
Steam boiler control speci�cation problem�

A TLA solution

Frank Le�ke and Stephan Merz

Institut f�ur Informatik� Technische Universit�at M�unchen
����� M�unchen� Germany

Abstract� Our solution to the speci�cation problem in the speci�cation
language TLA� is based on a model of operation where several compo�
nents proceed synchronously	 Our �rst speci�cation concerns a simpli�ed
controller and abstracts from many details given in the informal problem
description	 We successively add modules to build a model of the state
of the steam boiler� detect failures� and model message transmission	 We
give a more detailed controller speci�cation and prove that it re�nes the
abstract controller	 We also address the relationship between the physi�
cal state of the steam boiler and the model maintained by the controller
and discuss the reliability of failure detection	 Finally� we discuss the
implementability of our speci�cation	

� Introduction

We propose a solution to the steam boiler control speci�cation problem �AS�
by means of a formal speci�cation in the speci�cation language TLA�� which is
based on Lamport�s Temporal Logic of Actions TLA �L���	 The overall structure
of our speci�cations follows the physical structure of the system as it is described
in the informal problem statement
 we have tried to decompose the problem into
small modules of manageable complexity	 However� the �rst speci�cation models
a simpli�ed version of the controller that abstracts from many physical details	
We also give a speci�cation of the physical environment �the steam boiler� and
discuss the faithfulness of the model of the steam boiler maintained by the
controller	 We conclude that it is possible to model the physical system as long
as the information about sensor failures is accurate� but that there is not enough
independent information to securely detect sensor failures	

TLA is a temporal logic of linear and discrete time its semantics is de�ned in
terms of behaviors� modelled as linear in�nite sequences of states� which assign
values to variables	 Temporal formulas are built from �rst�order action formulas
that may contain primed and unprimed formulas	 Action formulas are evaluated
over pairs of states� with the convention that unprimed variables refer to the
value of the variables in the �rst and primed variables in the second state	
In particular� action formulas are used to describe the next�state relation of
a program	 The basic temporal operators of TLA are � �always in the future�
and the quanti�er ������ that corresponds to hiding of internal variables	 If Init is a
state predicate �an action formula that does not contain primed variables�� N is

module Timing

import Reals

parameters

�
 constant
now � tlast � round
 variable

RT
�

� � now � Real

� ��now � � fr � Real
 now � rgnow
� � t � Real
 ��now � t�

Tick
�

� �now � � tlast ��� � unchanged htlast � round i

Round
�

� �now � tlast ��� � �tlast � � now� � �round � �� round� � �now � � now�

Trigger
�

� tlast � now � ��Tick � Round hnow�tlast�round i

Fig� �� Timing of the controller	

an action formula� and v is a tuple of variables� then the formula Init ���N �v is
true of a behavior hs�� s�� � � �i i� the initial state s� satis�es the predicate Init
and for any pair hs i � s i�� i of consecutive states� either no variable in v changes
�such a state pair represents a stuttering step with respect to the variables in v�
or the action N holds of hs i � s i�� i	 More information on TLA and TLA� can
be found at �L���	

The controller for the steam is a real�time system a controller cycle takes
place every �ve seconds	 We follow the general format of TLA real�time speci�
�cations suggested in �AL��� where real time is modelled by a real�valued vari�
ables now 	 Module Timing � shown in �gure �� declares the constant parameter
� which represents the distance between two consecutive cycles ��ve seconds�
and the variable parameters now � tlast � and round 	 Formula RT asserts that
the value of now initially equals some real number and that it increases mono�
tonically and without bound� which excludes �Zeno� behaviors	 �The formula
�F asserts that F must eventually become true	� Formula Trigger asserts that
tlast initially equals now and that every non�stuttering step is either a Tick or
a Round step	 A Round step takes place when time has advanced by � since
the previous cycle
 it updates the value of tlast and causes the variable round
to change value	 We will see below that a change of value of round triggers a
synchronous state transition of all controller modules	 On the other hand� time
does not advance in Round steps
 it is a common abstraction in real�time sys�
tems to separate the advance of time from actual computation steps	 Tick steps
represent an increase of time	 However� the new value of now should still be
below the time of the subsequent controller cycle	 Tick steps do not change tlast
or round � which we will see to imply that the controller remains idle	

The speci�cation problem is somewhat atypical for a real�time system in that
it does not specify timeouts for individual actions	We can therefore abstract from

real�time behavior in the speci�cations of the individual controller modules and
model all modules of the controller as performing synchronous transitions when
the variable round changes value	 This assumption is re�ected in the form of the
TLA formula that speci�es a module� which will be of the form

Init ���N � �round � �� round��hv�round i

The formulas Init and N describe the initial conditions and the next�state re�
lation of the module� v is a tuple of the �output� variables controlled by the
module	 The formula asserts that the next�state relation has to hold whenever
round changes value and� conversely� that the variables in v may only change
value if round does� too	 Taken together� these conditions ensure that all state
changes happen simultaneously	

The structure of this paper is as follows We specify a simpli�ed controller
in section �	 Sections � and � introduce a formal model of the physical steam
boiler and relate the physical state to the approximations maintained by the
controller	 We give a more re�ned controller speci�cation in section �� while sec�
tions � and � are concerned with detecting sensor failures and modelling message
transmissions	 We discuss the implementability of our speci�cation in section �
and derive a data �ow graph	 Finally� section � concludes with answers to the
questions posed by the organizers of this case study	 The complete speci�cation�
together with further explanations and the proofs� which had to be omitted in
the main text due to space constraints� can be found in the appendix	

� Abstract controller speci�cation

Our �rst speci�cation concerns an abstract version of the controller for the steam
boiler� it appears as module Abstract in �gure �	 The main purpose of the con�
troller is to maintain a satisfactory water level in the steam boiler	 We assume
that the abstract controller receives indications concerning the current water
level in the steam boiler �normal� low� high or dangerous� at each cycle� as
well as information about catastrophic system failures	 It may also receive the
signals units ready � and stop req � which are abstractions of the messages PHYS�
ICAL UNITS READY and STOP described in the problem description �AS�	
We model signals by the values T �true� and F �false�
 formally� the value T
represents the presence of a signal� while any other value means that the signal
is absent	

Based on its input� the steamboiler determines its mode of operation and
may react by opening and closing the valve and the pumps� as modelled by
the following variables ctl mode� prog ready � valve� and pumps 	 The current
mode of operation of the abstract controller may be �initialize�� �operating� or
�emergency�	 Mode �initialize� corresponds to the second phase of the initializa�
tion described in the problem statement� where the controller tries to ensure a
normal water level before steam production starts	 Mode �operating� subsumes
the �normal�� �degraded�� and �rescue� modes described in the problem state�
ment� which are not distinguished in the abstract speci�cation	 The variable

module Abstract

parameters

round
 variable
units ready � stop req � system failure
 variable
normal level � low level � high level � dangerous level
 variable
ctl mode� prog ready � valve� pumps
 variable

critical failure
�

� � �system failure � � T �
� �ctl mode � �operating�� � �dangerous level � � T �

initialization complete
�

� �ctl mode � �initialize�� � �normal level � � T �

open valve
�

� �ctl mode � � �initialize�� � �high level � � T �

open pumps
�

� �ctl mode � �� �emergency�� � �low level � � T �

close pumps
�

� �ctl mode � � �emergency�� � �high level � � T �

Init
�

� � �ctl mode � �initialize�� � �prog ready � F �
� �valve � �closed�� � �pumps � �o���

N
�

� � ctl mode � � if critical failure � �stop req � � T � � �ctl mode � �emergency��
then �emergency�
elsif �ctl mode � �initialize�� � �units ready � � T �
then �operating�
else ctl mode

� �prog ready � � T � � initialization complete

� � open valve � �valve � � �open��
� �open valve � �valve � � �closed��

� �pumps � � f�on�� �o��g� � �pumps � � �on��� open pumps

� �pumps � � �o���� close pumps

�
�

� Init � ��N � round � �� round hctl mode�prog ready�valve�pumps�round i

Fig� �� Speci�cation of an abstract controller	

prog ready represents a signal sent from the controller to the steam boiler that
indicates that the initialization is complete	 This signal is an abstraction of the
message PROGRAM READY of the problem statement	

The variables valve and pumps indicate the state of the actuators during the
subsequent control cycle	 The abstract controller does not distinguish between
di�erent pumps	

The behavior of the abstract controller is speci�ed by the formula �� which
appears at the end of module Abstract 	 It has the expected form

Init � ��N � �round � �� round��hv�round i

of a module speci�cation	 We now explain the action formula N � which asserts
the next�state relation of the four variables ctl mode� prog ready � valve� and
pumps that represent the controller�s output state	 Figure � illustrates the tran�

\/ stop_request

critical_failure

NON-EMERGENCY

INITIALIZE
units_ready

OPERATING

EMERGENCY

Fig� �� Abstract controller control modes	

sitions between the control modes of the abstract controller� using a Statechart�
like notation	 The speci�cation uses the auxiliary action formula critical failure
to determine when the controller should enter �emergency� mode	 This happens
when the environment signals that the water level might be dangerous or that
a system failure has occurred	

The second conjunct of formulaN states that the signal prog ready is emitted
i� the initialization is complete	 The third and fourth conjuncts of formula N
concern opening and closing the valve and the pumps	 The valve should be
�open� i� condition open valve holds� which requires the controller to be in
mode �initialize� and the signal for high water level to be present	 The behavior
of the pumps is speci�ed rather loosely We only require that the environment
has signalled high water level whenever the controller wants to switch �on� some
pump� and similarly for the �o�� state	 Speci�cally� we do not rule out situations
where both signals high level and low level are present
 the controller may then
behave in either way �the problem statement does not prescribe how the system
should react in such a situation�	

The speci�cations of module Abstract are a little unusual in that they contain
primed versions of variables that represent input to the controller� such as the
variables low level and high level 	 This peculiarity is due to our model of the
abstract controller operating in synchrony with its environment we think of the
input variables as changing at the very moment that the controller performs a
step
 hence the speci�cation refers to the new �primed� values of the input	 Note
that changes of the input variables are completely unconstrained by the formula
�	 However� some of the signals will actually be produced by �di�erent modules
of� the controller itself when we introduce a re�nement of the controller later�
and the re�nement proof will become a little simpler if we adopt the model of
synchronous computation right from the beginning	 We will discuss the notion of
primed input variables from the point of view of implementability in section �	

� Steam boiler physics

The abstract controller speci�cation of module Abstract relies on signals that
indicate normal� low� high or dangerous water levels	 The problem description

qmin �q � v � p� pst � e� p cmd � e cmd � �
max��� q � v ��� �

�
�U � ��� � emax �q � v � p� pst � e� p cmd � e cmd �

�
P

�
i�� pmin �q � v � p� pst � e� p cmd � e cmd ��i ��

qmax �q � v � p� e� p cmd � e cmd � �
min�C � q � v ��� �

�
� U � ��� � emin �q � v � p� pst � e� p cmd � e cmd �

�
P

�
i�� pmax �q � v � p� pst � e� p cmd � e cmd ��i ��

Fig� �� Steam boiler physics possible de�nitions �incomplete�	

states that the controller receives information about the water level and other
important data from unreliable sensors	 In order to cope with sensor failures� the
controller maintains a model of the state of the steam boiler� based on physical
laws that underly the behavior of the steam boiler	

We use the following entities to describe the state of the steam boiler at any
given moment

� the amount of water q in the steam boiler�

� the amount of steam v exiting the steam boiler�

� the amount of water pumped into the steam boiler by each pump during the
preceding control cycle� represented as a function p f�� �� �� �g � ���P ��

� the state of the pumps� which we describe by a function pst f�� �� �� �g �
f�o��� �switching�� �on�g�

� and the amount of water e � ���V � that has exited through the evacuation
valve during the previous control cycle	

The pump state �switching� indicates that the pump has been switched on during
the previous cycle	 The problem statement indicates that a pump needs a full
controller cycle to start pouring water into the boiler	 In particular� the pump
state cannot be inferred from the amount of water delivered by the pump	

Given the current boiler state and the commands sent to the acutators by
the controller as represented by a function p cmd f�� �� �� �g � f�on�� �o��g
and e cmd � f�open�� �close�g� we assume given functions to compute lower and
upper bounds for the value of each entity after � seconds �that is� at the follow�
ing controller cycle�	 The precise de�nitions of these functions are unimportant�
but they should yield results within the static bounds for the entity such that
the result of the lower�bound function is below that of the upper�bound func�
tion	 Moreover� we assume certain monotonicity conditions	 For example� the
functions that compute bounds for the water level should be monotonic in the
arguments q � p� and p cmd and anti�monotonic in v � e� and e cmd � where we let
pump and valve commands are ordered by �o�� � �on� and �close� � �open��

module Adjust

parameters

round
 variable
read � fail
 variable
est�� est�
 variable
adj�� adj�
 variable

N
�

� hadj��� adj�� i � if �fail � � T � then hest�� est�i else hread �� read � i

�
�

� ��N � �round � �� round�hadj��adj��round i

Fig� �� Adjusting sensor readings	

respectively� and let arrays be ordered component�wise	 A precise statement of
these assumptions is given in module Dynamics � shown in �gure �	

Figure � contains possible de�nitions of functions qmin and qmax that are
inspired by the information in the problem description	 We do not state these
de�nitions in the form of a TLA� module� because they are not part of our
speci�cation	 Similar de�nitions of the remaining functions are given in �gure ��
in the appendix �see CD�ROM annex LM	A	��	

� Relating component and environment

Based on the physical laws discussed in the previous section� we now introduce
speci�cations that concern both the physical evolution of the steam boiler state
and the approximations maintained by the controller	 This section contains three
speci�cations module Adjust describes how bounds for the relevant data are
computed from the sensor readings� the system�s projections� and information
about sensor failures	 Module Estimate speci�es how the system arrives at its
projections� and module Environment states assumptions on the evolution of the
physical steam boiler	 Finally� we assert a theorem that states that the system�s
estimates are bounds for the physical state of the steam boiler as long as failure
information is accurate	

Figure � shows the speci�cation of a generic module that computes �ad�
justed� values for an entity based on the reading of the corresponding sensor�
information about the failure of the sensor� and estimations for the expected
range of sensor values	 As in the case of the abstract controller speci�cation� we
assume that environment and system operate synchronously	 Therefore� the new
information about sensor failures and sensor readings �represented by primed
variables� are used to update the adjusted values� whereas the old estimates
�presumably computed in the previous cycle� are used in case of failure	

module Estimate

parameters

lwb� upb
 constant
round
 variable
qa�� qa�� va�� va�� pa�� pa�� psta�� psta�� ea�� ea�� p cmd � e cmd
 variable
est�� est�
 variable

N
�

� � est�� � lwb�qa �
�� qa

�
�� va

�
�� va

�
�� pa

�
�� pa

�
�� psta

�
�� psta

�
�� ea

�
�� ea

�
�� p cmd �� e cmd �

� est�� � upb�qa �
�� qa

�
�� va

�
�� va

�
�� pa

�
�� pa

�
�� psta

�
�� psta

�
�� ea

�
�� ea

�
�� p cmd �� e cmd �

�
�

� ��N � �round � �� round�hest��est��round i

Fig� �� Computing estimates for the next cycle	

We now discuss how one can compute estimates for the state of the steam
boiler at the next controller cycle and how these estimates relate to the actual
�physical� values	 To state the relationship between the actual state of the steam
boiler and the model of the steam boiler state maintained by the controller� we
use the variables q � v � p� pst � and e to denote the actual water level� amount
of steam� pump throughput� pump state� and valve throughput� the variables
qr � vr � pr � pstr � and er to denote the �readings� of the values transmitted
from the respective sensors�� and the variables qa�� qa�� va�� va�� pa�� pa��
psta�� psta�� ea�� and ea� to denote lower and upper bounds for these entities
maintained by the controller	 �This nomenclature follows the suggestions given
in the �additional information� part of the problem statement� where they are
called �adjusted� values	� Using the assumptions on the monotonicity of the
functions qmin � qmax � etc	� they can be generalized to compute bounds for the
state of the steam boiler at the next cycle given bounds for the present state of
the steam boiler instead of actual values	 For example� the generalized version
qamin of function qmin can be de�ned as

qamin �qa�� qa�� va�� va�� pa�� pa�� psta�� psta�� ea�� ea�� p cmd � e cmd �
� qmin �qa�� va�� pa�� psta�� ea�� p cmd � e cmd �

and similarly for the other functions �all de�nitions are contained in the complete
speci�cationA	� in the appendix�	

Module Estimate� whose speci�cation appears in �gure �� de�nes a generic
module to compute estimates for a particular entity of the steam boiler state	 Its

� We are deviating somewhat from the problem statement and assume that the steam
boiler transmits the actual throughput of the pumps and the valve instead just binary
status information for the pumps and no information for the valve	 This assumption
makes our speci�cation more uniform	

module Environment

parameters

lwb�upb
 constant
round
 variable
q � v � p� pst � e� p cmd � e cmd
 variable
actual � read � fail � adj�� adj�� est�� est�
 variable

N
�

� lwb�q � v � p� pst � e� p cmd � e cmd � actual � � upb�q � v � p� pst � e� p cmd � e cmd

�
�

� ��N � �round � �� round�hactual�round i

Fail reliable
�

� �actual �� read�� �fail � T �

Good approx
�

� adj� � actual � adj�

Good estimate
�

� � est� � lwb�q � v � p� pst � e� p cmd � e cmd
� upb�q � v � p� pst � e� p cmd � e cmd � est�

Fig� �� Behavior of the environment	

parameters include two estimation functions lwb and upb� to compute lower and
upper bounds for the particular value	 These functions are static in the sense
that they do not change over time
 this is indicated by the keyword constant in
the parameter declaration	 A typical lower�bound function would be the function
qamin de�ned above	 Module Estimate applies these functions at every cycle to
the �adjusted� values and the commands that will be sent to the pumps and
the valve during the subsequent control cycle	 Again� primed variables appear as
inputs because the estimates should be based on the most recent data available	

Module Environment � shown in �gure �� will be used to relate the physical
evolution of the steam boiler system with the model maintained by the con�
troller	 Similar to module Estimate� it begins by importing constant functions
lwb and upb to compute lower and upper bounds on the evolution of a physical
state variable given the current state of the steam boiler �not its approximation�	
Typical instantiations will be qmin and qmax 	 The speci�cation � asserts that
the new value of the variable actual � which will be used to represent a particular
entity of the steam boiler state� must fall within the lower and upper bounds
computed by the functions lwb and upb �we let x � y � z be an abbrevia�
tion for x � y � y � z �	 To understand this speci�cation� note again that we
model the environment and the system as evolving synchronously� which may
seem somewhat counterintuitive�after all� the water level in the steam boiler
is a continuous function whose evolution cannot be described accurately with a

� Since TLA is an untyped logic� the parameter declaration does not express that lwb
and upb are expected to be functions or specify their functionality	

model of discrete time as that underlying TLA	 However� think of the variable
actual as a �probe� that is taken precisely at each controller cycle	 The problem
statement asserts that the steam boiler would be in danger if the water level
exceeded the limit values for more than � seconds	 We interpret this statement
as implying that the controller does not have to care about peak values outside
the limit values that do not persist for at least � seconds and may therefore
pass unnoticed	

Module Environment also de�nes three state predicates for later use	 Predi�
cate Fail reliable holds if the sensor value agrees with the actual value unless a
sensor failure is signalled	 Predicate Good approx holds if the actual value falls
within the interval �adj�� adj�� while predicate Good estimate asserts a similar
relationship between the estimates and the bounds computed from the current
state	

Module Dynamics � part of which is shown in �gure � �the complete module
appears in �gures ��� �� and �� in the appendix� see CD�ROM annex LM	A	���
assembles instantiations of the speci�cations de�ned in the modules discussed in
this section	 It declares the following parameters

� functions qmin � � � � � pstmax that compute bounds for the respective subcom�
ponents of the state of the steam boiler as discussed in section ��

� the variable round used for synchronization�

� variables q � � � � � e that represent the actual state of the steam boiler and vari�
ables p cmd and e cmd that represent the commands sent to the actuators
as described in section ��

� variables qr � � � � � er that represent the readings of the sensors associated with
the di�erent steam boiler state components�

� variables qa�� � � � � ea� that represent the �adjusted� values used by the con�
troller� and

� variables qc�� � � � � ec� that represent the estimations of the steam boiler state
made by the controller	

The module goes on to state assumption MonotonicityAssumption� which for�
mally asserts the assumptions on the functions qmin � � � � � emax discussed in sec�
tion �	 A TLA� module that contains an assumption may only be instantiated
with parameters that satisfy the assumption	 Any theorems asserted in the mod�
ule �such as theorem Good model of module Dynamics� need only hold if the
assumption is satis�ed	

