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This paper presents a �rst attempt to embed a restricted version of SDL as a target
language in Focus� Brief introductions to both Focus and SDL are given� and it is shown
how both methods can be assigned a denotational semantics based on streams and stream
processing functions� A set of Focus speci�cations� referred to as F�SDL� is characterized
whose elements structurally and semantically match SDL speci�cations to such a degree
that an automatic translation is almost straightforward� Finally it is outlined how Focus
can be used to develop an SDL speci�cation of a protocol�

�� INTRODUCTION

Focus 
��� 
	� is a methodology for the formal speci�cation and development of dis�
tributed systems� A system is modeled by a network of components working concurrently
and communicating asynchronously via unbounded� directed FIFO channels� A number
of reasoning styles and techniques is supported� Focus provides mathematical formalisms
which support the formulation of highly abstract� not necessarily executable speci�cations
with a clear semantics� Moreover� Focus o�ers powerful re�nement calculi which allow
distributed systems to be developed in the same style as for example VDM and Z allow
for the development of sequential programs� Finally� Focus is modular in the sense that
design decisions can be checked at the point where they are taken� that component spec�
i�cations can be developed in isolation� and that already completed developments can be
reused in new program developments�
SDL 
�� has been developed by ITU�TSS and was initially intended for the description

of telecommunication systems� However� SDL is also well�suited for more general speci�
�cation tasks� In SDL the behavior of a system is equal to the combined behavior of its
processes� A process is basically a communicating� extended �nite�state machine� The
processes communicate asynchronously by sending signals via signal routes� SDL provides
both a textual and a graphical speci�cation formalism� SDL has received considerable
interest from industry and is supported by a large number of tools and environments�
In some sense Focus and SDL are two orthogonal approaches� Because of its very math�

ematical and abstract notation� Focus has its strength in the area of formal re�nement
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and veri�cation� SDL� on the other hand� due to its graphical notation and many struc�
turing constructs� is well�suited for the formulation of large and complicated �real�life�
speci�cations� It is therefore tempting to try to combine these two approaches into one
methodology inheriting the strength of both� This is our motivation�
SDL o�ers a large number of speci�cation and structuring constructs� and it is im�

portant to realize that it is not our intention to transform Focus into a method which
allows for the development of any SDL speci�cation� In fact we are only interested in
the sublanguage of SDL� which in a natural way corresponds to Focus developments� For
example� Focus is not well�suited for the description of dynamic networks � networks
where processes can be created and interfaces may change during execution� Thus the
full generality of the SDL process creation mechanism is not very important in connec�
tion with a Focus development� This does not mean that we consider these additional
features of SDL to be of little value� On the contrary� we rather see Focus as a tool or
facility which can be used to formally develop and verify certain restricted� critical parts
of an SDL speci�cation� Typical examples would be communication protocols� mutual
exclusion algorithms or some complicated sorting algorithm�
A development of an SDL speci�cation in Focus is split into three phases� �rst a

requirement speci�cation is formulated in Focus� then in a step�wise fashion this require�
ment speci�cation is re�ned into an F�SDL speci�cation� �nally the F�SDL speci�cation
is translated into SDL�
Section 	 describes the underlying formalism� Then Focus and SDL are introduced in

Sections � and �� respectively� It is shown how both Focus and a restricted version of
SDL can be assigned the same type of denotational semantics� In Section � F�SDL is
syntactically characterized� and Section � outlines how an SDL speci�cation of a protocol
can be formally developed employing the proposed technique� Finally� Section � gives a
brief summary and discusses possible extensions�

�� UNDERLYING FORMALISM

N denotes the set of positive natural numbers� A stream is a �nite or in�nite sequence
of actions� It models the history of a communication channel by representing the sequence
of messages sent along the channel� Given a set of actions D� D� denotes the set of all
�nite streams generated from D� D� denotes the set of all in�nite streams generated from
D� and D� denotes D� �D��
Let d � D� r� s � D�� A � D then � denotes the empty stream� �r denotes the length

of r� which is equal to � if r is in�nite� and is equal to the number of elements in r
otherwise� A c�r denotes the result of �ltering away all actions not in A �the projection of
r on A�� d� s denotes the result of appending d to s� r� s denotes r if r is in�nite and
the result of concatenating r with s� otherwise� r v s holds if r is a pre�x of s�
The stream operators de�ned above are overloaded to tuples of streams in a straight�

forward way� � will also be used to denote a tuple of empty streams when the size of
this tuple is clear from the context� If d is an n�tuple of actions� and r� s are n�tuples of
streams� then �r denotes the length of the shortest stream in r� d� s denotes the result
of applying � pointwisely to the components of d and s� r� s and r v s are generalized
in the same pointwise way�



A chain c is an in�nite sequence of stream tuples c�� c�� � � � such that for all j � ��
cj v cj��� tc denotes c�s least upper bound� Since streams may be in�nite such least
upper bounds always exist�
A function � � �D��n � �D��m is called a ��n�m��ary� stream processing function i�

it is pre�x monotonic and continuous�

for stream tuples i and i� in �D��n � i v i� � ��i� v ��i���

for all chains c generated from �D��n � ��tc� � tf��cj�jj � Ng�

That a function is pre�x monotonic implies that if the input is increased then the output
may at most be increased� Thus what has already been output can never be removed
later on� Pre�x continuity� on the other hand� implies that the function�s behavior for
in�nite inputs is completely determined by its behavior for �nite inputs�
A stream processing function � � �D��n � �D��m is pulse�driven i��

for all stream tuples i in �D��n � �i ���� ���i� � �i�

That a function is pulse�driven means that the length of the shortest output stream is
in�nite or greater than the shortest input stream� This property is interesting in the
context of feedback constructs because it guarantees that the least �xpoint is always
in�nite for in�nite input streams�
The arrows ��

c� and
cp� are used to tag domains of ordinary functions� domains

of monotonic� continuous functions� and domains of monotonic� continuous� pulse�driven�
functions� respectively�
To model timeouts we need a special action

p
� called �tick�� There are several ways to

interpret streams with ticks� In this paper� all actions should be understood to represent
the same time interval � the least observable time unit�

p
occurs in a stream whenever no

ordinary message is sent within a time unit� A stream or a stream tuple with occurrences
of
p
�s are said to be timed� Similarly� a stream processing function is said to be timed

when it operates on domains of timed streams� Observe that in the case of a timed�
pulse�driven� stream processing function the output during the �rst n � � time intervals
is completely determined by the input during the �rst n time intervals� For any stream
or stream tuple i� 	i denotes the result of removing all occurrences of

p
in i�

In the more theoretical parts of this paper� to avoid unnecessary complications� we
distinguish between only two sets of actions� namely the set D denoting the set of all
actions minus

p
� and Dp denoting D�fpg� However� the proposed formalism can easily

be generalized to deal with more general sorting� and this is exploited in the examples�
We use one additional function in our examples� namely a function 
 which eliminates

repetitions� More explicitly� if d� e are n�tuples of actions� and r is an n�tuple of streams�
then 
 is a stream processing function such that the following axioms hold�


�d� �� � d� �� 
�d� e� r� � if d � e then 
�d� r� else d�
�e� r��

Note that these axioms together with the monotonicity and continuity constraints deter�



mine the semantics also for stream tuples whose stream components are not of the same
length�

�� FOCUS AND ITS STREAM SEMANTICS

Depending on the logical concepts they employ� Focus speci�cations can be divided into
a number of subclasses� In this paper� we employ only so�called relational speci�cations�
However� the proposed approach can easily be combined with the other speci�cation
techniques in Focus� A relational speci�cation of a component with n input channels and
m output channels is written in the form

S�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� � R�

where S is the speci�cation�s name� i�� � � � � in and o�� � � � � om are disjoint� repetition free
lists of identi�ers representing n respectively m streams� R is a formula with the elements
of i�� � � � � in and o�� � � � � om as its only free variables� Each stream models the communica�
tion history of a channel� and R characterizes the allowed relation between the histories
of the input and the output channels�
In Focus speci�cations are modeled by sets of timed� pulse�driven� stream processing

functions� In real�time speci�cations the ticks occur also at the syntactic level� In other
speci�cations they are abstracted away in the sense that they are not allowed to occur
explicitly in the speci�cations� In this paper we consider only speci�cations of the latter
type�
The denotation of the speci�cation S is the set of all �n�m��ary� timed� pulse�driven�

stream processing functions which ful�ll R when time�signals are abstracted away and
only complete inputs are considered�



 S ��
def
� f� � �D�p �n

cp� �D�p �m j �r � �D�p �n � �	r� 	��r�� j� Rg�

where �	r� 	��r�� j� R i� R evaluates to true when each input identi�er ij is interpreted
as the j�th element of the n�tuple 	r� and each output identi�er oj is interpreted as the
j�th element of the m�tuple 	��r��
Networks of speci�cations are expressed in an equational style� For example� the net�

work S pictured in Figure �� consisting of the two speci�cations S� and S�� is characterized
as below�

S�i � D�� r � D�
� o � D�� s � D�� � �o� y� � S��i� x�� �x� s� � S��y� r�

The channels represented by x and y are now hidden in the sense that they represent
local channels� The comma separating the two equations can be read as an �and�� More

formally� 

 S ��
def
� f�� 
 �� j �� � 

 S� �� � �� � 

 S� ��g� where for any pair of timed stream

tuples i and r� ��� 
 ����i� r�
def
� �o� s� i� �o� s� is the least �xpoint solution with respect

to i and r� In fact any data ow network can be expressed in this equational style� We
have already seen an example of a �nite network� In�nite networks are expressed using
recursion� For a more detailed syntactic and semantic treatment� see 
���
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Focus o�ers a number of re�nement concepts with corresponding re�nement calculi�
The most basic of these is behavioral re�nement� which at the semantic level corresponds
to set inclusion� a speci�cation S� re�nes a speci�cation S�� written S� � S�� i� the
denotation of S� is equal to or contained in the denotation of S�� More formally� S� � S�

i� 

 S� �� � 

 S� ���

�� SDL AND ITS STREAM SEMANTICS

An SDL system speci�cation is a container for a set of blocks� It is separated from its
environment by a system boundary� The blocks are connected to one another and to the
system environment by channels� Each communication between two blocks or between a
block and the environment takes place using signals� which are conveyed by the channels�
The transmission of signals can be delaying or non�delaying and uni� or bidirectional� A
block can be a container for a set of blocks �block substructure� or it can be a container
for sets of processes�
Sets of processes are interconnected by non�delaying signalroutes� Signalroutes are

also used to connect processes to the block boundary� A process de�nition de�nes a set
of processes� Several instances of the same process may exist concurrently and execute
asynchronously and in parallel with each other and with instances of other processes in the
system� A process instance is a communicating� �nite�state machine extended to allow for�
a secondary state� represented by local variables� in addition to the ordinary control state�
explicit nondeterminism in terms of spontaneous input and non�deterministic decision�
deferred consumption of input signals�
Each process has an internal� unbounded bu�er in which all incoming signals are in�

serted in the order of their arrival and thereafter processed� Simultaneously arriving
signals are arbitrarily ordered� The set of valid state�transitions is described by a process
graph or a service decomposition�
There is a close relationship between a functional core of the SDL language and lazy

functional programming languages based on stream communication� It is this functional
core that interests us in this paper� Inspired by 
��� we sketch how this restricted version



of SDL can be given a denotational semantics in terms of streams and stream processing
functions� Since Focus is based upon such a semantics this can be achieved by specifying
the di�erent SDL constructs in Focus� We consider only the time independent part of SDL�
This means that all channels are declared as non�delaying and that only some restricted
aspects of the SDL facilities for timers are modeled� Moreover� with the exception of
SDL�	�s statements for explicit nondeterminism� all the constructs considered by us are
contained in what 
�� calls Basic�SDL�
The semantics of SDL systems and blocks can easily be expressed as �nite Focus net�

works given that the behavior of SDL processes can be described in Focus� This is
explained in more detail when we later characterize F�SDL� In this section we concentrate
on the modeling of the SDL process construct�
As indicated by Model � in Figure 	� if we ignore facilities for process creation� the timer

constructs� explicit nondeterminism and that an SDL process can send signals to itself� a
Basic SDL process� with n input signal routes and m output signal routes� can be modeled
as the sequential composition of two components� namely a fair merge component FM�
which merges the streams of signals received on the n input signal routes into a stream b
modeling the internal� unbounded bu�er of an SDL process� and a processing component
PR� which carries out the actual processing�
The component FM is characterized by the following relational Focus speci�cation�

FM�i� � D�� � � � � in � D�
� b � D�� � �o � f�� � � � � ng� � �n

j��splj�b� o� � ij�

Based on an oracle �its second argument� the auxiliary function splj extracts �from its �rst
argument� the stream of signals received on the j�th input signal route � mathematically
expressed�

j � y � splj�x� b� y� p� � x� splj�b� p�� j �� y � splj�x� b� y� p� � splj�b� p��

When we later de�ne F�SDL� FM is assumed to be a speci�cation constant with exactly
the above characterized semantics� Moreover� FM is overloaded to deal with any number
of input channels of any signal sorts� In an SDL process speci�cation the fair merge
component FM is hidden in the sense that it is only a part of the semantics of the
process� After all� since it is always the case that all incoming input signals are passed
on to the internal bu�er of the process� this does not have to be stated explicitly at the
syntactic level� The visible part of an SDL process speci�cation is basically a �possibly
nondeterministic� functional program corresponding to the component PR�
As explained in 
��� with respect to the internal� unbounded bu�er� the behavior of a

deterministic SDL processing component can be modeled by a function

g � Dp � D� c� �D��m�

which for any p�tuple of secondary state variables l� returns a stream processing function
g�l�� which characterizes the behavior of the processing component PR� This means that
in the deterministic case the behavior of the component PR can be characterized by a
relational Focus speci�cation of the following form�



PR�b � D�
� o� � D�� � � � � om � D�� �

�l�� � � � � lp � D � �g � Dp � D� c� �D��m � g�l�� � � � � lp��b� � �o�� � � � � om� where Q

The variables l�� � � � � lp represent the secondary state of an SDL process� The existentially
quanti�ed function variable g models the behavior of the processing component� The
formula Q gives the actual de�nition of g� Section � explains in more detail how Q can be
expressed� Based on this outline� we may de�ne the semantics of a simple SDL process
as 

 SDL PROC ��� where

SDL PROC�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� �

�b� � FM�i�� � � � � in�� �o�� � � � � om� � PR�b�

As already mentioned� in this paper we are only interested in the time independent part
of SDL � time�independent in the sense that all channels are declared as nondelaying�
Nevertheless� SDL timers are needed to allow certain weakly time dependent components
to be expressed� An example of such a component is the sender speci�ed in Section ��
To allow for the speci�cation of such components� we extend our restricted SDL language
with a set�timer command of the following form� set�now� timer�n��� The �rst parameter
is �xed as now�
Since the �rst parameter is �xed as now� according to the SDL semantics the time�out

signals are placed in the unbounded� internal bu�er in the same order as they are sent�
Moreover� they are fairly interleaved with the signals received on the other input channels�
Clearly� since we are only interested in the time�independent part of SDL� we do not need
reset signals� nor the SDL constructs for checking whether a timer is active or idle�
As indicated by Model 	 in Figure 	� under these restrictions we may model an SDL�

process with timers by adding an additional feedback channel t� which allows the process�
ing component PR to send its timer signals back to FM� The latter merges the stream of
timer signals with the other streams of input signals in the same way as before�
Unfortunately� as someone familiar with SDL may have observed� a problem has been

brushed under the carpet� In SDL a timer signal remains active until it is consumed by
the processing component PR� When the processing component sends a timer signal for
which there is already an active copy in b� then the already active copy is deleted at the
very same moment as the new copy is placed in b� Thus to make sure that we get the
intended e�ect when our Focus speci�cations are translated into SDL� this problem must
somehow be taken into consideration� There are at least two straightforward solutions�
The �rst alternative is to handle it directly in the speci�cation of PR� namely by for each

timer timer�n�� to add an additional parameter mtimer�n� keeping track of the di�erence
between the number of times timer�n� has been output along t� and the number of times
timer�n� has been input from b� Then� whenever a timer signal timer�n� is input from b�
if mtimer�n� � �� this signal is ignored � otherwise it is processed in the usual SDL way�
Given that T is the set of all timers� then the second alternative is to impose an

additional proof�obligation which must be satis�ed by the function g � Dp � �D �



T ��
c� �D��m � T � characterizing the behavior of the processing component PR� More

explicitly� to require that

g�l�� � � � � lp��b� � �o�� � � � � om� t�� �timer�n� c�t � �timer�n� c�b � � ���

for all timer signals timer�n� � T �
Clearly� the �rst alternative allows us to model more SDL�speci�cations� However�

the additional expressiveness we then get is not particularly interesting from a practical
point of view� Moreover� it is expensive in the sense that our Focus speci�cations become
more complicated� For this reason we decide in favor of the second alternative� Thus an
SDL�process� which behaves in accordance with the additional proof obligation ���� can
be modeled by the set of timed� pulse�driven� stream processing functions characterized
by 

 SDL PROC ��� where

SDL PROC�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� �

�b� � FM�i�� � � � � in� t�� �o�� � � � � om� t� � PR�b�

This format can of course easily be generalized to also allow the process to send ordinary
signals to itself� It is enough to de�ne t to be of type �D � T ���
So far we have considered deterministic processing components only� However� in SDL�	

nondeterminism can be expressed explicitly using the constructs for spontaneous input
and nondeterministic decision� We now extend our semantic model to deal with these two
constructs�
Spontaneous input is in SDL speci�ed using an input symbol with the keyword none� A

spontaneous input attached to a state means that the actual transition can be initiated at
any time nondeterministically� This construct can for example be used to model unreliable
behavior�
To handle spontaneous input� we add an additional component NG to our model� as

indicated by Model � in Figure 	� The component NG is supposed to output nondeter�
ministically some stream of none�s� and is speci�ed by�

NG� � z � fnoneg�� � true

The fair merge component must now also take the input from NG into consideration when
it generates the stream modeling the internal unbounded bu�er b � the signals received
along z are of course treated as ordinary input signals�
As a consequence� the denotation of an SDL process with timers �given the stated

restrictions� and spontaneous input is characterized by 

 SDL PROC ��� where

SDL PROC�i� � D�� � � � � in � D�
� o� � D�� � � � � om � D�� �

�z� � NG� �b� � FM�z� i�� � � � � in� t�� �o�� � � � � om� t� � PR�b�

The other way of expressing nondeterminism explicitly in SDL � so�called nondeter�



ministic decision � is represented by the keyword any inside a decision symbol with no
values attached to its outlets� This indicates that the alternative chosen by the pro�
cess cannot be forecast� To build this into our model we introduce an oracle q in the
speci�cation of PR�

PR�b � �D � T �� � o� � D�� � � � � om � D�� t � T �� �

�q � N� � �l�� � � � � lp � D � �g � N� � Dp � �D � T ��
c� �D��m � T � �

g�q��l�� � � � � lp��b� � �o�� � � � � om� t� where Q

The existentially quanti�ed q represents some in�nite stream of positive natural numbers
and can be thought of as a seed� If the k�th nondeterministic decision executed by the
process has � outlets� then outlet �q
k� mod �� � � is chosen where q
k� denotes the k�th
natural number in q�

�� THE SYNTAX OF F�SDL

So far we have concentrated on mapping the syntactic expressions of the two formalisms
into the very same semantics� In this section we work in the opposite direction� Based
on the proposed SDL semantics expressed in Focus� a language called F�SDL is de�ned�
This language characterizes a set of Focus speci�cations whose elements structurally and
semantically match SDL speci�cations to such a degree that an automatic translation into
SDL is almost straightforward� Because of the space constraints only certain restricted
aspects can be discussed here� The reader is referred to 
�� for more details�
We use the following EBNF convention� ��� expr ��� � expr is optional� fexprg� � zero or

more repetitions of expr� fexpr��sepg� � zero or more repetitions of expr separated by
sep� fexprg� � one or more repetitions of expr� fexpr��sepg� � one or more repetitions
of expr separated by sep� expr�jjexpr� � choice�	 
 � grouping�
We start by explaining how SDL system speci�cations are expressed in F�SDL�

hsys speci ��� system hheadi ��� hdata defi ��� hsys bodyi where hsys defsi end

hheadi ��� hidi �f hch decli ���g� � f hch decli ���g� � �

hsys bodyi ��� f hequationi ���g�

hsys defsi ��� f hblock speci ���g�

hsys speci characterizes a �nite Focus network of blocks �i�e� as a set of equations� whose
de�nitions are given in hsys defsi� hdata defi is used to de�ne new datatypes� signals etc�
as in SDL� Strictly speaking� the keywords system � where and end have no in uence on
the stream semantics� They have been included to simplify the implementation of the
translation algorithm and to increase the readability of the speci�cations� There are of
course a number of constraints� For example any block identi�er occurring in the the
right�hand side of an equation must also be de�ned in hsys defsi�
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The SDL system diagram in Figure � corresponds to the following F�SDL speci�cation�

system SYS�c� � fs�� s�� s�g�� c	 � fs�� s
g� � c� � fs�� s�� s�g�� c� � fs�� s�g�� �

�c�� c�� � BL��c��� �c�� � BL��c�� c	�

where block BL� � � � � block BL� � � � end

F�SDL block speci�cations are expressed in almost the same way as systems�

hblock speci ��� block hheadi ��� hdata defi ��� hblock bodyi where hblock defsi end

hblock defsi ��� f hblock speci ���g� jj f hproc speci ���g�

hproc speci ��� hord proc speci jj hrec proc speci

By ordinary processes hord proc speci we characterize the SDL processes which do not
create other processes� A recursive process hrec proc speci� on the other hand� has pro�
cess creation and communication as its only responsibility� The reason why we make
this distinction is that in F�SDL only some rather restricted aspects of the SDL process
creation facilities are modeled� namely those needed to express in�nite Focus networks�
We now characterize the syntactic structure of ordinary processes�

hord proc speci ��� ord process hheadi ��� hdata defi ��� hproc bodyi where hpr speci end

hproc bodyi ��� ��� hng eqi � ��� ��� hfm eqi � ��� hpr eqi

hng eqi� hfm eqi and hpr eqi model respectively the NG�equation� the FM�equation and
the PR�equation� as explained in Section �� NG and FM are speci�cation constants and
do not have to be explicitly de�ned in F�SDL� hpr speci gives the F�SDL speci�cation of
the processing component PR�



hpr speci ��� PR � ��� hch decli ��� � f hch decli ���g� � � hpr bodyi where hproc graphi end

The detailed structure of hpr bodyi corresponds to the similar fragment of the speci�cation
PR in Section �� The process graph hproc graphi �the formula Q in Section �� is basically
a functional program based on pattern matching�

hproc graphi ��� ��� hvar declsi ��� hi trani ��� � f htrani ���g� ���

hvar declsi allows us to introduce universally quanti�ed variables needed for the pattern
matching� hi trani is used to model the initialization transition � the transition from the
start symbol to the �rst control state� htrani models any other state transitions of an
SDL process graph� hi trani is just a special case of htrani� For an example of a complete
F�SDL process graph� see the speci�cation PR in Section ��

htrani ��� ��� hfunc idi �� hfunc seti � ��� � hh trani jj hv trani �

The optional part of htrani is used to model an SDL transition from an asterisk state�
A hidden transition hh trani models the way an SDL process consumes input signals

for which there is no input or save symbol� A visible transition hv trani models any other
transition� namely a save transition or an ordinary state transition�

hv trani ��� hs trani jj ho trani

A save transition hs trani allows the order of the signals in the internal� unbounded
bu�er to be permuted� Ordinary state�transitions ho tranimodel the �real� state�transitions
of an SDL process graph�

ho trani ��� ��� hsig idi � hsig seti � ��� hlefti � hrighti

The optional part is used to model that input symbols may contain lists of signals�
Assume that the actual process has fs�� s�� � � � � s
g as its input signal set� Then� the

SDL fragment of Figure � corresponds to the following F�SDL fragment�

a � fs�� s�� s�g � state�a� in� � � � �

state�s�� in� � � � �

a �� fs	� s�g � fs	� s�g c�in � in� state�in� �a� in��� � state��a� in�� in��

a �� fs�� s�� s�� s�� s	� s�g � state�a� in� � state�in�

The �rst two �conditional equations� model the ordinary transitions� the third models the
save�transition� the fourth models a hidden transition� namely the implicit consumption
of any occurrence of s
�



�� DEVELOPMENT OF A PROTOCOL SPECIFICATION

In this Section we sketch how Focus can be used to develop an SDL speci�cation of a
protocol based on 

