
A Formally Founded Description

Technique for Business Processes�

Veronika Thurner

Department of Computer Science� Technical University of Munich

Arcisstr� ��� ����� Munich� Germany

email� thurner�informatik�tu	muenchen�de

December ��� ���


Abstract

As a means of modeling typical system behavior� we derive from data �ow nets a description technique

for business processes and provide it with a formal semantics based on functions and their composition�

Our description formalism features black box and glass box view on system processes� as well as a concept

of re�nement which supports behavior modeling across several levels of abstraction� Thus we provide a

modeling mechanism that is both easy to understand intuitively and formally well founded� and therefore

equally adequate for the needs of application domain experts as well as system engineers in requirements

engineering�

� Introduction and motivation

Many approaches to requirements engineering involve a detailed modeling of characteristic system
aspects such as structure� data or behavior� These models are a vital means of communication
between expert users and system analysts� Also� they are the basis for system design and im�
plementation taking place in later stages of the system development process� Consequently� the
quality of requirements speci�cations is a decisive factor for software quality and correction costs
�Dav����

A basic idea of system modeling is the reduction of complexity by focussing on a single system view
and only a small set of system aspects at a time� In behavior modeling� a �rst step consists of the
analysis and documentation of typical system behavior in an exemplaric way� Thus� single system
runs or scenarios are examined�

In many approaches to behavior modeling that deal with exemplaric system behavior� scenarios are
employed for documenting the interaction of objects� system components or organizational units
�see� for example� message sequence charts �IT�	�� interaction diagrams of Booch �Boo�
�� sequence
diagrams of UML �BJR���� or process object schemes �FS���� Thus� scenarios are often arranged
according to structural system aspects� so that the behavior model is always intermingled with�
and dominated by� the system architecture� Therefore� additional constraints are added to the
behavior model which restrict the order of process execution and consequently the possible amount
of parallelism� although they represent constraints that are not due to any causal dependencies

�This work was supported by the Bayerische Forschungsstiftung�

�



originating from the behavioral model itself� Other techniques� such as activity diagrams in �BJR���
or the process notion of �Kah�
�� already include aspects of system state in their models� However�
although this integrated modeling of several di�erent system aspects at a time might still work with
small examples� it quickly turns to be di�cult and hard to handle as system complexity increases�

In contrast to this� we apply a task oriented point of view in behavior modeling� Focussing on
the major tasks of the system under consideration� we develop a business process model that is
cross functional to the underlying structural organization and which includes the relevant behavioral
context of the system�s environment� Methodically� we begin our behavior modeling by documenting
single runs of exemplaric system behavior� As the application domain experts �nd it comparatively
easy to relate their share of activities in system behavior when following a speci�c example process�
this approach is extremely helpful for capturing and discussing the users� view point on system
behavior and the related requirements�

To document our model of typical system behavior� we introduce a description technique that
supports behavior modeling in a way that is independant from organizational or geographical
boundaries� This modeling technique documents causal dependencies between process and their
execution that are due to the exchange of messages and events between processes� However� we do
not introduce any additional arti�cial sequentialization or other constraints on the order of process
execution� thus allowing for a maximum of possible parallelism in process execution�

Our modeling technique includes both a black box and a glass box view on business processes�
Furthermore� we enhance our description formalism with a re�nement mechanism which supports
behavior modeling across di�erent levels of abstraction� To reduce redundancy in our process
model� we base our process documentation on the de�nition of process types�

Finally� to allow unique and unambiguous modeling and to precisely relate our description technique
to models of other system views� we provide a formal semantics to our description technique� based
on functions and their composition� This type of semantics is suitable for supporting our modeling
intentions stated above� as it provides a �exible modeling and abstraction mechanism focusing on
data dependencies rather than on partially ordered sequences of events that are exchanged between
objects�

� Concrete syntax of a description technique for business pro�

cesses

We use business processes for modeling system behavior in an exemplaric way� focussing on se�
quences of the execution of process instances� As multiple instances of a single process may occur
within the model of a system� we introduce process types for reducing redundancy� A process type
de�nes the interface� internal behavior and re�nement structure� which are common to all instances
of a speci�c process type�

Each of these three aspects corresponds to a certain view on a process type� In the black box
view� the interface describes the functionality of the process type� The internal behavior� i�e� the
manipulation of data during the execution of a process is dealt with in the glass box view� Finally�
the re�nement view de�nes the decomposition of a single process type into a network of process
types� or� the other way round� the composition of processes types of a �ner granularity into a
network which realizes a process type of a coarser level of granularity�

Based on the set of de�ned process types� instances of these types can be composed into process
networks which desribe sequences of system behavior in an exemplaric way� The identi�ers of
process instances are unique throughout the whole model of the system�

We provide a notation that consists of graphical as well as of textual elements� For the graphical
aspects of our notation� we use a derivative of data �ow nets which were introduced in �DeM����
Moreover� we incorporate and enhance notation ideas taken from those parts of the modeling

�



language GRAPES V� �Sie��� that are relevant for business process modeling� Textual aspects of
our notation are provided in extended Backus�Naur form as introduced in �BFG����� The non�
terminals hprocess�typei� hfunctioni and hpredicate�expressioni are not speci�ed any further within
this work�

��� Black Box View

The de�nition of the black box view speci�es the signature of a process type as evident and relevant
on the current level of granularity� Here� a process type�s name is determined as well as its bundles
of typed input and output ports� In the case that a process type is re�ned into a process network
within a subsequent step of development� the de�nition on the re�ned level may be supplemented
by additional input and output ports� However� these additional ports do not have to be added to
the hierarchically higher levels of granularity�

Optionally� a role may be associated with a process type� Roles are auxiliary concepts which
link process types to physical actors carrying out instances of these process types� A role can be
designed for realization by one or more human beings� a hardware�software system or a combination
thereof� Roles group processes according to di�erent� often pragmatic aspects such as quali�cation�
or authorization for usage or decision taking that are necessary for process execution� Another
aspect of grouping processes by roles is the encapsulation of data that are to be manipulated by
the di�erent processes that are associated with a role� Methodically� roles are usually introduced
towards the end of requirements engineering and during design� preparatory to distributing the
execution of process instances to the di�erent system components�

Another optional feature states whether a process is executed within the system or by the system�s
environment� Respectively� processes are marked as internal or external� Often� this binding is
implicitly determined by the role that is associated with the process type� However� for methodical
reasons� it is helpful to allow an explicit declaration whether the execution of instances of a certain
process type takes place internally or externally to the system under consideration� By default�
process types are assumed to be internal�

inwm
1 :

wm
1 :out

money

withdraw_ money

amount

acccountinwm:2

�a process type withdraw money

in1 :rp
1 :outrp

request_

pin

user_interface

card prompt

�b process type request pin with associ�
ated role user interface

in1 :ep
1 :outep

pin

enter_

customer

prompt pin

�c process type enter pin with associated
role customer and external binding

money

wm1

withdraw_

wm
1

wm
2

in

in

= 100 US$

= 9436028

wm
1out

�d process instance wm� of process type
withdraw money� and assigned input
values

Figure �� Black box de�nitions of process types and a process instance

Figure ��a shows an example of the graphical representation of a process type�

With regard to the distribution of processes to execution components later on in the development
process� roles may be associated optionally with process types� The name of the role is designated
at the lower border of the process type symbol� as shown in Figure ��b�

External process types are executed outside of the system under consideration� As illustrated in
Figure ��c� we denote them by a dashed circumference of the process type symbol�

In the graphical representation of the black box view of a process instance� the name of the process
type is preceded by the identi�er of the process instance in a separate section of the process symbol
�confer Figure ��d�

�



Whereas the black box view merely speci�es the input�output behavior of a process type� the glass
box view describes the internal manipulation of data within a process�

��� Glass Box View

The glass box view describes the internal manipulation of data during the execution of a process in�
stance� The modeling of nondeterminism is supported� Furthermore� the glass box view documents
pre� and postconditions of a process execution�

Thus� the glass box view documents any information on the computation scheme that derives output
data from input data� which is known at the current stage of the modeling process� Within a process
type�s computation scheme� input and output data are parameterized by the corresponding port
names� If necessary� local variables may be introduced� Depending on the degree of knowledge that
is available in the computation method� the scheme may be described informally by structured
textual comments� or more formally in mathematical notation�

Moreover� pre� and postconditions of process execution are de�ned� An instance of a process type
is executed only if its precondition is ful�lled� with the precondition being a predicate over the
process instance�s input parameters� Correspondingly� when the execution of a process instance
is completed� the associated postcondition holds� The postcondition is given as a predicate over
input and output parameters of the process instance�

When executing an instance of a process type� speci�c values are assigned to its input ports�
respecting the port types which are de�ned in the corresponding black box view� Output values
are determined by executing the computation scheme speci�ed in the glass box view� using the
speci�c values that are assigned to the input ports�

In our notation� we do not introduce any graphical symbols for de�ning the glass box view on
process types� as we do not expect an adequate gain in readability and understandability at this
point� Thus� we use a textual notation� where the manipulation of data may be described either
mathematically by specifying a function� or as text which may be enhanced by mathematical
elements� Pre� and postconditions are speci�ed as predicate expressions�

glass box process type hprocess�typei � ff
computes htexti j hfunctioni
pre hpredicate�expressioni
post hpredicate�expressioni

gg

The glass box view of our example process type withdraw money may be given as follows� where
we employ a textual representation with some mathematical elements for de�ning the computation
method�

glass box process type withdraw money � ff
computes outwm� � fwm� �inwm� � inwm� � with

fwm� �inwm� � inwm�  �

�����������
����������

requested money if requested amount smaller than 
��
requested money if requested amount greater than 
��

and account deposit greater than
or equal to requested amount

no money if requested amount greater than 
��
and account deposit smaller than
requested amount

pre true

post true

gg






��� Re�nement View

The re�nement view describes how a process type of coarse granularity is re�ned by a process
network �Bro���� Such a process network is constructed from process types of �ner granularity�
They are connected via interfaces which were de�ned in the black box view� by connecting an
output port of one process to an input port of another process� thus building an internal channel�
A channel is denoted by the pair of its ports according to �outport� inport� We restrict our model
to acyclic structures�

Furthermore� the re�nement view speci�es how input and output ports of the process type on
the coarser level of granularity are mapped on the input and output ports of the re�ning process
network� In a correct re�nement� all the ports on the coarser level of granularity are redirected to
corresponding ports on the re�ning level� Consequently� the re�ning process network contains at
least the equivalents to the ports of the coarse grain process type�

Figure � illustrates the re�nement of process type withdraw money from our example in Figure
��a�

amount

amount

account

1 :rc

1 :

:2

in

inbd

inbd

money

db_log1 :

1 :rc

out

out

bd

inwm
1 :

inwm:2

*
amount

account

wm
1 :out money

withdraw_money

retrieve_

cash

to_

book_

database

Figure �� Re�nement of process type withdraw money

Operator � symbolizes the duplication of the message assigned to a port� and the redirection of the
copies to several subports on the re�nement level�

Possibly� within a re�ning process network� a single process type may occur multiply� However�
in our graphical representation these di�erent occurances may easily be distinguished by their
geometrical position within the diagram� Thus as well� the structure of connecting channels may
be de�ned without ambiguities�

When a new instance of a process type is created� it is assigned an identi�er which is not yet assigned
to any other process instance within the model� Furthermore� if a re�ning process network is de�ned
for this process type� a corresponding re�ning network of process instances is created as well�

� Semantics

The semantics of our description technique for business processes is based on functions and their
composition� Compositionality is necessary for formalizing re�nement� or� if seen from another
angle� the composition of single processes to a process network� This usage of function composition
is related to computation forms which are discussed e�g� in �Bro����

In the de�nition of semantics� we assign a function with adequate input�output signature to each
process type� This function formalizes the computation scheme associated with the process type�

Some existing approaches to process modeling de�ne a semantics based on event traces �for example
�Hoa���� The technique of event traces may be applied e�ciently for modeling process networks
where the execution of processes is partially ordered�

In our notion of processes� however� we also allow modeling on a more abstract level which is
especially helpful at the beginning of the modeling process� when the modelers� understanding of
business processes is still rather vague� We achieve this by focussing on process causality due to

�



data dependencies� A data �ow from a process A to its successor process B indicates that at some
time during its processing� process B receives input from process A� However� we do not restrict
process execution by specifying any relationship between the end of the execution of process A and
the beginning of process execution of B� thus allowing �exible re�nement possibilities of A and B

as well as their interaction at later stages in the modeling process�

In the following� let

� PT denote a set of identi�ers of process types�

� PI denote a set of identi�ers of process instances�

� P denote a set of identi�ers of ports�

� F denote a set of function symbols� and

� S denote a set of data sorts�

��� Semantics of an isolated process type

The black box de�nition of a process type speci�es the typed input�output functionality of a process
type� On the level of semantics� this aspect corresponds to the de�nition of the signature of the
function that is associated with a process type� Thus� with a process type p � PT we associate a
function fp � F with functionality

fct fp � sinp
�

� � � �� sinpip
�� �soutp

�

� � � �� soutpop �

where� respectively� sinp
�
� � � � � sinpip

� S and soutp
�
� � � � � soutpop � S denote the sorts associated with

input ports inp�� � � � � in
p
ip
� P and output ports outp�� � � � � out

p
op � P of process type p�

The computation scheme that corresponds to process type p is speci�ed by the body of function
fp� The explicit documentation of the function body corresponds to the computation method that
is given by �eld computes in the glass box de�nition of a process type� Precondition pre of the
process type is incorporated in the function body as well�

With our example process type withdraw money from Figure ��a� we associate a function
fwithdraw money whose functionality

fct fwithdraw money � amount� account �� �money

mirrors exactly the input�output situation of the corresponding process�

On the level of semantics� process execution is equivalent to the evaluation of the associated function
on speci�c input values�

So far� we assumed our processes to be deterministic� However� the semantics can easily be gener�
alized to cover nondeterministic processes as well� We achieve this by associating with a process
type not a single function� but a set of functions� For every single execution of an instance of
this process type� we nondeterministically choose one function of the associated set� which is then
executed to compute the result in a deterministic fashion�

��� Semantics of a process network

Via the concept of re�nement� a process type is represented in more detail by a process network�
Within this process network� process types of �ner granularity are linked by connecting some of
their input and output ports�

On the level of semantics� re�nement of a process type to a process network corresponds to rep�
resenting a function by the composition of other functions� When the re�nement level contains
supplementary input and output ports that were not relevant or not yet known on the coarser

	



levels of re�nement� a restriction of the input�output functionality of the composition of re�ning
functions is necessary as well�

In Figure �� our example process withdraw money from Figure ��a is re�ned into a process network
which is constructed from the process types retrieve cash and book to database� With the re�ning
process network� we associate function f ref�withdraw money with signature

fct f ref�withdraw money� � amount� account �� �money � db log�

This signature of the re�ning function f ref�withdraw money� may be restricted to the signature of the
original function fwithdraw money as follows�

fwithdraw money � f ref�withdraw money�j�����

Here� indices at the left of resctrction operator j��� symbolize input restriction� whereas indices at
the right denote a restriction of output�

In the re�ning process network� process types retrieve cash and book to database occur� With
these� functions f retrieve cash and f book to database are associated� with the following signatures�

fct f retrieve cash � amount �� �money
fct f book to database � amount� account �� �db log

Function f ref�withdraw money� may be expressed by composing its re�ning functions� The �rst
component of the result tuple of f ref�withdraw money� is determined by function f retrieve cash� the
second component by function f book to database according to

f ref�withdraw money��inwm� � inwm�  � �f retrieve cash
� �inwm� � f book to database

� �inwm� � inwm� 

for input parameters of sort amount assigned to port inwm� and of sort account assigned to port
inwm� � Here� fpo �in�� � � � � inip denotes the oth component of the resulting output tuple �o�� � � � � oop
of fp�in�� � � � � inip� where � � o � op holds�

Analogously to multiple re�nement of process types� the composition of functions across di�erent
levels of hierarchy may be executed several times�

� Syntactic enhancements� switches

For modeling purely exemplaric system behavior by using business processes� decision statements
with di�erent possible outcomes within a process network are not necessary� since we model merely
that system behavior that was actually executed in a speci�c exemplaric system run� Possible
alternatives of the speci�c system run which were not actually executed are not modeled� Rather�
the di�erent observed system runs are modeled as a set of exemplaric behavior�

Process networks that di�er only within a few sections� but which otherwise coincide with respect
to structure and content� we refer to as variants� For reducing redundancy within the model
of process networks obtained from exemplaric system runs� we carry out some abstraction and
comprise the set of variants within a single process network� Depending on the degree of similarity�
alternative process networks may either be united to their superset� or combined by introducing
decision processes� which we call switches�

Figure � illustrates process networks on the second re�nement level of our example process
withdraw money� Depending on the values of the input parameter of sort amount� di�erent
variants of process type check deposit and conditional retrieve cash are executed� which produce
di�erent results or� respectively� consume di�erent input�

Each variant is a process type� We symbolize the similarity of alternative process types by type
names that di�er merely in a raised index� The variants of process type check deposit in Figure �

�



<(amount 400)

in amount1 :rc

db_log1 :sbdout

money1 :rcout

db_log1 :bdout

in amount1 :rc

db_log1 :sbdout

money1 :rcout

db_log1 :bdout

account

amount

:2

1 :in

in

*amount

account account

amountsbd
1 ) :
sbd
2 ) :

in

in

2 ,

,3

(out

(out
account

amount1 :

