
A Formally Founded Description Technique for Business Processes

Veronika Thurner
Department of Computer Science
Technical University of Munich

80290 Munich, Germany
thurner@informatik.tu-muenchen.de

Abstract

As a means of modeling typical system behavior, we
present a description technique for business processes de-
rived from data flow nets and provide it with a formal se-
mantics based on functions and their composition. The for-
malism features black box and glass box view and a concept
of refinement. As it is intuitively understandable and for-
mally well founded, the notation is equally adequate for the
needs of application domain experts and system engineers
in requirements engineering1.

1. Introduction and motivation

Many approaches to requirements engineering involve a
detailed modeling of key aspects such as system structure,
data or behavior. These models are the basis for commu-
nication between expert users and system analysts, and the
foundation for system design and implementation later on
in the system development process. Thus, they are a deci-
sive factor for software quality and correction costs [7].

A basic idea of system modeling is the reduction of com-
plexity by focussing on a single system view and only a
small set of system aspects at a time. In behavior modeling,
a first step consists of the analysis and documentation of
typical system behavior in an exemplaric way. Thus, single
system runs or scenarios are examined.

In many approaches to behavior modeling that deal with
exemplaric system behavior, scenarios are employed for
documenting the interaction of objects, system components
or organizational units (see, for example, message sequence
charts [13], interaction diagrams of Booch [1], sequence di-
agrams of UML [2], or process object schemes [9]). Thus,
scenarios are often arranged according to structural system
aspects. The resulting behavior model is intermingled with,
and dominated by, the system architecture. Consequently,

1This work was supported by the Bayerische Forschungsstiftung.

constraints that are not due to any causal dependencies orig-
inating from the behavioral model itself are added which
restrict the order of process execution and thus the possible
amount of parallelism. Other modeling techniques, such as
activity diagrams in [2] or the process notion of [14], al-
ready include aspects of system state. However, although
this integrated modeling of several system aspects at a time
might still work with small examples, it quickly turns to be
difficult and hard to handle as complexity increases.

In contrast to this, we suggest a task oriented approach to
behavior modeling. Focussing on the system’s major tasks,
we develop a business process model that is cross functional
to the underlying structural organization and which includes
the relevant behavioral context of the system’s environment.
Methodically, we start by modeling single exemplaric sys-
tem runs. As application domain experts find it compara-
tively easy to relate their share of activities in system be-
havior when following a specific example process, this ap-
proach is extremely helpful for capturing and discussing the
users’ view on system behavior and requirements.

We introduce a description technique that supports be-
havior modeling independantly from organizational or ge-
ographical boundaries. It documents causal dependencies
between processes and their execution that are due to the
exchange of messages and events between processes. How-
ever, no artificial sequentialization or other constraints on
the order of process execution are introduced, thus allowing
for a maximum of possible parallelism in process execution.

Our modeling technique includes black box and glass
box view as well as a refinement mechanism which sup-
ports behavior modeling across different levels of abstrac-
tion. Furthermore, we reduce redundancy in our process
model by introducing process types.

To support unambiguity, we introduce a formal seman-
tics based on functions and their composition, which pro-
vides a flexible modeling and abstraction mechanism focus-
ing on data dependencies rather than on partially ordered
sequences of event exchanges between objects. Thus it sup-
ports our modeling intentions stated above.



2. Concrete syntax

We model business processes as a key aspect of system
behavior. By business process, we denote a set of tasks that
consume and produce service results such as data or ma-
terial [15]. The exchange of these service results defines
causal relationships between business processes and tasks.

We focus on exemplaric system behavior, modeling the
execution of process instances. As multiple instances of a
single process may occur within the model of a system, we
introduce process types for reducing redundancy. Based on
the set of defined process types, instances of these types
can be composed into process networks which desribe ex-
emplaric sequences of system behavior. A process type de-
fines the interface, internal behavior and refinement struc-
ture, which are common to all of its instances.

Each of these aspects corresponds to a view on a process
type. The black box view describes a process type’s inter-
face or functionality. The manipulation of data during the
execution of a process is dealt with in the glass box view.
Finally, the refinement view defines the decomposition of a
single process type into a network of process types of finer
granularity.

We provide a notation consisting of graphical and tex-
tual elements. The basic graphical aspects were derived
from data flow nets [8]. Moreover, we incorporate and en-
hance some notation ideas taken from the modeling lan-
guage GRAPES V3 [17]. Textual aspects of our notation
are provided in extended Backus-Naur form as introduced
in [6]. The non-terminals hprocess-typei, htexti, hfunctioni
and hpredicate-expressioni are not specified any further
within this work.

���� Black Box View

Next to the process type’s name, the black box view
specifies the process type’s signature in terms of bundles
of typed input and output ports, as evident and relevant on
the current level of granularity. Both process type and port
names must be unique throughout a model. For reasons of
readability, in the examples throughout this paper we name
a process type’s input and output ports by in and out, re-
spectively, followed by a raised suffix denoting an abbrevi-
ation of the associated process type’s name. Different input
or output ports of a single process type are distinguished
by a numbering index. Figure 1 shows an example of the
graphical representation of a process type.

inwm
1 :

wm
1 :out

money

withdraw_ money

amount

acccountinwm:2

Figure 1. Process type with ports.

When a process type is refined into a process network
in a subsequent step of development, the refined definition
may be supplemented by additional input and output ports
which will not be added to the model’s more abstract levels.

With regard to the distribution of processes to execution
components later on in the development process, roles may
be associated optionally with process types. The role iden-
tifier is designated at the lower border of the process type
symbol, as shown in Figure 2.

in1 :rp
1 :outrp

request_

pin

user_interface

card prompt

Figure 2. Process type and role.

External processes are executed outside of the system
under consideration. As illustrated in Figure 3, we denote
external processes by a dashed process type symbol. Often,
a process types binding is implicitly determined by the as-
sociated role. However, for methodical reasons, it is helpful
to allow an explicit declaration of the process binding. By
default, process types are assumed to be internal.

in1 :ep
1 :outep

pin

enter_

customer

prompt pin

Figure 3. Process type with external binding.

For the black box view of a process instance, the name
of the process type is preceded by the instance identifier in
a separate section of the process symbol (confer Figure 4).
The identifiers of process instances are unique throughout
the whole model of the system.

money

wm1

withdraw_

wm
1

wm
2

in

in

= 100 US$

= 9436028

wm
1out

Figure 4. Process instance and input values.

���� Glass Box View

Whereas the black box view defines a process type’s in-
put/output behavior, the glass box view describes the inter-
nal manipulation of data during the execution of a process
instance as well as pre- and postconditions. The modeling
of nondeterminism is supported.

The glass box view documents any information on the
computation scheme that derives output data from input
data, which is known at the current stage of the modeling
process. In the computation scheme, input and output data
are parameterized by the corresponding port names.



When executing an instance of a process type, specific
values are assigned to its input ports, respecting the port
types which are defined in the corresponding black box
view. Output values are determined by executing the com-
putation scheme specified in the glass box view on the spe-
cific values assigned to the input ports.

In our notation, we do not introduce any graphical sym-
bols for specifying the glass box view, as we do not ex-
pect an adequate gain in readability here. Rather, we use
a textual notation. Depending on the degree of knowledge
that is available on the computation scheme, it is described
either mathematically by specifying a function, or as text
enhanced by some mathematical elements. Pre- and post-
conditions are specified as predicate expressions.

glass box process type hprocess-typei = ff
computes htexti j hfunctioni
pre hpredicate-expressioni
post hpredicate-expressioni

gg

For the glass box view of our example process type
withdraw money, we employ a textual representation
with some mathematical elements.

glass box process type withdraw money = ff
computes outwm

� � fwm
� �inwm

� � inwm
� �, with

fwm
� �inwm

� � inwm
� � �

�

������������
�����������

requested amount of money
if requested amount � ���

requested amount of money
if requested amount � ��� and
account deposit � requested amount

no money
if requested amount � ��� and
account deposit � requested amount

pre true

post true

gg

���� Re�nement View

The refinement view describes how a process type of
coarse granularity is refined by a process network [5], con-
structed from process types of finer granularity. By linking
the output port of one process to the input port of another
process, we connect processes via channels denoted by the
pair of ports �outport� inport�. We restrict our model to
acyclic structures.

