


1 Introduction

The Statecharts language [4] is a visual formalism for
the specification of reactive systems. It was introduced
in the mid 1980s for the specification of avionic systems.
The original proposal introduced mainly the graphical
constructs of the language, and presented only an infor-
mal semantics. There have been several suggestions for
formal semantics [3, 9], but they turned out to be quite
complicated. Maybe for this reason the currently most
popular commercial CASE tool for Statecharts, STATE-
MATE [2], as well as the existing model checking tools
[1, 6] use a very simple operational model that differs
from the ideas outlined in [4].

In this work, we demonstrate how to use a semantic
model that is more faithful to [4] for efficient verification.
Our approach is twofold. We model the chainreactions
of transitions causing other transitions with an embed-
ded transition relation. The rechable, terminal states
of this transition relation form the outer transition rela-
tion that describes the observable behaviour of a state-
chart. To properly handle negated events in the trigger
of a transition arrow, the embedded transition relation
branches according to guesses whether the events will be
generated in later in the transition sequence. We show
how to implement these ideas using BDDs for symbolic
verification.

In the next section, we define the Statechart variant
that our model can handle. In Section 3, we informally
describe the operational semantics of a statechart and
give an overview over some previous formal models. In
Section 4 we describe our approach and in Secction 5
we show how it can be used for BDD based verification.
Section 6 gives an example and Setion 7 concludes.

2 Statecharts

This section defines the Statecharts variant of our model.
The definitions are based on the formal definition in [9].
As our running example, we take the binary stopwatch
from the same paper (Figure 1).

A Statechart is a tuple 〈B, S, h, t, ∆, A〉, where

• B is a finite set of basic events.

• S is a finite set of state names.

• h ∈ S → 2S is the hierarchy function. It de-
fines for each state the set of children of that state.
For example, in Figure 1 we have h(StopWatch) =
{On, Off}.

The hierarchy function describes a tree:

– There is exactly one state r ∈ S which has no
parent: ∀s ∈ S : r 6∈ h(s). This is the root
state of the statechart.

– If s 6= s′ then h(s) ∩ h(s′) = ∅.

• t ∈ S → {PRIM, AND, OR} is the type func-

tion. It gives for each state its type: primitive state,
AND-state, or OR-state.

– Primitive states have no children: t(s) =
PRIM iff h(s) = ∅. In the example, t(Off) =
PRIM .

– OR-states contain a finite state machine with
one or more substates (each of which may
again be either primitive or complex); the sub-
states are connected by transitions arrows. In
the example, t(Stopwatch) = OR.

– AND-states consist of two or more sub-
states graphically separated by dashed lines.
They introduce concurrency. In the example,
t(On) = AND.

• ∆ ∈ S → 2S is the default state function. It gives
the default substates of a state. The function ∆
satisfies the following requirements for all states s:

– ∆(s) ⊆ h(s).

– If t(s) = AND, then ∆(s) = h(s).

– If t(s) = OR, then ∆(s) = {s′}, where s′ is
graphically marked with a small arrow point-
ing to the state.

In the example, ∆(Stopwatch) = {Off}.

• A is a finite set of arrows. An arrow a is a tuple

〈Source, Dest, T rigger, Action〉,

where

– Source ⊆ S is a nonempty orthogonal set of
source states. Informally, this means that the
statechart can be in all of the source states at
the same time. We will define orthogonality
below.

– Dest ⊆ S is a nonempty, orthogonal set of
destination states.

– Trigger is an expression built from the events
in E using negation, conjunction and disjunc-
tion. The trigger serves as a condition when
the arrow may be taken.

– Action ⊆ B is a possibly empty set of events
generated when this transition arrow is taken.

We define the event set E to contain all basic events
from B, and for each state an event that will be gener-
ated when the state is entered or left.

E = B ∪ { enter(s) | s ∈ S }

∪ { leave(s) | s ∈ S }

We write h+ for the transitive (and h∗ for the reflexive-
transitive) closure of h. For two states s, s′ ∈ S we say
that

• s is an ancestor of s′ (s′ is a descendant of s), iff
s′ ∈ h∗(s). Using h+ instead of h∗, we get the
notion of a strict ancestor (descendant).

• s is ancestrally related to s′, if one is an ancestor of
the other.

