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Abstract Type classes and overloading are shown to be independent
concepts that can both be added to simple higher�order logics in the tra�
dition of Church and Gordon� without demanding more logical expres�
siveness	 In particular� model�theoretic issues are not a
ected	 Our meta�
logical results may serve as a foundation of systems like Isabelle�Pure
that o
er the user Haskell�style order�sorted polymorphism as an ex�
tended syntactic feature	 The latter can be used to describe simple ab�
stract theories with a single carrier type and a �xed signature of opera�
tions	

� Introduction

Higher�order logic �HOL� dates back to Church�s ���� formulation of the �simple
theory of types	 
�� originally intended as foundation of mathematics�

Gordon later extended the system by an object�level �rst�order language of
types �by including type variables and type constructors� and � most impor�
tantly � de�nitional mechanisms that guarantee safe theory extensions� Various
implementations of theorem provers based on Gordon�s HOL 
�� proved to be
very successful for many applications in computer science and mathematics�

Paulson�s generic theorem proving environment Isabelle is based on an �in�
tuitionistic� version of HOL since Isabelle��� 
���� In Isabelle��� a Haskell�like
type system with ordered type classes has been added 
�� though without inves�
tigating logical foundation issues very much�

Somewhat later a conceptual bug concerning the handling of empty classes
was discovered that actually made Isabelle�s meta�logic implementation inconsis�
tent� Embarrassing slips of this kind illustrate why mechanized proof assistants
should be based on well�understood logical frameworks only lest the �formal	
proofs conducted by users inherit any uncertainty�

The present paper aims to close this foundational gap of Isabelle� Our main
contributions are�
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� An interpretation of type classes in higher�order logic�

� A de�nitional mechanism for axiomatic type classes�

� A generalization of constant de�nitions admitting overloading and recursion
over types�

In particular we will see that type classes have already been implicitly
present in Gordon�like HOL systems all the time� So the seeming extensions
of Isabelle�Pure over basic HOL can be explained just as additional syntactic
features o�ered for the user�s convenience� What really goes beyond Gordon�s
HOL �extra�logically though� are overloaded constant de�nitions�

While the concepts of type classes and overloading can be explained inde�
pendently in HOL they are closely related in practice� Without type classes as a
syntactic device overloading tends to become undisciplined� Without overloaded
de�nitions type classes could be de�ned but not instantiated in useful manners�

Although the initial motivation arose in the Isabelle setting the subsequent
presentation is more general� Our results can be easily applied to similar HOL
systems�

A note on terminology� hol shall refer to the abstract logical system used to
explain the concepts in this paper� The concrete incarnations are Isabelle�Pure
�Isabelle�s meta�logic� Isabelle�HOL �an object�logic within Isabelle�Pure� and
Gordon�HOL� As a quite harmless simpli�cation hol can also be identi�ed
directly with Isabelle�Pure�

The paper is structured as follows� Section � starts with some examples of
using type classes without giving any formal background� Section � sketches the
syntax and deductive system of the hol logic� Section � discusses the issue of safe
theory extension in general and concludes with generalized constant de�nitions
including overloading and recursion over types� Section � introduces type classes
and their interpretation in hol� Section � concludes with safe mechanisms for
de�nition and instantiation of axiomatic type classes�

� Examples of Using Type Classes

��� Type Classes in Programming Languages

We quickly review some aspects of type classes in languages like Haskell 
���

Within a setting of this kind classes are supposed to describe collections
of types that provide �or implement� operations of certain names and types�
For example consider the following class de�nition �modulo concrete Haskell�
syntax��

class ord
� �� �ord � �ord � bool
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Class ord requires of its instances � to provide some relation � �� � � � � bool �
This is witnessed in the instance construct by a suitable de�nition� For example�

instance nat �� ord
xnat � ynat � nat le

Nothing more speci�c is required of � �� nat � nat � bool than its type� From
the chosen name � everyone will think of it as some order of course� This shall
be implemented appropriately by above program text nat le�

So we observe that Haskell type classes can be viewed as the signature part
of simple algebraic structures consisting of one carrier type and associated oper�
ations �or member functions�� Additional semantic properties �or class axioms�
may come in as mere convention�

Speaking in terms of the example above the concrete instance can be under�
stood as a poset structure �nat ��nat ��

��� Type Classes in hol

The Haskell notion that instances of type classes provide operations of certain
names and types is not amenable to logical systems like hol� One just cannot
express within the logic if objects are declared or meaningful�

Even from an extra�logical point of view such notions are not very appro�
priate� The hol world is total in the sense that everything of any type is always
meaningful� Even constants of arbitrary type can be safely declared at any time
without changing very much� In the worst case it may happen that no useful the�
orems can be derived about some objects� Consider the latter just as a boundary
case of loose speci�cation�

We argue that a straightforward interpretation of classes should be simply
as set�theoretic predicates� type classes denote classes of types� A view of classes
as abstract algebras can be still recovered from this frugal interpretation� As an
example consider the following class of orders in hol�

consts � �� �� �� prop
class ord

re�exive x� � x�
transitive x� � y� � y� � z� � x� � z�
antisymmetric x� � y� � y� � x� � x� � y�

Note that consts above is not actually part of the class de�nition� The declara�
tion of � just ensures that the class axioms are syntactically well�formed�

The meaning of ord is a type predicate stating that � �� � � � � prop is
an order relation� It does not express anything like �� is available on a type	 �
this would be trivially true in hol anyway�

Concrete instances � �� ord are required to have the corresponding � ��
� � � � prop speci�ed in such a way that the order properties are derivable�
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This is typically achieved by means of a constant de�nition� prior to the actual
instantiation� As an example consider�

defs xnat � ynat � nat le
instance nat �� ord

Again observe that defs is not part of our instance construct just as consts had
been independent of class� Assuming that the term nat le expresses a suitable
relation we are able to derive re�exive  transitive  antisymmetric for type nat
in the theory� Thus the instantiation nat �� ord is justi�ed within the logic�

Note that in concrete system implementations the user will have to provide
the witness theorems for instance explicitly�

Our version of hol de�nitions not only admit overloading but also primitive
recursion over types� The latter can be used to mimic lifting of polymorphic
operations� For example consider the following de�nition�

defs x��� � y��� � fst x��� � fst y��� � snd x��� � snd y���

enabling us to derive the order properties of � on �� � under the assumption
that these already hold on � and �� This justi�es an instantiation of the form�

instance � �� �ord � ord� ord

Thus the type operator � can be understood as a functor for direct binary
products of order structures�

Note that overloaded de�nitions must not overlap� In particular there may
be at most one equation for the same type scheme� For example having already
de�ned � on ��� component�wise rules out to rede�ne it later as lexicographic
order�

Thus the signature part of the abstract theories that can be described is �xed�
Type classes only have the carrier type as a parameter but not the operations�

This drawback is not speci�c to hol though� Type classes may be only
instantiated once in current Haskell�like languages too�

More examples and applications of type classes as a light�weight mechanism
of simple abstract theories can be found in the Isabelle library 
�� especially in
the HOL and HOL�AxClasses directories� There is also a tutorial on axiomatic
type classes available as part of the Isabelle documentation 
����

Above examples should have illustrated to some extend how the two concepts
of overloaded de�nitions and type classes can be joined into a practically useful
mechanism� Both can be understood independently in hol though� The logical
foundations of defs will be explained in x� especially x���� The exact meaning
of class and instance will be given in x��

� Which is overloaded in general� because there may be many di
erent instantiations	
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� The hol Logic

We brie�y sketch the syntax and deductive system of our version of hol� The
presentation is somewhat reminiscent of 
��� but di�ers in many details�

��� hol Syntax

Types and Terms The syntax of hol is just that of simply�typed ��calculus
with a �rst order language of types�

Types are either variables � or applications ���� � � � � �n� t of an n�place con�
structor t applied to types �i� We drop the parentheses for n � f�� �g� Binary
constructors are often written in�x e� g� function types as �� � �� �associate to
the right��

Terms are built up from explicitly typed atomic terms �constants c� or vari�
ables x� � through application tu �of type �� provided that t � �� � �� and u � ���
and abstraction �x�� �t �of type �� � �� provided that t � ���� As usual appli�
cation associates to the left and binds most tightly� An abstraction body ranges
from the dot as far to the right as possible� Nested abstractions like �x� � y�t are
abbreviated to � x y�t�

Note that atomic terms a� actually consist of two components� name a and
type � � In particular variables x�� and x�� with the same name but di�erent
types are treated as di�erent�

Furthermore we assume suitable functions TV �on types or terms� and FV
�on terms� yielding the type variables and free term variables of their respective
arguments�

Type Substitutions and Instances Type substitutions 
������ � � � � �n��n�
shall be de�ned as usual� Their application �to types or terms� is written post�x�

For types or terms T  U  we call T a type instance of U �written T � U�
i� there is some substitution � such that T � U�� Given any set A of types or
terms let A� denote the downwardly closed set of all of its type instances�

Theories consist of a signature part �constants and types� together with axioms�
We use a notation like�

�� � �� � ���� � � � � �n� t � c �� 	 � 	


meaning that theory �� is the extension of �� by declaring type constructor t
of arity n constants c �� 	 �representing the set c��� and asserting all axioms of
the set 
�
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We always assume that theories contain at least the following signature�

prop propositions
�� � functions

� �� prop � prop � prop implication
� �� �� �� prop equality

 �� ��� prop�� prop universal quanti�cation

As usual 
��x� �t� is written as 
x� � t� Nested 
�s are abbreviated like nested ��s�
Other logical operators �True False  � etc�� could be introduced in an obvious
way� They sometimes simplify our presentation without being really necessary�

Any term of type prop is a formula� Our type of propositions is sometimes
called o in the literature in Gordon�HOL the analogous type is bool �

��� The hol Deductive System

Due to space limitations we do not give a full calculus for hol here� It su�ces to
say that given some theory � we have some inductively de�ned relation � 	� �
of derivable sequents �where antecedents � are �nite sets of formulas��

We use the usual abbreviations� � 	 � for � 	� � if � is clear from context
	� for fg 	 � and ��� �� 	 � for ����� 	 � and so on� The full set of inference
rules for 	� consists of about �� schemas� As an example we present only two�

� 	 

� n f�g 	 �� 
��I�

�� 	 ��  �� 	 �

��� �� 	 
�MP�

Thus we get a single�conclusion sequent calculus similar to the one presented
in 
��� for Gordon�HOL� If the rules are chosen suitably the system may also
be read as natural deduction �which is preferred in the Isabelle literature 
�����
This and other details �e� g� classical vs� intuitionistic hol� do not matter here�
Subsequently some general idea of what theorems are derivable in higher�order
logic will be su�cient for the level of abstraction of this paper�

� Meta�level De�nitions

The most important contribution of Gordon�HOL 
�� over the original formu�
lation of Church 
�� are disciplined mechanisms of theory extension� Using only
these instead of unrestricted axiomatizations guarantees that certain nice prop�
erties of theories are preserved�

Such extensions are usually called conservative de�nitional sound etc� of�
ten with some confusion about the exact meaning of these phrases� So before
introducing our generalized constant de�nitions �cf� x���� we set out to discuss
what quali�es extension mechanisms as safe in our hol setting�
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��� Consistency Preservation

A theory is called �syntactically� consistent i� not all formulas are derivable� An
inconsistent theory certainly does not have any models since every formula is a
theorem �including 	False�� A theory extension mechanism is called consistency
preserving i� any extension of consistent theories is also consistent�

Although being a nice concept consistency preservation is certainly not the
key property that quali�es theory extensions as safe in the hol setting�

Syntactic consistency of theories is not a very strong property� In particular
it does not necessarily imply existence of suitable models� This would require
completeness of the deductive system wrt� the underlying model theory which
does not generally hold in higher�order logic�

More surprisingly some kinds of safe extensions do not necessarily preserve
consistency in general � notably Gordon�HOL type de�nitions see below�

��� Syntactic conservativity

De�nition �� An extension �� of some theory �� is called �syntactically� con�
servative i� for any formula � of signature �� it holds that 	��

�� 	��
��

Syntactic conservativity is traditional 
��� It ensures that extensions do not
change derivability of formulas that do not contain any of the newly introduced
syntactic objects �constants and types�� It is also very easy to see that syntactic
conservativity implies consistency preservation�

We consider syntactic conservativity as a minimum requirement for well�
behaved extension mechanisms within purely deductive logical frameworks�

��� Model Preservation

We brie�y review Gordon�HOL�s extension mechanisms and the way they are
justi�ed as conservative 
���� Basically the system features two kinds of theory
extensions��

Constant de�nition �� � �� � c �� 	 � 	 c� � t provided that c is new
and does not occur in t also FV�t� � fg and TV�t� � TV�	��

Type de�nition �� � �� � ���� � � � � �n� t � 	���� � � � � �n� t � A where t
is an n�ary type constructor and A is a term representing some set and
the notation � � A shall abbreviate some suitable formula stating that �
is isomorphic to A� The de�nition shall be well�formed provided t is new
and does not occur in A also FV�A� � fg TV�A� � f��� � � � � �ng and
non�emptiness of A is derivable in ���

� Actually� Gordon�HOL admits more general forms of �loose� speci�cations than pre�
sented here	 We can ignore this without loss of generality� at the level of abstraction
of this paper	
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Both these mechanisms are justi�ed as being safe extensions because they
preserve Gordon�HOL standard models� If �� has such a model so does ���
These models are speci�cally tailored for the Gordon�HOL logic 
��� and are
quite special in at least the following ways�

� They are classical�

� They are standard��

� Types are interpreted from subset�closed universes�

In particular the last property is the crucial one for type de�nitions being
safe� We quickly sketch a counterexample where Gordon�HOL type de�nitions
do not preserve syntactic consistency�

Consider some base theory �� and some formula three� expressing that �
has cardinality �� Now let �� � �� � 	�three� � False�� It is easy to see that
�� is consistent� For example one can give a very simple model �non�standard
in the Gordon�HOL�sense� where all interpretations of types are sets of some
cardinality �k for k � IN�� Finally let �� � �� � thr � 	 thr � f�� �� �g
and observe that 	��

three thr is derivable and thus 	False � So this theory is
inconsistent�

Furthermore type de�nitions are not necessarily syntactically conservative
even if the theories involved have a Gordon�HOL standard model�

The counterexample is a simple modi�cation of the previous one� Basically
just substitute some proper constant de�nition c � t for False � Then it is rela�
tively easy to see that �� �� �� all have standard models� An argument similar
to the one above shows that 	 c � t is not derivable in �� but is so in ��� That
is the de�nition of type thr changed derivability on existing formulas � it is
not syntactically conservative�

Of course nothing is wrong with Gordon�HOL type de�nitions as long as one
does not leave the dedicated model theory� The above examples should illustrate
though why we cannot justify our extensions in this setting�

Our hol should serve as a meta�logical framework for expressing many dif�
ferent kinds of deductive systems �or object�logics in Isabelle parlance�� In other
words results about safeness of extensions should be applicable to Isabelle�Pure
not just to particular object�logics like Isabelle�HOL�

Focusing solely on the Gordon�HOL standard model theory here would ba�
sically restrict object�logics to what is known as shallow embeddings in the HOL
community� Then justifying for example full Zermelo�Fr�ankel set theory in this
framework 
�� would be much more di�cult than if encoded as a purely deductive
system the Isabelle way�

� Standard in the sense of ��� which also treats a certain kind of non�standard models	
The latter may interpret �� � �� as proper subsets of the full function space ������ �
������	 Interestingly� the deductive system of classical HOL is complete wrt	 this class
of general models ���	
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��� Meta�safe Extensions

We now introduce a notion of safe theory extensions that is more appropriate
for our meta�logical hol setting�

De�nition �� Any extension �� of some theory �� is called meta�safe i��

� It is syntactically conservative�
� Introduced objects are �syntactically� realizable�
For all new c there is some function r from types to terms such that r��� � �
and 	��

� � 	��
�
r�c� for all �� Here the notation 
r�c� shall denote

replacement of any c� by r����

First observe that because of syntactic conservativity object�logics are free
to ignore meta�safe extensions by just not referring to them syntactically�

Syntactic realizability can be seen as a generalized counterpart of model
preservation always staying within the deductive system of hol though� Newly
introduced names can be seen as just an abbreviation for pre�existent syntactic
objects that have the same properties �because the same theorems are derivable��

So there are two ways for object�logics to cooperate with meta�safe extensions��
Either just consider all object�level formulations modulo expansion of all meta
de�nitions without changing the semantics or adjust your model theory to in�
terpret de�ned objects according to 
r�c� utilizing the realization function�

��� Overloaded Constant De�nitions

Having provided enough preliminaries we can now present our generalization of
constant de�nitions�

Overloaded constant de�nition �� � �� � c �� 	 � 	�c where �c is
some set of equations c� � t� The de�nition shall be well�formed provided
that c is new all FV�t� � fg and TV��� � TV�t�� furthermore all c� have
to be instances of c� no two di�erent c�� � c�� may have common instances
and recursive occurrences of any c� � in some t may be only at such types � �

that are strictly simpler than � in a well�founded sense�

In practice the strictly simpler notion above will be just structural contain�
ment� Thus we get constant de�nitions with general primitive recursion over
types� As an example consider�

� �� �
	 �nat � zero
	 ���� � ���� ���
	 ���� � �x����

� Think of Gordon�HOL type de�nitions� where the representing sets may contain
meta�safely introduced constants� for example	
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which de�nes � on nat  also lifting it to binary products and function spaces� ��
is still unspeci�ed on types � that are not instances of nat or �� � or �� ��

Note that this extension mechanism requires that all de�ning equations are
given at the same time �right after the constant declaration�� One might want
to relax this in concrete system implementations allowing the user to augment
theories by additional equations for constants on new type instances in an incre�
mental way� The system will then have to keep track of all the partial de�nitions
ensuring that the resulting jumble of equations can be sorted out into proper
overloaded constant de�nitions at any time�

We now brie�y sketch why overloaded constant de�nitions are indeed meta�
safe� Due to space limitations we have to gloss over various technical lemmas
about hol deductions �most importantly freeness of unspeci�ed constants and
the deduction theorem��

The key property of our generalized constant de�nitions is�

Lemma�� Given any overloaded constant de�nition �� � �� � c �� 	 � 	�c�
Then there is some partial function f from types to terms of �� � c �� 	� such
that f��� � � � and f establishes all type instances of �c�

	��� � c���� �c�
f�c�

The proof exploits the well�formedness restrictions on the set of equations �c in

straightforward ways� Some canonical f�c is constructed by well�founded recursion

over types such that the given equations hold	 Mainly this works� because no two dif�

ferent c�� � c�� on the l	h	s	 have common instances� and recursive occurrences on the

r	h	s	 are well�foundedly simpler	 Also TV�� � � TV�t� plays an important r�ole	

Note that f�c is really partial in general i�e� 
f�c�c� does not necessarily
eliminate all type instances of c �� 	� If one views �c as a convergent term
rewriting system it leaves exactly those c� unchanged that are normal wrt� �c�

One can easily extend f�c to some total F�c that also eliminates leftover c�
�replacing them by any term of type �� such that 	�c�
F