Furthermore, the refinement view specifies how input
and output ports of the process type on the coarser level
of granularity are mapped on the input and output ports of
the refining process network. In a correct refinement, all
the ports on the coarser level of granularity are redirected to

corresponding ports on the refining level. Consequently, the
refining process network contains at least the equivalents to
the ports of the coarse grain process type.

Figure 5 illustrates the refinement of process type
withdraw money from our example in Figure 1. Opera-
tor � symbolizes the duplication of the message assigned to
a port and the redirection of the copies.

amount

amount

account

1 :rc

1 :

:2

in

inbd

inbd

money

db_log1 :

1 :rc

out

out

bd

inwm
1 :

inwm:2

*
amount

account

wm
1 :out money

withdraw_money

retrieve_

cash

to_

book_

database

Figure 5. Process type refinement.

Within a refining process network, a single process type
may occur multiply. However, in our graphical represen-
tation these different occurances are distinguished by their
geometrical position within the diagram. Thus, the structure
of connecting channels is unambiguous as well.

When a new instance of a process type is created, it is
assigned an identifier which is not yet assigned to any other
process instance within the model. Furthermore, if a refin-
ing process network is defined for this process type, a cor-
responding refining network of process instances is created.

3. Semantics

The semantics of our description technique for busi-
ness processes is based on functions and their composition.
Compositionality is necessary for formalizing refinement.
We assign a function with adequate input/output signature
to each process type, which formalizes the process type’s
computation scheme. This usage of function composition is
related to computation forms, discussed e.g. in [4].

Some existing approaches to process modeling define a
semantics based on event traces (for example [12]). The
technique of event traces may be applied efficiently for
modeling process networks where the execution of pro-
cesses is partially ordered.

In our notion of processes, however, we also allow mod-
eling on a more abstract level which is especially helpful at
the beginning of the modeling process, when the modelers’
understanding of business processes is still rather vague.
We achieve this by focussing on process causality due to
data dependencies. A data flow from a process A to its
successor process B indicates that at some time during its
processing, process B receives input from process A. How-
ever, we do not restrict process execution by specifying any
relationship between the end of the execution of process A



and the beginning of process execution of B, thus allowing
flexible refinement possibilities of A and B as well as their
interaction at later stages in the modeling process.

This concept of loose dependencies is not supported by
other popular techniques for behavior modeling, such as
petri-nets [16] or statecharts [11], which imply an ordering
of process execution rather than of message exchange. The
concept of interacting processes in [15] introduces another
approach to modeling process interaction without ordering
process execution, but does not provide a formal semantics.

In the following, let PT denote a set of identifiers of
process types, PI a set of identifiers of process instances,
P a set of identifiers of ports, F a set of function symbols,
and S denote a set of data sorts.

���� Semantics of an isolated process type

The black box definition of a process type specifies its
typed input/output functionality, which on the level of se-
mantics corresponds to the signature of the function that is
associated with a process type. Thus, with a process type
p � PT we associate a function fp � F with functionality

fct fp � sinp
�

� � � �� sinp
ip

� �soutp
�

� � � �� soutpop ��

where sinp
�

� � � � � sinp
ip

� S and soutp
�

� � � � � soutpop � S de-

note the sorts associated with input ports inp�� � � � � in
p
ip
� P

and output ports outp�� � � � � out
p
op
� P of process type p.

The body of function f p corresponds to the computation
method that is given by field computes in the glass box def-
inition of a process type. Precondition pre of the process
type is incorporated in the function body as well. On the
level of semantics, process execution is equivalent to the
evaluation of the associated function on specific input val-
ues.

With our example process type withdraw money from
Figure 1, we associate a function

fct fwithdraw money � amount� account � �money��

So far, we assumed our processes to be deterministic.
However, the semantics can easily be generalized to cover
nondeterministic processes as well, by associating with a
process type not a single function, but a set of functions.
For every single execution of an instance of this process
type, we nondeterministically choose one function of the
associated set, which is then executed to compute the result
in a deterministic fashion.

���� Semantics of a process network

Via the concept of refinement, a process type is repre-
sented in more detail by a network of process types of finer

granularity that are linked via some of their input and output
ports. On the level of semantics, process type refinement
corresponds to expressing a function by the composition of
other functions. When the refinement level contains sup-
plementary input and output ports that were not present on
the coarser modeling level, a restriction of the input/output
functionality of the composition of refining functions is nec-
essary as well.

In Figure 5, our example process withdraw money

from Figure 1 is refined into a process network which
is constructed from the process types retrieve cash and
book to database. With the refining process network, we
associate function f ref�withdraw money� with signature

fct f ref�withdraw money� �
amount� account � �money � db log��

This signature of the refining function may be restricted to
the signature of the original function fwithdraw money as
follows.

fwithdraw money � fref�withdraw money�j�����

Here, indices at the left of restriction operator j��� sym-
bolize input restriction, whereas indices at the right de-
note a restriction of output. Thus, restriction �� � � �
in the above example indicates that the coarse level func-
tion withdraw money uses inputs � and � and compo-
nent � of the output tuple of the refining process network
ref�withdraw money�.

In the refining process network, process types
retrieve cash and book to database occur. With
these, functions f retrieve cash and f book to database are
associated, with the following signatures.

fct f retrieve cash � amount� �money�
fct f book to database � amount� account� �db log�

Function f ref�withdraw money� may be expressed by
composing its refining functions. The first component of
the result tuple of f ref�withdraw money� is determined by
function f retrieve cash, the second component by function
f book to database according to

fref�withdraw money��inwm
� � inwm

� � �
�fretrieve cash

� �inwm
� �� f book to database

� �inwm
� � inwm

� ��

for input parameters of sort amount assigned to port
inwm

� and of sort account assigned to port inwm
� . Here,

fpo �in�� � � � � inip� denotes the oth component of the result-
ing output tuple �o�� � � � � oop� of fp�in�� � � � � inip�, where
� � o � op holds.

Analogously to multiple refinement of process types, the
composition of functions across different levels of hierarchy
may be executed several times.



4 Syntactic enhancements: switches

For modeling purely exemplaric system behavior, deci-
sion statements with different possible outcomes within a
process network are not necessary, since we model merely
that system behavior that was actually executed in a specific
exemplaric system run. Possible alternatives of the specific
system run which were not actually executed are not mod-
eled. Rather, the different observed system runs are mod-
eled as a set of exemplaric behavior.

Process networks that differ only within a few sections,
but which otherwise coincide with respect to structure and
content, we refer to as variants. For reducing redundancy
within the model of process networks obtained from exem-
plaric system runs, we carry out some abstraction and com-
prise the set of variants within a single process network. De-
pending on the degree of similarity, alternative process net-
works may either be united to their superset, or combined
by introducing decision processes, which we call switches.

<(amount 400)

in amount1 :rc

db_log1 :sbdout

money1 :rcout

db_log1 :bdout

in amount1 :rc

db_log1 :sbdout

money1 :rcout

db_log1 :bdout

account

amount

:2

1 :in

in

*amount

account account

amountsbd
1 ) :
sbd
2 ) :

in

in

2 ,

,3

(out

(out
account

amount1 :

:2

bd

bd

in

in

amount1 :in

money1 :out

retrieve_cash

book_to_database

cd1

cd1

cd1

cd1

crc1

crc1

account

amount

:2

1 :in

in

*amount

account account

amount

ack1 ) :
sbd
1 ) :
sbd
2 ) :

in

in

in

,1

2 ,

,3

(out

(out

(out
account

amount1 :

:2

bd

bd

in

in

cd2

cd2

cd2

crc2

amount1 :in

money1 :out

crc2

crc2

retrieve_cash

book_to_database
cd2

cd2

(amount > 400)

2deposit

check_

deposit

check_

1

book_to_

retrieve_

book_to_

retrieve_

conditional_

cash 1

secure_

database

conditional_

cash 2

secure_

database

Figure 6. Alternative process networks.

