
T U M
I N S T I T U T F Ü R I N F O R M A T I K

A Literature Survey of the Software Quality
Economics of Defect-Detection Techniques

Stefan Wagner

TUM-I0614
Juli 06

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-07-I0614-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2006

Druck: Institut für Informatik der
Technischen Universität München

A Literature Survey of the Software Quality

Economics of Defect-Detection Techniques∗

Stefan Wagner
Institut für Informatik

Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München

Germany

Abstract

Over the last decades, a considerable amount of empirical knowledge
about the efficiency of defect-detection techniques has been accumulated.
Also a few surveys have summarised those studies with different focuses,
usually for a specific type of technique. This work reviews the results
of empirical studies and associates them with a model of software quality
economics. This allows a better comparison of the different techniques and
supports the application of the model in practice as several parameters can
be approximated with typical average values. The main contributions are
the provision of average values of several interesting quantities w.r.t. defect
detection and the identification of areas that need further research because
of the limited knowledge available.

∗This research was supported by the DFG within the priority program SoftSpez (SPP 1064)
under project name InTime.

Contents

1 Introduction 4

1.1 Problem . 4

1.2 Contribution . 4

1.3 Organisation . 4

2 Software Quality Economics 6

2.1 Software Quality Costs . 6

2.2 An Analytical Model . 7

2.2.1 General . 7

2.2.2 Components . 9

2.2.3 ROI . 12

2.3 Practical Model . 12

2.3.1 General . 12

2.3.2 Components . 13

3 Empirical Knowledge 15

3.1 Experiments and Field Studies 15

3.2 Approach . 15

3.3 Difficulty . 16

3.4 Dynamic Testing . 17

3.4.1 Classification . 17

3.4.2 Setup and Execution Costs 18

3.4.3 Difficulty . 18

3.4.4 Removal Costs . 21

3.5 Review and Inspection . 23

3.5.1 Classification . 23

3.5.2 Setup and Execution Costs 24

3.5.3 Difficulty . 26

3.5.4 Removal Costs . 29

3.6 Static Analysis Tools . 31

3.6.1 Classification . 31

3.6.2 Setup and Execution Costs 31

3.6.3 Difficulty . 32

3.7 Defects . 33

3.7.1 Defect Introduction 33

3.7.2 Removal Costs . 34

3.7.3 Effect Costs . 35

3.7.4 Failure Probability 36

4 Discussion 38

5 Related Work 39

2

6 Conclusions 40

6.1 Summary . 40
6.2 Further Research . 40

3

1 Introduction

The economics of software quality assurance (SQA) are a highly relevant
topic in practice. Many estimates assign about half of the total develop-
ment costs of software to SQA of which defect-detection techniques, i.e.,
analytical SQA, constitute the major part. Moreover, an understanding of
the economics is essential for project management to answer the question
how much quality assurance is enough. For example Rai, Song, and Troutt
[57] state, that a better understanding of the costs and benefits should be
useful to decision-makers.

However, the relationships regarding those costs and benefits are often
complicated and the data is difficult to obtain. Ntafos discusses in [50]
that cost is a central factor but “it is hard to measure, data are not easy to
obtain, and little has been done to deal with it”. Nevertheless, there is a
considerable amount of empirical studies regarding defect-detection tech-
niques. The effectiveness and efficiency of testing and inspections has been
investigated intensively over the last decades. Yet, we are not aware of a
literature survey that summarises this empirical knowledge with respect to
an economics model.

1.1 Problem

The main practical problem is how we can optimally use defect-detection
techniques to improve the quality of software. Hence, the two main issues
are (1) in which order and (2) with what effort the techniques should be
used. This paper concentrates on the subproblem that the collection of all
relevant data for a well-founded answer to these questions is not always
possible.

1.2 Contribution

We review and summarise the empirical studies on various aspects of de-
fect-detection techniques and software defects in general. The results of
those studies are assigned to the different input factors of an economics
model of analytical SQA. In particular, mean and median values of the
input factors are derived to allow an easier application of the model in
practice when not all factors are collectable. Furthermore, the found dis-
tributions can be used in further analyses of the model. Finally, the review
reveals several areas that need further empirical research.

1.3 Organisation

We discuss software quality costs in general and the used economics model
for SQA in Sec. 2. The empirical knowledge of defect-detection techniques
is then analysed in Sec. 3 structured in test techniques, review techniques,
static tools, and defects. In Sec. 4 some issues and interpretation of the

4

empirical knowledge is discussed. Related work is given in Sec. 5 and Sec. 6
summarises the paper with final conclusions and future work.

5

2 Software Quality Economics

In this section, we introduce the general concept of quality costs for soft-
ware. Based on that, we describe an analytical, stochastic model of the
costs and benefits – the economics – of analytical SQA and finally possi-
bilities of its practical application.

2.1 Software Quality Costs

Quality costs are the costs associated with preventing, finding, and cor-
recting defective work. Based on experience from the manufacturing area
quality cost models have been developed explicitly for software. These
costs are divided into conformance and nonconformance costs, also called
control costs and failure of control costs. The former comprises all costs
that need to be spent to build the software in a way that it conforms to
its quality requirements. This can be further broken down to prevention
and appraisal costs. Prevention costs are for example developer training,
tool costs, or quality audits, i. e. costs for means to prevent the injection
of faults. The appraisal costs are caused by the usage of various types of
tests and reviews.

The nonconformance costs come into play when the software does not
conform to the quality requirements. These costs are divided into internal
failure costs and external failure costs. The former contains costs caused
by failures that occur during development, the latter describes costs that
result from failures at the client. A graphical overview is given in Fig. 1.
Because of the distinction between prevention, appraisal, and failure costs
this is often called PAF model.

cost of quality

appraisal costsprevention costs external failure

nonconformanceconformance

internal failure

executionsetup fault removal effect

Figure 1: Overview over the costs related to quality

We add further detail to the PAF model by introducing the main types
of concrete costs that are important for defect-detection techniques. Note

6

that there are more types that could be included, for example, mainte-
nance costs. However, we concentrate on a more reliability-oriented view.
The appraisal costs are detailed to the setup and execution costs. The for-
mer constituting all initial costs for buying test tools, configuring the test
environment, and so on. The latter means all the costs that are connected
to actual test executions or review meetings, mainly personnel costs.

On the nonconformance side, we have fault removal costs that can be
attributed to the internal failure costs as well as the external failure costs.
The reason is that the removal of a detected defect always results in costs
no matter whether it caused an internal or external failure. Actually, there
does not have to be a failure at all. Considering code inspections, faults
are found and removed that have never caused a failure during testing.
It is also a good example that the removal costs can be quite different
regarding different techniques. When a test identifies a failure, there needs
to be considerable effort spent to find the corresponding fault. During an
inspection, faults are found directly.

External failures also cause effect costs. These are all further costs with
the failure apart from the removal costs. For example, compensation costs
could be part of the effect costs, if the failure caused some kind of damage
at the customer site. We might also include further costs such as loss of
sales because of bad reputation in the effect costs but do not consider it
explicitly because its out of scope of this paper.

2.2 An Analytical Model

We describe a general, analytical model of defect-detection techniques in
the following based on [75, 76]. General is meant with respect to the various
types of techniques. This allows us to review the literature of all of those
techniques combined. We mainly analyse different types of testing which
essentially detect failures and static analysis techniques that reveal faults
in the code or other documents. A model that incorporates all important
input factors for these differing techniques needs to use the universal unit of
money, i.e., units such as euro or dollar. We first describe the model and its
assumptions in general, and then give equations for each component of the
model for a single technique and for the combination of several techniques.

2.2.1 General

In this section, we concentrate on an ideal model of quality economics in
the sense that we do not consider the practical use of the model but want
to mirror the actual relationships as faithfully as possible. The model is
stochastic in the sense that it is based on expected values as basis for
decision making. This approach is already common in other engineering
fields [9] to compare different alternatives.

Components. We divide the model in three main components:

7

• Direct costs dA

• Future costs oA

• Revenues / saved costs rA

The direct costs are characterised by containing only costs that can be
directly measured during the application of the technique. The future
costs and revenues are both concerned with the (potential) costs in the
field but can be distinguished because the future costs contain the costs
that are really incurred whereas the revenues are comprised of saved costs.

Assumptions. The main assumptions in the model are:

• Found faults are perfectly removed.

• The amount or duration of a technique can be freely varied.

The first assumption is often used in software reliability modelling to
simplify the stochastic models. It states that each fault detected is in-
stantly removed without introducing new faults. Although this is often
not true in real defect removal, it is largely independent of the used de-
fect-detection technique and the newly introduced faults can be handled
like initial faults which introduces only a small blurring as long as the
probability of introducing new faults is not too high.

The second assumption is needed because we have a notion of time
effort in the model to express for how long and with how many people a
technique is used. This notion of time can be freely varied although for real
defect-detection techniques this might not always make sense, especially
when considering inspections or static analysis tools where a certain basic
effort or none at all has to be spent. Still, even for those techniques, the
effort can be varied by changing the speed of reading, for example.

Difficulty. We adapt the general notion of the difficulty of an applica-
tion of technique A to find a specific fault i from [41] denoted by θA(i) as a
basic quantity for our model. In essence, it is the probability that A does
not detect i. In the original definition this is independent of time or ef-
fort but describes a “single application”. We extend this using the length
of the technique application tA. With length we do not mean calendar
time but effort measured in staff-days, for example, that was spent for this
technique application. Hence, the refined difficulty function is defined as
θA(i, tA) denoting the difficulty of A detecting i when applied with effort
tA. In the following equations we are often interested in the case when a
fault is detected at least once by a technique which can be expressed as
1 − θA(i, tA).

Using this additional dimension we can also analyse different functional
forms of the difficulty functions depending on the spent effort. This is
similar to the informal curves shown by Boehm [10] describing the effec-
tiveness of different defect-detection techniques depending on the spent

8

costs. Actually, the equations given for the model above already contain
that extended difficulty functions but they are not further elaborated. In
[75, 76] we considered several possible forms of the difficulty functions such
as exponential or linear.

We also assume that in the difficulty functions the concept of defect
classes is handled. A defect class is a group of defects based on the doc-
ument type it is contained in. Hence, we have for each defect also its
document class c, e.g., requirements defects or code defects. This has es-
pecially an effect considering that some techniques cannot be applied to
all types of documents, e.g., functional testing cannot reveal a defect in a
design document directly. It may however detect its successor in code.

Defect Propagation. A further aspect to consider is that the defects
occurring during development are not independent. There are various de-
pendencies that could be considered but most importantly there is depen-
dency in terms of propagation. Defects from earlier phases propagate to
later phases and over process steps. We actually do not consider the phases
to be the important factor here but the document types. In every develop-
ment process there are different types of documents, or artifacts, that are
created. Usually, those are requirements documents, design documents,
code, and test specifications. Then one defect in one of these documents
can lead to none, one, or more defects in later derived documents.

2.2.2 Components

We give an equation for each of the three components with respect to single
defect-detection techniques first and later for a combination of techniques.
Note that the main basis of the model are expected values, i.e., we combine
cost data with probabilities.

Direct Costs. The direct costs are those costs that can be directly
measured from the application of a defect-detection technique. They are
dependent on the length t of the application. Fig. 2 shows systematically
the components of the direct costs.

Setup costs

Defect−detection technique application

Difficulty θA(i, t)

uA

Execution costs eA(t)

Removal costs vA(i)

Detected fault i

Figure 2: The components of the direct costs

From this we can derive the following definition for the direct costs dA

9

containing the three cost types setup costs, execution costs, and removal
costs for a technique.

dA = uA + eA(t) +
∑

i

(1 − θA(i, t))vA(i), (1)

where uA are the setup costs, eA(t) the execution costs, and vA(i) the fault
removal costs specific to that technique. Hence, we have for a technique its
fixed setup costs, execution costs depending on the length of the technique
and removal costs for each fault in the software if the technique is able to
find it.

Future Costs. In case we were not able to find defects, these will result
in costs in the future denoted by oA. We divide these costs into the two
parts fault removal costs in the field vF (i) and failure effect costs fF (i).
The latter contain all support and compensation costs as well as annoyed
customers as far as possible.

oA =
∑

i

πiθA(i, t)(vF (i) + fF (i)), (2)

where πi = P (fault i is activated by randomly selected input and is de-
tected and fixed) [41]. Hence, it describes the probability that the defect
leads to a failure in the field.

Revenues. It is necessary to consider not only costs with defect-detec-
tion techniques but also revenues. These revenues are essentially saved
future costs. With each fault that we find in-house we avoid higher costs
in the future. Therefore, we have the same cost categories but look at the
faults that we find instead of the ones we are not able to detect. We denote
the revenues with rA.

rA =
∑

i

πi(1 − θA(i, t))(vF (i) + fF (i)) (3)

Because the revenues are saved future costs this equation looks similar to
Eq. 2. The difference is only that we consider the faults that have not
been found and hence use the probability of the negated difficulty, i.e.,
1 − θA(i, t).

Combination. Typically, more than one technique is used to find de-
fects. The intuition behind that is that they find (partly) different defects.
These dependencies are often ignored when the efficiency of defect-detec-
tion techniques is analysed. Nevertheless, they have a huge influence on the
economics and efficiency. In our view, the notion of diversity of techniques
from Littlewood et al. [41] is very useful in this context. The covariance

10

of the difficulty functions of faults describes the similarity of the effective-
ness regarding fault finding. We already use the difficulty functions in the
present model and therefore are able to express the diversity implicitly.

For the direct costs it means that we sum over all different applications
of defect-detection techniques. We define that X is the ordered set of the
applied defect-detection techniques. In each application we use Eq. 1 with
the extension that we not only take the probability that the technique finds
the fault into account but also that the ones before have not detected it.
Here also the defect propagation needs to be considered, i.e., that not only
the defect itself has not been detected but also its predecessors Ri.

For the sake of readability we introduce the abbreviation Θ(x,Ri) for
the probability that a fault and its predecessors have not been found by
previous – before x – applications of defect-detection techniques.

Θ(x,Ri) =
∏

y<x

θy(i, ty)
∏

j∈Ri

θy(j, ty), (4)

hence, for each technique y that is applied before x we multiply the dif-
ficulty for the fault i and all its predecessors as described in the set Ri.
The combined direct costs dX of a sequence of defect-detection technique
applications X is then defined as follows:

dX =
∑

x∈X

[

ux + ex(tx) +
∑

i

(

(1 − θx(i, tx))Θ(x,Ri)
)

vx(i)

]

(5)

Note that by using the Θ(x,Ri) the difference to Eq. 1 is rather small. We
extended it by the sum over all technique applications and the probabil-
ity that each fault and its predecessors have not been found by previous
techniques expressed by Θ(x,Ri).

The equation for the revenues rX of several technique applications X
uses again a sum over all technique applications. In this case we look at
the faults that occur, that are detected by a technique and neither itself
nor its predecessors have been detected by the earlier applied techniques.

rX =
∑

x∈X

∑

i

[(

πi(1 − θx(i, tx))Θ(x,Ri)
)

(vF (i) + fF (i))

]

(6)

The total future costs are simply the costs of each fault with the prob-
ability that it occurs and all techniques failed in detecting it and its pre-
decessors. In this case, the abbreviation Θ(x,Ri) for accounting of the
effects of previous technique applications cannot be directly used because
the outermost sum is over all the faults and hence the probability that
a previous technique detected the fault is not relevant. The abbreviation
Θ′(x,Ri) that describes only the product of the difficulties of detecting the
predecessors of i is hinted in the following equation for the future cost oX

of several technique applications X.

11

oX =
∑

i

[

πi

∏

x∈X

θx(i, tx)
∏

y<x

∏

j∈Ri

θy(j, ty)

︸ ︷︷ ︸

Θ′(x,Ri)

(vF (i) + fF (i))

]

(7)

2.2.3 ROI

One interesting metric based on these values is the return on investment
(ROI) of the defect-detection techniques. The ROI – also called rate of
return – is commonly defined as the gain divided by the used capital.
Boehm et al. [11] use the equation (Benefits − Costs)/Costs. To calculate
the total ROI with our model we have to use Eqns. 5, 7, and 6.

ROI =
rX − dX − oX

dX + oX
(8)

This metric can be used for two purposes: (1) an up-front evaluation of
the quality assurance plan as the expected ROI of performing it and (2) a
single post-evaluation of the quality assurance of a project. In the second
case we can substitute the initial estimates with actually measured values.
However, not all of the factors can be directly measured. Hence, also the
post evaluation metric can be seen as an estimated ROI.

2.3 Practical Model

As we discussed above, the theoretical model can be used for analyses but
is too detailed for a practical application. Hence, we need to simplify the
model to reduce the needed quantities.

2.3.1 General

For the simplification of the model, we use the following additional as-
sumptions:

• Faults can be categorised in useful defect types.

• Defect types have specific distributions regarding their detection dif-
ficulty, removal costs, and failure probability.

• The linear functional form of the difficulty approximates all other
functional forms sufficiently.

We define τi to be the defect type of fault i. It is determined using the
defect type distribution of older projects. In this way we do not have to
look at individual faults but analyse and measure defect types for which
the determination of the quantities is significantly easier.

In the practical model we assumed that the defects can be grouped
in “useful” classes or defect types. For reformulating the equation it was
sufficient to consider the affiliation of a defect to a type but for using the

12

model in practice we need to further elaborate on the nature of defect types
and how to measure them.

For our economics model we consider the defect classification approaches
from IBM [33] and HP [26] as most suitable because they are proven to
be usable in real projects and have a categorisation that is coarse-grained
enough to make sensible statements about each category.

We also lose the concept of defect propagation as it was shown not
to have a high priority in the analyses above but it introduces significant
complexity to the model. Hence, the practical model can be simplified
notably.

For the practical use of the model, we also need an estimate of the total
number of defects in the artefacts. We can either use generalised quality
models such as [31] or product-specific models such as COQUALMO [66].
To simplify further estimates other approaches can be used. For example,
the defect removal effort for different defect types can be predicted using
a association mining approach of Song et al. [69].

2.3.2 Components

Similar to Sec. 2.2.2 where we defined the basic equations of the ideal
model, we formulate the equations for the practical model using the as-
sumptions from above.

Single Economics. We start with the direct costs of a defect-detection
technique. Now we do not consider the ideal quantities but use average
values for the cost factors. We denote this with a bar over the cost name.

dA = ūA + ēA(t) +
∑

i

(1 − θA(τi, t))v̄A(τi), (9)

where ūA is the average setup cost for technique A, ēA(t) is the average
execution cost for A with length t, and v̄A(τi) is the average removal cost
in defect type τi. Apart from using average values, the main difference is
that we consider defect types in the difficulty functions. The same applies
to the revenues.

rA =
∑

i

πτi
(1 − θA(τi, t))(v̄F (τi) + f̄F (τi)), (10)

where f̄F (τi) is the average effect costs of a fault of type τi. Finally, the
future costs can be formulated accordingly.

oA =
∑

i

πτi
θA(τi, t)(v̄F (τi) + f̄F (τi)). (11)

With the additional assumptions, we can also formulate a unique form
of the difficulty functions:

θA(τi, ta) = mtA + 1, (12)

13

where m is the (negative) slope of the straight line. If a technique is not
able to detect a certain type, we will set m = 0.

Combined Economics. Similarly as in the ideal model, the extension
to more than one technique can be done. We omit the details here and
refer to [75, 76].

14

3 Empirical Knowledge

We review and summarise the empirical knowledge available for the qual-
ity economics of defect-detection techniques introducing the approach in
general and then describing the relevant studies and results for each of the
model factors for different types of techniques and defects in general.

Empirical research in software engineering is often not as developed as
necessary to be able to judge the value of technique and method proposals.
The field of quality assurance and defect-detection techniques in particular
has nevertheless been subject to a number of empirical studies over the last
decades. These studies were used to assess specific techniques or to validate
certain laws and theories about defect-detection. Several of these validated
laws are compiled in the book of Endres and Rombach [20]. Our focus lies
more on the economic relationships in the following.

3.1 Experiments and Field Studies

We can mainly distinguish two types of studies that are relevant in pro-
viding data and knowledge for our economics model: (1) experiments and
(2) field studies. Experiments are typically performed with a group of stu-
dents that simultaneously perform similar tasks. This allows great control
over the experiment in total and the data collection and other factors in
particular. The problem often is that it is not clear if the results can be
generalised to be valid in an industrial context.

Field studies on the contrary collect data from industrial projects and
analyse the data. Hence, we have better generalisable results in the sense
that the data comes from real-world projects with trained developers. How-
ever, we are often not able to replicate those studies easily and performing
the same task several times is often not possible because of time and money
constraints. Finally, the control of other factors influencing the study is
largely limited.

As a conclusion of this, empirical research has to consist always of both
types of studies. Student experiments need to be done to analyse effects
that can only be tested using replication whereas industrial field studies
are necessary to generalise results to real-world projects.

3.2 Approach

This literature review aims at reviewing and summarising the existing em-
pirical work that can be used to approximate the input parameters of
the economics model proposed in Sec. 2.2. Literature reviews, also called
meta-analysis, is a common technique in social sciences or medicine. A
book with details on such a review can be found, for example, in [18]. For
the meta-analysis we take all officially published sources into account, i.e.,
books, journal articles, and papers in workshop and conference proceed-
ings. In total we review 68 papers mainly following references from existing

15

surveys and complementing those with newer publications. However, note
that we only include studies with data relevant for the economics model. In
particular, studies only with a comparison of techniques without detailed
data for each were not taken into account.

We structure the available work in three parts for dynamic testing,
review and inspection, and static analysis tools. We give a short char-
acterisation for each category and describe briefly the available results for
each relevant model input factor. We prefer to use and cite detailed results
of single applications of techniques but also take mean values into account
if necessary. We also summarise the combination of the results in terms
of the lowest, highest, mean, and median value for each input factor and
interesting other metrics in case there is enough data. These quantities
can then be used in the model for various tasks, e.g. sensitivity analysis.

We deliberately refrain from assigning weights to the various values we
combine although some of them are from single experiments while others
represent average values. The reason is that we often lack knowledge on
the sample size used and either we would estimate it or ignore the whole
study result. An estimate of the sample size would introduce additional
blurring into the data and omitting data considering the limited amount of
data available is not advisable. Hence, we assume each data set of having
equal weight.

3.3 Difficulty

The difficulty function θ is hard to determine because it is complex to
analyse the difficulty of finding each potential fault with different defect-
detection techniques. Hence, we need to use the available empirical studies
to get reasonable estimates. Firstly, we can use the numerous results for
the effectiveness of different test techniques. The effectiveness is the ratio
of found defects to total defects and hence in some sense the counterpart to
the difficulty function. In the paper of Littlewood et al. [41], which is the
origin of the idea of difficulty functions, effectiveness is actually defined as

1 − Ep∗(θA(i)), (13)

where Ep∗ denotes a mean obtained with respect to the probability distri-
bution p∗, i.e., the probability distribution of the presence of faults.

As a simple approximation we then define the following for the average
difficulty functions.

θ̄A = 1 − effectivenessA (14)

Using this equation we can determine the parameters of the different forms
of the difficulty functions. For example, when using the linear function,
we can use the average difficulty θ̄ and an average effort t̄ to determine
the slope m of the function. Then t can be varied to calculate the actual
difficulty.

16

3.4 Dynamic Testing

The first category of defect-detection techniques we look at is also the most
important one in terms of practical usage. Dynamic testing is a technique
that executes software with the aim to find failures.

3.4.1 Classification

There are various possibilities to classify different test techniques. We
base our classification on standard books on testing [47, 4] and the clas-
sification in [32]. One can identify at least two dimensions to structure
the techniques: (1) The granularity of the test object and (2) the test
case derivation technique. Fig. 3 shows these two dimensions and contains
some concrete examples and how they can be placed according to these
dimensions.

systemintegrationunit/module

structural

functional

Granularity

Type

control−flow

data−flow

mutation

equivalence partitioning

boundary value analysis

stress

model−based

Figure 3: The two basic dimensions of test techniques

The types of test case derivation can be divided on the top level into
(1) functional and (2) structural test techniques. The first only uses the
specification to design tests, whereas the latter relies on the source code
and the specification. In functional testing generally techniques such as
equivalence partitioning and boundary value analysis are used. Structural
testing is often divided into control-flow and data-flow techniques. For
the control-flow coverage metrics such as statement coverage or condition
coverage are in use. The data-flow metrics measure the number and types
of uses of variables.

On the granularity dimension we normally see the phases unit, module
or component test, integration test, and system test. In unit tests only
basic components of the system are tested using stubs to simulate the
environment. During integration tests the components are combined and
their interaction is analysed. Finally, in system testing the whole system is

17

tested, often with some similarity to the later operational profile. This also
corresponds to the development phases. Hence, the granularity dimension
can also be seen as phase dimension.

Finally, there are some special types of testing either with a special
purpose or with the aim to simplify or automate certain parts of the test
process. Model-based testing, for example, uses explicit behaviour models
as basis for test case derivation, possibly with an automatic generation.
Stress tests check the behaviour of the system under heavy load conditions.
Various other types of testing can be found in the literature.

3.4.2 Setup and Execution Costs

We look at the setup and execution costs in more detail in the following.
For both cost types the empirical data is limited. However, this is not
a great problem because this data can be easily collected in a software
company during projects.

Setup Costs. The setup costs are mainly the staff-hours needed for
understanding the specification in general and setting up the test environ-
ment. For this we can use data from [31]. There the typical setup effort
is given in relation to the size of the software measured in function points
(fp). Unit tests need 0.50 h/fp, function tests 0.75 h/fp, system test 1.00
h/fp, and field tests 0.50 h/fp. We have no data for typical costs of tools
and hardware but this can usually be found in accounting departments
when using the economics model in practice.

Execution Costs. In the case of execution costs its even easier than
for setup costs as apart from the personnel costs all other costs can be
neglected. One could include costs such as energy consumption but they
are extremely small compared to the costs for the testers. Hence, we can
reduce this to the typical, average costs for the staff. However, we also
have average values per function point from [31]. There the average effort
for unit tests is 0.25 h/fp, for function tests, system tests, and field tests
0.50 h/fp.

3.4.3 Difficulty

As discussed in Sec. 3.3, there are nearly no studies that present direct
results for the difficulty function of defect-detection techniques. Hence, we
analyse the effectiveness and efficiency results first. Those are dependent
on the test case derivation technique used.

Effectiveness. In the following we summarise a series of studies that
have been published regarding the effectiveness of testing in general and
specific testing techniques.

18

• The experiment by Myers [46] resulted in an average percentage of
defects found for functional testing of 36.0 and for structural of 38.0.

• Jones states in [31] that most forms of testing have an effectivity of
less than 30%.

• He also states in [31] that a series of well-planned tests by a profes-
sionally staffed testing group can exceed 35% per stage and 80% in
overall cumulative testing effectiveness.

• An experiment [44] showed that smoke tests for GUIs are able to
detect more than 60% of the faults for most applications.

• In an experimental comparison of testing and inspection [37, 38] the
structural testing by teams had an effectiveness with a mean value of
0.17 and a std. dev. of 0.16.

• Hetzel reports in [28] on the average percentage of defects found for
functional testing as 47.7 and for structural as 46.7.

• The study published in [3] compared testing over several successive
usages to analyse the change in experience. In three phases of func-
tional testing the mean effectiveness was with std. dev. in braces 0.64
(0.21), 0.47 (0.23), and 0.50 (0.15).

• Howden reports in [29] on an older experiment regarding some differ-
ent testing techniques. Path testing detected 18 of 28 faults, branch
testing 6 of 28 faults. The combined use of different structural testing
techniques revealed 25 of 28 faults.

• Weyuker reports in [80] on empirical results about flow-based testing.
71% of the known faults were exposed by at least all-du-paths, and
67% were exposed by all-c-uses, all-p-uses, all-uses, and all-du-paths.

• Paradkar describes an experiment for evaluating model-based testing
using mutants in [53]. In two case studies the generated test suites
were able to kill between 82% and 96% of the mutants.

• In [8] testing detects 7.2% of the defects.

• In [55] an evaluation of model-based testing is described. The effec-
tiveness of eight test suites that can all be approximated as functional
tests is given as 0.75, 0.88, 0.83, 0.33, 0.33, 0.46, 0.50, and 0.33.

A summary of the found effectiveness of functional and structural test
techniques can be found in Tab. 1. We can observe that the mean and
median values are all quite close which suggests that there are no strong
outliers. However, the range in general is rather large, especially when con-
sidering all test techniques including those studies which do not state the
test case derivation technique. When comparing functional and structural
testing, there is no significant difference visible.

19

Table 1: Summary of the effectiveness of test techniques (in percentages)

Type Lowest Mean Median Highest
Functional 33 53.26 48.85 88
Structural 17 54.78 56.85 89
All 7.2 49.85 47 89

Efficiency. The effectiveness gives a good approximation of the diffi-
culty θ. The efficiency measures the number of detected defects per effort
unit (staff-hours, for example). It cannot be used directly in the economics
model but is also summarised as it is an important metric itself.

• The classical experiment by Myers [46] resulted in a mean effort per
defect of 37 staff-minutes for functional testing and 29 staff-minutes
for structural testing.

• The average number of hours to find a defect with testing is given in
[68] as 24.3.

• The study in [82] reports that functional testing found 2.47 defects
per hour with a std. dev. of 1.10 and structural testing 2.20 with a
std. dev. of 0.94.

• The successive usage of functional testing described in [3] revealed
defects with a mean efficiency (std. dev. in braces) of 1.38 (0.90),
1.22 (0.91), and 1.84 (1.06) defects per hour.

• 6 hours of effort per failure for detection is given in [79].

• The article [1] reports that in a banking computer-service firm it took
4.5 hours to eliminate a defect by unit testing.

• It is also stated in [1] that another organisation reported the average
effort to find a defect by testing to be 8.5 staff-hours.

• Runeson and Andrews describe an experiment [63] where the mean
detection efficiency of unit testing was 1.80 defects per hour.

The found efficiencies of functional and structural test techniques are
summarised in Tab. 2. We assume that one staff-hour consists of 60 staff-
minutes. The results show that the data is quite homogenous because
the means and medians are all equal or nearly equal and the ranges are
rather small. Especially for functional testing it is only slightly above 1
defect/hour difference between the lowest and the highest value.

Difficulty. The approximation of the average difficulty functions is given
in Tab. 3. We used the results of the effectiveness summary above. Hence,
the observations are accordingly.

20

Table 2: Summary of the efficiency of test techniques (in defects per staff-hour)

Type Lowest Mean Median Highest
Functional 1.22 1.72 1.71 2.47
Structural 0.22 1.5 2.07 2.2
All 0.04 1.26 1.5 2.47

Table 3: Average difficulty functions for testing (in percentages)

Type Lowest Mean Median Highest
Functional 12 46.74 51.15 67
Structural 11 45.22 43.15 83
All 11 50.15 53 92.8

Defect Types. Finally, for an application to our practical economics
model we need to differentiate between different fault types. Basili and
Selby analysed the effectiveness of functional and structural testing re-
garding different defect types in [3]. Tab. 4 shows the derived difficulties
using the first approximation.

Table 4: Difficulties of functional and structural testing for detecting different
defect types (in percentages)

Functional Structural Overall
Testing Testing

Initial. 25.0 53.8 38.5
Control 33.3 51.2 47.2
Data 71.7 73.2 74.7
Computat. 35.8 41.2 75.4
Interface 69.3 75.4 66.9
Cosmetic 91.7 92.3 89.2

It is obvious that there are differences of the two techniques for some
defect types, in particular initialisation and control defects. As we are only
aware of this single study it is difficult to generalise the results.

3.4.4 Removal Costs

The removal costs are dependent on the second dimension of testing (cf.
Sec. 3.4.1): the phase in which it is used. This is in general a very common

21

observation in defect removal that it is significantly more expensive to
fix defects in later phases than in earlier ones. Specific for testing, in
comparison with static techniques, is that defect removal not only involves
the act of changing the code but before that of localising the fault in the
code. This is simply a result of the fact that testing always observes failures
for which the causing fault is not necessarily obvious. We cite the results
of several studies regarding those costs in the following.

• Shooman and Bolsky [67] analysed data from Bell Labs. They found
the mean effort to identify the corresponding fault to a failure to be
3.05 hours. The minimum was 0.1 hours and the maximum 17 hours.
The effort to correct those faults was then on average 1.98 hours with
minimum 0.1 hours and maximum 35 hours. However, 53% of the
corrections took between 0.1 and 0.25 hours.

• Möller [45] reports of removal costs during unit testing of 2, 000 DM
and during system testing of 6, 000 DM.

• Jones [31] gives as industry averages during unit testing the effort to
remove a defect to be 2.50 h/defect, during function testing to be 5.00
h/defect, and during system and field testing to be 10.00 h/defect.

• Collofello and Woodfield [17] report from a survey that asked for the
effort needed to detect and correct a defect. The average result was
11.6 hours for testing.

• Franz and Shih [24] describe that the average effort per defect for
unit testing at HP is 6 hours. During system testing the time to find
and fix a defect is between 4 and 20 hours.

• Kelly et al. [35] state that it takes up to 17 hours to fix defects during
testing.

• A study [61] found for the financial domain that to fix a defect during
coding and unit testing needs 4.9 hours, during integration 9.5 hours,
and during beta-testing 12.1 hours.

• The same study [61] reports these measures for the transportation
domain. The necessary hours to fix a defect during coding and unit
testing is 2.4, during integration 4.1, and during beta-testing 6.2.

• Following [81] the effort to correct a requirements defect in a specific
company in staff-days was (after 1991) 0.25 during unit test, 0.51 dur-
ing integration test, 0.47 during functional test, 0.58 during system
test.

• Rooijmans et al. [59] published data on the effort for the rework effort
after testing in three projects. These were 4.0, 1.6, and 3.1 hours per
defect, respectively.

Some statistics of the data above on the removal costs are summarised
in Tab. 5. We assume a staff-day to consist of 6 staff-hours and combined

22

the functional and system test phases into the one phase “system test”.
The removal costs (or efforts) of the three phases can be given with rea-
sonable results. A combination of all values for a general averages does
not make sense as we get a huge range and a large difference between
mean and median. This suggests a real difference in the removal costs over
the different phases which is expected from standard software engineering
literature.

Table 5: Summary of the removal costs of test techniques (in staff-hours per
defect)

Type Lowest Mean Median Highest
Unit 1.5 3.46 2.5 6
Integration 3.06 5.42 4.55 9.5
System 2.82 8.37 6.2 20
All 0.2 8 4.95 52

3.5 Review and Inspection

The second category of defect-detection techniques under consideration are
reviews and inspections, i.e. document reading with the aim to improve
them.

3.5.1 Classification

Similar as for test techniques in Sec. 3.4, we need also a classification of the
large amount of different flavours of reviews and inspections. We mainly
base our classification on [39] where four main dimensions of software in-
spections are identified. (1) The technical dimension for the methodological
variations, (2) the economic dimension of the economic effects on projects,
(3) the organisational dimension for the effects on the organisation, and
(3) the tool dimension that characterises the tool support.

We use the term inspection here in a broad sense for all kinds of doc-
ument reading with the aim of defect-detection. We can then identify
differences mainly in the technical dimension, e.g., in the process of the
inspections, for example whether explicit preparation is required. Other
differences lie in the used reading techniques, e.g. checklists, in the required
roles, or in the products that are inspected.

A prominent example is the formal or Fagan inspection [22] that has a
well-defined process with a separate preparation and meeting and defined
roles. Another often used technique is the walkthrough. In this technique
the moderator guides through the code but no preparation is required.

23

3.5.2 Setup and Execution Costs

Setup Costs. The first question is whether reviews and inspections do
have setup costs. We considered those costs to be fixed and independent of
the time that the defect-detection technique is applied. In inspections we
typically have a preparation and a meeting phase but both can be varied
in length to detect more defects. Hence, they cannot be part of the setup
costs. However, we have also an effort for the planning and the kick-off
that is rather fixed. We consider those as the setup costs of inspections.
One could also include costs for printing the documents but these costs
can be neglected. Grady and van Slack describe in [27] the experience of
Hewlett-Packard with inspections. They give typical time effort for the
different inspection phases, for planning 2 staff-hours and for the kick-off
0.5 staff-hours.

Execution Costs. The execution costs are for inspections and reviews
only the personnel costs as long as there is no supporting software used.
Hence, the execution costs are dependent on the factor t in our model.
Nevertheless, there are some typical values for the execution costs of in-
spections.

• Grady and van Slack describe in [27] the experience of Hewlett-
Packard with inspections. For the execution costs the typical time
effort for the different inspection phases is as follows. The prepa-
ration phase has 2 staff-hours and the meeting 1.5 staff-hours. For
cause and prevention analysis and follow-up typically 0.5 staff-hours
are needed for each part.

• Jones has published average efforts in relation to the size in function
points in [31]. Following this, a requirements review needs 0.25 h/fp,
a design inspection 0.15 h/fp, and a code inspection 0.25 h/fp in the
preparation phase. For the meeting the values are for requirements
reviews 1.00 h/fp, for design inspections 0.50 h/fp, and for code in-
spections 0.75 h/fp.

• In [71] usage-based reading (UBR) is compared to checklist-based
reading (CBR). The mean preparation time was for UBR 53 minutes
and for CBR 59 minutes.

• Porter et al. [54] conducted a long term experiment regarding the
efficiency of inspections. They found that the median effort is about
22 person-hours per KNCSL.

• Jones gives in [31] typical rates for source code inspections as 150
LOC/h during preparation and 75 LOC/h during the meeting.

• Rösler describes in [60] his experiences with inspections. The effort
for an inspection is on average one hour for 100 to 150 NLOC (non-
commentary lines of code).

24

• In [1] the inspection of detailed design documents has a rate of 3.6
hours of individual preparation per thousand lines and 3.6 hours of
meeting time per thousand lines. The results for code were 7.9 hours
of preparation per thousand lines, 4.4 hours of meetings per thou-
sand lines Further results for detailed design documents were 5.76
h/KLOC for individual preparation, 4.54 h/KLOC for meetings. For
code the results were 4.91 h/KLOC for preparation and 3.32 h/KLOC
for meetings.

From these general tendencies, we can derive some LOC-based statis-
tics for the execution costs of reviews. We assume for the sake of simplicity
that all used varieties of the LOC metric are approximately equal. The
results are summarised in Tab. 6. The mean and median values all are
close. Only in code inspection meetings, there is a difference which can be
explained by the small sample size. Note also that there is a significant
difference between code and design inspections as the latter needs on av-
erage only half the execution costs. This might be explained by the fact
that design documents are generally more abstract than code and hence
easier to comprehend.

Table 6: Summary of the execution costs of inspection techniques (in staff-hours
per KLOC)

Design Lowest Mean Median Highest
Preparation 3.6 4.68 4.68 5.76
Meeting 3.6 4.07 4.07 4.54
All 7.2 8.75 8.75 10.3

Code Lowest Mean Median Highest
Preparation 4.91 6.49 6.67 7.9
Meeting 3.32 7.02 4.4 13.33
All 6.67 13.2 11.15 22

Moreover, note that many authors give guidelines for the optimal in-
spection rate, i.e. how fast the inspectors read the documents. This seems
to have an significant impact on the efficiency of the inspection.

• Rösler [60] argues for an optimal inspection rate of about 0.9 pages
per hour.

• In [25] an optimal average rate is one page per hour.

• In [25] also the optimal bandwidth of the inspection rate is 1 ± 0.8
pages per hour where one page contains 300 words.

Hence, we can summarise this easily with saying that the optimal in-
spection rate lies about one page per hour. However, the effect of deviation

25

from this optimum is not well understood. This, however, would increase
the precision of models such as the one presented in Sec. 2.2.

3.5.3 Difficulty

Effectiveness. Similar to the test techniques we start with analysing
the effectiveness of inspections and reviews that is later used in the ap-
proximation of the difficulty.

• Jones [31] states that formal design and code inspections tend to be
the most effective, and they alone can exceed 60%.

• Basili and Selby [3] compared three applications of code reading.
The mean effectiveness was with std. dev. in braces 0.59 (0.28), 0.38
(0.28), and 0.57 (0.21).

• Defects in the space shuttle software are detected with inspections
among other techniques [8]. Prebuild inspections are able to find
85.4% and other inspections further 7.3% of the total defects.

• Biffl et al. [7] describe experiments where the defect detection rate
of inspections (share of defects found) has a mean of 45.2% with a
standard dev. of 16.6%. In a second inspection cycle this is reduced
to 36.5% with std.dev. 15.1%.

• Individual inspection effectiveness has a mean value of 0.52 with a
std. dev. of 0.11. [37, 38]

• Biffl et al. analysed in [5] inspections and reinspections. They found
that in the first inspection cycle 46% of all defects were found, whereas
in the reinspection only 21% were detected.

• In [27] it is reported that typically 60 to 70 percent of the defects
were found by inspections.

• In [3] three iterations of code reading were analysed. The mean ef-
fectiveness was with std. dev. in braces 0.47 (0.24), 0.39 (0.24), and
0.36 (0.20).

• Thelin et al. [72] report on several experiments on usage-based read-
ing. The effectiveness was 0.29, 0.31, 0.34, and 0.32

• Thelin et al. [71] compare different reading techniques. The effective-
ness was 0.31 for UBR and 0.25 for CBR.

• Biffl and Halling [6] also looked at the cost benefits of CBR and
scenario-based reading (SBR). The mean effectiveness (number of
detected faults/number of all faults) in an experiment was the fol-
lowing with the roles user (SBR-U), designer (SBR-D), and tester
(SBR-T).

26

Reading time (h) 0–2 2–4 4–6 6–8

CBR 8.5 17.7 20.9 19.5
SBR-U 9.4 14.6 18.8 20.9
SBR-D 8.7 13.7 18.0 20.0
SBR-T 9.0 14.2 20.0 14.0

We also summarise these results using the lowest, highest, mean, and
median value in Tab. 7. We observe a quite stable mean value that is close
to the median with about 30%. However, the range of values is huge. This
suggests that an inspection is dependent on other factors to be effective.

Table 7: Summary of the effectiveness of inspection techniques (in percentage)

Lowest Mean Median Highest
8.5 34.14 30 92.7

Efficiency. The efficiency relates the effectiveness with the spent effort.
Again, this is not directly usable in the analytical model but nevertheless
can give further insights into the relationships of factors.

• Myers [46] reports 75 man-minutes per defect for walkthroughs /
inspections.

• Wood et al. [82] found that code reading detects 1.06 defects per hour
with a std. dev. of 0.75.

• In three phases of code reading [3] the mean efficiency was 1.9 defects
per hour (1.83), 0.56 (0.46), and 3.33 (3.42).

• In [68] it was found that it takes on average 3.8 hours to find a defect
with Fagan inspections and 6.4 hours with code reading.

• For inspections it in [79] took 1.43 hours per defect, later less than 1
hour per defect to be detected.

• The effort per defect in the experiment described in [7] is 2.2 staff
hours, std.dev. 2.8. For a reinspection it is 3.2 with std.dev. 3.5.

• Ackerman reports from two studies with design and code inspections
in [1]. In one study the mean effort for a design inspection was 1.0
hours per defect found, and 4.8 hours per major defect found. For
code inspection this increased to 1.2 hours per defect found. In the
second study for detailed design inspection 0.58 h/defect were needed
and 0.67 h/defect for code.

• In [1] it is also stated that others reported 3 to 5 staff-hours per major
defect over several different applications and programming languages.

• Also in [1] the average effort to eliminate a defect by inspection in a
banking computer-service firm is given as 2.2 hours.

27

• An organisation reported the average effort to find a defect by in-
spections to be 1.4 staff-hours. [1]

• In [36] experiences with the cost of finding a defect in design inspec-
tions is reported to be 1.58 hours.

• In [37, 38] the efficiency of individual inspections is reported as 0.19
with a std. dev. of 0.06.

• In a inspection and reinspection study [5] the mean efficiency de-
creased from 0.82 to 0.53 defects per person-hour for all defects and
from 0.35 to 0.24 for level 2 and 3 defects (with 3 being the highest
severity).

• In [3] also the efficiency of three usages of inspections were analysed.
It was 1.40 defects per hour (0.87), 1.18 (0.84), and 1.82 (1.24), re-
spectively.

• Solingen et al. compare normal inspections with computer-supported
inspections in [74]. The measured an average efficiency of the normal
inspections of 1.6 defects per hour and 2.0 defects per hour for the
computer-supported inspections.

• Van Genuchten et al. analyse inspections with and without the use of
a group support system in [73]. In the first field study the efficiency
during preparation was 0.81 and during meeting 0.09 defects/staff-
hour with paper-based inspections. Electronic inspections had a
preparation efficiency of 2.70 and a meeting efficiency of 1.45.

• Rooijmans et al. [59] published data on the effort for preparation,
logging meeting and rework effort in three projects. These were 0.5,
0.7, and 2.1 hours per defect, respectively.

• Shooman [67] reports an average effort to find a defect of 0.6 hours.

• Russel [64] analysed software inspections at BNR and found an aver-
age efficiency of 0.8 – 1 defect per staff-hour.

• Bush reports in [14] of an average effort to find, fix and verify the
correction of 1.5 and 2.1 hours per defect. This corresponds to a cost
of $90-$120.

• The experiment of Runeson and Andrews [63] resulted in a mean
detection efficiency of inspection of 1.49 defects per hour.

• Thelin et al. [72] report on three experiments on usage-based reading.
The efficiency was 5.3, 5.6, 6.0, and 5.6 defects per hour.

• Thelin et al. [71] compare different reading techniques. The efficiency
was 5.6 (UBR) and 4.1 (CBR) defects per hour.

The statistics for the efficiency of reviews and inspections can be found
in Tab. 8. We do not distinguish different processes and reading tech-
niques here because then we would not have enough information on these
in most studies. The mean and median are close, therefore the data set is
reasonable. We also observe a large range from 0.16 to 6 defects/staff-hour.

28

Table 8: Summary of the efficiency of inspection techniques (in defects per staff-
hour)

Lowest Mean Median Highest
0.16 1.87 1.18 6

Difficulty. Using the first, simple approximation, we can derive statis-
tics for the difficulty of inspections in reviews in Tab. 9.

Table 9: Derived average difficulty of inspections (in percentages)

Lowest Mean Median Highest
7.3 65.86 70 91.5

Defect Types. Analogous to the test techniques, we have one major
study about effectiveness and defect types [3]. The derived difficulty func-
tions are given in Tab. 10. Also for inspections large differences between
the defect types are visible but a single study does not guarantee general-
isability.

Table 10: Difficulty of inspections to find different defect types (in percentages)

Initial. 35.4
Control 57.2
Data 79.3
Computat. 29.1
Interface 53.3
Cosmetic 83.3

O’Neill reports [51] on the average distribution of defects types from a
large inspection study. Unfortunately, different defect types are used. The
results can be found in Tab. 11 with the ratios given in percentages.

3.5.4 Removal Costs

The removal costs of inspections only contain the fixing of the found faults
because no additional localisation is required. As different document types
can be inspected, we have to differentiate between them as well.

29

Table 11: Average defect type distribution

Doc. Std. use Logic Func. Data Syntax Perf. Others
44.27 21.05 7.65 6.36 5.00 4.66 2.59 8.42

• Möller [45] reports of removal costs during analysis, design, and cod-
ing of 500 DM.

• During requirements reviews a removal effort of 1.00 hours per defect
is needed. Design and code inspections have 1.50 h/defect. [31]

• In the book [56] the average effort to find and fix a major problem is
given with 0.8 to 0.9 hours.

• In the report [43] the effort for rework for a defect is given as 2.5
staff-hours for in-house defects.

• Collofello and Woodfield [17] report from a survey that asked for the
effort needed to detect and correct a defect. 7.5 hours were needed for
a design defect and 6.3 hours for a code defect detected by inspections.

• Bourgeois published in [12] data on inspections. The average effort
for inspections was 1.3 staff-hours per defect found and 2.7 staff-hours
per defect found and fixed. In another project the average effort was
1.1 staff-hours per defect found and 1.4 to 1.8 staff-hours per defect
found and fixed.

• The average effort per defect for code inspections was 1 hour (find
and fix) at HP. [24]

• Kelly et al. [35] report that approximately 1.75 hours are needed to
find and fix defects during design inspections, and approximately 1.46
hours during code inspections.

• The report in [61] states for the financial domain 1.2 hours to fix a
defect during requirements analysis and 4.9 during coding. In the
transportation domain the hours to fix a defect in the requirements
phase are 2.0 and during coding 2.4.

• The effort to correct a requirements defect in staff-days was (after
1991) at Hughes Aircraft 0.05 during requirements analysis, 0.15 dur-
ing preliminary design, 0.07 during detailed design and 0.17 during
coding. [81]

The summary of the the removal costs can be found in Tab. 12. For
the design reviews a strong difference between the mean and median can
be observed. However, in this case this is not because of outliers in the
data but because of the small sample size of only four data points.

30

Table 12: Summary of the removal costs of reviews (in staff-hours per defect)

Phase Lowest Mean Median Highest
Requirements 0.05 1.06 1.1 2
Design 0.07 2.31 0.83 6.3
Coding 0.17 2.71 1.95 6.3
All 0.05 1.91 1.2 7.5

3.6 Static Analysis Tools

The third and final category is tool-based analysis of software code to
automatise the detection of certain types of defects.

3.6.1 Classification

The term static analysis tools denotes a huge field of software tools that are
able to find (potential) defects in software code without executing it. The
spectrum ranges from simple compiler-like or style checks to sophisticated
dataflow analyses or formal verifications. Another common term is bug
finding tools that often does not include formal techniques.

Those analysis tools use various techniques to identify critical code
pieces. The most common one is to define typical bug patterns that are
derived from experience and published common pitfalls in a certain pro-
gramming language. Furthermore, coding guidelines and standards can be
checked to allow a better readability. Also, more sophisticated analysis
techniques based on the dataflow and controlflow are used. Finally, addi-
tional annotations in the code are introduced by some tools [23] to allow
an extended static checking and a combination with model checking.

The results of such a tool are, however, not always real defects but can
be seen as a warning that a piece of code is critical in some way. Hence,
the analysis with respect to true and false positives is essential in the usage
of bug finding tools.

There are only few studies about static analysis tools and hence we can
only present limited empirical knowledge.

3.6.2 Setup and Execution Costs

There are no studies with data about the setup and execution costs of
using static analysis tools. Still, we try to analyse those costs and their
influence in the context of such tools.

Setup Costs. The setup costs are typically quite small consisting only
of (possible) tool costs – although there are several freely available tools –
and effort for the installation of the tools to have it ready for analysis.

31

Execution Costs. The execution costs are small in the first step be-
cause we only need to select the source files to be checked and run the
automatic analysis. For tools that rely on additional annotations the ex-
ecution costs are considerably higher. The second step, to distinguish
between true and false positives, is much more labour intensive than the
first step. This requires possibly to read the code and analyse the interre-
lationships in the code which essentially constitutes a reviews of the code.
Hence, the ratio of false positives is an important measure for the efficiency
and execution costs of a tool.

• In [78] we found that the average ratio of false positives over three
tools for Java was 66% ranging from 31% up to 96%.

• In [83] an evaluation of static analysis tools for C code regarding
buffer overflows is described. The defects were injected and the frac-
tion of buffer overflows found by each technique was measured. It is
also noted that the rates of false positives or false alarms are unac-
ceptably high.

• In [30] a static analysis tools for C code is discussed. The authors
state that sophisticated analysis of, for example, pointers leads to far
less false positives than simple syntactical checks.

3.6.3 Difficulty

The effectiveness of static analysis tools has only been investigated in a
small number of studies and the results are mainly qualitative.

• In [29] are also some static analysis techniques evaluated. Interface
consistency rules and anomaly analysis revealed 2 and 4 faults of 28,
respectively.

• In [65] among others PMD and FindBugs are compared based on their
warnings which were not all checked for false positives. The findings
are that although there is some overlap the warnings generated by
the tools are mostly distinct.

• Engler and Musuvathi discuss in [21] the comparison of their bug
finding tool with model checking techniques. They argument that
static analysis is able to check larger amounts of code and find more
defects but model checking can check the implications of the code not
just properties that are on the surface.

• Bush et al. report in [15] on a static analyser for C and C++ code
which is able to find several more dynamic programming errors. How-
ever, a comparison with tests was not done.

• Palsberg describes in [52] some bug finding tools that use type-based
analysis. He shows that they are able to detect race conditions or
memory leaks in programs.

32

Table 13: Defect type distributions in database systems
System Assignment Build Data-Struct Function Interface Timing

Checking Algorithm
DB2 48.19 3.6 19.82 12.16 2.25 13.96
IMS 56.22 2 23.38 1.99 9.95 6.47

• We also analysed the effectiveness of three Java bug finding tools in
[78]. After eliminating the false positives, the tools were able to find
81% of the known defects over several projects. However, the defects
had mainly a low severity. For the severest defects the effectiveness
reduced to 22%, for the second severest defects even to 20%. For
lower severities the effectiveness lies between 70% - 88%.

3.7 Defects

In this section we look at the quantities that are independent from a spe-
cific defect-detection technique and can be associated to defects. We are
interested in typical defect type distributions, removal costs in the field,
failure severities for the calculation of possible effect costs, and failure
probabilities of faults.

3.7.1 Defect Introduction

The general probability that a specific possible fault is introduced into
a specific program cannot be determined in general without replicated
experiments. However, we can give some information when considering
defect types. We can determine the defect type distribution for certain
application types. Yet, there is only little data published. Sullivan and
Chillarege described the defect type distribution of the database systems
DB2 and IMS in [70]. The distributions (in percentages) can be found in
Tab. 13. Interestingly, the trend in this distributions was confirmed in [19]
where several open source projects were analysed.

Lutz and Mikulski used for defects in NASA software a slightly dif-
ferent classification of defects in [42] but they also have algorithms and
assignments as types with a lot of occurrences. The most often defect
type, however, is procedures meaning missing procedures or wrong call of
procedures.

Tab. 14 shows types and severities of defects following [62]. We observe
that logical and data access defects account for most of the serious defects.
Furthermore, most of the defects were defects in the specification.

We can see that the defect types are strongly domain- and problem-
specific and general conclusions are hard to make.

33

Table 14: Software faults by category and severity

Category Serious Moderate Minor Total
Incomplete or erroneous spec. 19 82 239 340
Intentional deviation from spec. 9 61 75 145
Violation of progr. std. 2 22 94 118
Erroneous data accessing 36 72 12 120
Erroneous decision logic 41 83 15 139
Invalid timing 14 25 5 44
Improper handling of interrupts 14 31 1 46
Wrong constants and data values 14 19 8 41
Inaccurate documentation 0 10 86 96
Total 171 478 553 1202
Percentage 14 40 46 100

3.7.2 Removal Costs

In this section we analyse only the removal costs of defects in the field as
during development we consider the removal costs to be dependent on the
used defect-detection technique.

• Möller [45] gives 25, 000 DM as typical removal costs which consti-
tutes a nearly exponential growth over the phases.

• The ratio of the cost of finding and fixing a defect during design, test,
and field use is: 1 to 13 to 92 [34] or 1 to 20 to 82 [58]

• The report [43] states that removal costs are 250 staff-hours per field-
defect.

• The survey [17] resulted in the effort to detect and correct a defect
in the field of 13.5 hours for a defect discovered.

• Following [61] the average effort to fix a defect in the financial domain
after product release is 15.3 hours. In the transportation domain it
is a bit lower with 13.1 hours per defect.

• Willis et al. [81] report that the rework per requirements defect in
staff-days during maintenance was 0.65.

• In [40] it was found that interface defects consume about 25% of the
effort and 75% can be attributed to implementation defects domi-
nated by algorithm and functionality defects. The efforts in person
days are on the average 4.6 for external, 6.2 for interface, 4.7 for im-
plementation defects. Outliers are data design with 1.9 and inherited
defects 32.8, unexpected interactions 11.1 and performance defects
9.3.

34

• In [64] an average effort to repair a defect after release to the customer
is given as 4.5 staff-days.

• Bush gives $10,000 as average costs to fix a defect in the field in [14].

For the removal costs we have enough data to give reasonably some
statistics in Tab. 15. Note that in this summary the mean and median
are extremely different. The mean is more than twice the median. This
indicates that there are outliers in the data set that distort the mean value.
Hence, we look at a box plot of the data in Fig. 4.

Table 15: Summary of the removal costs of field defects (in staff-hours per defect)

Lowest Mean Median Highest
3.9 57.42 27.6 250

 0 50 100 150 200 250

**o

Figure 4: Box plot of the removal costs of field defects in staff-hours per defect

The box plot in Fig. 4 shows two strong outliers that we can eliminate
to get a more reasonable mean value. With the reduced data set we get a
mean value of 27.24 staff-hours per defect and a median of 27 staff-hours
per defect. Hence, we have a more balanced data set with a mean value
that can be further used. Fig. 5 shows the box plot of the data set without
the eliminated outliers.

3.7.3 Effect Costs

The effect costs are probably the most difficult ones to obtain. One reason
is that these are highly domain-specific. Another is that companies often
do not publish such data as it could influence their reputation negatively.
There is also one more inherent problem. It is often just not possible
to to assign such costs to a single software fault. The highly complex

35

 10 20 30 40 50 60

o

Figure 5: Box plot of the reduced data set of the removal costs of field defects in
staff-hours per defect

configurations and the combination with hardware and possibly mechanics
of software make such an assignment extremely difficult.

Yet, we cite two studies that published distribution of severity levels of
defects. We consider the severity as the best available substitute of effect
costs because more severe defects are probably more costly in that sense.
However, this leaves us still with the need of a mapping of severity levels
with typical effect costs.

Jones [31] states that the typical severity levels (1: System or program
inoperable, 2: Major functions disabled or incorrect, 3: Minor functions
disabled or incorrect, 4: Superficial error) have the following distribution:

1. 10% or 3%

2. 40% or 15%

3. 30% or 60%

4. 20% or 22%

In [16] is reported that six error types accounted for nearly 80% of the
highest severity defects. Nine error types accounted for about 80% of the
defects exposed by recovery procedures or exception handlers. They used
ODC for classification.

3.7.4 Failure Probability

The failure probability of a fault is also one of the most difficult parts to
determine in the economics model. Although there is the whole research
field of software reliability engineering, there are only few studies that show
representative distribution of such probabilities. The often cited paper by
Adams [2] is one of the few exceptions. He mainly shows that the failure
probabilities of the faults have an underlying geometric progression. This
observation was also made in NASA studies reported in [49, 48]. This

36

relationship can also be supported by data from Siemens when used in a
reliability model [77].

37

4 Discussion

Some of the summaries allow a comparison over different techniques. Most
interestingly, the difficulty of finding defects is different between tests and
inspections with inspections having more difficulties. Tests tend on average
to a difficulty of 0.45 whereas inspections have about 0.65. The static
analysis tools are hard to compare because of the limited data but seem
to be better in total but much worse considering severe defects.

The removal costs form a perfect series over the various techniques.
As expected, the requirements reviews only need about 1 staff-hour of
removal effort which rises over the other reviews to the unit tests with
about 3.5 staff-hours. Over the testing phases we have again an increase
to the system test with about 8 staff-hours. The field defects are then more
than three times as expensive with 27 staff-hours. Hence, we can support
the typical assumption that it gets more and more expensive to remove a
defect over the development life-cycle.

We are aware that this survey can be criticised in many ways. One
problem is clearly the combination of data from various sources without
taking into account all the additional information. However, the aim of
this survey is not to analyse specific techniques in detail and statistically
test hypotheses but to determine some average values, some rules of thumb
as approximations for the usage in an economics model. Furthermore, for
many studies we do not have enough information for more sophisticated
analyses.

Jones gives in [31] a rule of thumb: companies that have testing de-
partments staffed by trained specialists will average about 10 to 15 per-
cent higher in cumulative testing efficiency than companies which attempt
testing by using their ordinary programming staff. Normal unit testing
by programmers is seldom more than 25 percent efficient and most other
forms of testing are usually less than 30 percent efficient when carried out
by untrained generalists. A series of well-planned tests by a professionally
staffed testing group can exceed 35 percent per stage, and 80 percent in
overall cumulative testing efficiency. Hence, the staff experience can be
seen as one of the influential factors on the variations in our results.

