
To appear in Proc. 12th IEEE Intl. Workshop on Rapid System Prototyping (RSP’01), 6/2001

Model Based Testing in Evolutionary Software Development∗

Alexander Pretschner, Heiko Lötzbeyer, Jan Philipps
Institut für Informatik, Technische Universität München, Germany

www4.in.tum.de/˜{pretschn,loetzbey,philipps}

Abstract
The spiraling nature of evolutionary software development
processes produces executable parts of the system at the
end of each loop. We argue that these parts should consist
not only of programming language code, but of executable
graphical system models. As a main bene£t of the use of
more abstract, yet formal, modeling languages, we present
a method for model based test sequence generation for re-
active systems on the grounds of Constraint Logic Program-
ming and its implementation in the CASE tool AutoFocus.
Keywords. Cleanroom SW Engineering, Constraint Logic Pro-
gramming, Extreme Programming, Incremental Development,
Rapid Prototyping, Reactive Systems, Test Case Generation.

1 Introduction

With the recent discussion on what has become known
as Extreme Programming (XP, [1]), evolutionary develop-
ment processes are gaining popularity. The main advantage
of evolutionary processes is that each development cycle
leads to executable code: This satis£es programmers who
get instant feedback on their activities [4]; it also satis£es
customers who can watch the results of the development
process, and who can in¤uence development from the be-
ginning to the end.

XP is based on common —usually object-oriented—
programming languages, which is in a way an advantage:
XP is rather lightweight, as it makes little demands on the
infrastructure (except for compiler turn-around time). Con-
versely, however, XP fails to leverage recent advances in
CASE tools, graphical description techniques, or algorith-
mic approaches to veri£cation or test case generation.

In this paper, we argue for an incremental development
process for reactive systems based on higher-level descrip-
tion techniques. While reactive systems can, in principle,
directly be implemented in programming languages such
as C, we advocate the use of languages that are more ab-
stract and closer to the application domain. We call such
languages modeling languages, and artifacts written in this

∗Supported by the DLR (MOBASIS) and the DFG under reference
numbers Be 1055/7-2 (KONDISK/IMMA) and Br 887/14-1 (INKREA).

language (behavior) models.
In contrast to other work in this direction [3], we empha-

size the use of a modeling languages with a clear seman-
tics: Because of the importance of test cases as functional
speci£cations, as debugging techniques and as a basis for
regression tests after design increments, it is important to
support test case development in all development phases.
Thus, the main part of this paper (Section 4) describes a
technique for the automatic derivation of test cases on the
grounds of Constraint Logic Programming. Before, we give
a general discussion of incremental design processes (Sec-
tion 2) and present the modeling languages of the CASE
tool AUTOFOCUS (Section 3) using a simple ATM example
taken from [13]. In Section 4, test case generation is demon-
strated with the same example, and the results are compared
quantitatively to those of [13].

Related work is cited in the respective context. Differ-
ent approaches to the generation of test cases are discussed
in [9, 10, 13]; [13] also contains a discussion of testing as
compared to (bounded) model checking.

2 Incremental Development

In this section, we discuss incremental software develop-
ment processes and argue for the use of modeling languages
instead of programming languages. We then discuss the role
of testing in incremental development.

Development processes. One of the main dif£culties in
software engineering is that the requirements of the cus-
tomer are prone to change while software is being devel-
oped. Spiraling, or evolutionary, development processes try
to face this problem by building the software system incre-
mentally, and by interacting with the customer after com-
pletion of each increment. Thus, requirements are not £xed
at the beginning of the development, but instead converge
during several incremental cycles and the respective feed-
back phases.

Common incremental process models include Boehm’s
spiral (meta) model [2], the Cleanroom Reference Model
(CRM, [12]), Extreme Programming (XP, [1]), and
rapid/evolutionary prototyping.