�c�c� in ���

Our main result on the issue of meta�level de�nitions is�

Theorem�� Overloaded constant de�nitions are meta�safe�

The proof exploits f�c and F�c as constructed above	 Then both syntactic conserva�

tivity and realizability are relatively simple consequences of lemma �	 Unfortunately�

we cannot give more details �which are rather technical� at the level of abstraction of

this paper	

� Type Classes

��� An Order�sorted Type System

The hol language as presented in x� provides two syntactic layers� higher�order
terms that are annotated by �rst�order types� We now conceptually add a third
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level of ordered type classes �or sorts� that qualify types� Thus the algebra of
types becomes an order�sorted structure that is amenable to well�known tech�
niques like order�sorted uni�cation 
���� In particular ml�style type inference
can be easily generalized to the order�sorted system 
� ����

Order�sorted Type Signatures consist of three basic components� a �nite
set C of type classes a class inclusion relation  and a set of type arities�

The initial class structure �C�� is canonically extended to a quasi�ordered
sort structure �S�v� such that sorts are �nite sets of classes� Any sort s �
fc�� � � � � cng is supposed to represent the intersection c� u � � � u cn� Inclusion is
extended from classes to sorts accordingly�

s� v s� ��� 
c� � s�� �c� � s�� c�  c�

Note that there is always a greatest sort namely the empty intersection fg
which shall be subsequently written as ��

Type arities are declarations of the form t �� �s�� � � � � sn� s where t is an
n�place type constructor and s�� � � � � sn� s are sorts� This is supposed to be a
partial speci�cation of how t acts on certain subsets of the universe of types�

Sort Assignment We assume that type variables �s carry globally �xed sorting
information� One can think of variables as actually consisting of two components�
base name � and sort s�

Now given some order�sorted type signature sorts are assigned to types via
the following set of rules�

�s � s

�� � s� � � � �n � sn t �� �s�� � � � � sn� s

���� � � � � �n� t � s
� � s� s� v s�

� � s�

While there may be many type arities for the same constructor this introduces
neither overloading nor partiality to the level of types� In fact type arity decla�
rations do not change the well�formedness of types �as de�ned in x�� at all� They
only in�uence sort assignment � via the second rule above� Even having no ar�
ities for some constructor is no problem then one just cannot derive interesting
sort assignments�

In general there may be many sorts assigned to any given type� The literature

��� calls a type signature regular i� for all types the set of assigned sorts has
some least element �modulo sort equivalence�� This always holds in our setting
because sort structures are closed wrt� intersection� Another nice property is
co�regularity which guarantees unitary order�sorted uni�cation of types 
��� and
principal type schemes for arbitrary terms 
���

Such technical issues do not matter here� We will be more interested in the
logical content of order�sorted type signatures �see x�����
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��� Representing Type Classes in hol

Expressing type predicates in hol might seem di�cult at �rst sight� We cannot
have objects c � �type	� prop as for good reasons there is no type of all types�

Type predicates are not needed as �rst class objects though� A kind of propo�
sitional language of types that is capable to express class membership�� � c	 will
be su�cient� Now hol obviously provides this sort of thing� Any formula �
��
that �potentially� contains some type variable � may be viewed as a proposition
about types� As an example consider 
x� y�� x� � y� that describes the class
of all singleton types�

Remains the problem to encode class constants �in a way that admits some
meta�safe mechanism for class de�nitions�� There are probably many ways to
accomplish this the one presented now seems to be particularly easy to motivate�

The Encoding First we augment our basis theory by simply adding unspeci�ed
types � itself and constants TYPE �� � itself �

Now for any type class c introduced by the user we declare a polymor�
phic constant c �� � itself � prop� Applications of the form �c� itself�prop

TYPE � itself � which are of type prop shall be considered to represent the propo�
sition �� is member of c	� Subsequently the telling notation hj� � cji will be used
to abbreviate these terms�

This encoding seems to be an elaboration of a folklore technique from the
LCF community used to express �atness of domains�

A Motivation So far we have just introduced abbreviations hj� � cji for some
terms �c� itself�prop TYPE � itself �� How can we understand this as a representa�
tion of �� is a member of c	�

The following motivation is based on a simple set�theoretic semantics of hol
where types denote sets and type constructors functions that operate on sets�

We choose to interpret 

itself �� as the function A �� fAg then 

� itself �� �
f

� ��g for all types � � In other words type constructor itself builds singleton sets
containing the argument itself only� The sole element of any 

� itself �� will be


TYPE � itself �� so we see also that TYPE � itself has to represent type	 � �

Next consider 

� itself � prop��� This is interpreted as f

� ��g � f�� �g assum�
ing that 

��� is set�theoretic function space and 

prop�� just the boolean values�
Observe that in general function spaces fag � B with singleton domain set
fag may be viewed as just an isomorphic copy of B marked �or parameterized�
by a� So 

� itself � prop�� are propositions parameterized by types and objects
c� itself�prop can already be understood as expressing type membership� Their
formal application to the canonical elements TYPE � itself is strictly speaking
redundant but then hj� � cji also has type prop syntactically�

� There is nothing wrong with some terms �objects�� representing types �collections
of objects�� in higher�order logic	
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Note that above interpretation of � itself and TYPE �� � itself could have
been enforced by means of Gordon�HOL�style de�nitions�

	� itself � f�x��Trueg and 	TYPE� itself � � x��True

Unfortunately the �rst one is an object�level type de�nition which is unavailable
at our more abstract meta�level of hol� This is why we prefer to leave � itself
and TYPE� itself unspeci�ed in the �rst place�

It is important to note that there are no hol terms representing type classes
per se� For that we would have to leave hol and conceptually abstract over
the �rst position of hj� � cji� Thus contexts of the form hj � cji could be viewed as
extra�logical representations of actual type predicates�

��� Interpreting the Order�sorted Type System

We are now ready to explain the order�sorted concepts of x��� in terms of hol�
The meaning of primitive type signature components will be de�ned in a quite
obvious manner� Derived notions that depend on these �e� g� sort assignment�
are shown to be consistent with appropriate logical counterparts�

Order�sorted Type Signatures have the following logical content�

Classes c appear as polymorphic constant declarations c �� � itself � prop in
the theory�s signature �cf� x����� Recall that class membership is encoded via
some terms written hj� � cji�

Class inclusion c�  c� is simply expressed point�wise using logical implication
as formula hj� � c�ji � hj� � c�ji�

Sorts s � fc�� � � � � cng are supposed to represent intersections of �nitely many
classes� Thus sort membership � � fc�� � � � � cng can be expressed using con�
junction as hj� � c�ji � � � � � hj� � cnji� The latter term shall be abbreviated as
hj� � fc�� � � � � cngji� Note that this interpretation is well�de�ned independently
of order �or repetition� of c�� � � � � cn�

Sort inclusion s� v s� has been de�ned in terms of class inclusion in x���� To
show that this is compatible with hj� � s�ji � hj� � s�ji in the logic one has to
demonstrate that this formula can be derived in hol under the assumption
of the class inclusions taken from the corresponding relation  of the type
signature� The proof of this fact just relies on some basic deductive properties
of ��

Type arities t �� �s�� � � � � sn� s are simple schematic statements about the image
of type constructors� We express this point�wise as follows�

hj�� � s�ji � � � � � hj�n � snji � hj���� � � � � �n� t � sji

So in ordinary mathematical notation arity declarations would be something
like f�A�� � � � � An� � A and not f �A� � � � � �An � A�

��



Sort Contexts Sorted type variables �s are supposed to express some implicit
restriction to types of certain sorts� Thus formulas �
�s� � �s� � � � �� have to be
interpreted actually under additional assumptions hj�s� � s�ji� hj�s� � s�ji� � � ��

In general given any term or type T  let C�T � denote its set of implicit sort
constraints which shall be also called sort context of T �

Sort Assignment � � s has been de�ned x��� relatively to a given type signature
via a certain set of inference rules� We show compatibility with a corresponding
logical notion� If � � s holds syntactically then C��� 	 hj� � sji is derivable in hol
�having the implicit sort constraints appear as explicit assumptions��

In order to prove this simply mimic the syntactic sort assignment rules of
x��� by suitable logical counterparts� For example the last rule would become�

C��� 	 hj� � s�ji s� v s�

C��� 	 hj� � s�ji

These rules are either logical trivialities or just variants of modus�ponens com�
bined with instantiation recalling from above the meaning of s� v s� and
t �� �s�� � � � � sn� s as certain implications�

Putting all these results together we see that syntactic operations performed
at the type signature level �e� g� during order�sorted uni�cation or type inference�
can be understood as a correct approximation of logical reasoning�

Seen the other way round a simple fragment of the propositional logic of
types within hol is re�ected at the type signature level thus automating some
portions of logical reasoning behind the scenes to the user�s bene�t�

� Class De�nitions and Instantiations

We �nally give the logical meanings of class and instance that have already
been sketched in x����

First the basic mechanism that introduces type classes in a disciplined way�

Class de�nition �� � �� � c �� � itself � prop � 	 hj� � cji � � provided
that c is new and does not occur in � also FV��� � fg and TV��� � f�g�

Theorem�� Class de�nitions are meta�safe�

The proof is very simple� Class de�nitions are already almost well�formed de�nitions

of constants c �� � itself � prop	 Just the equation � hj� � cji � � looks odd at �rst sight�

but is actually equivalent to a proper de�nition � c� itself�prop � �x� itself ��	

We can now explain the class construct which has the general form�

class c  c�� � � � � cn
�� � � � �m
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where c�� � � � � cn are the superclasses of c and ��� � � � � �m the class axioms �with
TV��j� � f�g for all j � �� � � � �m�� This shall be just considered concrete user
interface syntax for the following proper class de�nition�

c �� � itself � prop
	 hj� � cji � hj� � c�ji � � � � � hj� � cnji � ��� � � � � � ��m

where the ��i are the 
�closures of �i �thus ensuring FV���i� � fg��
The following theorems are derivable from this de�nition �simply by taking

the equivalence apart and stripping some 
�s�� The class inclusions c  ci �or
	 hj� � cji � hj� � ciji� the abstract class axioms �j 
�c� �or 	 hj� � cji � �j� and
the class instantiation rule 	�� � �� hj� � cji��

Next is the instance construct which comes in two variants�

instance c�  c� called abstract instantiation
instance t �� �s�� � � � � sn� s called concrete instantiation

provided that the class inclusion or type arity is derivable in the corresponding
theories� 	 hj� � c�ji � hj� � c�ji or 	 hj�� � s�ji�� � ��hj�n � snji � hj���� � � � � �n� t � sji�

The e�ect of instantiations is to augment the current order�sorted type sig�
nature by the stated inclusion c�  c� or type arity t �� �s�� � � � � sn� s�

Theorem	� Class instantiations are meta�safe�

For a proof just note that instance is logically almost vacuous� The �axiomatic� addi�

tions to the type signature have already been derivable beforehand	

� Conclusion

We have seen that simple traditional hol systems �providing object�level type
variables� implicitly contain some propositional language of types that may serve
as an interpretation of type classes type arities and related notions from Haskell�
like type systems� We could even have supported more general quali�ed types

�� notably n�ary type relations as does the programming language Gofer and
recently proposed extensions of Haskell� Thus the whole order�sorted type system
turns out to be just an addition to user convenience without really changing
expressiveness of the logic�

We have also introduced three new safe theory extension mechanisms� over�
loaded constant de�nitions with possible recursion over types class de�nitions
and class instantiations� These have been justi�ed at the purely deductive meta�
logical level without referring to model theory�

One of the most surprising results of this work is simplicity� We did not
have to leave the seemingly old�fashioned hol in favour of full�blown theories of
dependent types� The sort of abstract theories that type classes are capable of
can be o�ered in hol at no additional cost apart from implementation e�orts�
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