38

5 Related Work

The available related work can generally be classified into three categories:
(1) theoretical models of the effectiveness and efficiency of either test tech-
niques or inspections, (2) economic-oriented, abstract models for quality
assurance in general, and (3) literature surveys of defect-detection tech-
niques. Models of the first type are able to incorporate interesting technical
details but are typically restricted to a specific type of techniques and often
economical considerations are not taken into account. The second type of
models typically comes from more management-oriented researchers that
consider economic constraints and are able to analyse different types of
defect-detection but often deal with the technical details in a very abstract
way. A more detailed analysis of the state of the art can be found in
[75, 76].

Other surveys on defect-detection techniques are rare but for testing
and inspections general literature reviews have been performed. Juristo et
al. summarise in [32] the main experiments regarding testing techniques
of the last 25 years. Their main focus is to classify the techniques and
experiments and compare the techniques but not to collect and compare
actual figures.

Laitenberger published an extensive survey on inspection technologies
in [39]. He presents a taxonomy of inspections and inspection techniques
and structures the available work according to it. He also included data
on effectiveness and effort but without relating it to a model or conducting
further analyses.

Briand et al. [13] use several sources from the literature for inspection
efficiency were used to build efficiency benchmarks. The intent is to anal-
yse and document the current practice of inspections so that companies
are able to compare their own practices with the average. For this they
analysed several studies for effectiveness and effort, mainly of inspections
but also testing and related it based on an inspection model.

39

6 Conclusions

We summarise the main results and contribution of the paper in the fol-
lowing and give directions for further research.

6.1 Summary

We reviewed and summarised the relevant empirical studies on defect-de-
tection techniques that can be used to determine the input factors of an
economics model of software quality assurance. The results of the stud-
ies were structured with respect to the technique they pertained and the
corresponding input factor of the model. The difficulty function is the
most complex factor to determine. We introduced two methods to obtain
approximation of the factors for the three groups of techniques.

We observed that test techniques tend to be more efficient in defect
detection having lesser difficulties but to have larger removal costs. A
further analysis in the model might reveal which factor is more important.
Furthermore, the removal costs increase also strongly considering different
types of tests or reviews, i.e., during unit tests fault removal is considerably
cheaper than during system tests. This suggests that unit-testing is very
cost-efficient.

6.2 Further Research

We discussed an optimal inspection rate, i.e., the optimal effort per LOC
regarding the efficiency of the inspection, and noted that it is not well
understood how a deviation from this optimal rate has effects on other
factors in defect detection. Hence, further studies and experiments on this
would be needed to refine the economics model and improve the analysis
and prediction of the optimal quality assurance.

The difficulty of detecting different defect types with different detection
techniques should be investigated more thoroughly. The empirical knowl-
edge is extremely limited there although this would allow an improved
combination of diverse techniques.

The effect costs are a difficult part of the failure costs. They are a highly
delicate issue for most companies. Nevertheless, empirical knowledge is
also important there to be able to estimate the influence on the total
quality costs.

The collected empirical knowledge on the input factors can be used
to refine the sensitivity analysis of the model that was done in [75]. A
sensitivity analysis can be used to identify the most important input factors
and their contribution to the variation in the output. The mean value and
knowledge on the distribution (if available) can be used to generate more
accurate input data to the analysis.

We will also extend the economics models by a size metric for better

40

predictions because several factors, such as the execution costs, are depen-
dent on the size of software.

41

References

[1] A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Soft-
ware Inspections: An Effective Verification Process. IEEE Software,
6(3):31–36, 1989.

[2] Edward N. Adams. Optimizing Preventive Service of Software Prod-
ucts. IBM Journal of Research and Development, 28(1):2–14, 1984.

[3] Victor R. Basili and Richard W. Selby. Comparing the Effectiveness
of Software Testing Strategies. IEEE Transactions on Software Engi-
neering, SE-13(12):1278–1296, 1987.

[4] Boris Beizer. Software Testing Techniques. Thomson Learning, 2nd
edition, 1990.

[5] Stefan Biffl, Bernd Freimut, and Oliver Laitenberger. Investigating
the Cost-Effectiveness of Reinspections in Software Development. In
Proc. 23rd International Conference on Software Engineering (ICSE
’01), pages 155–164. IEEE Computer Society, 2001.

[6] Stefan Biffl and Michael Halling. Investigating the Defect Detection
Effectiveness and Cost Benefit of Nominal Inspection Teams. IEEE
Transactions on Software Engineering, 29(5):385–397, 2003.

[7] Stefan Biffl, Michael Halling, and Monika Köhle. Investigating the
effect of a second software inspection cycle: Cost-benefit data from
a large-scale experiment on reinspection of a software requirements
document. In Proc. First Asia-Pacific Conference on Quality Software
(APAQS ’00), pages 194–203. IEEE Computer Society, 2000.

[8] C. Billings, J. Clifton, B. Kolkhorst, E. Lee, and W. B. Wingert. Jour-
ney to a Mature Software Process. IBM Systems Journal, 33(1):46–61,
1994.

[9] Leland T. Blank and Anthony J. Torquin. Engineering Economy.
Series in Industrial Engineering and Management Science. McGraw-
Hill, 4th edition, 1998.

[10] Barry Boehm. Software Engineering Economics. Prentice Hall, 1981.

[11] Barry Boehm, LiGuo Huang, Apurva Jain, and Ray Madachy. The
ROI of Software Dependability: The iDAVE Model. IEEE Software,
21(3):54–61, 2004.

[12] Karen V. Bourgeois. Process Insights from a Large-Scale Software In-
spections Data Analysis. CrossTalk. The Journal of Defense Software
Engineering, 9(10):17–23, 1996.

[13] Lionel Briand, Khaled El Emam, Oliver Laitenberger, and Thomas
Fussbroich. Using Simulation to Build Inspection Efficiency Bench-
marks for Development Projects. In Proc. 20th International Con-
ference on Software Engineering (ICSE ’98), pages 340–349. IEEE
Computer Society, 1998.

42

[14] Marilyn Bush. Improving Software Quality: The Use of Formal In-
spections at the JPL. In Proc. 12th International Conference on Soft-
ware Engineering (ICSE ’90), pages 196–199. IEEE Computer Society,
1990.

[15] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A Static
Analyzer for Finding Dynamic Programming Errors. Software: Prac-
tice and Experience, 30(7):775–802, 2000.

[16] Jörgen Christmansson and Peter Santhanam. Error Injection Aimed
at Fault Removal in Fault Tolerance Mechanisms – Criteria for Er-
ror Selection using Field Data on Software Faults. In Proc. Seventh
International Symposium on Software Reliability Engineering (ISSRE
’96), pages 175–184. IEEE Computer Society, 1996.

[17] James S. Collofello and Scott N. Woodfield. Evaluating the Effec-
tiveness of Reliability-Assurance Techniques. Journal of Systems and
Software, 9(3):191–195, 1989.

[18] Harris Cooper. Synthesizing Research. A Guide for Literature Re-
views, volume 2 of Applied Social Research Methods Series. SAGE
Publications, third edition, 1998.

[19] João Durães and Henrique Madeira. Definition of Software Fault Em-
ulation Operators: A Field Data Study. In Proc. 2003 International
Conference on Dependable Systems and Networks (DSN ’03), pages
105–114. IEEE Computer Society, 2003.

[20] Albert Endres and Dieter Rombach. A Handbook of Software and Sys-
tems Engineering. Empirical Observations, Laws and Theories. The
Fraunhofer IESE Series on Software Engineering. Pearson, 2003.

[21] Dawson Engler and Madanlal Musuvathi. Static Analysis versus
Model Checking for Bug Finding. In Proc. Verification, Model Check-
ing and Abstract Interpretation (VMCAI ’04), volume 2937 of LNCS,
pages 191–210. Springer, 2002.

[22] Michael E. Fagan. Reviews and Inspections. In Manfred Broy and
Ernst Denert, editors, Software Pioneers – Contributions to Software
Engineering, pages 562–573. Springer, 2002.

[23] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended Static Checking
for Java. In Proc. 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 234–245. ACM Press,
2002.

[24] Louis A. Franz and Jonathan C. Shih. Estimating the Value of In-
spections and Early Testing for Software Projects. Hewlett-Packard
Journal, 45(6):60–67, 1994.

[25] Tom Gilb and Dorothy Graham. Software Inspection. Addison-Wesley,
1993.

43

[26] Robert B. Grady. Practical Software Metrics for Project Management
and Process Improvement. Prentice-Hall, 1992.

[27] Robert B. Grady and Tom Van Slack. Key Lessons in Achieving
Widespread Inspection Use. IEEE Software, 11(4):46–57, 1994.

[28] William C. Hetzel. An Experimental Analysis of Program Verification
Methods. PhD thesis, University of North Carolina at Chapel Hill,
1976.

[29] William E. Howden. Theoretical and Empirical Studies of Program
Testing. IEEE Transactions on Software Engineering, SE-4(4):293–
298, 1978.

[30] Rob Johnson and David Wagner. Finding User/Kernel Pointer Bugs
With Type Inference. In Proc. 13th USENIX Security Symposium,
pages 119–134, 2004.

[31] Capers Jones. Applied Software Measurement: Assuring Productivity
and Quality. McGraw-Hill, 1991.

[32] Natalia Juristo, Ana M. Moreno, and Sira Vegas. Reviewing 25 Years
of Testing Technique Experiments. Empirical Software Engineering,
9:7–44, 2004.

[33] Stephen H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley, 2nd edition, 2002.

[34] Stephen H. Kan, S. D. Dull, D. N. Amundson, R. J. Lindner, and
R. J. Hedger. AS/400 software quality management. IBM Systems
Journal, 33(1):62–88, 1994.

[35] John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An Analysis
of Defect Densities found during Software Inspections. Journal of
Systems and Software, 17(2):111–117, 1992.

[36] Barbara A. Kitchenham, A. Kitchenham, and J. Fellows. The Effects
of Inspections on Software Quality and Productivity. ICL Technical
Journal, 5(1):112–122, 1986.