The CRM relies on box models at each iteration of the
development process. In each iteration, requirements are
speci£ed in a black box view that associates stimulus his-
tories (inputs) with responses (outputs). In the state box
view, these history/response relations are implemented by
state machines; £nally, the clear box view consists of ac-
tual code. All documents are subject to thorough reviews;
requirements are traced through the documents. Software
tests rely on statistical usage models (which, obviously,
raises the dif£culty of determining these models); in gen-
eral, testing code in CRM is considered a means of measur-
ing the success of the process rather than detecting errors in
the system.

Extreme programming takes a less formal approach to
incremental development. Apart from management issues
or the pair programming principle, XP is based on two main
concepts: Firstly, artifacts of the process are written as ex-
ecutable code in a common, usually object-oriented, pro-
gramming language. Secondly, XP makes heavy use of test-
ing. Programmers write test cases to ensure the plausibility
of their code; they – preferably together with the customer
– also write functional test cases to ensure that the code
satis£es the customer’s demands. Both classes of tests are
supposed to be written before the code itself, and they are
written in the same programming language.

An intuitive objection to incremental processes is that
is is not always obvious in which direction development
should proceed: As Michael Jackson puts it in the more
general context of top-down development, the problem is
that “you must already have solved the problem before the
solution process is begun” [8]. Otherwise, the system will
become cluttered, dif£cult to understand, and to communi-
cate to the customers.

One solution might be to use standard reference archi-
tectures to guide development. In any case, the system de-
scription might need to be cleaned up after each increment;
this approach is referred to as refactoring [5]. Refactoring
is one of the foundations of XP where the absolute need for
a-priori architectural design is denied and where the archi-
tecture evolves along with the product.

Neither CRM nor XP are formal in the mathematical
sense. While the box model of CRM and its associated con-
cept of re£nement are said to be based on the mathemati-
cal notion of referential transparency, this is not re¤ected in
the description techniques. The state machines of the state
boxes have no formal semantics on which a re£nement or
equivalence concept could be based.

XP, on the other hand, is based on common program-
ming languages, and explicitly disavows any connection to
mathematical principles. Nevertheless, refactoring, which
is essential in XP, requires at least an intuitive concept of
equivalence of programs.

It is interesting that both CRM and XP make use of more

than one kind of description of a system: Before executable
code is written, CRM requires the speci£cation of the sys-
tem functionality as history/response pairs. In XP, system
functionality is captured by functional tests. These func-
tional tests can be regarded as speci£cations of the system to
be designed while the plausibility tests are intended to check
for programmers’ errors such as forgotten cases, range er-
rors, and possibly de£ciencies, contradictions or omissions
in the functional tests.

Model-based Development. We believe that modeling
languages £t the demands of an incremental process better
than programming languages: Their higher level of abstrac-
tion can lead to higher productivity of the programmers;
their suggestive notations ease interaction with the customer
and other programmers (even though code is sometimes bet-
ter to understand than any other speci£cation; the dif£culty
of understanding pure code is one of the reasons behind
the XP principles of pair programming and collective code
ownership). This is especially important for embedded sys-
tems, where hardware and software components have to be
engineered simultaneously.

For embedded systems various forms of state transition
diagrams, like Statecharts, SDL or the diagrams of ROOM
or UML-RT are commonly used. We prefer the graphical
speci£cation formalisms of the CASE tool AUTOFOCUS

[7], since they can be given a precise and —a point that is
often neglected— a simple formal semantics. Precision and
simplicity of the semantics are a prerequisite for the opera-
tional understanding of the models, for simulation and code
generation, for the de£nition of an equivalence concept that
can be the basis of refactoring patterns, for the integration
with formal veri£cation and validation tools [11], and —as
we show later in the paper— for the automatic generation
of test cases. Apart from a basic operational understanding,
customers are not expected to be confronted with the formal
semantics; we say that the behavioral models are transpar-
ently formalized.

With code generators, models can be translated to exe-
cutable programs in languages such as C, Java, ADA or Pro-
log; thus, early lock-in to a certain programming language
can be avoided. On the other hand, there is no reason to be
dogmatic: Modeling languages can be integrated with hand-
written code where convenient; models can serve as skele-
tons where custom code is £lled in; sometimes, parts of the
code for the £nal implementation will have to be rewritten
for performance or memory space reasons. In these cases,
however, the requirements will be clear, and this task seems
to be easier than to use code from the beginning.