Next� module Dynamics gives de�nitions for the functions qamin � � � � � eamax

that compute bounds for the steam boiler state at the next cycle given bounds
for its current state	 These functions are obtained by supplying lower or up�
per bounds to the functions qmin � � � � � emax � according to the monotonicity of
the function for the respective argument	 Module Dynamics then includes in�
stantiated versions of the modules Adjust � Estimate� and Environment for each

module Dynamics

parameters

qmin � qmax � vmin � vmax � pmin � pmax � pstmin � pstmax � emin � emax
 constant
round
 variable
q � v � p� pst � e� p cmd � e cmd
 variable
qr � vr � pr � pstr � er
 variable
qf � vf � pf � pstf � ef
 variable
qa�� qa�� va�� va�� pa�� pa�� psta�� psta�� ea�� ea�
 variable
qc�� qc�� vc�� vc�� pc�� pc�� pstc�� pstc�� ec�� ec�
 variable

assumption

MonotonicityAssumption
�

�
�q� � q�� � �v� � v�� � �p� � p�� � �pst� � pst�� � �e� � e��
� � � � qmin �q�� v�� p�� pst�� e�� pc� ec � qmax �q�� v�� p�� pst�� e�� pc� ec � C

� qmin �q�� v�� p�� pst�� e�� pc� ec � qmin �q�� v�� p�� pst�� e�� pc� ec
� qmax �q�� v�� p�� pst�� e�� pc� ec � qmax �q�� v�� p�� pst�� e�� pc� ec
� � � � �� similar assumptions for vmin � � � � � emax omitted ��

qamin �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � qmin �q�� v�� p�� pst�� e�� pc� ec
qamax �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � qmax �q�� v�� p�� pst�� e�� pc� ec
� � � �� similar de�nitions for vamin � � � � � eamax omitted ��

include Adjust as QA with

read 	 qr � fail 	 qf � adj�	 qa�� adj�	 qa�� est�	 qc�� est�	 qc�
include Estimate as QC with

lwb 	 qamin � upb 	 qamax � est�	 qc�� est�	 qc�
include Environment as Q with

lwb 	 qmin � upb 	 qmax � actual 	 q � read 	 qr � fail 	 qf � adj�	 qa�� adj�	 qa�
� � � �� similar include clauses for other entities omitted ��

All fail reliable
�

� � Q �Fail reliable � V �Fail reliable � P �Fail reliable
� PST �Fail reliable � E �Fail reliable

All good approx
�

� � Q �Good approx �V �Good approx � P �Good approx

� PST �Good approx � E �Good approx

EnvDynamics
�

� Q �� �V �� � P �� � PST �� � E ��

ModDynamics
�

� � QA�� � VA�� � PA�� � PSTA�� � EA��
� QC �� �VC �� � PC �� � PSTC �� � EC ��

theorem

Good model
�

� EnvDynamics �ModDynamics �
�All good approx � �All fail reliable
� �All good approx�

Fig� 	� Module Dynamics �incomplete�	

NORMAL

RESCUE

INITIALIZE

NON-EMERGENCY

~failure

units_ready

/\ failure

DEGRADED

failure /\ ~
qf

failure /\ ~qf

units_ready

/\ ~failure

qf
qf

~f
ai

lu
re

STARTUP
boiler_

waiting

Fig�
� Control modes for the re�ned controller	

component of the steam boiler state	 The actual � read � fail � adj�� adj�� est�� and
est� parameters of these modules are instantiated with the variables representing
the actual� read� adjusted or estimated values or the failure information for the
respective state component	 Any parameter that is not explicitly instantiated in
an include clause is instantiated with the parameter of the same name of the
including module	

Finally� module Dynamics states theorem Good model � which asserts that
the actual value of every state component falls within the bounds given by the
corresponding �adjusted� values in any run of the environment �the physical
steam boiler� and the controller� as long as the information about failures is
reliable� and assuming that the initial values fall within the bounds	 The theorem
is expressed as a formula of the form P � �Q �� R�	 The formal de�nition of the
operator �� has been given in �AL���	 Intuitively� formula Q �� R asserts that R
holds for at least as long as Q holds	 We sketch a proof of theorem Good model

in the appendix� see CD�ROM annex A	�	

� A re�ned controller

��� Re�ning control modes

We now re�ne the speci�cation of the abstract controller of section �� provid�
ing for di�erent modes of operation as described in the problem statement	 The
initialization mode is split into a �startup� mode where the controller waits for
the signal boiler waiting and an �initialize� mode where it tries to ensure a nor�
mal water level by operating the pumps and the valve	 The mode �operating�
of the abstract controller is subdivided into several submodes� and the variable
system failure that was used as an �oracle� in the abstract speci�cation is now
de�ned in terms of sensor and transmission failures	 Figure � illustrates the dif�
ferent control modes �except for the emergency mode� which stays unchanged� of

module Control

import Naturals

parameters

round
 variable
boiler waiting � units ready � stop req
 variable
transmission failure� qf � vf � pf � pstf � ef � dangerous level � normal level
 variable
system failure� ctl mode� prog ready
 variable

failure
�

� �qf � � T � � �vf � � T � � �i � f�� �� �� �g
 �pf ��i � T � � �pstf ��i � T �

critical failure
�

�
� �system failure � � T �
� �ctl mode � f�normal�� �degraded�� �rescue�g� � �dangerous level � � T �

initialization complete
�

� �ctl mode � � �initialize�� � �normal level � � T �

Init
�

� �ctl mode � �startup�� � �prog ready � F �

N
�

� � �system failure � � T � �
� �transmission failure � � T �
� �ctl mode � �startup�� � �vf � � T �
� �ctl mode � �initialize�� � �qf � � T � vf � � T �
� �ctl mode � �rescue�� � � �dangerous level � � T � � �qf � � T �

� �i � f�� �� �� �g
 �pf ��i � T � � �pstf ��i � T �

� ctl mode � � if critical failure � �stop req � � T � � �ctl mode � �emergency��
then �emergency�
elsif �ctl mode � �startup��
then if �boiler waiting � � T � then �initialize� else �startup�
elsif �ctl mode � �initialize�� � ��units ready � � T �
then �initialize�
elsif �qf � � T � then �rescue�
elsif failure then �degraded�
else �normal�

� �prog ready � � T � � initialization complete

�
�

� Init � ��N � round � �� round hsystem failure�ctl mode�prog ready�round i

Fig� ��� Module Control 	

the re�ned controller and the state transitions between these modes of control	
The TLA speci�cation of the re�ned controller is given in module Control of
�gure ��	 The component speci�cation de�nes next�state relations for the vari�
ables system failure� ctl mode� and prog ready 	 The de�nitions of failure and
critical failure� are virtually literal transcriptions from the problem description	
The de�nition of system failure re�ects the failure conditions that are consid�
ered to be critical in the informal problem statement� depending on the current
mode of operation	 The transition relation for ctl mode is easily read o� the
statechart�like illustration in �gure �	 Unlike module Abstract of �gure �� mod�

ule Control only describes the state transitions of the controller the operation
of the pumps and the valve is speci�ed in module Actuators � discussed in the
following section	

��� Operating the pumps and valve

Module Actuators � shown in �gure ��� re�nes the abstract controller�s decisions
about the operation of the pumps and the valve	 In particular� the speci�cation
decides on the number of pumps the controller wants to operate during the next
cycle� but defers the decision about which speci�c pumps should be switched on
or o� to a later module	 The reason for this separation is that we do not want
to be concerned with pump failures at this stage to simplify the situation	 In
particular� we do not want to worry here about the number of pumps that are
currently operational or about pump latency	

The speci�cation is parameterized by two functions lwb and upb that com�
pute lower and upper bounds for the water level in the steam boiler� given the
current water level� the current amount of steam� the amount of water exiting
through the valve� and assuming that k pumps were operating throughout the
following cycle	 For concreteness� we give possible de�nitions of these functions
as suggested by the problem description

lwb�q�� q�� v�� v�� e� k � � q�� v� ��� �

�
�U � ��� � e � k � P

upb�q�� q�� v�� v�� e� k � � q�� v� ��� �

�
�U � ��� � e � k � P

The module states obvious monotonicity assumptions about these functions	
Action N describes the opening and closing of the valve and the pumps	

The behavior of the valve is speci�ed exactly as in the abstract speci�cation
of �gure �� except that the condition high level is made explicit	 The decision
concerning the number of pumps to operate is based on the water level estimated
by the functions lwb and upb	 Ideally� the controller should choose a number
such that the estimated water level falls within the interval �N ��N �� of normal
operation	 Otherwise� the speci�cation asserts that at least one pump should be
open if the water level is guaranteed to be below N �� while all pumps should be
closed if the water level is guaranteed to be above N �	 This is of course still a
very loose speci�cation that would have to be re�ned during the design stage	
Besides� module Actuators gives speci�cations for the signals normal level and
dangerous level that are used in module Control 	 We consider the water level to
be dangerous not only if it may exceed the limit values M � or M �� but also if
the information given by the adjusted values is so imprecise that we cannot tell
whether the level is above or below the limits for normal operation	 �The reaction
of the controller in such a state has been left open in the problem description	�

In the appendix �see CD�ROM annex LM	A	�� we prove that the speci�ca�
tions of modules Control and Actuators re�ne the abstract controller of mod�
ule Abstract for suitable substitutions	 The appendix also contains a module
PumpAssignment �see CD�ROM annex LM	A	�� that speci�es which pumps
should be switched on or o�� given the number of pumps the controller wants to
operate	

module Actuators

import SteamboilerConstants� Naturals

parameters

lwb�upb
 constant
round
 variable
ctl mode� qa�� qa�� va�� va�
 variable
n pumps� valve� normal level � dangerous level
 variable

assumption

MonotonicityAssumption
�

�
�q� � q�� � �v� � v�� � �e� � e�� � �k� � k��
� � � � lwb�q�� v�� e�� k� � upb�q�� v�� e�� k� � C

� lwb�q�� v�� e�� k� � lwb�q�� v�� e�� k�
� upb�q�� v�� e�� k� � upb�q�� v�� e�� k�

e
�

� if valve � �on� then V �� else �

qb��k�
�

� lwb�qa�� qa�� va�� va�� e� k

qb��k�
�

� upb�qa�� qa�� va�� va�� e� k

open valve
�

� �ctl mode � � �initialize�� � �qa �
� � N ��

Init
�

� �valve � �closed�� � �n pumps � ��

N
�

� � �normal level � � T � � �N � � qa �
� � qa �

� � N ��
� �dangerous level � � T � � � �qa �

� � M �� � �qa �
� � M ��

� �qa �
� � N �� � �qa �

� � N ��
� � open valve � �valve � � �open��
� �open valve � �valve � � �closed��

� n pumps � � f�� �� �� �� �g
� if ctl mode � � f�startup�� �emergency�g then n pumps � � �
elsif ctl mode � � �initialize�
then �n pumps � � �� � �qa �

� � N ��
else � �qb���n pumps �� N �� � �qb���n pumps �� � N ��

� �qb����� � N �� � �n pumps � � ��
� �qb����� � N �� � �n pumps � � ��

�
�

� Init � ��N � �round � �� round�hn pumps�valve�normal level�dangerous level�round i

Fig� ��� Operation of the actuators	

� Detecting sensor failures

We have shown in section � that the model of the state of the steam boiler
maintained by the controller is faithful w	r	t	 the physical states if the informa�
tion about sensor failures is reliable	 The problem description stipulates that the
control program should try to detect failures	 Module Failure of �gure �� gives

module Failure

parameters

round � read � est�� est�� fail
 VARIABLE

N
�

� �fail � � T � � �read � � est�� � �read � � est��

�
�

� ��N � �round � �� round�fail�round

Fig� ��� Generic failure detection	

a speci�cation of a generic module that attempts to detect sensor failures by
comparing the sensor reading with the estimates computed by the controller	
Failure monitors for the level sensor� the steam sensor� the pump sensors� and
the pump control sensors can be obtained by instantiating this module in the
obvious way	 Moreover� it follows from the proof of theorem GoodModel that
these failure monitors will only detect a failure if a failure occurs� assuming that
all failures that actually occur are detected	 �Recall that we had to strengthen
the invariant by the condition All good est � which expresses exactly that the
actual values at any cycle should fall within the estimations computed during
the previous cycle	� However� it is easy to construct behaviors where actual sen�
sor failures go undetected	 This may happen if sensor failures �creep in� such
that the erronieous value falls within the estimated bounds	 In such a situation�
some failure monitor may �detect� a failure for some device other than the de�
fective one	 The same observation has been made� among others� by �BSS�	 The
contribution �CW�� gives a much more detailed account of failure detection	

� Message transmission

The problem description states that the controller interacts with its environ�
ment via messages that are transmitted over channels� although it does not give
a precise description of the organization of the transmission network	 We assume
that for every message type there is a separate channel that connects the control
program and the physical subsystem that emits or receives the message	 In some
cases� the time at which a message is sent plays a role to decide on transmission
errors	 We therefore assume that the time of transmission is recorded by the
channel together with the value transmitted	 Module Channel of �gure �� gives
a generic channel speci�cation	 We model a channel as a record that contains the
�elds value� time� and bit 	 Module Channel de�nes the action Transmit�v� that
transmits a value v over the channel� �ipping the bit component of c �so that
consecutive transmissions of the same value during a short time interval can be
detected�� and updating the value and time components	 The state predicates
NewInput and FreshInput hold i� some value has been transmitted during the

module Channel

import SteamboilerConstants� Timing

parameters

c
 variable

Transmit�v�
�

� �c�bit � �� c�bit� � �c�time � � now� � �c�value � � v�

NewInput
�

� c�time � tlast

FreshInput
�

� � � c�time
 tlast � �

LegalInput
�

� ��� v
 Transmit�v�c

LegalOutput�V �
�

� ���� v � V
 Transmit�c� v�� � �round � �� round�c

Fig� ��� Channel speci�cation

preceding controller cycle or in the time window �tlast � �� tlast ��� that rep�
resents the interval during which required inputs should arrive	 The temporal
formula LegalInput will be assumed of any input channel to the controller
 it as�
serts that the only actions that a�ect the channel are Transmit actions	 On the
other hand� formula LegalOutput�V � will �for some suitable set of values V � be
a consequence of our speci�cation� for every output channel	 It asserts that the
only actions that a�ect the channel are Transmit actions for some value v � V �
and that such actions only happen when the controller is active �that is� when
round changes value�	 The appendix contains several applications of the generic
channel speci�cation such as reading sensor values� transmitting commands� and
speci�cation of a general protocol to deal with equipment failures and repairs	

� Implementing the controller speci�cation

The complete controller speci�cation is obtained as a composition of the vari�
ous modules that we have discussed in the preceding sections with appropriate
substitutions for the module parameters	 We would like to emphasize that our
speci�cation does not contain an architectural description of the control pro�
gram� although it is written as a collection of modules	 The semantics of any
TLA� speci�cation is given by the TLA formula that results from the expansion
of all de�nitions	 TLA describes the behavior of a system� but cannot express ar�
chitecture	 The next step in the development of an actual controller would be to
agree on the speci�cation with the customer and give it to implementors� possi�
bly after an additional re�nement towards the implementation	 Indeed� we would
like to point out that the contributions �CD� DC� are actual implementations of
�a previous version of� our speci�cation	

However� we can go a step further even at the abstract level of TLA� and prove
that our speci�cation is actually implementable	 In general� proving realizability

adjust

steam-defect

pump-defect

level-defect

steam-read

level-read

pump-read

actuators

operator

control

level-outputtransmission

valve

steam-output

pump-output

estimatepump-assign

Fig� ��� Dependency graph of the control speci�cation

of a speci�cation is de�ned in game�theoretic terms	 One has to construct a
strategy that satis�es the speci�cation in any environment	 Fortunately� we can
apply general theorems proven in �AL��� to reduce this proof to the proof of
enabledness of the overall next�state relation of the implementation	 However� a
formula that represents the complete next�state relation would be rather big	 It
is not enough to prove enabledness of the individual next�state relations de�ned
in the modules of the controller� because enabledness does not distribute over
conjunction	 In our case� the main complication comes from the fact that many
variables occur primed in several modules� which� intuitively speaking� have to
agree on a common value	 However� in the informal explanations of the preceding
sections we have already made clear which variables are intended as input and
output variables of the individual modules	 In fact� we consider all variables
other than round that appear in the subscript v of the formulas ��N �v as output
variables of the module� and all other primed variables as input	 Let M be some
module of the speci�cation with input variables x �� � � � � xm and output variables
y�� � � � � yn 	 It is then easy to see that the next�state relation of module M is
enabled for any assignment of values to the input variables� that is� that the
formula

	 x �
�� � � � � x

�
m

 � y �
�� � � � � y

�
n
 M �N

is a valid non�temporal formula	
To prove enabledness of the overall next�state relation� it su�ces to prove

the following two conditions

� The output sets of di�erent modules are pairwise disjoint	

� Say that module M depends on module N if some output variable of module
M is an input variable of module M 	 Then dependency forms a strict pre�
order on modules� that is� there are no circular dependencies	

The �rst condition is easily veri�ed by inspection	 Checking the second con�
dition provides a data��ow graph for the modules of our speci�cation� which is
shown in �gure ��	 This information may provide valuable input to the func�
tional and architectural design of the controller implementation	 As we can see�
a controller cycle should begin with reading the sensor values and the detection

of failures	 It should then compute the �adjusted� values� decide on the new
mode of operation� make decisions about the actuators� and �nally estimate the
new bounds for the state of the steam boiler as well as send the outputs to the
physical units	

	 Evaluation and Comparison

�	 We have given formal speci�cations of all parts of the system in the speci�ca�
tion language TLA�� starting from an abstract speci�cation of the controller
and adding detail in successive steps of re�nement	 We have also considered
the evolution of the physical system and its relation to the model maintained
by the controller	 Our speci�cation is given further structure by grouping re�
lated requirements into modules	 The input�output dependencies between
these modules can be made explicit� yielding a data�ow analysis of our so�
lution to the problem	

�	 Our solution does not include an implementation� nor has it been linked to
the simulator	 There does not presently exist a prototyping tool for TLA
speci�cations	 However� the contributions �CD� and �DC� give implementa�
tions for the control program based on �a previous version of� our speci�ca�
tions� which have been linked to the simulator	

�	 Many formalisms are based on concepts similar to those found in TLA	 These
include TLT �CW�� CW��� action systems �BSS�� Timed Automata �LL�� sys�
tem B �A�� and evolving algebras �BBDGR�	 The basic setup of the TLT and
evolving algebra solutions are quite similar to ours� although they di�er in
scope	 For example� the TLT solution gives a much more detailed account of
failure detection� while the contributions �A� BBDGR� are less detailed than
our solution and do not model the environment	

Our solution is best complemented by the solutions �CD� and �DC� that give
implementations based on our speci�cation of the control program in the
synchronous languages Lustre and SPIN	

�	 We spent about four weeks to write the initial solution and another two
weeks to produce the version presented in this paper	 TLA is based on very
few� but elementary and powerful concepts	 Speci�cations have a distinctly
operational �avor� which should help programmers write TLA speci�cations	
The framework is �exible enough to accomodate various speci�cation styles	
Although it is sometimes non�trivial to �nd the right fairness conditions� this
is not an issue in a real�time speci�cation such as the present one	 In our
experience� programmers can begin to write speci�cations after a few days of
exposure to the method	 Of course� the di�cult part in writing speci�cations
is to �nd an adequate abstraction and decomposition of the problem	

�	 We believe that our solution should be understandable to programmers af�
ter a few days of training	 TLA formulas use �exible variables� which are

straightforward abstractions of ordinary program variables	 The notation
uses primed and unprimed variables to refer to the value of a variable before
and after an action is executed	 Our solution models several components
executing in synchrony�a familiar abstraction used in process control lan�
guages	

Acknowledgements

We would like to thank Thierry Cattel� Pierre Collette� and Jorge Cu�ellar for
insightful comments on a previous version of this speci�cation	

References

�AL�� Mart��n Abadi and Leslie Lamport	 An old�fashioned recipe for real time	
ACM Transactions on Programming Languages and Systems� �����
�����
����� September ����	

�AL�� Mart��n Abadi and Leslie Lamport	 Conjoining speci�cations	 ACM Trans�

actions on Programming Languages and Systems� �����
�������� May ����	
�A Jean�Raymond Abrial	 A B�solution for the steam�boiler problem	 This

volume �see CD�ROM Annex	A�	
�AS Jean�Raymond Abrial	 Steam�boiler control speci�cation problem	 This

volume �see CD�ROM Annex	AS�	
�BBDGR Christoph Beierle� Egon B�orger� Igor Durdanovi�c� Uwe Gl�asser� Elvinia

Riccobene	 An evolving�algebra solution to the steam�boiler control speci�
�cation problem	 This volume �see CD�ROM Annex	BBDGR�	

�BSS Michael Butler� Emil Sekerinski� Kaisa Sere	 An Action System approach
to the steam boiler problem	 This volume �see CD�ROM Annex	BSS�	