Figure 6 illustrates process networks on the second re-
finement level of our example process withdraw money.
Depending on the values of the input parameter of sort
amount, different variants of process type check deposit

and conditional retrieve cash are executed, which pro-
duce different results or consume different input.

Each variant is a process type. We symbolize the sim-
ilarity of alternative process types by type names that dif-
fer merely in a raised index. The variants of process types
check deposit and conditional retrieve cash in Figure 6
correspond to the following signatures.

fct f check deposit� �
amount� account � �amount� account�

fct f check deposit� �
amount� account � �ack � amount� account�

(1)
fct f conditional retrieve cash� � amount� �money�

fct f conditional retrieve cash� �amount� ack� �money�
(2)

���� Superset of alternative processes

The alternative process networks of our example differ
merely in omitting a single data flow. Otherwise, they are
of identical structure and meaning. Alternative process net-
works which are similar in this sense may be united to a sin-
gle process network, as illustrated in Figure 7. We achieve
this by combining alternative process types to a single new
process type which unites the previous alternatives. Us-
ing these uniting process types, the uniting process network
may be defined.

amount1 :crcinin amount1 :rc

db_log1 :sbdout

money1 :crcout money1 :rcout

db_log1 :bdout

account

amount

:cd
2

1 :cdin

in

*amount

account account

amount

ack1 ) :crc

sbd
1 ) :
sbd
2 ) :

in

in

in

cd ,1

cd
2 ,
cd ,3

(out

(out

(out
account

amount1 :

:2

bd

bd

in

in

check_

deposit

book_to_database

retrieve_cash

database

secure_

book_to_

conditional_

retrieve_

cash

Figure 7. Superset of alternative processes.

Note that uniting process variants into their superset does
not add any new syntactic concepts. Thus, we can model
this kind of process union without adding additional aspects
to our description technique introduced in section 2.

Here, alternative process types are combined to form a
single process type, whose input and output is made up of
the union of all inputs and outputs of the different alterna-
tives. In this union, those ports of different process types
which correspond in their meaning are identified and united
to a single port in the new process. Thus, the activity of unit-
ing ports is not carried out merely on the syntactical level.
Rather, it requires a systematic analysis of the meaning and
usage of the separate ports.

The different alternatives of process execution do not
show in the graphical representation of the uniting process
in Figure 7. However, in the computation scheme of the
glass box view as well as in the associated functions on the
level of semantics, these variants are reflected as different
cases in decision statements.

In the uniting process network, the different al-
ternatives are encapsulated within the process types
conditional retrieve cash and check deposit. The func-
tions corresponding to these process types are of the follow-
ing signatures.

fct f check deposit �
amount� account � �ack � amount� account�
fct f conditional retrieve cash �
amount� ack � �money�

In these functions, the different alternatives are incorpo-
rated as decisions. For the uniting process types, the associ-
ated function may be expressed with respect to the functions



of finer granularity.

fconditional retrieve cash�incrc� � incrc� � �

�

�
fconditional retrieve cash��incrc� � iff incrc� � ���

fconditional retrieve cash��incrc� � incrc� � iff incrc� � ���

f check deposit�incd� � incd� � �

�

����
���
outcd� � f

check deposit�

� �incd� � incd� � �

outcd� � f
check deposit�

� �incd� � incd� � iff incd� � ���

fcheck deposit��incd� � incd� � iff incd� � ���

For input parameters of sort amount assigned to port
inwm� and of sort account assigned to port inwm

� , the func-
tions that are associated with the processes in our example
are defined as follows.

fref�ref�withdraw money������inwm
� � inwm

� � �

�fconditional retrieve cash�

� �inwm
� ��

fsecure book to database
� �fcheck deposit�

� �inwm
� � inwm� ��

f
check deposit�

� �inwm
� � inwm� ���

fref�ref�withdraw money������inwm
� � inwm

� � �

�fconditional retrieve cash�

� �inwm
� �

f
check deposit�

� �inwm
� � inwm

� ���

fsecure book to database
� �fcheck deposit�

� �inwm
� � inwm� ��

f
check deposit�

� �inwm
� � inwm� ���

For the uniting superset (confer to Figure 7) of the simi-
lar process networks, we get the following function.

fref�ref�withdraw money���inwm
� � inwm

� � �
�fconditional retrieve cash

� �inwm
� �

f
check deposit
� �inwm

� � inwm
� ���

fsecure book to database
� �fcheck deposit

� �inwm
� � inwm

� ��

f
check deposit
� �inwm

� � inwm
� ���

When the decision statements by which the alternative
functions are united do not partition the possible combi-
nations of parameter values into disjunct sets, the uniting
process type turns to be nondeterministic. In this case, as
previously pointed out in section 3.1, we associate a set of
functions with the uniting process type. Each of these func-
tions covers all possible combinations of parameter values,
where in those cases of more than one possible behavior,
each function restricts itself to a single behavior possibil-
ity. On the other hand, each of the behavioral possibilities
must be covered by at least one of the functions. For each
instance of an execution of a nondeterministic process in-
stance, one function of the corresponding set of functions is
selected in a nondeterministic way, and then evaluated. Al-
together, the set of associated functions models exactly the
behavior of the nondeterminstic process type.

���� Switches

Different process networks may be congruent in certain
subparts, but may differ to a higher extent in other areas. For
example, process networks which start identically may con-
tinue differently regarding structure and content, in the case
that depending on the evaluation of parameter values at a
certain point, different possible subsequent process subnet-
works may be pursued. In our example in Figure 6, different
variants of check deposit may be executed, each of which
is succeeded by a different process network.

When alternative process networks differ greatly in their
input/output functionality in some areas, it is suitable to
keep them as process variants rather than uniting them to
their superset. These process variants may be encapsulated
by input and/or output switches.

in1 :cd1

in :cd1
2

1 :outcd1

:outcd1
2

in1 :cd*

in :cd*
2 in1 :cd2

:outcd2
3

:outcd2
2

1 :outcd2

in :cd2
2 account

amount amount

accountaccount deposit 1

check_

*
amount

account

deposit 2

amount ack

amount

account

check_

Figure 8. Differing output functionality.

As an example, Figure 8 illustrates process types which
coincide in their meaning and their input functionality, but
differ in output functionality, as described in equation 1. We
unite these alternative process types into an output switch
whose black box view is shown in Figure 9. Note that the
syntax of the glass box description of switch process types
is identical to that of regular process types.

cdS:out4
:outcdS

5

:outcdS
3

in1 :cdS
1 :outcdS

:outcdS
2

amount

account

deposit

check
S

in1 :cdS

400

400

in1
cdS

in1
cdS

c2 amount

account

ack

amount c1

c1

c2

account

Figure 9. Output switch

When the output switch is integrated within a process
network, the process network splits into different process
networks succeeding the output switch.

The function associated with an output switch is of the
same input functionality as each of the functions of the orig-
inal alternative process types. However, its output function-
ality consists of the cartesian product of output functionali-
ties of the orignial functions, which yields for our example

fct f check depositS � amount� account �
� �amount� account� ack � amount� account��



Then, function f check depositS may be expressed using
the original alternative functions as follows.

fcheck depositS �incdS� � incdS� � �

�

���������
��������

out� � f
check deposit�

� �incdS� � incdS� ��

out� � f
check deposit�

� �incdS� � incdS� � iff incdS� � ���

out� � f
check deposit�

� �incdS� � incdS� ��

out� � f
check deposit�

� �incdS� � incdS� ��

out� � f
check deposit�

� �incdS� � incdS� � iff incdS� � ���

According to this definition, we assign the results of the
corresponding subfunction to those output ports that corre-
spond to the fulfilled decision case. Output ports of deci-
sion cases that do not evaluate to true have empty output as
value, so that subsequent functions will not be triggered for
execution. Thus, when processes and functions are linked
to form a network, only those branches of the process net-
work are executed which correspond to decision cases that
evaluate to true.

In our example, the decision statement provides for dis-
junct cases in evaluation of variable assignments. However,
if cases should overlap, the resulting nondeterministic be-
havior is resolved by splitting it into an equivalent set of
functions, as described in section 4.1.

in1 :crc1

in1 :crc2

in :crc2
2 1 :outcrc2

1 :outcrcX

1 :outcrc1

conditional_

retrieve_

cash

conditional_

retrieve_

cash 1

2

xor

amount

amount

acc_id

money

money

money

Figure 10. Differing input functionality.

Figure 10 illustrates an example of similar process types
which coincide in their output functionality but differ in
their input functionality, as described in equation 2. We
unite them into an input switch.

We introduce the supplementary function xor��� � � � � ��
for uniting equally typed channels. If only one of the input
channels of xor holds a defined value, this value is output
on the outgoing channel. Whenever more than one input
channel is assigned with a defined value, xor nondetermin-
istically selects one channel whose value ist output as result.

Function xor can easily be extended to tuples of input
channels. Channel tuples with equal type tuples are united
to a single output tuple of corresponding tuple type. The
functions output consists of the values of the input tuple
that is assigned with defined values. If more than one input
tuple is assigned with defined values, xor nondeterminis-
tically selects one of these channel tupels and outputs the
corresponding values.

We unite our alternative process types of Figure 10 by
introducing an input switch, as illustrated in Figure 11.

in1 :crcS

1 :outcrcS

in :crcS
3

in :crcS
2

am1

am2

400

400

d1

d2

d1

d2account

amount

amount money
conditional_

retrieve_

cash S

Figure 11. Input switch.

An input switch that is integrated in a process network
unites different preceding process networks to a single suc-
ceeding process network.

The function that is associated with the input switch is of
the same output functionality as each of the functions cor-
responding to the original process types. However, its input
functionality is the cartesian product of input functionalities
of the original functions, as described by

fct f conditional retrieve cashS �
amount� amount� account � �money��

Function f conditional retrieve cashS may be expressed in
terms of the original alternative functions as follows.

fconditional retrieve cash�incrc� � incrc� � incrc� � �

�

����
���
fconditional retrieve cash��incrc� �

iff incrc� � ��� � incrc� � ���

fconditional retrieve cash��incrc� � incrc� �
iff incrc� � ��� � incrc� � ���

When the different functions do not define disjunctive
cases of parameter assignments, we split up the resulting
nondeterministic behavior of the input switch into an equiv-
alent set of deterministic functions.

*

in :1
cd

in1 :crc

*

database

book_to_

secure_xor

xor

1 :outsbtd

in1 :crc

in :2
crc

in :crc
3

in1 :sbtd

in :sbtd
2

in :cd
1

incd
5

in :cd
2

in :cd
3

in :cd
4

1 :outcrc

in :2
cd accountaccount

depositS

check_

am1

am2

400

400

d1

d2

c1 am 400

400amc2

c2

amount

amount conditional_

retrieve_

cash S

d1

d2

account
db_log

amount

amount

ack

account

amountc1

account:

money

amount

amount
ack

amount

Figure 12. Process network with switches.

Figure 12 shows the second refinement level of our ex-
ample process withdraw money using input and output
switches. On the level of semantics, this process network



corresponds to the following function definition.

fref�ref�withdraw money��S �inwm
� � inwm

� � � �

f conditional retrieve cashS

� �inwm
� � inwm

� �

f
check depositS

� �inwm
� � inwm

� ���
fsecure book to database�

xor�fcheck depositS

� �inwm
� � inwm� ��

f
check depositS

� �inwm
� � inwm� ���

xor�fcheck depositS

� �inwm
� � inwm� ��

f
check depositS

� �inwm
� � inwm� ����

Process types with similar meaning but differing input
and output functionality may be united into an IO-switch
which combines input and output switch into a single unit-
ing process type.