However, code generation is not the only application of
models. With the simple semantics of AUTOFOCUS, it is
possible to automatically extract test cases from the model
by explicit speci£cations in the form of sequence or interac-

tion diagrams; or implicitly from some structural coverage
criterion. The £rst kind of tests corresponds to functional
speci£cations or tests of XP, used for interaction with the
customer; the second kind is useful for plausibility checks
that help to discover inconsistencies or missing cases in the
model.

Test cases from earlier design increments can be used as
test cases for later ones, with a fully automatic assessment
of whether or not parts of the system of the later increment
conform to the earlier one. Moreover, if the system has to be
recoded because the code generators turn out to produce in-
adequate code, the test cases can, in conjunction with hand-
written ones, be used to test the £nal implementation rather
than the model itself.

To summarize, we advocate a development process that
consists of several iterations where at the end of each loop,
instead of hand-written code an executable system model is
presented to the customer. Coding by hand is deferred until
the end of the development process, in case the generated
code fails to satisfy performance or space requirements.

3 Behavior Models

AUTOFOCUS (autofocus.in.tum.de, [7]) is a
tool for developing graphical speci£cations of embedded
systems based on a simple, formally de£ned semantics. It
supports different views on the system model: structure, be-
havior, interaction, and data type view. Each view concen-
trates on certain aspects of the speci£ed model.

In AUTOFOCUS, a distributed system is a network of
components that communicate via directed channels. Com-
ponent networks are speci£ed in System Structure Diagrams
(SSDs). Figure 1 shows a typical SSD. Rectangles repre-
sent components, and arrows between them represent chan-
nels. Channels are typed, and they are connected to com-
ponents via so called ports. SSDs can be hierarchically re-
£ned: Each component may itself contain a subnetwork.
Ports of components in the top level network are meant to
be connected to the outside world; they form the system’s
interface to its environment.

The behavior of a component is described by a State
Transition Diagram (STD). Figure 2 shows typical STDs.
Initial states are marked with a black dot. An STD consists
of a set of control states, transitions and local variables.
The local variables build up the component’s data state.

A transition can have several annotations, separated by
colons: a label, a precondition, input statements, output
statements and a postcondition. The precondition is a
boolean expression that refers to local variables and to pat-
tern variables which are bound by one of the input state-
ments. Input statements consist of a port name followed by
a question mark and a pattern. Analogously output state-
ments consist of a port name and an expression separated

Timer

Till Central

user:Input

reaction:Output

request:Transaction

answer:Message

set:Int

timeout:Signal

local Int t=0;

local Card Current=Invalid,
local Int CurrentPIN=0

Figure 1. System structure

by an exclamation mark. Postconditions are assignments
to local data state variables; they refer to local and pattern
variables.

In addition to SSDs and STDs, AUTOFOCUS provides
Message Sequence Charts (MSCs); they are used to de-
scribe the interaction between components, either for be-
havior speci£cation (we are currently implementing an al-
gorithm that converts them to STDs), for the visualization
of simulations, and for the speci£cation of test cases [13].

For the speci£cation of user de£ned, possibly recursive,
data types and functions AUTOFOCUS provides DTDs. The
de£nitions in DTDs are written in a Gofer-like functional
style (see Table 1).

Example. A simpli£ed ATM system (Fig. 1) consists of
three components: a timer, a central data base, and a till
component (the actual ATM). Channel user serves as the
ATM’s input interface; a Card may be entered into the Slot,
a function key FunKey with some associated Action may
be pressed, or a PIN (an Int value) may be entered. Table 1
shows the associated data types. Users get the system’s

Table 1. Data types/functions in the ATM
Card = Invalid | Valid(getPIN:Int, Acc:Int)
Input = Slot(Card) | FunKey(Action) | PIN(Int)
Output = enterPIN | enterCard | enterAction

| timeoutError(Card) | byebye(money:Int,
Card) | ViewBal(Card) | errorWrongPIN

Transaction, Message, Action, Signal = . . .