�CD Thierry Cattel� Gregory Duval	 The steam�boiler problem in Lustre	 This
volume �see CD�ROM Annex	CD�	

�CW� Jorge Cu�ellar� Isolde Wildgruber	 The steam boiler problem�a TLT solu�
tion	 This volume �see CD�ROM Annex	CW��	

�CW� Jorge Cu�ellar� Isolde Wildgruber	 The real�time embedding of the steam
boiler	 This volume �see CD�ROM Annex	CW��	

�DC Gregory Duval� Thierry Cattel	 Specifying and verifying the steam�boiler
problem with SPIN	 This volume �see CD�ROM Annex	DC�	

�L�� Leslie Lamport	 TLA�temporal logic of actions	 At URL http���www�

research�digital�com�SRC�tla� on the World Wide Web	
�L�� Leslie Lamport	 The temporal logic of actions	 ACM Transactions on

Programming Languages and Systems� �����
�������� May ����	
�LL G	 Leeb� Nancy Lynch	 Proving safety properties of the steam boiler con�

troller	 This volume �see CD�ROM Annex	LL�	

module Timing

import Reals

parameters

�
 constant
now � tlast � round
 variable

RT
�

� � now � Real

� ��now � � fr � Real
 now � rgnow
� � t � Real
 ��now � t�

Tick
�

� �now � � tlast ��� � unchanged htlast � round i

Round
�

� �now � tlast ��� � �tlast � � now� � �round � �� round� � �now � � now�

Trigger
�

� tlast � now � ��Tick � Round hnow�tlast�round i

Fig� ��� Timing of the controller	

A Speci�cations and proofs

This appendix contains all of our speci�cations� some of which had to be omitted
in the main text due to space constraints	

A�� Controller timing

The controller for the steam is a real�time system a controller cycle takes place
every �ve seconds	 We follow the general format of TLA real�time speci�ca�
tions suggested in �AL��� where real time is modelled by a real�valued variables
now 	 Module Timing � shown in �gure ��� imports the standard TLA� module
Reals which declares the set of real numbers and de�nes standard operations
and predicates on real numbers	 Module Timing declares the constant param�
eter � which represents the distance between two consecutive cycles ��xed in
the problem description to be �ve seconds� and the variable parameters now �
tlast � and round � which represent the current time� the time of the preceding
controller cycle� and the trigger for controller actions	 The module de�nes the
action formulas Tick and Round and the temporal formulas RT and Trigger 	
Formula RT is a standard TLA speci�cation of real time taken from �AL���	 Its
�rst conjunct asserts that the value of now initially equals some real number	
The second conjunct requires time to increase monotonically	 The third conjunct
asserts that it will eventually exceed any real number� which excludes �Zeno� be�
haviors	 �The formula �F is de�ned as
�
F � it asserts that F must eventually
become true	�

Formula Trigger asserts that tlast initially equals now and that every non�
stuttering step is either a Tick or a Round step	 A Round step takes place
when time has advanced by � since the previous cycle
 it updates the value of
tlast and causes the variable round to change value	 We will see below that a

change of value of round triggers a synchronous state transition of all controller
modules	 On the other hand� time does not advance in Round steps
 it is a
common abstraction in real�time systems to separate the advance of time from
actual computation steps	 Tick steps represent an increase of time	 However�
the new value of now should still be below the time of the subsequent controller
cycle	 Tick steps leave the variables tlast and round unchanged� which we will
see to imply that the controller remains idle	 Note that we have not indicated a
domain for the values of variable round 	 The formula RT �Trigger is satis�able
i� �if and only if� the universe includes at least two values� which is ensured by
the semantics of TLA�� which is based on set theory	

The speci�cation problem is somewhat atypical for a real�time system in
that it does not specify timeouts for individual actions	 We can therefore ab�
stract from real�time behavior in the speci�cations of the individual controller
modules	 We model all modules of the controller as performing synchronous tran�
sitions triggered by a change of value of the variable round � resulting in module
speci�cations of the form

Init � ��N � �round � �� round��� � v � round i

The formulas Init and N describe the initial conditions and the next�state re�
lation of the module� v is a tuple of the �output� variables controlled by the
module	 The formula asserts that the next�state relation has to hold whenever
round changes value and� conversely� that the variables in v may only change
value if round does� too	 Taken together� these conditions ensure that all state
changes happen simultaneously	

A�� Steam boiler constants

Module SteamboilerConstants � shown in �gure ��� assembles the constant values
listed in the problem description	 It imports the standard TLA� module Reals �
which de�nes operators on real numbers	 Both the imported de�nitions and all
local de�nitions are exported� so that modules importing SteamboilerConstants
need not redeclare the parameters or import module Reals �imported de�nitions
are not normally exported by a TLA� module� omitting an explicit export
statement in some module M is equivalent to the statement export M �	 The
module lists a parameter for every constant that appears in the problem state�
ment and adds three constants the parameter V represents the throughput of
the valve� the parameters� and � are timing parameters that de�ne the time dif�
ference between successive controller rounds and the time window during which
sensor inputs are expected	

A�� Abstract controller speci�cation

Figure �� reproduces module Abstract � which we have explained in section �	

module SteamboilerConstants

import Reals

export SteamboilerConstants� Reals

parameters

C
 constant Maximal water capacity of the boiler
N ��N ��M ��M �
 constant Minimal�maximal normal�limit water level
W
 constant Maximal steam output
U ��U �
 constant Maximum gradient of steam increase�decrease
P
 constant Nominal pump capacity
V
 constant Valve throughput
�
 constant Time distance between successive controller cycles
�
 constant Time window for sensor readings

assumption

ConstAssump
�

� � C � Real

� �M � � Real� � �M � � Real� � �N � � Real� � �N � � Real�
� � � M � � N � � N � � M � � C

� �W � Real� � �U � � Real� � �U � � Real�
� �� � Real� � �� � Real�
� � � � � �

Fig� ��� Module SteamboilerConstants 	

A�� Steamboiler physics

As explained in section �� we describe the state of the steam boiler by the fol�
lowing entities

� the amount of water q in the steam boiler�

� the amount of steam v exiting the steam boiler�

� the amount of water pumped into the steam boiler during the preceding
cycle� described by a function

p f�� �� �� �g � ���P �

� the state of the pumps� described by a function

pst f�� �� �� �g � f�o��� �switching�� �on�g

� and the amount of water e that has exited through the evacuation valve
during the previous cycle	

Given these values and the commands sent to the actuators by the controller�
represented as a function p cmd f�� �� �� �g � f�on�� �o��g and e cmd �
f�open�� �close�g� we assume functions to compute lower and upper bounds for
these entities at the next cycle	 These functions should satisfy two types static
constraints

module Abstract

parameters

round
 variable
units ready � stop req � system failure
 variable
normal level � low level � high level � dangerous level
 variable
ctl mode� prog ready � valve� pumps
 variable

critical failure
�

� � �system failure � � T �
� �ctl mode � �operating�� � �dangerous level � � T �

initialization complete
�

� �ctl mode � �initialize�� � �normal level � � T �

open valve
�

� �ctl mode � � �initialize�� � �high level � � T �

open pumps
�

� �ctl mode � �� �emergency�� � �low level � � T �

close pumps
�

� �ctl mode � � �emergency�� � �high level � � T �

Init
�

� � �ctl mode � �initialize�� � �prog ready � F �
� �valve � �closed�� � �pumps � �o���

N
�

� � ctl mode � � if critical failure � �stop req � � T � � �ctl mode � �emergency��
then �emergency�
elsif �ctl mode � �initialize�� � �units ready � � T �
then �operating�
else ctl mode

� �prog ready � � T � � initialization complete

� � open valve � �valve � � �open��
� �open valve � �valve � � �closed��

� �pumps � � f�on�� �o��g� � �pumps � � �on��� open pumps

� �pumps � � �o���� close pumps

�
�

� Init � ��N � round � �� round hctl mode�prog ready�valve�pumps�round i

Fig� ��� Speci�cation of an abstract controller	

� They should return values within the static bounds for the respective en�
tity such that the lower bound is below the upper bound	 For example� the
functions qmin and qmax that compute bounds for the water level should
satisfy

� � qmin �q � v � p� pst � e� p cmd � e cmd �
� qmax �q � v � p� pst � e� p cmd � e cmd � � C

�Note that TLA� uses square brackets to denote function application	�

� The functions should satisfy certain monotonicity constraints	 For example�
qmin and qmax should be monotonic in the q � p� pst � and p cmd � but anti�
monotonic in the v � e� and e cmd parameters	

The precise assumptions are stated by assumption MonotonicityAssumption

of module Dynamics �see CD�ROM annex LM	A	��	 Figure �� lists possible def�

qmin �q � v � p� pst � e� p cmd � e cmd � �
max��� q � v ��� �

�
� U � ��� � emax �q � v � p� pst � e� p cmd � e cmd �

�
P

�
i�� pmin �q � v � p� pst � e� p cmd � e cmd ��i ��

qmax �q � v � p� e� p cmd � e cmd � �
min�C � q � v ��� �

�
� U � ��� � emin �q � v � p� pst � e� p cmd � e cmd �

�
P

�
i�� pmax �q � v � p� pst � e� p cmd � e cmd ��i ��

vmin �q � v � p� pst � e� p cmd � e cmd � � max��� v �U � ���
vmax �q � v � p� pst � e� p cmd � e cmd � � min�W � v �U � ���
pmin �q � v � p� pst � e� p cmd � e cmd � �

�i � f�� �� �� �g �� if �pst �i � � f�switching�� �o��g� � �pc � �o���
then � else P ���

pmax �q � v � p� pst � e� p cmd � e cmd � �
�i � f�� �� �� �g �� if pst �i � � f�switching�� �on�g then P �� else ��

pstmin �q � v � p� pst � e� p cmd � e cmd � � pstmax �q � v � p� pst � e� p cmd � e cmd �
pstmax �q � v � p� pst � e� p cmd � e cmd � �

�i � f�� �� �� �g �� if �p cmd �i � � �o��� then �o��
else if �pst �i � � �o��� then �switching� else �on��

emax �q � v � p� pst � e� p cmd � e cmd � �
if �e � �open�� � �e cmd � �open�� then E �� else �

emin �q � v � p� pst � e� p cmd � e cmd � �
if �e � �closed�� � e cmd � �close�� then � else E ��

Fig� �	� Steamboiler physics possible de�nitions	

initions of the required functions� inspired by the additional information to the
problem description �see CD�ROM annex AS�	