1



H0 M0 L0

H1 M1 L1

m/h

m

l/m

l

time/l

time

ShowTime

Off

On

a a

b b

BinaryStopwatch

Stopwatch

Hi Med Lo

Figure 1: Binary Stopwatch

We define anc(s) = { t | s ∈ h∗(t) } as the set of ances-
tors of s.

For a set T ⊆ S of states, the least common ancestor

lca(T ) of T is the unique state s such that:

• T ⊆ h∗(s),

• for all s′ ∈ S : if T ⊆ h∗(s′) then s ∈ h∗(s′).

The scope of an arrow

a = 〈Source, Dest, T rigger, Action〉

is defined as

scope(a) = lca(Source ∪Dest).

Arrows may not connect substates of an AND-state: we
require that t(scope(a)) = OR for all arrows a ∈ A.

If t ∈ h∗(s), the child of s containing t, written
cont(s, t) is the unique state u such that u ∈ h(s) and
t ∈ h∗(u).

Two states s, s′ are orthogonal (written s⊥s′), if they
are not ancestrally related, and their least common an-
cestor is an AND-state. When two states are orthogonal,
the statechart can be in both of them at the same time.
A set T of states is orthogonal, if for every s, s′ ∈ T

either s⊥s′ or s = s′.
A set T ⊆ S of states is consistent, if for all s, s′ ∈ T

either s and s′ are ancestrally related, or s⊥s′.
T is maximally consistent , if for every state s ∈ S \T ,

T ∪ {s} is not consistent.
A configuration is a maximally consistent set of states.

A configuration contains for each state s all states above
s in the hierarchy. If t(s) = OR, then it contains exactly
one child of s, if t(s) = AND, it contains all children of
s.

The default completion of a consistent set T , comp(T ),
is the unique configuration T ′ with T ⊆ T ′ such that

for all s ∈ T ′ with t(s) = OR, if T ∩ h(s) = ∅, then
∆(s) ∈ T ′. This means that T is extended in such a
way that for each OR-state s in the configuration T ′ its
default substate is also in T ′, unless T already contains
some other child of s.

The initial configuration of a statechart with root
state r is comp({r}). In the example, we have the initial
configuration {BinaryStopwatch, ShowT ime}.

3 Execution model

A run of a statechart is a sequence

c0
e0/g0

−→ c1
e1/g1

−→ c2
e2/g2

−→ . . .

of configurations ci, sets ei ⊆ B of input events, and sets
gi ⊆ B of generated events, where:

• c0 is the initial configuration of the statechart.

• Each ei contains events provided by some external
environment of the specified system.

• Each gi contains the events from ei as well as any
events from B generated by the arrows that were
taken in the step from ci to ci+1.

We do not make any restrictions on the environment,
and allow all subsets of B as input. It is possible to
model a more restricted environment with temporal logic
formulas, another statechart, or by simply giving a for-
mula that characterizes possible subsets of B.

Statecharts semantics differ in how they define the
relationship between ci, ei, gi and ci+1.

The CASE tool STATEMATE [2] uses a very simple

model: at each step ci
ei/gi

−→ ci+1, a maximal set of en-
abled, nonconflicting transition arrows is followed. The

2



c/a

a/b

Figure 2: Global consistency problem

events generated are treated as part of the input of the
next step, i.e. gi ⊆ ei+1. The problem with this ap-
proach can be seen in the example in Figure 1: Assume
the current configuration is { H1, M1, L1, . . . }, and the
external input consists of just the event time. We would
expect the next configuration to be of { H0, M0, L0,
. . . }, but the STATEMATE semantics yields the config-
uration { H1, M1, L0, . . . }, and generates l. Assuming
that the external input is ∅ from now on, M0 would be
entered and m generated, and finally, in the third step,
H0 would be entered. Therefore, instead of jumping
from 111 to 000, the semantics leads to the sequence 111,
110, 100, 000. Because of its simplicity and its commer-
cial importance, this is also the model used in the model
checkers in [1, 6]. To get the proper behaviour for the
stopwatch example, one would have to add more states
and synchronizing events.

A more sophisticated approach, and closer to the ideas

of [4], is to regard each step ci
ei/gi

−→ ci+1 in the execution
of a statechart as a macrostep that consists of a sequence
of microsteps [3]

ci
e0

i
/g0

i−→ •
e1

i
/g1

i−→ • . . . •
ek

i
/gk

i−→ ci+1,

where e0
i = ei, e

j
i ⊆ g

j
i , e

j+1
i = g

j
i , and gi = gk

i . Each
microstep corresponds to taking a transition arrow. An
arrow can be taken if the trigger expression is satisfied by
the input set e

j
i , and the source of the arrow is in ci. The

arrow then generates the events of its action set. They
are added to the input set, yielding g

j
i . This is also the

input set e
j+1
i for the next microstep, which can trigger

other arrows. When there are no more arrows that can
be taken, the new configuration is computed according
to the destination states of all arrows that were taken,
and gi is equal the union of ei and all generated events.
Conceptually it is assumed that this sequence takes no
time to execute: this is called the synchrony assumption.
Of course, in a implementation of a statechart, the se-
quence will not execute in zero time. For the assumption
to hold, it is only necessary that no new input from the
environment arrives during the sequence.

The problem with this approach can be seen in Figure
2. If the external input contains c but not a, should
the reaction be that both arrows are taken (the upper
arrow was followed first), yielding event set {a, b, c}, or
only the second one (the lower arrow was followed first),

yielding event set {a, c} ? This semantics leads to very
nondeterministic behaviour.

Finally, in [9] a globally consistent model was sug-
gested. Whereas in [3] in each microstep the trigger
conditions are evaluated with respect to the set of input
events and the events generated in previous microsteps
(gj

i ), here they are evaluated with respect to the events
present in the complete macrostep (gi). If there are no
negated trigger events, the models from [3] and [9] co-
incide. However, the model in [9] is rather complicated,
and it is not obvious how to apply it for verification tools.

Our work is related to [9], but simpler: in particular,
we do not need to build sets of enabled arrows, but can
talk directly about configurations and events. Another
difference is that in [9] enter(s) and leave(s) events are
generated only after the last microstep, and global con-
sistency does not hold for them. In our work, these
events are implicitly generated when following a transi-
tion arrow, and in trigger expressions they are treated
in the same way as the basic events. In particular, this
ensures that an arrow 〈{s}, {t}, {e ∧ ¬enter(t)}, ∅〉 can
never be taken. Finally, our approach is aimed at sym-
bolic verification.

4 Proposed Semantic Model

We separate the development of our semantics into two
parts. First we show how the microsteps can be im-
plemented using an embedded transition relation, then
we describe how to handle negated trigger events in a
globally consistent way.

For simplicity, we make the following assumptions.
We assume that the source and destination sets of each
arrow are disjunct. This restriction will be removed
later. As a further simplification, we assume that the
trigger is just a set of events e ∈ E, or negated events
¬e, e ∈ E; we regard the elements of this set to be im-
plicitly conjoined. Since a trigger expression can be writ-
ten in disjunctive normal form, and an arrow with more
than one disjunct in the trigger can be replaced by a
set of arrows with a single disjunct and identical source,
destination, and action set, this is no real restriction.

Microsteps. The microstep sequence defining the

macrostep ci
ei/gi

−→ ci+1 can be defined by an embedded
transition relation. We use intermediate configurations
c
j
i for the points in the sequence, and sets e

j
i for the set of

input events and generated events. A microstep is then
defined by a predicate RMIC(ci, ei, c

j
i , e

j
i , c

j+1
i , e

j+1
i ),

where e
j
i ⊆ e

j+1
i .

In each microstep an arrow is taken. Consider an ar-
row

a = 〈Sourcea, Desta, T riggera, Actiona〉,

where Triggera is a set of events (negated events are
introduced below).

The arrow can be taken, if the current configuration
c
j
i contains the source states Sourcea, and the trigger is

enabled. In detail, we require that:

3



• Sourcea ⊆ c
j
i ;

• Triggera ∩B ⊆ e
j
i (the basic events are in the cur-

rent event set);

• for all events enter(s) ∈ Triggera : s ∈ c
j
i ∧ s 6∈ ci

(the state s has been entered in a previous microstep
of the sequence);

• for all events leave(s) ∈ Triggera : s ∈ ci ∧ s 6∈ c
j
i

(the state s has been left in a previous microstep).

This is not quite enough: consider the state Lo in
Figure 1. If we start in L0 with event time, we could
take the arrow to L1, and in the next microstep take
the second arrow back to L0. This behaviour is not
intended, and we therefore need to add the requirement

• Sourcea ⊆ ci .

If the arrow a is taken, it will have the following ef-
fects. The scope of an arrow is the lowest OR-state in
the hierarchy that is not entered or left by taking a.
The arrow causes the child of the scope containing the
source states and its descendants to be left. The child
of the scope containing the destination states will be en-
tered. Here we have to make sure the proper default
states among its descendants are entered, if the desti-
nation does not already prescribe which substate of an
OR-state to enter.

Therefore, we obtain the next configuration and event
set as follows:

• Let Cs = cont(scope(a), lca(Sourcea)) be the child
of the scope with the source states, and Cd =
cont(scope(a), lca(Desta)) the child containing the
destination states. Then the states in h∗(Cs) are
left, and the states in h∗(Cd)∩ comp({Cd}∪Desta)
are entered. This gives the next configuration c

j+1
i .

• The actions in Actiona are added to e
j
i . This be-

comes the new event set e
j+1
i .

Given the microstep relation RMIC we can define the

macrostep relation RMAC . A step ci
ei/gi

−→ ci+1 is in
RMAC , iff there is a sequence

c0
i

e0
i
/e1

i−→ c1
i

e1
i
/e2

i−→ c2
i . . .

ek

i
/ek+1

i−→ ck+1
i ,

such that

• c0
i = ci and ck+1

i = ci+1

• e0
i = ei and gi = ek+1

i

• for all 0 ≤ j ≤ k : RMIC(ci, ei, c
j
i , e

j
i , c

j+1
i , e

j+1
i )

• there are no c′, e′ such that:
RMIC(ci, ei, c

k+1
i , ek+1

i , c′, e′)

The first two conditions state that the macrostep is con-
sistent with the endpoints of the sequence, the third
condition states that the sequence indeed consists of mi-
crosteps, and the fourth conditions requires that the se-
quence is maximal.

Global consistenccy. Global consistency leads to
nonmonotonicity: if an arrow is taken in a microstep,
the events it generates can violate the trigger expression
of an arrow taken in a previous microstep.

A similar situation occurs in the negation as failure

model in logic programming, where an atom is consid-
ered to be false, if it can not be proven by the clauses in
the program. In the theoreom prover MGTP [7, 5] this
model is implemented through case splitting on atoms
that occur negatively in clauses. In one case, the atom
is assumed to be true, in the other to be false. Solutions
for the program have to fulfill not only the program’s
clauses, but also some additional constraints: an atom
that is assumed to be false may neither be assumed to be
true through another case splitting later in the search,
nor may it finally be proven to be true. In addition,
all atoms that are assumed to be true have to be later
proven to be true.

We incorporate this idea in our microstep relation.
The trigger of the arrow

a = 〈Sourcea, Desta, T riggera, Actiona〉

can be partitioned into positive events P = Triggera∩E

and negative events N = Triggera \ P . When at an
intermediate configuration c

j
i of the microstep sequence

the arrow

〈Sourcea, Desta, P os, Actiona〉

would be enabled, the microstep relation will branch ac-
cording to the following cases:

• no event e with ¬e ∈ N will be generated in this mi-
crostep; neither is it a member of the input events.
Then the arrow can be taken.

• at least one event e with ¬e ∈ N will be generated
or is a member of the input events. Then the arrow
will not be taken.

We then allow only those microstep sequences, that
are consistent (an event may not be predicted to be ab-
sent, while being present or predicted to be present) and
self-fulfilling (events predicted to be generated have to
be generated, if they are not already in the input event
set).

5 Symbolic Verification

In this section, we show how to implemement our model
using BDDs. First we discuss the variable encoding,
then we build the microstep relation. Finally, we show
how the macrostep relation is constructed out of the mi-
crostep relation.

5.1 Variable encoding

Events. We encode each event e ∈ B with a variable
expressing the event’s presence or absence. For simplic-
ity, we call this variable e as well. The enter and leave
events in E \B are handled implicitly, and need no extra
variables, as we will see below.

4



States and configurations. We need to be able to
express the following predicates for each state s ∈ S and
arrow a ∈ A:

• inside(s): the state s is a member of the configura-
tion.

• outside(s): the state s is not in the current config-
uration. This must imply that none of the children
of s is in the configuration.

• entering(a): characterizes the set of states entered
when the arrow a is taken.

• leaving(a): characterizes the set of states left when
arrow a is taken.

We encode a configuration using a variable for each
state s ∈ S. Again, we just write s for this variable.
Note that this encoding is not particularly compact: it
would be sufficient to use only the primitive states. An
even better encoding is presented in [6].

Using this encoding, the predicates inside and outside

can be defined as:

• inside(s) ≡ anc(s),

• outside(s) ≡
∧

t∈h∗(s) ¬t ,

Given an arrow

a = 〈Sourcea, Desta, T riggera, Actiona〉,

let Cs = cont(scope(a), lca(Sourcea)), and Cd =
cont(scope(a), lca(Desta)) as defined in Section 4. Then
we define the predicates leaving and entering as:

• leaving(a) = h∗(Cs)

• entering(a) = h∗(Cd) ∩ comp({Cd} ∪Desta)

Priming. As we have seen in the last section, the mi-
crosteps not only express a relation between consecutive
intermediate points, but also depend on the first point
in the sequence. In contrast to standard transition rela-
tions, which just have a pre-state and a post-state, we
have three set of variables, and use the following con-
vention. For each variable v, v∗ denotes its value at the
beginning of the microstep sequence, v its current value,
v′ its value at the next point in the microstep sequence.
We use this convention also for predicates, and write e.g.
inside(s)∗.

Implicit events. We can define the events corre-
sponding to entering and leaving a state as follows:

enter(s) ≡ inside(s) ∧ outside(s)∗,

leave(s) ≡ inside(s)∗ ∧ outside(s).

In the sequel, whenever we refer to an event e, we
mean either the variable e if e is a basic event, or other-
wise one of the predicates above.

5.2 Microstep relation

The microstep relation has the form

ΦMIC(c∗, e∗, c, e, c′, e′),

where c∗, e∗ are the values of the state and event vari-
ables at the beginning of the microstep sequence, c, e are
their current values, and c′, e′ will be their values at the
next point in the microstep sequence.

Arrow translation. The microstep relation is built
up from transitions Φa(c∗, e∗, c, e, c′, e′) for each arrow
a ∈ A. From now on, we consider a given arrow

a = 〈Sourcea, Desta, T riggera, Actiona〉.

Using the predicates from Section 5.1, we can encode
the enabling condition and the effect of the arrow as

Ena(c∗, e∗, c, e, c′, e′) ≡
∧

s∈Sourcea

(inside(s) ∧ inside(s)∗) ∧

∧

e∈Triggera

e,

Efa(c∗, e∗, c, e, c′, e′) ≡
∧

e∈Actiona

e′ ∧

∧

s∈entering(a)

s′ ∧

∧

s∈leaving(a)

¬s′ ∧

∧

v∈UC

v = v′.

where UC is the set of all variables that don’t appear
primed in any of the other four conjuncts. The last
conjunct states that all variables that are not restricted
by one of the previous conjuncts remain unchanged.

The predicate Φa is then defined as

Φa(c∗, e∗, c, e, c′, e′) ≡

Ena(c∗, e∗, c, e, c′, e′) ∧

Efa(c∗, e∗, c, e, c′, e′).

For example, the arrow from state ShowT ime to state
Stopwatch in Figure 1 is translated into the formula

Φ ≡ ShowT ime ∧ BinaryStopwatch ∧

ShowT ime∗ ∧ BinaryStopwatch∗ ∧ a ∧

¬ShowT ime′ ∧BinaryStopwatch′ ∧

Stopwatch′ ∧Off ′ ∧

time = time′ ∧m = m′ ∧ . . .

We abbreviated the last conjunct; it contains an equality
for all variables that don’t occur primed in the first four
lines.

Finally, if there are no negated trigger events, the mi-
crostep relation is defined as the disjunction of the indi-
vidual arrow relations:

ΦMIC ≡
∨

a∈A

Φa.

5



Negated events. Let Neg ⊆ E be the set of all events
that occur negatively in the trigger of any arrow a ∈
A. We introduce two new variables Ke and Ne for each
e ∈ Neg. Informally, Ke means that e is believed to be
produced at some later microstep, while Ne means that e

is believed to be absent during the complete macrostep.