fun message2output(Balance,C) = ViewBal(C)
fun m2o(NoMoney,C), m2o(Money(M),C) = . . .

reaction via channel reaction (request for action, issuing
money, displaying the balance). The timer component en-
sures that after a certain time the card is returned (e.g., in
case something went wrong). Finally, the central database
gets a request from the Till component on channel request
and reacts accordingly (e.g., transmit balance, issue money,
etc.). The complete system behavior is de£ned by the three
component STDs in Fig. 2.

t>0:set?::t=t-1
OR n>0:set?n::t=n-1

Ready

Counting

n>0:set?n::t=n-1 t==0:set?:
timeout!Present:

OR :Request?TA(ViewBalance,A,P):
 answer!Balance:
OR A==P:Request?TA(Withdraw(M),A,P):
 answer!Money(M):

A!=P:Request?TA(Withdraw(M),A,P):
 answer!NoMoney:

Main

(a) Timer (b) Central

(c) Till

nothingEntered
:user?:reaction!enterCard:

noCardEntered
not(is_Slot(K)):
user?K:
reaction!enterCard:

wrongPIN
(is_Valid(Current) &&
 (p != getPIN(Current))):
user?PIN(p):
reaction!errorWrongPIN:
CurrentPIN = p

Ready CardEntered

PINenteredActionEntered

EnteredCard
:user?Slot(X):reaction!enterPIN;
set!2:Current = X

timeout
:timeout?Present:reaction!timeoutError(Current):
	 	 	 	 	 Current = Invalid

correctPIN
(is_Valid(Current) &&
 (p == getPIN(Current))):
user?PIN(p):reaction!enterAction;
set!2:CurrentPIN = p

timeout
:timeout?Present:
reaction!timeoutError(Current):
Current = Invalid

timeout
:timeout?Present:
reaction!timeoutError(Current):
Current = Invalid

enterAction

:user?FunKey(Act):Request!TA(Act,Acc(Current),
CurrentPIN); set!3:

finished:answer?A:
reaction!message2output(A,Current):

Figure 2. Component Behavior

Operational model. A transition can £re if its precondi-
tion holds and the patterns on the input statements match the
values read from the component’s input channels. After ex-
ecution of the transition the values in the output statements
are copied to the appropriate ports, and local variables are
set according to the postcondition.

AUTOFOCUS components are timed by a common
global clock, i.e., they all perform their computations simul-
taneously. Each clock cycle consists of two steps: First each
component reads the values on its input ports and computes
new values for local variables and output ports. Then, the
new values are copied to the output ports where they can be
accessed immediately via the input ports of connected com-
ponents. This cyclic operation results in a time-synchronous
communication scheme with buffer size 1.

4. Model Based Testing

Software testing is the process of executing a piece of
software in order to detect incorrect behavior (a software
failure). Software failures can either originate from wrong
implementations or invalid or incomplete speci£cations. As
testing requires some piece of software that can actually be
executed, real tests are not performed until a set of basic
modules have been implemented.

By using executable models in evolutionary prototyping,
the testing process can start much earlier and can therefore
be more effective. Model based testing covers both test case
derivation from models as well as driving the test by execut-
ing the model. In the following we shortly introduce some
test case generation techniques.

Test case generation. Test case generation starts with
de£ning a test purpose. In general, a test purpose is an in-
formal formulation of the properties which, later on, will be

veri£ed by the generated test cases. From informal test pur-
poses, we derive a formal test case speci£cation. Both test
purposes and test case speci£cation can be either functional
(i.e., require test cases to test certain functionalities without
regarding the model) or structural (e.g., require test cases to
obtain a certain coverage of the implemented code). Then
a number of actual test cases is computed for each test case
speci£cation. Simple examples for test cases include input
histories, transition tours, traces, or constraints over them.
We require test cases to be consistent with their test case
speci£cation, but they need not be executable [10].

To perform real tests, test cases must necessarily be exe-
cutable and predict the results of the computation. Such test
cases are called test sequences. A test sequence is an I/O
trace that can directly be fed into an implementation or an
executable system model, and after the test is performed, a
verdict (pass, fail, inconclusive) can be assigned. Test se-
quences are rather operational whereas test cases are rather
denotational, and it turns out to be nontrivial to determine
actual sequences from arbitrary test cases which might be
formulated as a set of constraints (in form of a message se-
quence chart, or a logical formula).

In addition to using counterexamples from model check-
ers that exhibit the disadvantage of no control over the gen-
erated trace, AUTOFOCUS offers two techniques for auto-
matically generating test sequences from test case speci£-
cations: a propositional logic based approach and a CLP
(Constraint Logic Programming) based approach. The
propositional logic based test sequence generation compiles
the AUTOFOCUS model and the query that restricts the sys-
tem run into appropriate formulae which can ef£ciently be
checked for satis£ability by a propositional solver such as
SATO. The formulae include variables for each step of the
model. In order to keep the formulae £nite, the sequences
are limited to a £nite number of steps (cf. ClockMax, be-
low). The desired test sequence is then generated by solving
the formula. For details of the translation we refer to [13].
The problem of the propositional logic based approach is
that the state space of the models has to be not only £nite
but also very small compared to actual problems. Although
powerful abstraction techniques exist that allow for a sig-
ni£cant reduction of the state space, it turns out to be very
dif£cult to actually £nd a suitable abstraction.

The CLP based test sequence generation overcomes
these limitations. Basically, the AUTOFOCUS model is
translated into Prolog rules and constraints. The rules in-
clude symbols for input, output and local variables, and
conditions are realized by constraints over the variables.
By successively applying the rules, the model is symboli-
cally executed, thus simulating one or more system run(s).
By introducing additional constraints, the symbolic execu-
tion can be further restricted to get more specialized system
runs. Note that unlike other approaches, we do not aim at

extracting a test suite that is able to determine equivalence
(or implication) between a speci£cation and an implemen-
tation; completeness of test cases is thus not in our focus.

Translation into CLP. The (automatic) translation of
AUTOFOCUS models into CLP code is straightforward. For
each atomic component a step predicate is introduced. This
predicate represents one single step of the component. Each
transition of the corresponding automaton is represented by
a single rule of the step predicate. This also includes the idle
transitions – transitions that £re if no other can – which are
not explicitly visible in the automaton. Basically the rules
have the following form:

stepComponent(prevState, transition, Local-
Variables, Inputs, Outputs, nextState) :-

precondition, postcondition.

where prevState, transition, and nextState are
constants, LocalVariables, Inputs, and Outputs
are variables or tuples of variables, and precondition
and postcondition are predicates which may refer to
all variables. Predicates are formulated as constraints.

For each composed component consisting of a network
of communicating subcomponents, a special scheduler rule
is created that drives the subcomponents and transfers mes-
sages between subcomponents and the environment. The
scheduler rule has the same signature as the step predicates
of the atomic components. Thus, from a black box view, no
difference is made between an atomic and a composed com-
ponent, and the encoding in Prolog rules re¤ects the com-
ponent hierarchy of the AUTOFOCUS model. For the top
level component, an additional rule is needed that succes-
sively calls the step rule and collects the histories of states,
local variables, inputs, outputs, and transitions. The num-
ber of steps is limited by a variable ClockMax in order to
avoid in£nite runs. Details of the concrete translation are
discussed in [9, 10]. In addition to the Prolog rules which
model the transitions of the system, constraint solvers for
the evaluation of the predicates (functions, data types) are
needed. For integer type variables, constraint solvers for £-
nite domain variables are available, and for the functional
data types, a corresponding constraint solver is generated
automatically by using Constraint Handling Rules (CHR,
[6]). The advantages of the CLP encoding are obvious. In-
£nite data can be handled by using appropriate constraint
solvers and a ¤exible search is performed by Prolog’s back-
tracking and instantiation/labeling abilities. Beyond that,
the translation preserves the structure of the model. We
consider this an important point, as it is a prerequisite to
adjust the search for special purposes (e.g. reach certain
states or £re a speci£c transition, see below). In addition to
a quite abstract encoding, the use of constraints entitles one
to a-priori prune the search tree (e.g., testing properties that
consist of implications), and to handle negative properties
by delaying the respective instantiations.