To understand these de�nitions� one should note that a command need not be
delivered immediately� but at some time before the subsequent controller cycle	
For example� if the valve is currently open and the controller decides to send a
�close� command to the valve� water may still continue to exit through the valve
during part of the following interval	 Nevertheless� since the command should
have reached the pumps at some time during the control cycle� our de�nitions of
pstmin and pstmax are deterministic� and minimum and maximum values agree	
Nevertheless� we give both functions for the sake of uniformity	 For a similar
reason� many functions are actually independent of some of their arguments	

We would expect more realistic de�nitions of qmin and qmax to require some
more input parameters� for example� gradients of the steam �ow during some re�
cent history	 We adhered to the suggestions in the problem statement for simplic�
ity	 More complex functionality would make our speci�cation somewhat longer�
but would not change it fundamentally	

module Adjust

parameters

round
 variable
read � fail
 variable
est�� est�
 variable
adj�� adj�
 variable

N
�

� hadj��� adj�� i � if �fail � � T � then hest�� est�i else hread �� read � i

�
�

� ��N � �round � �� round�hadj��adj��round i

Fig� �
� Adjusting sensor readings	

module Estimate

parameters

lwb� upb
 constant
round
 variable
qa�� qa�� va�� va�� pa�� pa�� psta�� psta�� ea�� ea�� p cmd � e cmd
 variable
est�� est�
 variable

N
�

� � est�� � lwb�qa �
�� qa

�
�� va

�
�� va

�
�� pa

�
�� pa

�
�� psta

�
�� psta

�
�� ea

�
�� ea

�
�� p cmd �� e cmd �

� est�� � upb�qa �
�� qa

�
�� va

�
�� va

�
�� pa

�
�� pa

�
�� psta

�
�� psta

�
�� ea

�
�� ea

�
�� p cmd �� e cmd �

�
�

� ��N � �round � �� round�hest��est��round i

Fig� ��� Computing estimates for the next cycle	

A�� Relating component and environment

Figures ��� ��� and �� reproduce the generic modules that compute adjusted
values� estimate lower and upper bounds for the state of the steam boiler from
the current approximations� and model the evolution of the physical variables
�more precisely probes taken at the time of the controller cycle� that have been
described in section �	

The actual instantiations of these generic modules for the various state com�
ponents of the steam boiler are de�ned in module Dynamics that appears in
�gure ��	 Its de�nition uses the auxiliary modules DynamicsParameters and
DynamicsIncludes � which declare the parameters of the module and the inclu�
sion hierarchy between the various modules	 In TLA�� a statement import M

module Environment

parameters

lwb�upb
 constant
round
 variable
q � v � p� pst � e� p cmd � e cmd
 variable
actual � read � fail � adj�� adj�� est�� est�
 variable

N
�

� lwb�q � v � p� pst � e� p cmd � e cmd � actual � � upb�q � v � p� pst � e� p cmd � e cmd

�
�

� ��N � �round � �� round�hactual�round i

Fail reliable
�

� �actual �� read�� �fail � T �

Good approx
�

� adj� � actual � adj�

Good estimate
�

� � est� � lwb�q � v � p� pst � e� p cmd � e cmd
� upb�q � v � p� pst � e� p cmd � e cmd � est�

Fig� ��� Behavior of the environment	

that appears in module N is equivalent to inserting a textual copy of module
M into module N � except that de�nitions imported by M are not automatically
imported by N 	 In particular� parameters declared in M will also be parame�
ters of N 	 In contrast� a statement include M requires parameters of M to be
instantiated by the including module N � either by explicit substitution� using
the notation x t � or implicitly by a parameter of the same name declared in
module M 	

Module DynamicsParameters declares constant parameters for the lower and
upper bound functions for each state component of the steam boiler as discussed
in section A	�	 It then declares variable parameters that represent the various
state componens� the associated sensor readings� signals indicating sensor fail�
ures� and the adjusted and estimated values maintained by the controller	 It then
asserts assumption MonotonicityAssumption that formally states the require�
ments on the lower and upper bound functions discussed in section A	�� namely
that all return values fall within the static bounds for the respective entity� and
that certain monotonicity conditions are true	 Finally� it de�nes functions to
compute lower and upper bounds for the components of the steam boiler state�
given bounds �i	e	� adjusted values� rather than actual values	 These functions
are obtained from the physical lower and upper bound functions by application
to the lower or upper bound� depending on the assumed monotonicity	

Module DynamicIncludes instantiates the generic modules Adjust � Estimate�
and Environment shown in section A	� for each state component of the steam
boiler	 De�nitions from the included modules are available to any module that

module DynamicsParameters

parameters

qmin � qmax � vmin � vmax � pmin � pmax � pstmin � pstmax � emin � emax
 constant
round
 variable
q � v � p� pst � e� p cmd � e cmd
 variable
qr � vr � pr � pstr � er
 variable
qf � vf � pf � pstf � ef
 variable
qa�� qa�� va�� va�� pa�� pa�� psta�� psta�� ea�� ea�
 variable
qc�� qc�� vc�� vc�� pc�� pc�� pstc�� pstc�� ec�� ec�
 variable

assumption

MonotonicityAssumption
�

�
�q� � q�� � �v� � v�� � �p� � p�� � �pst� � pst�� � �e� � e��
� � � � qmin �q�� v�� p�� pst�� e�� pc� ec � qmax �q�� v�� p�� pst�� e�� pc� ec � C

� qmin �q�� v�� p�� pst�� e�� pc� ec � qmin �q�� v�� p�� pst�� e�� pc� ec
� qmax �q�� v�� p�� pst�� e�� pc� ec � qmax �q�� v�� p�� pst�� e�� pc� ec
� � � vmin �q�� v�� p�� pst�� e�� pc� ec � vmax �q�� v�� p�� pst�� e�� pc� ec �W

� vmin �q�� v�� p�� pst�� e�� pc� ec � vmin �q�� v�� p�� pst�� e�� pc� ec
� vmax �q�� v�� p�� pst�� e�� pc� ec � vmax �q�� v�� p�� pst�� e�� pc� ec
�
V

�

i��� � pmin �q�� v�� p�� pst�� e�� pc� ec�i
� pmax �q�� v�� p�� pst�� e�� pc� ec�i � P ��

�
V

�

i��pmin �q�� v�� p�� pst�� e�� pc� ec�i � pmin �q�� v�� p�� pst�� e�� pc� ec�i
�
V

�

i��pmax �q�� v�� p�� pst�� e�� pc� ec�i � pmax �q�� v�� p�� pst�� e�� pc� ec�i
�
V

�

i���o�� � pstmin �q�� v�� p�� pst�� e�� pc� ec�i
� pstmax �q�� v�� p�� pst�� e�� pc� ec�i � �on�

�
V

�

i��pstmin �q�� v�� p�� pst�� e�� pc� ec�i � pstmin �q�� v�� p�� pst�� e�� pc� ec�i
�
V

�

i��pstmax �q�� v�� p�� pst�� e�� pc� ec�i � pstmax �q�� v�� p�� pst�� e�� pc� ec�i
� � � emin �q�� v�� p�� pst�� e�� pc� ec � emax �q�� v�� p�� pst�� e�� pc� ec � V ��
� emin �q�� v�� p�� pst�� e�� pc� ec � emin �q�� v�� p�� pst�� e�� pc� ec
� emax �q�� v�� p�� pst�� e�� pc� ec � emax �q�� v�� p�� pst�� e�� pc� ec

qamin �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � qmin �q�� v�� p�� pst�� e�� pc� ec
qamax �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � qmax �q�� v�� p�� pst�� e�� pc� ec
vamin �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � vmin �q�� v�� p�� pst�� e�� pc� ec
vamax �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � vmax �q�� v�� p�� pst�� e�� pc� ec
pamin �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � pmin �q�� v�� p�� pst�� e�� pc� ec
pamax �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � pmax �q�� v�� p�� pst�� e�� pc� ec
pstamin �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � pstmin �q�� v�� p�� pst�� e�� pc� ec
pstamax �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � pstmax �q�� v�� p�� pst�� e�� pc� ec
emin �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � emin �q�� v�� p�� pst�� e�� pc� ec
emax �q�� q�� v�� v�� p�� p�� pst�� pst�� e�� e�� pc� ec � emax �q�� v�� p�� pst�� e�� pc� ec

Fig� ��� Parameters for module Dynamics 	

module DynamicsIncludes

import DynamicsParameters

export DynamicsParameters� Q� V � P� PST� E

export QA� VA� PA� PSTA� QC� VC� PC� PSTC� EC

include Adjust as QA with

read 	 qr � fail 	 qf � adj�	 qa�� adj�	 qa�� est�	 qc�� est�	 qc�
include Adjust as VA with

read 	 vr � fail 	 vf � adj�	 va�� adj�	 va�� est�	 vc�� est�	 vc�
include Adjust as PA with

read 	 pr � fail 	 pf � adj�	 pa�� adj�	 pa�� est�	 pc�� est�	 pc�
include Adjust as PSTA with

read 	 pstr � fail 	 pstf � adj�	 psta�� adj�	 psta�� est�	 pstc�� est�	 pstc�
include Adjust as EA with

read 	 er � fail 	 ef � adj�	 ea�� adj�	 ea�� est�	 ec�� est�	 ec�
include Estimate as QC with lwb 	 qamin � upb 	 qamax � est�	 qc�� est�	 qc�
include Estimate as VC with lwb 	 vamin � upb 	 vamax � est�	 vc�� est�	 vc�
include Estimate as PC with lwb 	 pamin � upb 	 pamax � est�	 pc�� est�	 pc�
include Estimate as PSTC with

lwb 	 pstamin � upb 	 pstamax � est�	 pstc�� est�	 pstc�
include Estimate as EC with lwb 	 eamin � upb 	 eamax � est�	 ec�� est�	 ec�
include Environment as Q with

lwb 	 qmin � upb 	 qmax � actual 	 q � read 	 qr � fail 	 qf � adj�	 qa�� adj�	 qa�
include Environment as V with

lwb 	 vmin � upb 	 vmax � actual 	 v � read 	 vr � fail 	 vf � adj�	 va�� adj�	 va�
include Environment as P with

lwb 	 pmin � upb 	 pmax � actual 	 p� read 	 pr � fail 	 pf � adj�	 pa�� adj�	 pa�
include Environment as PST with

lwb 	 pstmin � upb 	 pstmax � actual 	 pst � read 	 pstr � fail 	 pstf �
adj�	 psta�� adj�	 psta�

include Environment as E with

lwb 	 emin � upb 	 emax � actual 	 e� read 	 er � fail 	 ef � adj�	 ea�� adj�	 ea�

Fig� ��� Module inclusions for module Dynamics 	

imports DynamicIncludes � using dot notation as in Q �Fail reliable� which refers
to the instance of formula Fail reliable �cf	 module Environment of CD�ROM
annex LM	A	�� with substitutions as de�ned for module Q 	

Finally� module Dynamics de�nes the temporal formulas EnvDynamics and
ModDynamics � which represent the composition of the speci�cations de�ned
for the individual modules that model environment behavior and the computa�
tions of adjusted and estimated values by the controller	 It then states theorem
Good model � which asserts that the actual value of every state component falls

module Dynamics

import DynamicsIncludes

All fail reliable
�

� � Q �Fail reliable �V �Fail reliable � P �Fail reliable
� PST �Fail reliable � E �Fail reliable

All good approx
�

� � Q �Good approx � V �Good approx � P �Good approx

� PST �Good approx � E �Good approx

All good estimate
�

� � Q �Good estimate �V �Good estimate � P �Good estimate

� PST �Good estimate � E �Good estimate

EnvDynamics
�

� Q �� � V �� � P �� � PST �� � E ��

ModDynamics
�

� � QA�� �VA�� � PA�� � PSTA�� � EA��
� QC �� �VC �� � PC �� � PSTC �� � EC ��

theorem

Good model
�

� EnvDynamics �ModDynamics

� �All good approx � �All fail reliable
� �All good approx �

Fig� ��� Module Dynamics 	

within the bounds given by the corresponding �adjusted� values in any run of the
environment �the physical steam boiler� and the controller� as long as the infor�
mation about failures is reliable� and assuming that the initial values fall within
the bounds	 The theorem is expressed as a formula of the form P � �Q �� R�	
The formal de�nition of the operator �� �which can be de�ned in terms of the
primitive TLA operators� has been given in �AL���	 Intuitively� formula Q �� R
asserts that R holds for at least as long as Q holds	

We now sketch a proof of theorem Good model 	 A formula P � �Q �� R� is
valid if and only if P � �Q � R� is valid� and the latter formula is of course
equivalent to P �Q � R	� We are thus left with proving

EnvDynamics �ModDynamics � All good approx ��All fail reliable
� �All good approx

which has the standard form of the assertion of an invariant in TLA	 Since
estimated values enter into the computation of adjusted values� the assertion
has to be strengthened to take the controller�s estimations into account	 Let
therefore vars be the tuple containing all state variables declared as parameters
in module Dynamics and All good est be the predicate

All good est
�

� � Q �Good estimate � V �Good estimate � P �Good estimate

� PST �Good estimate � E �Good estimate

� Note that the formula P � �Q
� R� is strictly stronger than the formula P �
�Q � R�� although they are equivalid	

We prove

���
EnvDynamics �ModDynamics � All good approx � �All fail reliable
� ��All good approx � All good est ��vars

The asserted invariant then follows from

P � ��P �v � �P

which is a valid TLA formula� provided that v contains all variables that occur
free in the state predicate P 	

Using simple TLA reasoning� in particular the fact that conjunction dis�
tributes over the � operator of temporal logic� the proof of ��� reduces to proving
the nontemporal formula

� All good approx � All fail reliable �All fail reliable �

� Q �N � V �N � P �N � PST �N � E �N
� QA�N � VA�N � PA�N � PSTA�N � EA�N
� QC �N � VC �N � PC �N � PSTC �N � EC �N

� All good approx � � All good est �

which can easily be shown to follow from formula MonotonicityAssumption	

A�� Re�ning control modes

Figure �� reproduces the speci�cation of the re�ned controller that distinguishes
between more modes of operation than the abstract speci�cation of module
Abstract �see CD�ROM Annex LM	A	��	 Besides� the de�nition of a system fail�
ure is now given in terms of failure conditions for the sensors rather than declared
as an �oracle� provided by the environment	 We believe that the speci�cation
of failure� critical failure� and the transition conditions between the states of
the re�ned controller correspond closely to the conditions stated in the informal
problem description	

A�� Operating the pumps and valve

Figure �� reproduces module Actuators that complements module Control of
section A	� in re�ning the operation of the actuators �the valve and the pumps�	
In particular� it replaces the signals low level and high level of module Abstract
by concrete conditions on the �adjusted� water level in the steam boiler	

We will now show that the abstract controller speci�cation of module Abstract
is re�ned by the conjunction of modules Control and Actuators � provided that
we identify the controller modes that have been re�ned in the new controller
speci�cation and substitute suitable de�nitions for the signals concerning the
water level in the steam boiler	

module Control

import Naturals

parameters

round
 variable
boiler waiting � units ready � stop req
 variable
transmission failure� qf � vf � pf � pstf � ef � dangerous level � normal level
 variable
system failure� ctl mode� prog ready
 variable

failure
�

� �qf � � T � � �vf � � T � � �i � f�� �� �� �g
 �pf ��i � T � � �pstf ��i � T �

critical failure
�

�
� �system failure � � T �
� �ctl mode � f�normal�� �degraded�� �rescue�g� � �dangerous level � � T �

initialization complete
�

� �ctl mode � � �initialize�� � �normal level � � T �

Init
�

� �ctl mode � �startup�� � �prog ready � F �

N
�

� � �system failure � � T � �
� �transmission failure � � T �
� �ctl mode � �startup�� � �vf � � T �
� �ctl mode � �initialize�� � �qf � � T � vf � � T �
� �ctl mode � �rescue�� � � �dangerous level � � T � � �qf � � T �

� �i � f�� �� �� �g
 �pf ��i � T � � �pstf ��i � T �

� ctl mode � � if critical failure � �stop req � � T � � �ctl mode � �emergency��
then �emergency�
elsif �ctl mode � �startup��
then if �boiler waiting � � T � then �initialize� else �startup�
elsif �ctl mode � �initialize�� � ��units ready � � T �
then �initialize�
elsif �qf � � T � then �rescue�
elsif failure then �degraded�
else �normal�

� �prog ready � � T � � initialization complete

�
�

� Init � ��N � round � �� round hsystem failure�ctl mode�prog ready�round i

Fig� ��� Module Control 	

More precisely� let us de�ne the following state functions in a context where

module Actuators

import SteamboilerConstants� Naturals

parameters

lwb�upb
 constant
round
 variable
ctl mode� qa�� qa�� va�� va�
 variable
n pumps� valve� normal level � dangerous level
 variable

assumption

MonotonicityAssumption
�

�
�q� � q�� � �v� � v�� � �e� � e�� � �k� � k��
� � � � lwb�q�� v�� e�� k� � upb�q�� v�� e�� k� � C

� lwb�q�� v�� e�� k� � lwb�q�� v�� e�� k�
� upb�q�� v�� e�� k� � upb�q�� v�� e�� k�

e
�

� if valve � �on� then V �� else �

qb��k�
�

� lwb�qa�� qa�� va�� va�� e� k

qb��k�
�

� upb�qa�� qa�� va�� va�� e� k

open valve
�

� �ctl mode � � �initialize�� � �qa �
� � N ��

Init
�

� �valve � �closed�� � �n pumps � ��

N
�

� � �normal level � � T � � �N � � qa �
� � qa �

� � N ��
� �dangerous level � � T � � � �qa �

� � M �� � �qa �
� � M ��

� �qa �
� � N �� � �qa �

� � N ��
� � open valve � �valve � � �open��
� �open valve � �valve � � �closed��

� n pumps � � f�� �� �� �� �g
� if ctl mode � � f�startup�� �emergency�g then n pumps � � �
elsif ctl mode � � �initialize�
then �n pumps � � �� � �qa �

� � N ��
else � �qb���n pumps �� N �� � �qb���n pumps �� � N ��

� �qb����� � N �� � �n pumps � � ��
� �qb����� � N �� � �n pumps � � ��

�
�

� Init � ��N � �round � �� round�hn pumps�valve�normal level�dangerous level�round i

Fig� ��� Operation of the actuators	

de�nitions from both modules Control and Actuators are visible

ctl mode
�

� if ctl mode � f�startup�� �initialize�g then �initialize�
elsif ctl mode � �emergency� then �emergency�
else �operating�

low level
�

� if n pumps � � then T else F

high level
�

� if ctl mode � �startup� then F

elsif ctl mode � �initialize� then if qa� � N � then T else F

elsif n pumps � � then F else T

pumps
�

� if n pumps � � then �on� else �o��

module PumpAssignment

parameters

round
 variable
psta�� psta�� pf � n pumps
 variable
p cmd
 variable

n defect pumps
�

� jfi � f�� �� �� �g
 pf �i � Tgj

n pumps on
�

� jfi � f�� �� �� �g
 p cmd �i � �on�j

Init
�

� p cmd � �i � f�� �� �� �g �� �o��

N
�

� � p cmd � � �i � f�� �� �� �g � f�on�� �o��g
� n pumps on � � minfn pumps �� �
 n defect pumps �g
�
V

�

i���pf
��i � T �� �p cmd ��i � �o���

�
V

�

i���psta�
��i � f�switching�� �on�g� � �p cmd ��i � �o��� � ��pf ��i � T �

� �
W

�

j���psta�
��j � �o��� � �p cmd ��j � �on��

�
�

� Init � ��N � �round � �� round�hp cmd�round i

Fig� ��� Deciding which pumps to operate	

and let Abstract �X denote the expression X de�ned in module Abstract with the
variables ctl mode� low level � high level � and pumps replaced by their �barred�
counterparts	

We claim that the composition of the speci�cations given in modules Control
and Actuators implement the speci�cation Abstract ��	 In TLA� implication is
used to express implementation� so we have to prove

Control �� � Actuators ��� Abstract ��

To prove this implication� it su�ces to prove that the initial conditions given
in modules Control and Actuators re�ne the abstract initial condition and that
a similar re�nement holds for the next�state relations� that is� that both of the
following implications of non�temporal formulas are valid

Control �Init �Actuators �Init � Abstract �Init

Control �N � Actuators �N � Abstract �N

Both of these implications follow by straightforward expansion of de�nitions	

A�	 Deciding which pumps to operate

Module PumpAssignment of �gure �� decides which pumps to operate� given
the number of pumps the controller wants to operate �as determined by module
Actuators� and information about the current �adjusted� pump state	 The next�
state relation of module PumpAssignment consists of four conjuncts

module Failure

parameters

round � read � est�� est�� fail
 VARIABLE

N
�

� �fail � � T � � �read � � est�� � �read � � est��

�
�

� ��N � �round � �� round�fail�round

Fig� �	� Generic failure detection	

� The �rst conjunct requires p cmd to be a function with domain f�� �� �� �g
and range f�on�� �o��g as described in section A	�	