Assume that the trigger expression includes k negated
trigger events:

Triggera = {¬e1, . . . ,¬ek} ∪ Pos,

where {e1, . . . , ek} ⊆ Neg and Pos ⊆ E \Neg.

We construct an arrow ā via

ā = 〈Sourcea, Desta, P os, {Ne1, . . . , Nek} ∪ Actiona〉.

This arrow is translated to a predicate Φā as shown
above. The events Nei state that the negative trigger
events are assumed not to be generated in the microstep
sequence. Alternatively, we could assume that any of
them will be generated. Then the arrow can not be
taken. We express this with the predicate

Ψi(c, e, c
′, e′) ≡ (Kei)

′ ∧
∧

v∈UCi

v = v′,

where UCi is the set of all variables except Kei.

The relation corresponding to an arrow a with negated
trigger events is then the disjunction of these k+1 cases:

Φa(c∗, e∗, c, e, c′, e′) ≡ Φā(c∗, e∗, c, e, c′, e′) ∨
∨

1≤i≤k

Ψi(c, e, c
′, e′).

A macrostep is inconsistent if an event is believed to
occur and believed to be absent at the same time, or
when it has already been generated although it is be-
lieved to be absent:

ΦCONS(c, e) ≡
∧

a∈Neg

¬(Ka ∧ Na) ∧ ¬(a ∧ Na).

Again, the microstep relation is built out of the dis-
junction of the individual arrow relations, but we make
sure that the next point in the microstep sequence is
consistent:

ΦMIC(c∗, e∗, c, e, c′, e′) ≡
∨

a∈A

Φa(c∗, e∗, c, e, c′, e′) ∧

ΦCONS(c′, e′).

We must also make sure that the microstep sequence
if self-fulfilling, i.e. that all events assumed to be true
(by the Ke events) are generated in the microstep se-
quence. This condition is included in the definition of
the macrostep relation below.

Note that while the enter and leave events are defined
implictly, we still need to introduce the belief variables
Kenter(s), Nenter(s), Kleave(s) and Nleave(s), if they
occur negatively in the trigger of an arrow.

5.3 Macrostep Relation

The macrostep relation can be expressed as a predicate

ΦMAC(c, e, c′, e′),

where c and c′ represent the current and next configu-
ration, respectively, e is the set of input events, and e′

contains the events from e and the events generated in
this step.

Given the relation ΦMIC from the last section, we
construct ΦMAC in the following way. First, we can
define the set of initial states of a microstep sequence by

ΦINIT (c, e, c′, e′) ≡ (c = c′ ∧ e = e′) ∧
∧

e∈Neg

(¬Ke ∧ ¬Ne ∧ ¬Ke′ ∧ ¬Ne′).

A microstep sequence ends, when no more arrows are
enabled, and there is no successor state in the microstep
relation:

ΦTERM (c, e, c′, e′) ≡ ¬∃c′′, e′′ : ΦMIC(c, e, c′, e′, c′′, e′′).

We construct the set of intermediate points in the mi-
crostep sequence by the µ-calculus formula

ΦINT (c, e, c′, e′) ≡ µΨ.[ΦINIT (c, e, c′, e′) ∨

∃c′′, e′′ : Ψ(c, e, c′′, e′′) ∧ ΦMIC(c, e, c′′, e′′, c′, e′)].

As stated above, the macrostep has to be self-fulfilling:

ΦSF (c, e) ≡
∧

a∈Neg

Ka ⇒ a

Of course, if there are no negated trigger events, ΦSF is
trivially true for all c and e.

Finally, we hide the belief atoms Ke and Ne to define
the macrostep relation. If Neg = v1, . . . , vk, then

ΦMAC(c, e, c′, e′) ≡ ∃Kv1, Kv′1, Nv1, Nv′1, . . . , Nvk, Nv′k :

ΦINT (c, e, c′, e′) ∧

ΦTERM (c, e, c′, e′) ∧

ΦSF (c′, e′).

We can then use the macrostep relation to calcu-
late the set of reachable configurations of a statechart
with another µ-calculus formula. The initial configura-
tion is encoded by a predicate ΦIC(c) that is true iff
c = comp({r}), where r is the root state of the state-
chart. The set of reachable state is then defined as:

ΦR(c) ≡ µΨ.[ΦIC(c) ∨

∃c′, e, e′ : Ψ(c′) ∧ ΦMAC(c′, e′, c, e)].

Here we just assume the existence of arbitrary set e

and e′ for the generated events and the input events
respectively. The simplest way to include some assump-
tions on the environment of the statechart would be to
conjoin some predicate Env(e′).

6



5.4 Extensions

Priorities. In the microstep relation, all arrows are
assumed to have the same priority. Intuitively, however,
it might seem reasonable to assume that for instance
in Figure 1 the arrows label with a should have higher
priority than the arrows in the states Hi, Med and Lo.
We can introduce this priority by conjoining ¬leave(On)
to the trigger of the transition arrows. This can be done
automatically, if we want it to be the standard behaviour
of a statechart.

Loops. We required that the source and destination
sets of each arrow are disjunct, because in the case of a
loop it is not possible to determine that the arrow has
been taken by comparing the init and pre variables. To
allow loops from state s, we simply add a new variable
exit(s), and in the translation of the arrow, we conjoin
¬exit(s) and exit(s)′ to the transition relation of the
arrow. Note that the negation here is at the logical level;
it does not undergo the transformation from section 5.2.
The generation of the events enter(s) and leave(s) will
depend on the variable exit(s) as well.

6 Experimental results

We have implemented a prototype tool that translates a
statechart description into input of the µ-calculus verifier
by Janssen [8]. On the stopwatch example, we get the
following statistics to calculate the macrostep relation
ΦMAC and the reachable configurations ΦR0:

Nodes Time

ΦMIC 490 3.0
ΦINIT 60 3.0
ΦINT 2379 116.6
ΦMAC 966 8.3
ΦIC 15 5.3
ΦR0 28 5.3

All times are in seconds, measured on a Sun 20. Espe-
cially the time to calculate the fixpoint of the microstep
relation ΦINT (9 iterations) seem to be rather long. We
assume that this is caused by the BDD package we em-
ployed, which introduces some overhead through the di-
rect support of µ-calculus operations. The package also
does automatic variable reordering to reduce the size of
intermediate results.

7 Conclusion

We have presented a globally consistent semantic model
for Statecharts, and shown how to implement efficient
verification tools using symbolic techniques for this
model. We believe that specifications in globally consis-
tent semantics can be more concise than in the STATE-
MATE semantics of other verification tools.

Further work will include extending our Statecharts
variant by variable assignments, history variables and
timeout events, and of course in further optimizations.

Our prototype can no doubt be made faster by finding
a good static variable ordering, directly accessing BDD
operations and – most effectively – by using a better
encoding of the configurations, for example the encoding
of [6].

References

[1] Nancy Day. A model checker for statecharts. Tech-
nical Report 93-35, University of British Columbia,
1993.

[2] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. STATEMATE: A working envi-
ronment for the development of complex reactive sys-
tems. IEEE Transactions on Software Enginieering,
16(4):403–413, 1990.

[3] D. Harel, A. Pnueli, J. Pruzan-Schmidt, and R. Sher-
man. On the formal semantics of statecharts.
In Proc. Symposium on Logicin Computer Science,
pages 54–64, 1987.

[4] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-

ming, 8:231–274, 1987.

[5] R. Hasegawa, H. Fujita, and M. Fujita. A paral-
lel theorem prover in KL1 and its applications to
program synthesis. Technical Report TR-588, ICOT
Research Center, 1990.

[6] Johannes Helbig and Peter Kelb. An OBDD-
representation of statecharts. In European Design

And Test Conference 1994, pages 142–149, 1994.

[7] Katsumi Inoue, Miyuki Koshimura, and Ryuzo
Hasegawa. Embedding negation as failure into a
model generation theorem prover. In D. Kapur,
editor, Automated Deduction – CADE-11, Lecture

Notes in Artificial Intelligence 607, pages 400–415,
1992.

[8] Geert Janssen. ROBDD software. Eindhoven Uni-
versity of Technology, 1995.

[9] A. Pnueli and M. Shalev. What is in a step: On the
semantics of statecharts. In T. Ito and A.R. Meyer,
editors, TACS 91, Lecture Notes in Computer Sci-

ence 526, pages 244–264, 1991.

7