In order to avoid loops in the process of execution, we
added a simple mechanism: For each state, information
about the transition that was last taken is retained; and when
the state is revisited, another transition is to be taken (if
possible). These sequences of transition orderings for each
state turn out to be a powerful mechanism for goal-directed
executions. One focus of our current work is more machine
support for this objective (see below).

Experiments. All experiments in this paragraph have
been performed on a SUN UltraSparc with 1GB memory,
400 MHz. In order to demonstrate the performance of our
current system, we specify two simple test cases: a func-
tional one and a structural one. For the functional test, we
ask whether it is possible to withdraw any money at all -
i.e., is there a run where the output channel eventually con-
tains a byebye(M,C) message with M 6= 0. Regardless of
the maximum length of the run, the system returns a run in
< .01 seconds with a remaining constraint M 6= 0 and un-
speci£ed parameters of the inserted card. Since in this sim-
ple system no accounts are maintained, and one can thus
withdraw any amount, the system can instantiate all val-
ues at will while satisfying the remaining constraint, e.g.,
M = 1. The same example fed into the SATO-based test
sequence generator creates an instantiated test case in a time
that is dependent on the maximum length of the run, e.g., in
54 seconds for a maximum length of 20 [13].

The structural test case speci£cation consists of a run
that contains all transitions in the Till component. The
generated test cases exhibit a ¤aw in the model: Transi-
tion timeout from state ActionEntered to Ready should
never £re for the central database immediately reacts once
it received a request. However, if solely transition timeout
is to be tested, the system discovers a run where timeout
does indeed £re: The timer is set to 2 during transition to
state PINEntered. Two ticks later, the user requests an ac-
tion (ViewBalance). As a result, the transition to Actio-
nEntered is taken, but at the same time, a timeout occurs,
just before the timer is reset to 3. This causes timeout to
£re. The problem is a simple error (a race condition) in the
model, which can easily be corrected. Table 2 shows per-
formance data (time and memory) for the transition tours
with and without transition timeout for different maximum
clock values. For comparison, the last two columns con-
tain the system requirements for arbitrary runs of the given
maximum length, cmax (which, with our technique of an al-
ternating choice of transitions, yield in itself interesting test
cases).

The SATO based tool cannot compute these sequences,
but, given the sequence of transitions, it can £nd variable
instantiations for the sequence. When the transition tour is
given, SATO requires up to .55 seconds while the presented
systems £nds variable instantiations in < .01 sec. Note that
the CLP based system outperforms this number for cmax =

Table 2. Statistics: Transition tour
tour w/ timeout tour w/o timeout arb. c=cmax

cmax t[s] m[KB] t[s] m[KB] t[s] m[KB]

40 1,908 497 .3 417 .01 232
60 .1 723 .1 638 .03 388

200 14.7 2,659 14.6 2,574 .3 2,030
300 1.0 4,631 1.0 4,546 .5 3,809

1000 22.5 4,250 22.8 4,094 5.4 4,804
9090 448 48,194 446 38,064 433 23,962
10

4 1,763 41,597 1,734 41,548 518 26,473

60 even though in addition to variable instantiations, it £rst
has to determine the transition tour itself.

Obviously, performance in terms of time varies signif-
icantly with the choice of cmax . This is due to Prolog’s
depth £rst search strategy, where cutting the search tree at
a depth of cmax obviously has an in¤uence on how back-
tracking is to be performed. Our current work concentrates
on determining this number; we expect the use of an A*
search algorithm to yield satisfactory results.

The reason for the signi£cant differences in ef£ciency
between the SATO and the CLP based systems is most
likely due to the fact that the translation into CLP is rather
natural whereas the encoding in propositional logic is more
complicated and imposes a noteworthy overhead.