� The second conjunct asserts that the module tries to operate as many pumps
as indicated by the value of n pumps � provided that there are as many non�
defective pumps available� and otherwise all non�defective pumps	

� The third conjunct states that defective pumps should not be switched on	

� Finally� the fourth conjunct is an example of an optimization condition that is
not explicitly required by the problem statement	 It states that the controller
should never switch o� a non�defective pump if another one is switched on
simultaneously	

A�
 Detecting sensor failures

Figure �� reproduces module Failure that attempts to detect sensor failures
based on a comparison of the sensor reading with the estimated values computed
during the previous controller cycle	

A��� Message transmission

Figure �� reproduces the speci�cation of a generic transmission channel� mod�
elled as a record with three �elds value� time� and bit 	 The module de�nes the
action Transmit�v�� which models an �asynchronous� transmission of value v

over the channel	 The following sections discuss the use of this generic channel
speci�cation in modelling transmission of sensor readings� actuator commands�
and the implementation of the failure protocol described in the problem state�
ment	

A��� Reading sensor data

Module SensorTransmission of �gure �� de�nes a generic module that reads the
current value �eld of a sensor channel c into a variable read at every controller
cycle	

module Channel

import SteamboilerConstants� Timing

parameters

c
 variable

Transmit�v�
�

� �c�bit � �� c�bit� � �c�time � � now� � �c�value � � v�

NewInput
�

� c�time � tlast

FreshInput
�

� � � c�time
 tlast � �

LegalInput
�

� ��� v
 Transmit�v�c

LegalOutput�V �
�

� ���� v � V
 Transmit�c� v�� � �round � �� round�c

Fig� �
� Channel speci�cation

module SensorTransmission

parameters

c� round
 variable
read
 variable

N
�

� read � � c�value

�
�

� ��N � �round � �� round�read�round

Fig� ��� Reading sensor data	

A��� Transmitting commands to the pumps

Module PumpOutput � shown in �gure ��� speci�es the transmission of commands
to the pumps� based on the array p cmd that describes which pumps should be
open and closed during the following control cycle �cf	 module PumpAssignment
in CD�ROM annex LM	A	��	 The topology of the transmission network was not
quite clear to us from the information in the problem description	 We assume that
there are individual channels for each physical unit	 In particular� we model the
channels used for transmitting commands to the pumps as arrays open pump

and close pump that consist of one subchannel per pump	 Only the presence
or absence of communication is important� but not the value that is actually
transmitted
 we use the pseudo�value h i to model signals sent from the controller
to the actuators	

The speci�cation asserts that no value is sent if the state of the pump is

module PumpOutput

parameters

ctl mode� p cmd � round
 variable
open pump� close pump
 variable

include Channel as Open pump�i� with c 	 open pump�i include Channel as

Close pump�i� with c 	 close pump�i

N
�

�
V

�

i��if �ctl mode
� � f�startup�� �emergency�g� � �p cmd ��i � p cmd �i �

then unchanged hopen pump�i � close pump�i i
elsif p cmd ��i � �on�
then Open pump�i��Transmit�h i� � unchanged close pump�i
else Close pump�i��Transmit�h i� � unchanged open pump�i

�
�

� ��N � �round � �� round�open pump�close pump�round

Fig� ��� Transmitting commands to the pumps	

module ValveOutput

parameters

ctl mode� e cmd � round
 variable
valve cmd
 variable

include Channel as Valve cmd with c 	 valve cmd

N
�

� if �e cmd ��i �� e cmd �i � then Valve cmd �Transmit�h i�
else unchanged valve cmd

�
�

� ��N � �round � �� round�valve cmd�round

Fig� ��� Transmitting commands to the valve	

left unchanged or if the controller is in �startup� or �emergency� state it is
our understanding of the problem statement that no transmission of signals to
the physical units should take place in emergency state	 Otherwise� a signal is
transmitted via the appropriate channel and the other channel is left unchanged	

A��� Transmitting commands to the valve

Module ValveOutput of �gure �� speci�es the transmission of commands to the
valve	 It is conceptually similar to module PumpOutput � except that there is
only a single channel to control the valve� with subsequent signals toggling its

module Defect

parameters

fail � ack � repaired � round
 variable
fail state� signal � repair ack
 variable

include Channel as Ack with c 	 ack

include Channel as Repaired with c 	 repaired

include Channel as Signal with c 	 signal

include Channel as RepairAck with c 	 repair ack

Init
�

� fail state � �ok�

N
�

� � fail state � � if �fail state � �ok��
then if �fail � � T � then �signal� else �ok�
elsif �fail state � �signal��
then if Ack �NewInput then �acked� else �signal�
else if Repair �NewInput then �ok� else �acked�

� if fail state � � �signal� then Signal �Transmit�h i� else unchanged signal

� if Repair �NewInput
then RepairAck �Transmit�h i� else unchanged repair ack

�
�

� Init � ��N � �round � �� round�fail state�signal�repair ack�round

Fig� ��� Specifying the failure protocol	

state	

A��� Monitoring equipment failure

The problem description de�nes a common protocol to deal with equipment dail�
ures When a failure is detected� the controller signals the failure over the appro�
priate channel until it receives an acknowledgement from the physical units	 The
controller may later receive a signal indicating that the unit has been repaired	
This signal is then acknowledged and the unit is then considered to be working
again	

Module Defect � shown in �gure ��� contains a generic speci�cation of this
protocol	 The parameter fail state can take the values �ok�� �signal� or �acked�
that correspond to states where the device is working normally� a failure has been
detected or acknowledged� respectively	 The parameter fail represents a signal
that indicates whether the device is considered defective	 The remaining param�
eters represent channels ack and repaired represent the channels controlled by
the environment� while signal and repair ack are used by the controller	

The module speci�cation asserts that the device is initially considered to be
working normally	 The transitions between the failure states have been explained
above	 The controller signals that the unit is defective for as long as the �signal�

module Operator

parameters

stop� round
 variable
stop cnt
 variable

include Channel as Stop with c 	 stop

stop req
�

� if stop cnt � then T else F

Init
�

� stop cnt � �

N
�

� if Stop�NewInput then stop cnt � � stop cnt � �
else stop cnt � � �

�
�

� Init � ��N � �round � �� round�stop cnt�round

Fig� ��� Monitoring the operator desk	

state persists� that is� until it receives an acknowledgement from the environment	
On the other hand� it acknowledges repairs immediately �that is� at the controller
cycle following reception of the repair message�	

A��� The operator desk

Module Operator � shown in �gure ��� reacts to stop requests from the operator
desk	 The module counts the number of succseeive stop signals that have been
received	 It also de�nes the signal stop req � which is set to T if at least three
stop signals have been received in a row	 This signal has been used in module
Control to put the system into �emergency� mode even if no failure is detected	

A��� Detecting transmission errors

Module Transmission of �gure �� monitors transmission failures	 The controller
considers the transmission network to be defective if either some message that
needs to be present at each cycle is not received in the appropriate time window
or if some message is received that is inconsistent with the current state of
the system	 More precisely� we consider the following situations to indicate a
transmission failure

� The controller receives some value outside the expected domain for a channel	

� Some message that should be received at each cyle has not arrived in the
time window �tlast � �� tlast ��� preceding the analysis of the inputs	 This
condition is not considered an error in �startup� mode� when the physical
units are not required to send messages	

module Transmission

import Reals

parameters

round � ctl mode� normal level
 variable
level � steam� stop� steam boiler waiting � physical units ready
 variable
level repaired � steam repaired � level failure acknowledgement
 variable
steam outcome failure acknowledgement � pump repaired
 variable
pump failure acknowledgement � pump state� pump control state
 variable
valve sensor � pump fail state� level fail state� steam fail state
 variable
transmission failure
 variable

include Channel as Level with c 	 level

include Channel as Steam with c 	 steam

include Channel as Stop with c 	 stop

include Channel as Steam boiler waiting with c 	 steam boiler waiting

include Channel as PUR with c 	 physical units ready

include Channel as Level repaired with c 	 level repaired

include Channel as Steam repaired with c 	 steam repaired

include Channel as LFA with c 	 level failure acknowledgement

include Channel as SFA with c 	 steam outcome failure acknowledgement

include Channel as Pump repaired�i� with c 	 pump repaired �i
include Channel as PFA�i� with c 	 pump failure acknowledgement �i
include Channel as Pump state�i� with c 	 pump state�i
include Channel as Pump control state�i� with c 	 pump control state�i
include Channel as Valve sensor with c 	 valve sensor

domain error�c�V �
�

� c�value �� V

signal channels
�

�
fstop� steam boiler waiting � physical units ready � level repaired � steam repaired �
level failure acknowledgement � steam outcome failure acknowledgementg
�
S

�

i��fpump repaired �i � pump failure acknowledgement �i g

status channels
�

�
S

�

i��fpump control state�i g

sensor channels
�

� flevel � steam� valve sensorg �
S

�

i��fpump state�i g

N
�

� �transmission failure � � T � �
� � c � signal channels
 domain error�c� fh ig�
� � c � status channels
 domain error�c� f�on�� �o��g�
� � c � sensor channels
 domain error�c�Reals�
� �ctl mode �� �startup�� � �

W
�

i���Pump state�i �FreshInput
�
W

�

i���Pump control state�i �FreshInput
� �Level �FreshInput � �Steam�FreshInput
� �Valve sensor �FreshInput

� �ctl mode �� �startup�� � Steam boiler waiting �NewInput
� ��ctl mode �� �initialize�� normal level � T � � PUR�NewInput
�
W

�

i��PFA�i��NewInput � �pump fail state�i �� �signal��
� LFA�NewInput � �level fail state �� �signal��
� SFA�NewInput � �steam fail state �� �signal��
�
W

�

i��Pump repaired�i��NewInput � �pump fail state�i �� �acked��
� Level repaired �NewInput � �level fail state �� �acked��
� Steam repaired �NewInput � �steam fail state �� �acked��

�
�

� Init � ��N � �round � �� round�stop cnt�round

Fig� ��� Detecting transmission failures	

� The controller receives the message STEAM BOILER WAITING after it
has been started	

� The controller receives the message PHYSICAL UNITS READY when it is
not in initialization mode or before a normal water level has been reached	

� The controller receives some failure acknowledgement for a physical unit
without having signalled its failure	

� The controller receives some message indicating the repair of a physical unit
whose failure has not been acknowledged	