5. Conclusions and outlook

We presented a semantically well founded description
technique for modeling typical system behavior in a way
that is independant from organizational or geographical
boundaries. Furthermore, we provided a refinement mech-
anism which supports behavior modeling across different
levels of abstraction. Our modeling technique documents
causal dependencies among process execution that are due
to the communication of messages and events between pro-
cesses, without introducing any additional artificial sequen-
tialization. Thus we allow for a maximum of parallelism in
process execution that conforms with the required causality
of communication.

So far, we have provided a formally founded descrip-
tion technique for exemplaric system behavior. In a next
step, we will move from a set of single process runs to-
wards processes instances that are executed more than once
within a single system run. Thus we need a notion of pro-
cess state or memory, and consequently adapt our semantics
to stream processing functions that work on histories of in-
put and ouput messages (see, for example, [14] and [3]).

Finally, when assigning certain aspects of system be-
havior to the respective system modules for execution in
later stages of the system development process, we leave the
cross functional, exemplaric view of business process mod-
eling and turn to modeling the complete behavior of single
system components or objects. At this stage, we employ
automata or state machines ([10] for modeling component
behavior.

The methodic and semantic integration of these ap-
proaches is subject of ongoing research.

6. Acknowledgements

I thank Wolfgang Schwerin, Manfred Broy and Bernhard
Rumpe for many fruitful discussions.

References

[1] G. Booch. Object-Oriented Analysis and Design with Appli-
cations. Benjamin Cummings, 1994.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Method
Language – Notation Guide. Rational Software Corporation,
Santa Clara, CA., 1.1 c edition, July 1997.

[3] M. Broy. A theory for nondeterminism, parallelism, commu-
nication and concurrency. Technical report, Habilitationss-
chrift, Fakultät für Mathematik und Informatik, Technische
Universität München, 1982.

[4] M. Broy. Informatik – Eine grundlegende Einführung, Teil
1: Problemnahe Programmierung, volume 1. Springer-
Verlag, Berlin, 1992.

[5] M. Broy. (inter-)action refinement: The easy way. In
F. Bauer, M. Broy, E. Dijkstra, D. Gries, and C. Hoare,
editors, Program Design Calculi, NATO ASI Series F:
Computer and System Sciences, Vol. 118, pages 121–158.
Springer-Verlag, 1993.

[6] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann,
D. Nazareth, F. Regensburger, O. Slotosch, and K. Stolen.
The requirement and design specification language SPEC-
TRUM – an informal introduction, part ii. Technical Report
TUM-I9312, Technische Universität München, Institut für
Informatik, München, May 1993.

[7] A. Davis. Software Requirements – Objects, Functions, and
States. Prentice-Hall International, Inc., Englewood Cliffs,
New Jersey, 1993.

[8] T. DeMarco. Structured Analysis and System Specifica-
tion. Prentice-Hall International, Inc., Englewood Cliffs,
New Jersey, 1979.

[9] O. Ferstl and E. Sinz. Ein vorgehensmodell zur ob-
jektmodellierung betrieblicher informationssysteme im se-
mantischen objektmodell (som). In Bamberger Beiträge
zur Wirtschaftsinformatik, Nr. 5. Universität Bamberg, July
1991.

[10] R. Grosu, C. Klein, B. Rumpe, and M. Broy. State transition
diagrams. Technical Report TUM-I9630, Technische Uni-
versität München, Institut für Informatik, München, June
1996.

[11] D. Harel. Statecharts – a visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–274, 1987.

[12] C. Hoare. Communicating Sequential Processes. Series in
Computer Science. Prentice Hall International, Inc., Engle-
wood Cliffs, New Jersey, 1985.

[13] ITU-T. Z.120 – Message Sequence Chart (MSC). ITU-T,
Geneva, 1996.

[14] G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing, IFIP’74. North-
Holland, 1974.

[15] H. Österle. Business Engineering – Prozeß- und Systement-
wicklung, volume 1. Springer-Verlag, Berlin, 1995.

[16] W. Reisig. Systementwurf mit Netzen. Springer-Verlag,
Berlin, 1985.

[17] Siemens Nixdorf Informationssysteme AG, München.
GRAPES V3 – Sprachbeschreibung, Mar. 1995.


