram that corresponds to an object an
abstract state automaton is de�ned along the lines of ����� State automata consist
of a set of states� an initial state� and a set of transitions� In our case� a transition
is either labeled by an input event or by an output event� State automata can
easily be translated into state transition systems of the system model ����� but
this is not exploited here�

Caller

caller lifts receiver

dial tone begins

dial���

dial tone ends

dial���

dial���

ringing tone

tone stops

phone rings

answer phone

ringing stops

lift receiver

get dialtone

receiver lifted

start dialtone

��� ���

Exchange Receiver

Fig� �� Sequence diagram with abstract state automata

In contrast to the concrete state transition systems that are given by the
state diagrams of the involved objects and that describe the complete behavior
of the objects� the abstract state automata� which are derived from the sequence
diagram� only describe part of the behavior of the objects� These state automata
can be derived from the sequence diagram as follows�



� Between any two interactions� and before the �rst and after the last inter�
action� a state is introduced� Each abstract state sai of the state automaton
corresponds to the set of concrete states Sc

i � which is a subset of the state
space statesid of the object� Note that the state sets corresponding to di�er�
ent abstract states do not have to be disjoint�

� With each interaction of the object in the sequence diagram� denoted by
the ith arrow ending or beginning at the vertical line� an abstract transition
between the states sai and sai�� is associated� This abstract transition corre�
sponds to a nonempty set of concrete transitions of �id� i�e� of the transition
relation of the state transition system of the object see Section �����

The idea of using states between interactions is taken from ����� In ���� �ex�
tended event traces� EETs� are formalized� EETs are a notation similar to
sequence diagrams� they are used with the objective to give a complete behavior
description� Moreover� ��� shows how EETs can be used for describing complete
interaction behavior in software architectures�

By using a state box view� our formalization makes it more apparent what
is missing in sequence diagrams in order to be a speci�cation technique�

� They leave completely open the relationship between abstract states in the
sequence diagram and concrete states in the state diagrams of the involved
objects�

� They only describe which concrete transitions may occur� but they do not
forbid other concrete transitions�

To sum up� a sequence diagram describes the behavior of an object only par�
tially� because it corresponds only to a subset of all paths in the state diagram
of the object� and because it does not make this correspondence explicit� In con�
trast� a state diagram describes all paths� and� therefore� the complete behavior
of the object�

��� State Diagrams

State diagrams serve as the connection between the structure of an object�
oriented system and its behavior� Thus� state diagrams play a central role in
the development of object�oriented systems� UML state diagrams look similar
to Harel�s statecharts ��	�� However� several modi�cations and extensions make
it di�cult to de�ne a precise semantics� In the following we sketch a semantic
foundation based on the system model� The formalization is based on a semantic
de�nition of similar state diagrams� which can be found in �����

A state diagram can be attached either to a class or to the implementation
of an operation ���� Notation Guide� p����� Their semantics di�ers accordingly�
First we treat the semantics of class state diagrams� Class state diagrams are
associated with the class names in CN and describe the lifecycles as well as the
behavior of objects� The description is based on the actual state� which changes
during the lifecycle�



Class State Diagrams In the following� we discuss the semantics of a state
diagram associated with a class c � CN by transforming it into a state transition
system see Section �����

States A class state diagram c consists of a �nite set STDStatesc of possibly
nested diagram states and a �nite set STDTransc of diagram transitions� Diagram
states are optionally� labeled by names that are taken from the set STDNamesc�
A diagram state denotes an equivalence class of object states statesid of the
corresponding object� The semantics of elementary diagram states is� therefore�
given by a function st associating with each diagram state S � STDStatesc and
each object identi�er id � IDc a corresponding set of object states stS� id� �
statesid�

The above requirement that each diagram state denotes exactly one equiv�
alence class of object states can easily be achieved by assuming the name of
the diagram state as an additional attribute of class c and introducing internal
names for anonymous states��

The semantics of compound diagram states is de�ned as follows�

� The semantics of a composite diagram state a so�called �OR�state�� is given
by the union of the state sets denoted by the subdiagram states�

� The semantics of a concurrently nested diagram state a so�called �AND�
state�� is given by building the Cartesian product of its component diagram
states�

Note that� although AND�states give a notion of concurrency� they can also be
used to give a modular description of independent behavioral units of one se�
quential object� We do not allow feedback�composition of statecharts in order
to simplify the semantic de�nition of state diagrams� as well as their under�
standability by the UML user� A similar comment was made in ���� Metamodel�
p�����

As described above� the states of a state diagram are mapped to the states
statesid of the state transition system� which is already given by the semantics
of a class diagram� The subset of initial states states�cid� is given by the states
reachable by the initial event�

Events �An event is a signi�cant occurrence� It has a location in time and space
���� ���� Glossary� p���� Therefore� we model events as simple transmissions of
messages� occurring at some point in time� Each event ev gives rise to a set of
messagesmsgev�� Input events of class c are modeled by the setmsgev� � msgc
of accepted messages� Similarly� output events are given as a subset of MSG�

UML distinguishes four di�erent cases of events� receipt of a signal� receipt
of an operation call� satisfaction of a condition and passage of a period of time
���� Notation Guide� p��	�� The �rst three are modeled as transitions� which are
described in the next section� The semantics of the last is explained in ��� and
not treated here�



Transitions �A ��� transition is a relationship between two states ��� when a
speci�ed event occurs ���� ���� Notation Guide� p�����

Each transition s� d� ev� out� C� � STDTransc in the state diagram consists of
a source diagram state s� a destination diagram state d� an input event�signature
ev� a possibly empty output send�clause out and a guard condition C� UML
also allows action�expressions� which are ���� written in terms of operations�
attributes� and links of the owning object ���� and ���� must be an atomic op�
eration�� ���� Notation Guide� p� ���� If the action expression does not contain
calls or signals to other objects� it just restricts the resulting object states and
is� in this respect� similar to postconditions as allowed in Syntropy ������ This
can be easily incorporated into the semantics given below� However� when other
objects are involved within an atomic action expression� communication with
other objects is hidden in the action expression� As discussed below� in Sec�
tion ��� on operation state diagrams� in a concurrent setting the semantics of
communications not shown in the class state diagrams is not clear�

A transition in the diagram s� d� ev� out� C� is mapped to a set of transitions
in the state transition system of the system model� Each transition in this set
ful�lls the following conditions�

� The transition starts in some state of the equivalence class stcs� of the
source diagram state and ends in some state of the equivalence class stcd�
of the destination diagram state�

� It is labeled with an input message from the set msgev�� This set may be
empty�

� In addition� it is labeled with the set of output messages msgout�� This set
may be empty�

� It ful�lls condition C�

The transition relation �cid� of a state transition system of an object id
of class c contains all transitions of these sets for all transitions in the state
diagram�

UML distinguishes between simple transitions� complex transitions and tran�
sitions to nested states� We do not consider these details here� since composite
states can always be expanded to simple states� We assume that the semantics
of transitions is determined only after this expansion�

In addition to transitions� behavior can also be speci�ed in UML state dia�
grams as internal activity� in particular entry� exit� and do actions� The latter
can be treated similarly to general action expressions�

�If an event does not trigger any transitions� it is simply ignored�� ���� No�
tation Guide� p� ���� This is modeled by an extension of �cid� with default
transitions that leave the state unchanged� We remark� however� that another
possibility is to model such events as chaotic behavior in the sense of under�
speci�cation� This allows for a re�nement calculus on state diagrams as given in
�����



Operation State Diagrams It is di�cult to de�ne the semantics of a state
diagram ���� attached to a method operation implementation� ���� ���� Notation
Guide� pp� ���� since none of the examples and only very little text in the UML
documentation are devoted to this use� There are two major possiblities of how
to associate a notion of state to an operation� either only the states of one object
are shown such that the operation state diagram only describes the e�ect of the
operation on one object� or the state covers several objects� In the latter case
the diagram states must refer to a combination of the participating objects�
states� thus modeling the ���� condition during ��� an interaction� ���� Notation
Guide� pp���� this method is involved in� Furthermore� interactions between the
participating objects are internal activities with respect to this operation state
diagram�

In both cases the question arises� how several operation state diagrams and
class diagrams should be combined and integrated� In a concurrent setting op�
eration execution may be intertwined� such that not all states of each operation
are visible in the object behavior� For example� the e�ect of a transfer operation
between two bank accounts might not be visible in the object state after execu�
tion of the transfer operation� since concurrent deposits and withdrawals might
have changed the accounts already�

Therefore� the simplest solution of combining class and operation state dia�
grams� namely� to view the operation state diagram just as as a complex action
expression attached to the operation calls in the class state diagrams� is not
always adequate� As an action expression� execution of operation state diagrams
must be atomic non�interruptible�� which is not true for the transfer example
above� In �	� a solution is discussed that attaches virtual objects to operation
state diagrams� which can be called concurrently� This requires explicit synchro�
nization of the access of the virtual operation objects to the object state� In
���� a solution is discussed that determines the semantics as the interleaving of
the operation state diagrams based on a stack handling the operation calls� A
thorough discussion of the di�erent solutions is outside the scope of the paper�
We just conclude that the combination of object behavior descriptions and oper�
ation behavior descriptions is an unsolved problem in the area of object�oriented
modeling methods�

General Remarks on State Diagrams In the following� we suggest some
improvements for state diagrams�

� In addition to guard conditions� postconditions should also be allowed� As
mentioned above� this is a more abstract way of expressing the local e�ect
of action expressions�

� There are several object�oriented approaches that implicitly use pattern
matching� as used in functional programming languages� to relate input
events and their argument values to the event triggers and their expressions�
The use of these pattern matching techniques should be stated explicitly as
a description mechanism in UML and be de�ned more precisely�



��	 Activity Diagrams

Activity diagrams are a special case of state diagrams where all states have an
internal action and no transition has an input event� They can be ���� attached
��� to a class or to the implementation of an operation and to a use case� ����
Notation Guide� p������ The �rst two cases have already been discussed for state
diagrams in general see section ����� In this section we discuss activity diagrams
with swimlanes and action�object �ow� These features seem to be particularly
relevant for use case description� Another possible use would be to specify some
operation of a composed object�

In the presence of swimlanes� the semantics of activity diagrams needs to be
changed considerably� The main reason is that now several objects are involved
and operate on their own object state� Thus� there is no notion of global state
within one activity diagram and the transitions explicitly depict data and object
�ow between single activities� Hence� it is not adequate to give activity diagrams
a semantics in terms of one state transition system�

As mentioned in ���� Notation Guide� p������ in some cases activity diagrams
with action�object �ow should be substituted by sequence diagrams� Also in our
view� activity diagrams with swimlanes are more similar to sequence diagrams
than to state diagrams� However� it is not clear from the UML documentation�
whether they should only be used as a notational variant of sequence diagrams
where� for instance� action states correspond to named parts of the object life�
line� or whether some semantic di�erences are intended� Since they have not
been included in earlier versions of UML ���� it seems likely that a more detailed
explanation will be given in the next version�

� Conclusion

In the preceding sections we have presented a proposal for the formal foundation
of the Uni�ed Modeling Language� As a direct result of our work� we detected a
number of concepts that are not precisely de�ned� like the meaning of constraints
in a concurrent setting of objects or the way how operations are speci�ed and
integrated in the overall object behavior� We also suggested enhancements of
the UML descriptions� and we have argued that it is possible to map the UML
language constructs to a coherent and sound semantic model�

A main idea of the semantics is to represent an overall system view in the
semantic domain� This overall system view has been called system model� A
system model describes both static and dynamic behavior of objects� includ�
ing� for instance� dynamic object creation� concurrent behavior of objects with
asynchronous message sending and inheritance relations�

The semantic domain of streams� on which our approach is based� has proved
to be powerful enough to model speci�c properties of application domains like
real�time systems and information systems� This is important� since UML claims
to be an application independent analysis and design language�

There is still a lot of work to be done� Besides the precise elaboration of the
semantics� there are several directions for future work�



A �rst main direction focuses on the bene�ts of the system model� As stated
in the introduction� a formal semantics is the prerequisite for studying re�ne�
ment steps� relationships between di�erent description techniques� and for giving
conditions that ensure the consistency of a system speci�cation� In a second step�
such properties have to be studied in the semantic domain� and� what is crucial�
have to be formulated at the syntactical level of UML� Only if� for instance� con�
sistency conditions can be formulated at the level of the description techniques�
they can be integrated into a tool and support a sound system development�
First work in this area has been presented� for instance in ����� where re�nement
steps for state diagrams are elaborated�

A second main direction for future work concerns aspects of the design pro�
cess� Like UML itself� our semantic framework has been de�ned independently
of a design methodology� Issues that still have to be addressed in more detail
are� for instance� operation speci�cations and use case speci�cations� In the cur�
rent stage of development� it is not clear what techniques e�ectively support
the designer to specify operations and use cases and how they are integrated in
the system speci�cation� A �rst approach clarifying the relationships between
the notions of messages� events and methods operations� has been presented in
�	�� These studies provide guidelines and schemes for integrating partial views
of a system like operation behavior� into an overall system view and assist the
developer to gain a structured and sound system speci�cation�

Acknowledgments

We thank Grady Booch� Ivar Jacobson and Gunnar �Overgaard for interesting
discussions regarding UML� We also thank Manfred Broy and Ingolf Kr�uger for
stimulating discussions and comments on earlier versions of this paper�

References

�	 G	 Booch	 Object�Oriented Analysis and Design with Applications	 Benjamin
Cummings� ����	

�	 G	 Booch� J	 Rumbaugh� and I	 Jacobson	 The Uni
ed Modeling Language for
Object�Oriented Development� Version �	�� ���	

�	 G	 Booch� J	 Rumbaugh� and I	 Jacobson	 The Uni
ed Modeling Language for
Object�Oriented Development� Version �	�� ���	

�	 R	 Breu and R	 Grosu	 Modeling the dynamic behaviour of objects � about events�
messages and methods	 submitted to publication� ����	

�	 M	 Broy� F	 Dederichs� C	 Dendorfer� M	 Fuchs� T	 F	 Gritzner� and R	 Weber	
The Design of Distributed Systems � An Introduction to focus � revised version
�	 SFB�Bericht ���������� A� Technische Universit�at M�unchen� January ����	

	 M	 Broy� F	 Dederichs� C	 Dendorfer� M	 Fuchs� T	F	 Gritzner� and R	 Weber	 The
Design of Distributed Systems � An Introduction to FOCUS	 Technical Report SFB
�������� A� Technische Universit�at M�unchen� ����	 http���www�	informatik	tu�
muenchen	de�reports�TUM�I����	ps	gz	

�	 M	 Broy� R	 Grosu� and C	 Klein	 Timed State Transition Diagrams	 submitted
to publication� ����	



�	 M	 Broy� C	 Hofmann� I	 Kr�uger� and M	 Schmidt	 A graphical description tech�
nique for communication in software architectures	 Technical Report TUM�I�����
Technische Universit�at M�unchen� ����	

�	 M	 Broy and K	 St�len	 Speci
cation and Re
nement of Finite Data�ow Net�
works � a Relational Approach	 In Proc� FTRTFT���� LNCS ��� pages ������	
Springer�Verlag� Berlin� ����	

��	 S	 Cook and J	 Daniels	 Designing Object Systems	 Prentice Hall� ����	

��	 R	 Grosu� C	 Klein� and B	 Rumpe	 Enhancing the syslab systemmodel with state	
TUM�I ���� Technische Universit�at M�unchen� ���	 http���www�	informatik	tu�
muenchen	de�reports�TUM�I���	html	

��	 R	 Grosu� C	 Klein� B	 Rumpe� and M	 Broy	 State transition diagrams	 TUM�
I ���� Technische Universit�at M�unchen� ���	 http���www�	informatik	tu�
muenchen	de�reports�TUM�I���	html	

��	 R	 Grosu and B	 Rumpe	 Concurrent timed port automata	 TUM�I
����� Technische Universit�at M�unchen� ����	 http���www�	informatik	tu�
muenchen	de�reports�TUM�I����	html	

��	 D	 Harel	 Statecharts� a visual formalism for complex systems	 Science of Com�

puter Programming� ���������� ����	

��	 R	 Hettler	 Description techniques for data in the SYSLAB method	 Technical
Report TUM�I���� Technische Universit�at M�unchen� ���	
http���www�	informatik	tu�muenchen	de�reports�TUM�I���	html	

�	 C	 Hofmann� C	 Klein� and B	 Rumpe	 The object oriented system model	 internal
report� to appear as technical report� Technische Universit�at M�unchen� ����	

��	 I	 Jacobson	 Object�Oriented Software Engineering � A Use Case Driven Approach	
Addison�Wesley� ����	

��	 C	 Klein� B	 Rumpe� and M	 Broy	 A stream�based mathematical model for dis�
tributed information processing systems � SysLab system model �	 In Elie Naijm
and Jean�Bernard Stefani� editors� FMOODS��� Formal Methods for Open Object�

based Distributed Systems� pages �������	 ENST France Telecom� ���	

��	 B	 Liskov and J	M	 Wing	 A new de
nition of the subtype relation	 In
ECOOP�LNCS ���� pages �������	 Springer Verlag� ����	

��	 G	 �Overgaard	 The Semantics of the Uni	ed Modeling Language 
 Tutorial at

OOPSLA���	 ACM� San Jose� October ���	

��	 B	 Paech	 A framework for interaction description with roles	 submitted to publi�
cation� ����	

��	 B	 Paech and B	 Rumpe	 A new Concept of Re
nement used for Behaviour Mod�
elling with Automata	 In FME���� Formal Methods Europe� Symposium ���� LNCS
���	 Springer�Verlag� Berlin� October ����	

��	 B	 Paech and B	 Rumpe	 The state based description of services	 submitted to
publication� ����	

��	 J	 Rumbaugh	 Object�Oriented Modelling and Design	 Prentice Hall� ����	

��	 B	 Rumpe	 Formale Methodik des Entwurfs verteilter objektorientierter Systeme	
Herbert Utz Verlag Wissenschaft� ���	 PhD thesis� Technische Universit�at
M�unchen	

�	 B	 Rumpe and C	 Klein	 Automata with output as description of object be�
havior	 In H	 Kilov and W	 Harvey� editors� Speci	cation of Behavioral Se�

mantics in Object�Oriented Information Modeling� pages ������ Norwell� Mas�
sachusetts� ���	 Kluwer Academic Publishers	 http���www�	informatik	tu�
muenchen	de�papers�RumpeKlein SoBS���	html	



��	 B	 Rumpe� C	 Klein� and M	 Broy	 Ein strombasiertes mathematisches Modell
verteilter informationsverarbeitender Systeme � Syslab Systemmodell �	 Techni�
cal Report TUM�I����� Technische Universit�at M�unchen� Institut f�ur Informatik�
March ����	 http���www�	informatik	tu�muenchen	de�reports�TUM�I����	ps	gz	

��	 B	 Sch�atz� H	 Hu�mann� and M	 Broy	 Graphical Development of Consistent Sys�
tem Speci
cations	 In J	 Woodcock M	�C	 Gaudel� editor� FME���� Industrial Ben�

e	t and Advances In Formal Methods� pages ������	 Springer� Lecture Notes in
Computer Science ����� ���	

��	 V	 Thurner	 A description technique for business process modelling	 internal re�
port� to appear� ����	

This article was processed using the LATEX macro package with LLNCS style