5 Conclusion

We have presented our continuing efforts in speci£cation
based test sequence generation and its embedding in an in-
cremental SW development process. The class of systems
is neither restricted to £nite nor to deterministic ones: re-
cursive data types or real numbers are handled in exactly
the same way as £nite enumeration types (with the prob-
lem of £nding appropriate instantiations); nondeterminism
is handled by the backtracking mechanisms in CLP (with
the problem of properly formulating verdicts). Experience
with our industrial partners shows that customized manage-
ment systems for (regression) testing are at least as impor-
tant as a systematic generation of test cases; this is, how-
ever, not the focus of our current work. In order to assess
the scalability of our CLP based approach, we are carrying
out an industrial size case study with a large German man-
ufacturer of smart cards; £rst results give us some reason to
be optimistic but show that more intelligence in the process
of search is necessary. As mentioned above, we are trying
to adopt an A* search algorithm for this purpose. Further-
more, the intelligent instantiation of unbound variables in
the computed test cases remains, w.r.t. a minimization of
test cases, a dif£cult problem. We are trying to face it by
means of simple heuristics, some of which are compara-
ble to the interleaving strategy for the choice of transitions.
Assistance in £nding equivalence classes is mandatory for
larger systems, in particular for mixed discrete-continuous

systems. These issues form, together with ideas on compo-
sitional testing, the focus of current and future work in the
area of test case generation.

One may well ask why we think coverage criteria on
models are a good idea. Besides their potential use in de-
bugging as well as regression testing activities, we hope to
be able to use techniques similar to those for code genera-
tion in order to transform test suites on models to those on
source code while maintaining the respective coverage cri-
terion. This is a prerequisite for certi£cation authorities to
accept those test cases as conforming to the standard that
has been applied in a particular project.

In terms of a sound notion of refactoring, we think that
a formal semantics will help in building tools that support
this process. This also requires a notion of re£nement that
is induced by the development process rather than by some
mathematical theory (in fact, we see our work as a more for-
malized approach to the CRM). We consider a combination
of a-posteriori validation steps (testing) and development
steps that are sound by de£nition as a promising approach
to systematically developing better, cheaper software.

References

[1] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 1999.

[2] B. Boehm. A spiral model of software development and
enhancement. Computer, pages 61–72, May 1988.

[3] M. Boger, T. Baier, F. Wienberg, and W. Lamersdorf. Ex-
treme modeling. In Proc. Extreme Programming and Flexi-
ble Processes in SW Engineering (XP’00), 2000.

[4] F. Brooks. No Silver Bullet. In Proc. 10th IFIP World Com-
puting Conference, pages 1069–1076, 1986.

[5] M. Fowler. Refactoring - Improving the Design of Existing
Code. Addison Wesley, 1999.

[6] T. Frühwirth. Theory and practice of constraint handling
rules. J. Logic Prog., 37(1-3):95–138, October 1998.

[7] F. Huber, B. Schätz, A. Schmidt, and K. Spies. Autofocus—
a tool for distributed systems speci£cation. In FTRTFT’96,
LNCS 1135, 1996.

[8] M. Jackson. Software Requirements and Speci£cations. Ad-
dison Wesley, 1995.

[9] H. Lötzbeyer and A. Pretschner. AutoFocus on Constraint
Logic Programming. In LPSE’00, July 2000.

[10] H. Lötzbeyer and A. Pretschner. Testing Concurrent Re-
active Systems with Constraint Logic Programming. In
Proc. 2nd workshop on Rule-Based Constraint Reasoning
and Programming, September 2000.

[11] J. Philipps and O. Slotosch. The quest for correct systems:
Model checking of diagrams and datatypes. In APSEC’99,
pages 449–458. IEEE Computer Society, 1999.

[12] S. Prowell, C. Trammell, R. Linger, and J. Poore. Cleanroom
Software Engineering. Addison Wesley, 1999.

[13] G. Wimmel, H. Lötzbeyer, A. Pretschner, and O. Slotosch.
Speci£cation Based Test Sequence Generation with Proposi-
tional Logic. J. Software Testing, Validation, and Reliability,
10(4):229–248, 2000.