�� For more details� see 
��� We refer to the overall protocol network
as SP �for Stenning Protocol�� and not surprisingly� from an external point of view� it is
required to behave as an identity component�

system SP
�i � DT�
� o � DT�� � o � i�

DT � fdt�d� jd � Dg is the set of data signals� where D is some nonempty set of data�
If we ignore the keyword system� which as explained in Section � has no semantics� this
is an ordinary Focus speci�cation� However� SP
 is not a complete F�SDL speci�cation
because its internal structure has not yet been �xed in an F�SDL manner� SP is assigned a
subscript to allow the di�erent speci�cations of the same component to be distinguished�
As usual in the case of protocols� the system to be developed consists of a sender� a

receiver and a communication medium� Thus� it seems natural to decompose our abstract
system speci�cation into three blocks� a block called SND specifying the sender� a block
called REC specifying the receiver� and a block called MED specifying the medium� At
the block level there are 
 channels altogether� two of these are external� the other six are
internal� Thus we want an F�SDL system speci�cation of the following form�

system SP��i � DT�
� o � DT�� �

�sd� sn� � SND�i�ma��

�ma�mn�md� � MED�sd� sn� ra��

�ra� o� � REC�md�mn�

where block SND � � � � block MED � � � � block REC � � � end

Although the three blocks are unspeci�ed� we already have enough information to generate
the corresponding SDL system diagram�
For each data signal dt�d� input on i� the sender SND generates a unique sequence�

number signal sn�n� and repeatedly sends these two signals along sd and sn� respectively�
until it receives the sequence�number signal sn�n� on ma� Any sequence�number signal
input on ma is of course sent by REC to acknowledge that the corresponding data signal
has been received� More formally� the sender can be speci�ed as below�



block SND�i � DT�� ma � SN�
� sd � DT�� sn � SN�� �

let

ma� � 
�ma�
�sd�� sn�� � 
�sd� sn�

in

�ma� � �i
�

�sd � �sn � �n � SN � �n c�sn� � � � sd� v i�
if �ma� � �i then �sd� � �i else �sd ����sd� � �ma� � �

SN � fsn�n� jn � Ng denotes the set of sequence�number signals� The let�construct
de�nes ma� and �sd�� sn�� to be equal to mn and �sd� sn� minus consecutive repetitions�
respectively�
The antecedent states the environment assumption� namely that the length of ma� is

less than or equal to the length of i� This is a sensible assumption since the receiver
should only acknowledge the data signals it receives�
The �rst conjunct of the consequent requires sd and sn to be of the same length�

This means that SND never sends a data signal without also sending its corresponding
sequence�number � and the other way around�
The second conjunct of the consequent makes sure that each sequence�number has

maximum one occurrence in sn�� This means that any data signal in sd that is not
equal to its predecessor has a corresponding sequence�number that is di�erent from all its
predecessors�
The third conjunct of the consequent requires sd� to be a pre�x of i� This means that

the sender only sends the data�signals input from i� and moreover that they are sent in
the order they are received�
The fourth conjunct of the consequent requires that if ma� is of the same length as

i then this also holds for sd�� otherwise sd is in�nite and the length of sd� is equal to
the length of ma� plus �� This means that the sender does not send more data signals
�when repetitions are ignored� than it receives on i� and that when it never receives an
acknowledgement for a data signal� then this signal is sent repeatedly forever�
Note that the second conjunct of the else branch together with conjunct two and three

of the consequent make sure that each data signal input on i is assigned a unique sequence�
number�
The medium and the receiver can be speci�ed accordingly� The veri�cation of this

decomposition boils down to formulating three invariants and showing that six proof�
obligations based on these invariants are valid �see 
����
At the system level our development is now complete� What remains is to transform the

two block speci�cations that we want to implement� namely SND and REC� into F�SDL
syntax� The speci�cation of the medium is not re�ned any further�
The blocks SND and REC have only one process each� and these processes are therefore

constrained to behave in exactly the same way as their respective blocks� Thus the
veri�cation of this re�nement step is trivial� Each process speci�cation is then decomposed



into a FM and a PR component� as explained above� In the case of SND an additional
feedback channel is introduced to allow for the use of timers� These two decompositions
are veri�ed in the same way as the decomposition of SP
� Then� the speci�cation of the
sender�s PR component is re�ned into�

PR�b � �DT � SN � T �� � sd � DT�� sn � SN�� t � T � �

�l � N � �d � D � �start � N�D � �DT � SN � T ��
c� DT� � SN� � T � �

start�l� d��b� � �sd� sn� t�

where �l� n � N � �d� d� � D � �s � SN � T � �in� in� � �DT � SN � T �� �

start�l� d��in� � next��� d��in�

next�l� d��dt�d��� in� � let l � l � � in dt�d���� sn�l��� ti�l��� rep�l� d
���in�

s � fsn�n�� ti�k� jn� k � Ng � next�l� d��s� in� � next�l� d��in�

rep�l� d��ti�n�� in� � if n � l then dt�d��� sn�l��� ti�l��� rep�l� d��in�
else rep�l� d��in� �

rep�l� d��sn�n�� in� � if n � l then next�l� d��in� else rep�l� d��in� �

s �� fdt�d� j d � Dg � fdt�d� jd � Dg c�in � in�
rep�l� d��in� �s� in��� � rep�l� d���s� in�� in��

end

The translation algorithm then gives the SDL speci�cation of Figure �� The PR compo�
nent of the receiver can be re�ned accordingly�

�� CONCLUSIONS

It has been outlined how Focus and a restricted version of SDL can be assigned the
same kind of stream�based� denotational semantics� Based on the proposed SDL semantics
expressed in Focus� a language called F�SDL has been de�ned� It characterizes a set of
Focus speci�cations whose elements allow an automatic �one�to�one� translation into
SDL� The proposed technique was demonstrated on hand of a protocol�
The merge of Focus and SDL into one methodology o�ers several advantages� Focus

with its well�de�ned formal semantics and very abstract nature allows the use of formal
proof techniques for the validation� veri�cation and development of speci�cations� In
particular� employing Focus a certain class of SDL speci�cations can be developed in a
top�down fashion � in other words� in the same style as the SDL protocol speci�cation was
developed in Section �� The SDL speci�cation was formally re�ned from an abstract Focus
speci�cation stating that the overall network should behave as an identity component � a
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Figure �� The Sender Process in SDL

requirement speci�cation whose correctness is obvious� Thus the protocol example shows
how one can proceed from a simple Focus speci�cation to a non�trivial SDL speci�cation�
More complicated protocols can of course be developed accordingly� Another advantage of
using Focus is the  exibility with respect to environment assumptions and the treatment
of speci�cations that are not supposed to be implemented� An example of the latter is the
medium MED of Section �� Assumptions about a component�s environment can be stated
by splitting the speci�cation into an assumption and a commitment part� For example�
in the speci�cation SND the antecedent can be seen as an environment assumption� and
the consequent is a commitment which must be ful�lled by the component whenever the
environment behaves in accordance with the environment assumption�
SDL is a speci�cation language� This means that the readability and structure of SDL

speci�cations is often of crucial importance� For this reason� F�SDL has been designed
in such a way that there is a straightforward mapping into SDL� This means that the
user has full control of the syntactic structure of the SDL speci�cation he is developing�
In SDL there is a lot of syntactic sugar� which can be hard to model directly in Focus�
This can be dealt with by de�ning and implementing user�controlled transformation rules
which allow the user to transform the generated SDL speci�cation into its optimal form�
From the Focus user�s point of view� the embedding of SDL as a target language means



that the many tools and environments already designed for SDL can be used to transform
a developed speci�cation into the chosen target architecture� For example� there are SDL
tools which allow an automatic translation into C�� 
��� Moreover� since a completely
formal development is very resource demanding� the Focus user may concentrate his e�orts
on the critical parts of a system description and specify the less essential aspects directly
in SDL�
Although the considered sublanguage is su!ciently expressive to deal with non�trivial

applications� many SDL facilities have been ignored� However� it seems to be relatively
easy to extend the proposed approach to handle a much richer part of SDL� including the
the SDL timer constructs� procedures �not remote call�� and services� On the other hand�
the treatment of the more OO�related facilities of SDL� including the full generality of the
constructs for process creation� is di!cult if at all possible in the context of Focus� This
is of course not very surprising since the formal treatment of object�oriented languages is
known to be di!cult�
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