[37] Oliver Laitenberger. Studying the Effects of Code Inspection and
Structural Testing on Software Quality. Technical Report 024.98/E,
Fraunhofer IESE, 1998.

[38] Oliver Laitenberger. Studying the Effects of Code Inspection and
Structural Testing on Software Quality. In Proc. Ninth International
Symposium on Software Reliability Engineering (ISSRE ’98), pages
237–246. IEEE Computer Society Press, 1998.

[39] Oliver Laitenberger. A Survey of Software Inspection Technologies.
In Handbook on Software Engineering and Knowledge Engineering,
volume 2, pages 517–555. World Scientific Publishing, 2002.

[40] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. A Case Study
in Root Cause Defect Analysis. In Proc. International Conference on
Software Engineering (ICSE ’00), pages 428–437. ACM Press, 2000.

44

[41] Bev Littlewood, Peter T. Popov, Lorenzo Strigini, and Nick Shryane.
Modeling the Effects of Combining Diverse Software Fault De-
tection Techniques. IEEE Transactions on Software Engineering,
26(12):1157–1167, 2000.

[42] Robyn R. Lutz and Inés Carmen Mikulski. Empirical Analysis of
Safety-Critical Anomalies During Operations. IEEE Transactions on
Software Engineering, 30(3):172–180, 2004.

[43] Thomas McGibbon. A Business Case for Software Pro-
cess Improvement Revised. A DACS State-of-the-Art Re-
port, Data & Analysis Center for Software, September 1999.
http://www.dacs.dtic.mil/techs/roispi2/ (December 2005).

[44] Atif M. Memon. Empirical Evaluation of the Fault-detection Effec-
tiveness of Smoke Regression Test Cases for GUI-based Software. In
Proc. 20th IEEE International Conference on Software Maintenance
(ICSM ’04), pages 8–17. IEEE Computer Society, 2004.

[45] K.-H. Möller. Ausgangsdaten für Qualitätsmetriken. Eine Fundgrube
für Analysen. In C. Ebert and R. Dumke, editors, Software-Metriken
in der Praxis. Springer, 1996.

[46] Glenford J. Myers. A controlled Experiment in Program Testing
and Code Walkthroughs/Inspections. Communications of the ACM,
21(9):760–768, 1978.

[47] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons,
1979.

[48] P. M. Nagel, F. W. Scholz, and J. A. Skrivan. Software Reliabil-
ity: Additional Investigations into Modeling with Replicated Experi-
ments. NASA Contractor Rep. 172378, NASA Langley Res. Center,
Jun. 1984.

[49] P. M. Nagel and J. A. Skrivan. Software Reliability: Repetitive
Run Experimentation and Modeling. NASA Contractor Rep. 165836,
NASA Langley Res. Center, Feb. 1982.

[50] Simeon C. Ntafos. On Comparisons of Random, Partition, and Pro-
portional Partition Testing. IEEE Transactions on Software Engi-
neering, 27(10):949–960, 2001.

[51] Don O’Neill. Software Maintenance and Global Competitiveness.
Journal of Software Maintenance: Research and Practice, 9(6):379–
399, 1997.

[52] Jens Palsberg. Type-Based Analysis and Applications. In Proc. 2001
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE ’01), pages 20–27. ACM Press,
2001.

[53] Amit Paradkar. Case Studies on Fault Detection Effectiveness of
Model Based Test Generation Techniques. In Proc. First International

45

Workshop on Advances in Model-Based Testing (A-MOST ’05), pages
1–7. ACM Press, 2005.

[54] Adam A. Porter, Harvey P. Siy, Carol A. Toman, and Lawrence G.
Votta. An Experiment to Assess the Cost-Benefits of Code Inspections
in Large Scale Software Development. IEEE Transactions on Software
Engineering, 23(6):329–346, 1997.

[55] Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner, Chris-
tian Kühnel, Martin Baumgartner, Bernd Sostawa, Rüdiger Zölch,
and Thomas Stauner. One Evaluation of Model-Based Testing and
its Automation. In Proc. 27th International Conference on Software
Engineering (ICSE ’05), pages 392–401. ACM Press, 2005.

[56] Ronald A. Radice. High Quality Low Cost Software Inspections. Para-
doxicon Publ., 2002.

[57] Arun Rai, Haidong Song, and Marvin Troutt. Software Quality As-
surance: An Analytical Survey and Research Prioritization. Journal
of Systems and Software, 40:67–83, 1998.

[58] Horst Remus. Integrated Software Validation in the View of Inspec-
tions / Reviews. In Proc. Symposium on Software Validation, pages
57–64. Elsevier, 1983.

[59] Jan Rooijmans, Hans Aerts, and Michiel van Genuchten. Software
Quality in Consumer Electronics Products. IEEE Software, 13(1):55–
64, 1996.

[60] Peter Rösler. Warum Prüfen oft 50 mal länger dauert als Lesen
und andere Überraschungen aus der Welt der Software Reviews.
Softwaretechnik-Trends, 25(4):41–44, 2005. In German.

[61] RTI. The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02–3, National Institute of Standards &
Technology, 2002.

[62] Raymond J. Rubey. Quantitative Aspects of Software Validation. In
Proc. International Conference on Reliable Software, pages 246–251.
ACM Press, 1975.

[63] Per Runeson and Anneliese Andrews. Detection or Isolation of De-
fects? An Experimental Comparison of Unit Testing and Code Inspec-
tion. In Proc. 14th International Symposium on Software Reliability
Engineering (ISSRE ’03), pages 3–13. IEEE Computer Society, 2003.

[64] Glen W. Russell. Experience with Inspection in Ultralarge-Scale De-
velopment. IEEE Software, 8(1):25–31, 1991.

[65] Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. A Com-
parison of Bug Finding Tools for Java. In Proc. 15th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE’04),
pages 245–256. IEEE Computer Society, 2004.

46

[66] Giedre Sabaliauskaite. Investigating Defect Detection in Object-
Oriented Design and Cost-Effectiveness of Software Inspection. PhD
dissertation, Osaka University, 2004.

[67] Martin L. Shooman and Morris I. Bolsky. Types, Distribution, and
Test and Correction Times for Programming Errors. In Proc. Inter-
national Conference on Reliable Software, pages 347–357. ACM Press,
1975.

[68] Sun Sup So, Sung Deok Cha, Timothy J. Shimeall, and Yong Rae
Kwon. An Empirical Evaluation of Six Methods to Detect Faults in
Software. Software Testing, Verification and Reliability, 12:155–171,
2002.

[69] Qinbao Song, Martin Sheperd, Michelle Cartwright, and Carolyn
Mair. Software Defect Association Mining and Defect Correction
Effort Prediction. IEEE Transactions on Software Engineering,
32(2):69–82, 2006.

[70] Mark Sullivan and Ram Chillarege. A Comparison of Software Defects
in Database Management Systems and Operating Systems. In Proc.
22nd International Symposium on Fault-Tolerant Computing (FTCS-
22), pages 475–484. IEEE Computer Society, 1992.

[71] Thomas Thelin, Per Runeson, and Claes Wohlin. An Experimen-
tal Comparison of Usage-Based and Checklist-Based Reading. IEEE
Transactions on Software Engineering, 29(8):687–704, 2003.

[72] Thomas Thelin, Per Runeson, Claes Wohlin, Thomas Olsson, and
Carina Andersson. Evaluation of Usage-Based Reading—Conclusions
after Three Experiments. Empirical Software Engineering, 9:77–110,
2004.

[73] Michiel van Genuchten, Cor van Dijk, Henk Scholten, and Doug Vo-
gel. Using Group Support Systems for Software Inspections. IEEE
Software, 18(3):60–65, 2001.

[74] Rini van Solingen, Michiel van Genuchten, and Rob J. Kusters. The
Impact of EMS Support on Inspections: Description of an Experi-
ment. In Proc. Thirty-First Annual Hawaii International Conference
on System Science (HICSS ’98), volume 1, pages 575–579. IEEE Com-
puter Society, 1998.

[75] Stefan Wagner. A Model and Sensitivity Analysis of the Quality Eco-
nomics of Defect-Detection Techniques. In Proc. International Sym-
posium on Software Testing and Analysis (ISSTA ’06). ACM Press,
2006.

[76] Stefan Wagner. Cost-Optimisation of Analytical Software Quality As-
surance. PhD Dissertation, Technische Universität München, 2006.
To appear.

47

[77] Stefan Wagner and Helmut Fischer. A Software Reliability Model
Based on a Geometric Sequence of Failure Rates. In Proc. 11th Inter-
national Conference on Reliable Software Technologies (Ada-Europe
’06), volume 4006 of LNCS. Springer, 2006.

[78] Stefan Wagner, Jan Jürjens, Claudia Koller, and Peter Trischberger.
Comparing Bug Finding Tools with Reviews and Tests. In Proc. 17th
International Conference on Testing of Communicating Systems
(TestCom’05), volume 3502 of LNCS, pages 40–55. Springer, 2005.

[79] Edward F. Weller. Lessons from Three Years of Inspection Data.
IEEE Software, 10(5):38–45, 1993.

[80] Elaine J. Weyuker. More Experience with Data Flow Testing. IEEE
Transactions on Software Engineering, 19(9):912–919, 1993.

[81] Ron R. Willis, Bob M. Rova, Mike D. Scott, Martha I. Johnson,
John F. Ryskowski, Jane A. Moon, Ken C. Shumate, and Thomas O.
Winfield. Hughes Aircraft’s Widespread Deployment of a Continu-
ously Improving Software Process. Technical Report CMU/SEI-98-
TR-006, Carnegie-Mellon University, 1998.

[82] Murray Wood, Marc Roper, Andrew Brooks, and James Miller.
Comparing and Combining Software Defect Detection Techniques:
A Replicated Empirical Study. In Proc. 6th European Conference
held jointly with the 5th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC ’97/FSE-5), pages
262–277. Springer, 1997.

[83] Misha Zitser, Richard Lippmann, and Tim Leek. Testing Static Anal-
ysis Tools using Exploitable Buffer Overflows from Open Source Code.
In Proc. 12th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (SIGSOFT’04/FSE-12), pages 97–106.
ACM Press, 2004.

48