:2

bd

bd

in

in

amount1 :in

money1 :out

retrieve_cash

book_to_database

cd1

cd1

cd1

cd1

crc1

crc1

account

amount

:2

1 :in

in

*amount

account account

amount

ack1 ) :
sbd
1 ) :
sbd
2 ) :

in

in

in

,1

2 ,

,3

(out

(out

(out
account

amount1 :

:2

bd

bd

in

in

cd2

cd2

cd2

crc2

amount1 :in

money1 :out

crc2

crc2

retrieve_cash

book_to_database
cd2

cd2

(amount > 400)

2deposit

check_

deposit

check_

1

book_to_

retrieve_

book_to_

retrieve_

conditional_

cash 1

secure_

database

conditional_

cash 2

secure_

database

Figure �� Alternative process networks

correspond to the following signatures�

fct f check deposit� � amount� account �� �amount� account

fct f check deposit� � amount� account �� �ack � amount� account
��

Process type conditional retrieve cash occurs in two variants with the following functionalities�

fct f conditional retrieve cash� � amount �� �money

fct f conditional retrieve cash� � amount� ack �� �money
��

��� Uniting alternative process networks to their superset

The alternative process networks of our example di�er merely in omitting a single data �ow�
Otherwise� they are of identical structure and meaning� Alternative process networks which are
similar in this sense may be united to a single process network� as illustrated in Figure 
� We achieve
this by combining alternative process types to a single new process type which unites the previous
alternatives� Using these uniting process types� the uniting process network may be de�ned�

amount1 :crcinin amount1 :rc

db_log1 :sbdout

money1 :crcout money1 :rcout

db_log1 :bdout

account

amount

:cd
2

1 :cdin

in

*amount

account account

amount

ack1 ) :crc

sbd
1 ) :
sbd
2 ) :

in

in

in

cd ,1

cd
2 ,
cd ,3

(out

(out

(out
account

amount1 :

:2

bd

bd

in

in

check_

deposit

book_to_database

retrieve_cash

database

secure_

book_to_

conditional_

retrieve_

cash

Figure 
� Uniting alternative process networks to their superset

Note that uniting process variants into their superset does not add any new syntactic concepts�
Thus� we can model this kind of process union without adding additional aspects to our description
technique introduced in section ��

Here� alternative process types are combined to form a single process type� whose input and output
is made up of the union of all inputs and outputs of the di�erent alternatives� In this union� those
ports of di�erent process types which correspond in their meaning are identi�ed and united to a

�



single port in the new process� Thus� the activity of uniting ports is not carried out merely on the
syntactical level� Rather� it requires a systematic analysis of the meaning and usage of the separate
ports�

The di�erent alternatives of process execution do not show in the graphical representation of the
uniting process in Figure 
� However� in the computation scheme of the glass box view as well as
in the associated functions on the level of semantics� these variants are re�ected as di�erent cases
in decision statements�

In the uniting process network� the di�erent alternatives are encapsulated within the process types
conditional retrieve cash and check deposit� The functions corresponding to these process types
are of the following signatures�

fct f check deposit � amount� account �� �ack � amount� account
fct f conditional retrieve cash � amount� ack �� �money

In these functions� the di�erent alternatives are incorporated as decisions� For the uniting process
types� the associated function may be expressed with respect to the functions of �ner granularity�

f conditional retrieve cash�incrc� � incrc�  �

�

��
�
f conditional retrieve cash��incrc�  i� incrc� � 
��

f conditional retrieve cash��incrc� � incrc�  i� incrc� � 
��

f check deposit�incd� � incd�  �

�

����
���
outcd� � f

check deposit�

� �incd� � incd�  �

outcd� � f
check deposit�

� �incd� � incd�  i� incd� � 
��

f check deposit��incd� � incd�  i� incd� � 
��

For input parameters of sort amount assigned to port inwm� and of sort account assigned to port
inwm� � the functions that are associated with the processes in our example are de�ned as follows�

f ref�ref�withdraw money������inwm� � inwm�  � �f conditional retrieve cash�

� �inwm� �

f secure book to database
� �f check deposit�

� �inwm� � inwm� �

f
check deposit�

� �inwm� � inwm� 

f ref�ref�withdraw money������inwm� � inwm�  � �f conditional retrieve cash�

� �inwm� � f
check deposit�

� �inwm� � inwm� �

f secure book to database
� �f check deposit�

� �inwm� � inwm� �

f
check deposit�

� �inwm� � inwm� 

For the uniting superset �confer to Figure 
 of the similar process networks� we get the following
function�

f ref�ref�withdraw money���inwm� � inwm�  � �f conditional retrieve cash
� �inwm� � f

check deposit
� �inwm� � inwm� �

f secure book to database
� �f check deposit

� �inwm� � inwm� �

f
check deposit
� �inwm� � inwm� 

When the decision statements by which the alternative functions are united do not partition the
possible combinations of parameter values into disjunct sets� the uniting process type turns to
be nondeterministic� In this case� as previously pointed out in section ���� we associate a set of
functions with the uniting process type� Each of these functions covers all possible combinations of
parameter values� where in those cases of more than one possible behavior� each function restricts
itself to a single behavior possibility� On the other hand� each of the behavioral possibilities must
be covered by at least one of the functions� For each instance of an execution of a nondeterministic

�



process instance� one function of the corresponding set of functions is selected in a nondeterministic
way� and then evaluated� Altogether� the set of associated function models exactly the behavior of
the nondeterminstic process type�

This decomposition of nondeterministic behavior into a set of functions is illustrated by the following
example�

Let fv� f
A
v and fBv be functions over a set v of typed variables� Furthermore� let B be the set of

possible value combinations over this set of variables v� In addition� let A � B and B � B be
subsets of the set of possible value combinations� Also� A 	 B � B and AB �� A 
 B �� � holds�
Finally� let ��v � B be one speci�c combination of values assigned to the set of variables v�

The process behavior is modeled by fAv if ��v � A holds� and by fBv if ��v � B holds�

As assumption A
B �� � holds� this behavior is nondeterministic� For resolving this nondetermin�
ism� we describe this behavior in terms of a set of functions fv as follows�

fv  ffA
�

v � fB
�

v g� where

fA
�

v �

�
fAv i� ��v � A

fBv i� ��v � BnAB

fB
�

v �

�
fAv i� ��v � AnAB
fBv i� ��v � B

��� Encapsulating alternative processes by switches

Di�erent process networks may be congruent in certain subparts� but may di�er to a higher extent
in other areas� For example� process networks which start identically may continue di�erently
regarding structure and content� in the case that depending on the evaluation of parameter values
at a certain point� di�erent possible subsequent process subnetworks may be pursued� In our
example in Figure �� depending on the variable assignments� di�erent variants of check deposit are
executed� each of which is succeeded by a di�erent process network�

When alternative process networks di�er greatly in their input�output functionality in some areas�
it is suitable to keep them as process variants rather than uniting them to their superset� These
process variants may be encapsulated by input and�or output switches�

����� Output Switch

Process types which coincide in their meaning and their input functionality� but which di�er in
their output functionality� may be united into an output switch�

in1 :cd1

in :cd1
2

1 :outcd1

:outcd1
2

in1 :cd*

in :cd*
2 in1 :cd2

:outcd2
3

:outcd2
2

1 :outcd2

in :cd2
2 account

amount amount

accountaccount deposit 1

check_

*
amount

account

deposit 2

amount ack

amount

account

check_

Figure �� Similar process types with di�ering output functionality

As an example� Figure � illustrates similar process types with identical input functionality but
di�ering output functionality� as described in equation �� We unite these alternative process types
into an output switch which is shown in Figure 	�

Note that the syntax of the glass box description of switch process types is identical to that of
regular process types�

��



cdS:out4
:outcdS

5

:outcdS
3

in1 :cdS
1 :outcdS

:outcdS
2

amount

account

deposit

check
S

in1 :cdS

400

400

in1
cdS

in1
cdS

c2 amount

account

ack

amount c1

c1

c2

account

Figure 	� Uniting alternative process types to an output switch

When the output switch is integrated within a process network� the process network splits into
di�erent process networks succeeding the output switch�

The function associated with an output switch is of the same input functionality as each of the
functions of the original alternative process types� However� its output functionality consists of the
cartesian product of output functionalities of the orignial functions� Thus

fct f check depositS � amount� account �� �amount� account� ack � amount� account

holds for our example�

Then� function f check depositS may be expressed using the original alternative functions as follows�

f check depositS�incdS� � incdS�  �

���������
��������

out� � f
check deposit�

� �incdS� � incdS�  �

out� � f
check deposit�

� �incdS� � incdS�  i� incdS� � 
��

out� � f
check deposit�

� �incdS� � incdS�  �

out� � f
check deposit�

� �incdS� � incdS�  �

out� � f
check deposit�

� �incdS� � incdS�  i� incdS� � 
��

According to this de�nition� we assign the results of the corresponding subfunction to those output
ports that correspond to the ful�lled decision case� Output ports of decision cases that do not
evaluate to true have empty output as value� so that subsequent functions will not be triggered for
execution� Thus� when processes and functions are linked to form a network� only those branches
of the process network are executed which correspond to decision cases that evaluate to true�

In our example� the decision statement provides for disjunct cases in evaluation of variable assign�
ments� However� if cases should overlap� the resulting nondeterministic behavior is resolved by
splitting it into an equivalent set of functions� as described in section 
���

In the following section� we introduce input switches as an analogon to the output switches we just
presented�

����� Input Switch

Process types that correspond in their meaning and in their output functionality� but which di�er
in their input functionality may be united to form an input switch�

in1 :crc1

in1 :crc2

in :crc2
2 1 :outcrc2

1 :outcrcX

1 :outcrc1

conditional_

retrieve_

cash

conditional_

retrieve_

cash 1

2

xor

amount

amount

acc_id

money

money

money

Figure �� Similar process types with di�ering input functionality

Figure � illustrates an example of similar process types which coincide in their output functionality
but di�er in their input functionality� as described in equation ��

��



We introduce the supplementary function xor��� � � � � � for uniting equally typed channels� If only
one of the input channels of xor holds a de�ned value� this value is output on the outgoing channel�
Whenever more than one input channel is assigned with a de�ned value� xor nondeterministically
selects one channel whose value ist output as result�

Function xor can easily be extended to tuples of input channels� Channel tuples with equal type
tuples are united to a single output tuple of corresponding tuple type� The functions output consists
of the values of the input tuple that is assigned with de�ned values� If more than one input tuple
is assigned with de�ned values� xor nondeterministically selects one of these channel tupels and
outputs the corresponding values�

We unite our alternative process types of Figure � by introducing an input switch� as illustrated in
Figure ��

in1 :crcS

1 :outcrcS

in :crcS
3

in :crcS
2

am1

am2

400

400

d1

d2

d1

d2account

amount

amount money
conditional_

retrieve_

cash S

Figure �� Uniting alternative process types by an input switch

Note that again� the syntax of the glass box description of switch process types is identical to that
of regular process types�

An input switch that is integrated in a process network unites di�erent preceding process networks
to a single succeeding process network�

The function that is associated with the input switch is of the same output functionality as each
of the functions corresponding to the original process types� However� its input functionality is the
cartesian product of input functionalities of the original functions� Thus

fct f conditional retrieve cashS � amount� amount� account �� �money

holds�

Function f conditional retrieve cashS may be expressed in terms of the original alternative functions as
follows�

f conditional retrieve cash�incrc� � incrc� � incrc�  �

�

�
f conditional retrieve cash��incrc�  i� incrc� � 
�� � incrc� � 
��

f conditional retrieve cash��incrc� � ak i� incrc� � 
�� � incrc� � 
��

When the di�erent functions do not de�ne disjunctive cases of parameter assignments� we split up
the resulting nondeterministic behavior of the input switch into an equivalent set of deterministic
functions�

*

in :1
cd

in1 :crc

*

database

book_to_

secure_xor

xor

1 :outsbtd

in1 :crc

in :2
crc

in :crc
3

in1 :sbtd

in :sbtd
2

in :cd
1

incd
5

in :cd
2

in :cd
3

in :cd
4

1 :outcrc

in :2
cd accountaccount

depositS

check_

am1

am2

400

400

d1

d2

c1 am 400

400amc2

c2

amount

amount conditional_

retrieve_

cash S

d1

d2

account
db_log

amount

amount

ack

account

amountc1

account:

money

amount

amount
ack

amount

Figure �� Process network with input and output switch

Figure � shows the second re�nement level of our example process withdraw money using input
and output switches� On the level of semantics� this process network corresponds to the following

��



function de�nition�

f ref�ref�withdraw money��S �inwm� � inwm�  �

� �f conditional retrieve cashS

� �inwm� � inwm� � f
check depositS

� �inwm� � inwm� �

f secure book to database�xor�f check depositS

� �inwm� � inwm� � f check depositS

� �inwm� � inwm� �

xor�f check depositS

� �inwm� � inwm� � f check depositS

� �inwm� � inwm� 

Process types with similar meaning but di�ering input and output functionality may be united into
an IO�switch which combines input and output switch into a single uniting process type�

� Conclusions and outlook

We presented a semantically well founded description technique for modeling typical system be�
havior in a way that is independant from organizational or geographical boundaries� Furthermore�
we provided a re�nement mechanism which supports behavior modeling across di�erent levels of
abstraction� Our modeling technique documents causal dependencies among process execution
that are due to the communication of messages and events between processes� without introducing
any additional arti�cial sequentialization� Thus we allow for a maximum of parallelism in process
execution that conforms with the required causality of communication�

So far� we have provided a formally founded description technique for exemplaric system behavior�
In a next step� we will move from a set of single process runs towards processes instances that
are executed more than once within a single system run� Thus we need a notion of process state
or memory� and consequently adapt our semantics to stream processing functions that work on
histories of input and ouput messages �see� for example� �Kah�
� and �Bro����

Finally� when assigning certain aspects of system behavior to the respective system modules for
execution in later stages of the system development process� we leave the cross functional� exem�
plaric view of business process modeling and turn to modeling the complete behavior of single
system components or objects� At this stage� we employ automata or state machines ��GKRB�	�
for modeling component behavior�

The methodic and semantic integration of these approaches is subject of ongoing research�

Acknowledgements

I thank Wolfgang Schwerin� Manfred Broy and Bernhard Rumpe for many fruitful discussions�

��



References

�BFG���� M� Broy� C� Facchi� R� Grosu� R� Hettler� H� Hu�mann� D� Nazareth� F� Regensburger�
O� Slotosch and K� Stolen� The requirement and design speci�cation language Spec�
trum � An informal introduction� Part II� Technical Report TUM�I����� Technische
Universit�at M�unchen� Institut f�ur Informatik� M�unchen� May �����

�BJR��� G� Booch� I� Jacobson and J� Rumbaugh� Uni�ed Method Language � Notation Guide�
Rational Software Corporation� Santa Clara� CA�� ��� c edition� July �����

�Boo�
� G� Booch� Object�Oriented Analysis and Design with Applications� Benjamin Cum�
mings� ���
�

�Bro��� M� Broy� A Theory for Nondeterminism� Parallelism� Communication and Concur�
rency� Technical report� Habilitationsschrift� Fakult�at f�ur Mathematik und Informatik�
Technische Universit�a M�unchen� �����

�Bro��� M� Broy� Informatik � Eine grundlegende Einf�uhrung� Teil �� Problemnahe Program�
mierung� volume �� Springer�Verlag� Berlin� �����

�Bro��� M� Broy� �Inter�Action Re�nement� The Easy Way� In F�L� Bauer� M� Broy� E�W�
Dijkstra� D� Gries and C�A�R Hoare� editors� Program Design Calculi� NATO ASI Series
F� Computer and System Sciences� Vol� ���� pages �������� Springer�Verlag� �����

�Dav��� A�M� Davis� Software Requirements � Objects� Functions� and States� Prentice�Hall
International� Inc�� Englewood Cli�s� New Jersey� �����

�DeM��� T� DeMarco� Structured Analysis and System Speci�cation� Prentice�Hall International�
Inc�� Englewood Cli�s� New Jersey� �����

�FS��� O�K� Ferstl and E�J� Sinz� Ein Vorgehensmodell zur Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell �SOM� In Bamberger Beitr�age
zur Wirtschaftsinformatik� Nr� 	� Universit�at Bamberg� July �����

�GKRB�	� R� Grosu� C� Klein� B� Rumpe and M� Broy� State Transition Diagrams� Technical Re�
port TUM�I�	��� Technische Universit�at M�unchen� Institut f�ur Informatik� M�unchen�
June ���	�

�Hoa��� C�A�R� Hoare� Communicating Sequential Processes� Series in Computer Science� Pren�
tice Hall International� Inc�� Englewood Cli�s� New Jersey� �����

�IT�	� ITU�T� Z��
� � Message Sequence Chart �MSC� ITU�T� Geneva� ���	�

�Kah�
� G� Kahn� The Semantics of a Simple Language for Parallel Programming� In Informa�
tion Processing� IFIP���� North�Holland� ���
�

�Sie��� Siemens Nixdorf Informationssysteme AG� M�unchen� GRAPES V� � Sprachbeschrei�
bung� March �����

�



