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Abstract

Various effectiveness and efficiency metrics have been proposed for de-
fect-detection techniques and quality assurance. This report aims at intro-
ducing and comparing the most common metrics that include the effort for
the techniques. These metrics are based on code coverage and fault count.
Furthermore two new metrics are introduced that use the failure intensity
as a more reliability-oriented measure.

The latter three metrics for determining efficiency are applied in a field
study with the German software and system house ESG. Defect and test
data from a three-year project is used to analyse the efficiency of the used
techniques during four releases. The analysis showed that the efficiency
increased at first but decreased in later releases. A correlation between the
different metrics cannot be shown. Therefore only counting faults is not
sufficient for measuring efficiency with respect to reliability.
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under project name InTime.



1 Introduction

The various flavors of testing are an often underestimated part of the de-
velopment of software systems. They often constitute 50% of the total
development costs [24]. Hence, there is a significant advantage for cost
reductions.

To be able to optimise the application of testing, or more generally
defect-detection techniques, a means to measure the efficiency is needed.
This measure could take various quality attributes into account, such as
usability or maintainability. However, we concentrate on the effects on
reliability in this paper as this is arguably the most important factor for
the user.

Many studies have been conducted about the effectiveness and efficiency
of defect-detection techniques, especially inspections have been studied
extensively. Most of these studies measure the defect removal efficiency as
the average time spent to find a fault and the defect removal effectiveness
as the number of removed faults proportional to the number of all faults.
However, how can the number of all faults in a program be determined?

Moreover it is not crucial how many faults are removed but which faults
are removed. In [6] the results from a study about the mean time to failure
(MTTF) implications of faults are described. The figures show that in the
observed software 33 percent of all faults lead to a MTTF greater than
5,000 years and only two percent of the faults lead to an MTTF of less
than 50 years. Also in [2] it is suggested that “about 90 percent of the
downtime comes from, at most, 10 percent of the defects”.

For the understanding of the remainder of the paper it is necessary
to define important terms. The distinction between faults and failures is
fundamental for software reliability. Failures are a perceived deviation of
the output values from the expected values whereas faults are the cause of
failures in code or other documents. Both are also referred to as defects.

Therefore failures are the interesting notion for the user of a software
system. Hence, the definition of software reliability is the probability of
failure-free functioning of a software component for a specified period in a
specified environment.

A common metric for reliability is failure intensity. It measures the
mean number of failures that occur during a time interval, e.g. an execution
hour. The reason for using failure intensity instead of reliability directly
is that it is often easier to count the number of failures in a time interval
than measuring exact timing information for each failure. Moreover failure
intensity can be a very intuitive measure for reliability when it is associated
with specific types of interaction with the system, for example the number
of failures for 1000 queries to a database system.

The factors governing reliability partially depend on time and are in
some sense probabilistic in nature as the distribution of inputs for exam-
ple. Therefore software reliability can be modelled as a random process. A
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software reliability growth model expresses the failure behaviour of a soft-
ware in relation to time, implying the dependence on the factors above.
Various such models have been proposed, e.g. [22]. They can be used to
estimate the current level of reliability and to predict the future develop-
ment of reliability. This allows us to analyse different interesting metrics,
e.g. the failure intensity at any point in time.

Reliability growth models depend commonly on the consideration of the
operational profile of a software. This is the analysis of the usage of the sys-
tem by the users described by a probability for each operation. The details
of this approach were developed by Musa and can be found for example
in [22, 21]. When testing is guided by the operational profile, sometimes
called representative or operational testing, then the failure distribution
during testing reflects the failure rate during operation. Therefore the
operational profile has to be considered for reliability growth models.

There are also various synonyms and notions for the term defect-detec-
tion technique. We understand it as the generic term for dynamic testing
and static reading. Dynamic testing requires the software to be executed
during testing, e.g. functional testing or structural testing. Static reading
is done on documents, e.g. code review or inspection.

Contribution. The contribution of this paper is two-fold. It gives a
comprehensive overview of the possibilities to analyse the efficiency of
defect-detection techniques including two new metrics that aim to over-
come the deficiencies of the older measures. Furthermore the main tra-
ditional efficiency metric and the two new measures are compared on the
basis of a field study with real project data.

Outline. The remainder of the report is organised as follows. The dif-
ferent approaches to the analysis of the efficiency of defect-detection tech-
niques are described in Section 2. The efficiency based on coverage mea-
sures is introduced in Section 2.1 and based on the number of faults in
Section 2.2. The two new methods using local failure data or a reliability
growth model can be found in Section 2.3 and Section 2.4. The application
of the methods in a field study is described in Section 3. We start with the
goals and hypotheses for the field study in Section 3.1, develop a study plan
in Section 3.2, and describe the study procedures in Section 3.3. The re-
sults of the study are presented in Section 3.4. In Section 4 the approaches
for efficiency measurement are in compared in general and using the ex-
perience from the field study. Related work is discussed in Section 5 and
final conclusions and directions for further research are given in Section 6.

2 Metrics

This section presents four approaches for measuring the efficiency of de-
fect-detection techniques. Firstly, the commonly used metrics based on
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coverage and fault counts are described. Secondly, two new metrics based
on a time-related notion of reliability are proposed. Effectiveness is the
level of improvement that a defect-detection technique has without taking
the effort into account. We subsume all setup time, testing, code reading,
defect localisation, and defect removal under effort. In case these influences
are incorporated, the efficiency of the technique is analysed. In the follow-
ing we will use the abbreviation Tn for the used defect-detection technique
at time n.

2.1 Coverage Efficiency

A very simple but also very disputed method to analyse the efficiency of
tests is to measure the coverage of the code. There are numerous types of
coverage but we only explain some of the most common in the following.

• Line or statement coverage. The simplest form of coverage analyses
what fraction of the code has been executed.

• Branch or decision coverage. The fraction of the branches of the code
that have been executed.

• Multicondition or predicate coverage. This type of coverage requires
not only each branch to be executed but also each logical operand in
a condition to take every possible value in every combination.

• Path coverage. One of the strongest coverage types is path coverage.
This requires to test every possible path through the program. The
number of paths is typically too large to test in practice.

The coverage that a defect-detection technique achieves is easy to mea-
sure because there are already existing tools, some of them are even avail-
able as open source, that can measure up to condition coverage. This is
typically done by instrumenting the code (source or binary) at run-time or
separately and counting the execution of statements, decisions, etc.

The coverage metric itself is very important for testing as it is the
only measure that helps by quantifying how much and what parts of the
code has been tested. There is a relationship between coverage and fault
detection [26, 8, 10], although it is not fully understood. Therefore it is one
important aspect of a testing technique how much coverage it can achieve
in a certain amount of time.

The approach depicted in Figure 1 is straight-forward. For each defect-
detection technique one kind of coverage and its required effort is measured
and divided to analyse the efficiency. This yields a value for each defect-
detection technique that is analysed and on this basis different techniques
can be compared.

As mentioned above for analysing efficiency, we have to take the time
that was invested in testing into account as well as the achieved coverage.
This leads us to the following definition of coverage efficiency :
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Effort

Analysis

Defect−Detection
Technique

Coverage

+ Fault Removal

Figure 1: The approach for measuring a defect-detection technique using the

coverage approach

ηC(L, Tn) =
c(Tn)

t(Tn)
(1)

where L is the type of coverage, c(Tn) is the coverage, and t(Tn) is the
time in person hours spent for testing and fault removal. The approach is
also depicted in Figure 1.

Problematic is the transfer to static defect-detection techniques, i.e. tech-
niques that do not execute the software. An instrumentation of the code
cannot measure any coverage in that case. Therefore it is unclear what
coverage a static analysis provides.

The general threat to the validity of studies using the coverage efficiency
is that coverage is a poor measure for the effects of a defect-detection tech-
nique on reliability. It ignores how many defects as well as what kind of
defects are found. Will a software be reliable if its test cases cover 100%
of its statements? The studies presented in [8, 10] show that there is a
relation between coverage and probability of fault detection. However, the
results typically show an increase in effectiveness (efficiency is not consid-
ered directly) mostly between 90% and 100% coverage and that coverage
alone is not a reliable indicator of the effectiveness.

2.2 Fault Count Efficiency

The typically used approach to analyse the effectiveness and efficiency of
defect-detection techniques is to count the faults that were detected. The
intuition is that a technique is more efficient if it detects more faults in
a given amount of time than another technique. The measurement can
often be made as a by-product of the documentation of inspections and
test-runs.

To analyse efficiency the effort spent for the technique has to be taken
into account as well as the number of faults recorded as can be seen in
Figure 2. We also include the effort for the fault removal because it allows
a better comparison with the following methods and it is also an attribute
of the technique. For example the fault removal is easier after an inspection
than after functional tests and we consider this as part of the efficiency.
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This metric measures intuitively what effort was needed to find and fix a
fault in the software.

Defect−Detection
Technique

+ Fault Removal

Number of Faults Effort

Analysis

Figure 2: The approach for measuring a defect-detection technique using the

fault count approach

This leads us to the following formula for fault count efficiency :

ηF (Tn) =
m(Tn)

t(Tn)
(2)

where m(Tn) is the number of faults found and t(Tn) is the time spent for
the technique and fault removal in person hours, person days etc.

To use fault efficiency in studies implies a threat to construct validity
because the fault count is a problematic measure for the reliability effects of
a defect-detection technique. It does not take the fault-exposure potential
and criticality of faults into account. Furthermore the notion of a fault
itself is not free of problems. It is discussed in [7] that the idea of a fault is
not precise and has proven difficult to define formally because faults have
no unique characterisation. Above the fault problem the history could
play a role in this measure in case several defect-detection techniques are
applied sequentially because the earlier applications typically reveal more
faults as the later.

2.3 Local Failure Intensity Efficiency

The generally proposed approach for measuring reliability is to document
the time between failures during operational testing or operation of the
software system. This time-between-failure (TBF) data is used to analyse
the failure behaviour, i.e. the reliability. A simpler measure commonly
used is the failure intensity. For this we only need to count the failures
and record the time interval in which the failures occurred. Given this
data we can calculate the failure intensity in failures per hour for example.

Based on this measure we propose a new metric to analyse the effect
of a defect-detection technique. The idea is that we gather the failure
data of the software systems before and after the application of a testing
method either by operational testing or operation. The two data sets can
be further analysed to get failure intensity measures. The comparison
should normally result in a failure intensity decrease. The efficiency can
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be determined by dividing the effect of the technique by the time spent on
it. This approach is shown in Figure 3.

Defect−Detection
Technique

+ Fault Removal

Analysis

Effort

Time

Testing/Operation

Number of Failures Period Length

Failure Intensity

Testing/Operation

Number of Failures Period Length

Failure Intensity

Figure 3: The approach for measuring a defect-detection technique using the

local failure intensity approach

The failure intensity is commonly denoted by λ. Therefore the mean
number of failures during a time interval for the operational testing and
operation O can be calculated by the following formula.

λ(O) =
f(O)

l(O)
. (3)

where f(O) denotes the number of failures revealed by O and l(O) the
length of the test or operation interval. Having established this measure
we can derive the formula for the technique efficiency ηL based on the local
failure intensity.

ηL(Tn) =
λ(Ob) − λ(Oa)

λ(Ob) · t(Tn)
. (4)

where Ob is the operational testing before Tn and Oa correspondingly the
operational testing after Tn, and t(Tn) is the time spent for the technique
in person hours. We divide in the formula by λ(Oa) because we want to
concentrate on the relative efficiency.

Variation. It is most feasible to have separate operational tests in a
controlled environment of experiments. However, the application on field
data without such separate tests is possible with a few restrictions. If we
assumed that there are regularly functional test that are at least oriented
on the operational profile this data could be used for determining the failure
intensities. It allows (1) only to measure defect-detection techniques that
have operational tests before and after it and (2) no analysis of certain
operational tests themselves. The tests that cannot be analysed are the
first and the last test in the project and each operational test that was done
directly after or before any other technique. For example the effect on the
failure intensity of an operational test that is done before an inspection
(incl. fault removal) cannot be determined because the next determinable
failure intensity contains the effects of both the operational test and the
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inspection. To speak in terms of the formulae established above, we use
the Tn that represent operational testing as substitute for the missing O.

This efficiency measure has one threat in common with the fault effi-
ciency. In case the defect-detection techniques are applied in a sequential
manner they could interfere and hence the history plays an unwanted role.
This effect is minimised by the usage of the relative efficiency because the
efficiency depends on the current level of reliability. To totally avoid it, the
operational testing has to be decoupled from the defect-detection technique
in an experimental environment.

2.4 Failure Intensity Model Efficiency

The second metric that we propose does also use the failure intensity as
metric for reliability. However, it relies on software reliability growth mod-
els that were developed to estimate and predict the reliability of a software
system based on its time-between-failure (TBF) data. General descriptions
of reliability models for software can be found in [22, 19, 21]. This approach
is the most complicated because we have to use a reliability model first to
determine the reliability. This is fundamentally different from the local
method because it takes the complete failure behaviour into account.

At first either TBF data or failure counts during time intervals are col-
lected during operational testing. This data is the input to one or more
software reliability growth models. This can be supported by a software
tool like CASRE [25]. This allows to choose the best fitting model and
determine the failure intensities based on that model. We take the failure
intensity λ(Tn) at the end of the application of a testing method. The
difference of the values at the application and the application of the last
technique can again be used to calculate the failure intensity model effi-
ciency.

Time

Defect−Detection
Technique

+ Fault Removal

TBF Data

Testing/Operation

Effort Failure IntensitiesAnalysis

Figure 4: The approach for measuring a defect-detection technique using the

model failure intensity method

ηM (Tn) =
λ(Tn−1) − λ(Tn)

λ(Tn−1) · t(Tn)
. (5)
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where t(Tn) is the time spent for the technique in person hours. We con-
sider the relative efficiency by dividing by λ(Tn−1).

For the failure intensity model efficiency the history interaction is an
inevitable threat to validity because reliability growth models build on the
sequential application of defect-detection techniques. Furthermore it is a
threat that an unsuitable model for the data could be chosen that does not
reflect the actual failure behaviour of the software.

3 Field Study

The field study used to evaluate the different approaches to efficiency anal-
ysis of defect-detection techniques uses data from a project of the German
software and systems company ESG. It was a project in the military sec-
tor lasting three years and resulting in a military information system. It
consists of software as well as hardware but we will concentrate on the
software part in the following.

3.1 Goals and Hypotheses

Building on [18] a GQM-like approach is used to describe the concept of
the study to analyse the defect-detection techniques. In short, the goal is
to compare functional tests among themselves considering several releases
of the software. The comparison has its focus on the improvement of re-
liability that is measured by fault counts and change of failure intensities.
The usage of more than one metric for efficiency originates from the su-
perordinate goal of comparing the metrics. Furthermore the aim is to use
realistic data from an industrial project.

Analyse functional testing

for the purpose of comparison

with respect to their fault and failure intensity efficiency

from the point of view of the researcher

in the context of an industrial project.

From these goals we can derive a hypotheses based on the metrics
presented in Section 2. We will use three of them, the fault, local failure
intensity, and failure intensity model efficiency, as efficiency measures of
the defect-detection techniques. The hypothesis is generic and can be
tested with each efficiency metric. However, we will not formally test the
hypotheses as the main aim is to evaluate the efficiency metrics themselves.
Hence we only use descriptive techniques in the following.

The hypotheses is concerned with the functional tests and the differ-
ences during releases. One would expect that the efficiency in later releases
is lower than in earlier releases because there are probably more faults in
earlier stages of the development and it should get harder and harder to
improve reliability.
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Hypothesis 1 The efficiency decreases with each release.

To simplify the statistical analysis such hypotheses typically are con-
verted to null hypotheses stating that there is no difference and the origi-
nal hypotheses become alternative hypotheses. The null hypothesis for our
study is as follows.

Hypothesis 2 There is no difference in the efficiency of functional tests
of different release.

The procedure that is necessary to analyse these hypotheses is described
in the following based on the industrial project.

3.2 Study Plan

Following from the hypothesis developed above we consider one indepen-
dent variable in our study. It is the number of the release on which the
team was working on. The dependent variables are determined by the
approaches we chose to measure the efficiency of the defect-detection tech-
niques. Hence, we have the dependent variables counts of faults recorded,
counts of failures recorded and elapsed time, and effort spent. The testers
were the same during the whole project. Therefore the subjects vary only
slightly during the study and are not randomly assigned because it is an
industrial project that is analysed. This restricts the generalisation of the
results.

The defect-detection technique that is analysed in this study is func-
tional testing, also called black box testing. It uses only the specification
to derive test cases. The functional tests were divided in week-long test
periods. Only integration and system testing is considered here because
unit testing was not documented.

The development in general followed mainly the iterative and incre-
mental process model Rational Unified Process (RUP) [15]. That implies
that test methods were used increasingly during the project’s lifetime. In-
crements were delivered to the user after the quality assurance and failure
reports were fed back. The analysis considers four releases of the software.
The first release was after technique 24, the second after 47, the third after
64, and finally the fourth after technique 101.

The object under study is the software part of the system. Its faults and
the failures that occurred during development and operation are used. We
assume based on the defect database that faults are removed soon enough
so that no failure resulting from a fault found by an earlier defect-detection
technique occurs.

Approximately 15 developers worked on the software development and
1 to 5 were involved in the application of the defect-detection techniques.
They are experienced testers but were not involved in RUP projects prior
to this one.
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3.3 Study Procedures

The study uses the defect database that was maintained during the project.
The tool used for this purpose was Rational ClearQuest from IBM1. The
data used from this tool are the defect number, the time of occurrence and
whether it is a duplicate. The latter allows us to distinguish between faults
and failures.

The data we have is based only on calendar time not execution time,
i.e. the time that the system was actually executing. Therefore, we have to
assume that there was a constant computer utilization during the project.
In this case the execution time is proportional to the calendar time [21].
This is important for the applicability of reliability models. Furthermore
it must be noted that a general assumption for the data is also that all
failures are due to defects and not user errors.

As recommended in [21] two models are used for the analysis and the
one that fits best is chosen. The models recommended are the basic Musa
[20] and the logarithmic Poisson [23].

These models are also supported by the tool CASRE (Computer Aided
Software Reliability Estimation [25]. CASRE is a software reliability es-
timation tool that runs under Microsoft Windows and was designed pri-
marily for researchers. It allows the user to read in TBF data, display the
data graphically, choose and apply various reliability models and estimate
the parameters automatically. We used the tool for the following analysis.

The field study contains several threats to the validity of the results.
Obviously we have to take all threats identified in Section 2 for the different
approaches into account. Most importantly this is the history of the de-
fect-detection techniques. In the considered project the techniques were
applied sequentially and therefore the efficiency does interact. The earlier
applied techniques can detect defects more easily because there are more
faults in the system. In some cases the sample size can also be a threat
because with only a few failures the calculation of a failure intensity can
be questioned. A general threat in this kind of field study where the
researcher is merely an observer is that the documentation – in this case
of failures, failure times, and effort – can be bad or even wrong. In this
case particularly the effort documentation is coarse-grained. Furthermore
the application of defect-detection techniques changes over time as, for
example, the experience of the testers increases. The efficiency can also be
affected by the personnel or equipment.

The external validity, i.e. the generalisation of the results, is limited.
Firstly, only one instance of a project is considered. Therefore the results
cannot be representative. Furthermore the subjects and objects did not
vary significantly during the project. Hence the experience of the tester,
the complexity of the problem, or the quality of the software developers
can have a strong influence on the results.

1http://www.ibm.com/software/awdtools/clearquest/
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3.4 Results

First we want to look at the effort spent for each technique. Unfortunately
this data is vague because there was no detailed documentation during
the project and is based on questioning the testers. The curve describ-
ing the effort can be seen in Figure 5. Generally during the first part of
development only one to two people worked on testing. This number was
only increased before releases to the customer. These are the peaks around
technique 20 and after 40. The high peak at technique 60 is a review with
nine person weeks that is not further considered in the following.

1
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5

6

7

8

9

0 20 40 60 80 100 120

E
ffo

rt

Technique Number

Figure 5: The effort spent for the defect-detection techniques during the project.

Effort in person weeks.

All results for the different metrics can be found in the appendix. Sev-
eral statistics of these values for the methods are summarised in Table 1.
Hypothesis 2 is concerned with the differences of the efficiencies for the dif-
ferent releases. We have several box-plots for each method in the following
to analyse the hypothesis.

Fault Count Efficiency. The results for the fault count efficiency are
depicted in Figure 6. It can be seen that the data is not particularly
regular. We have several peaks but also several low values what makes the
curve rather jagged.

In the boxplot in Figure 7 can be seen that the data has several outliers
that have much higher values than the mean. If we split the data according
to the releases of the software these outliers become less. Furthermore it
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App. Min. 1st Qu. Median Mean 3rd Qu. Max.

FC 0.330 1.330 4.670 6.867 8.000 35.330

LFI -18.67 -0.67 -0.06 -1.02 0.23 0.64

FIM 0.00000 0.01000 0.01000 0.01424 0.02000 0.05000

Table 1: Summary of the efficiency values for the different approaches over all

techniques
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Figure 6: The fault efficiency of the defect-detection techniques during the

project. Efficiency in faults per person week.

can be seen that we do not have a steady decrease in efficiency but that the
efficiency increased for the second release and only afterwards decreased.
This contradicts hypothesis 2.

The mean value of 6.867 that we calculated is lower than typical pub-
lished values. For example in [11] the value for inspections and unit tests is
1.9 person hours per fault which are 15.8 faults per person week. However,
the value from this project stems from integration and system testing.
These are likely to find fewer faults than unit testing because they are
applied later in the development.

Local Failure Intensity Efficiency. As this is not a controlled ex-
periment but a field study, the local failure intensity method has to be
adapted as described in Section 2.3. We are not able to apply independent
operational testing but use the functional tests from the project for the fail-
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Figure 7: Boxplots for the fault efficiency of the techniques. The left boxplot

shows all efficiency measures, the others only for functional tests and specific

releases

ure intensity measurement. Therefore we take the failure intensity during
the last technique and during the next technique to measure a technique.

Considering the local failure intensities leads to the interesting results
depicted in Figure 8. It shows that this efficiency metric predominantly
yields negative values. This is counterintuitive for this kind of metric. As
the reliability increased in general one would suspect to see this reflected
in the efficiency.

The reason for the predominantly negative values is probably that the
effects were not already visible during the next week. Furthermore there
could be violations of the assumption that the functional tests follow the
operational profile.

The corresponding boxplot is depicted in Figure 9. It can easily be
seen that considering all values as well as separated for the releases there
are strong outliers. This suggests that this approach is not suitable for
the field study. We see that for the second release the efficiency is slightly
decreasing and then increases for the third release, whereas it is decreasing
again in the fourth release.

Failure Intensity Model Efficiency. The efficiency analysed based
on a reliability growth model yields the most intuitive data. As can be
seen in Figure 10 the efficiency is decreasing during the testing. This is in
accordance with the intuition that its getting harder and harder to improve
reliability during the test process.

The Musa-Okumota model was used for the determination of the failure
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Figure 8: The local failure intensity efficiency of the defect-detection techniques

during the project. Efficiency in 1 per person week.

intensity values. We used the KS distance calculated by CASRE as the
similarity measure. This recommended the Musa-Okumota model. Fur-
thermore because of constraints of the tool only the last 1000 failures are
taken into account.

This approach yields the best boxplots (Figure 11). There are only few
outliers and the values are close to the mean. The observation concerning
the efficiency in dependency of the releases is contradictory to the fault
count method. The efficiency increases from the second to the third release
and decreases in the fourth release. This can be a result of the limitation
that only the last 1000 failures could be analysed. The change in efficiency
contradicts hypothesis 2.

A correlation between the values of the three different approaches can
not be found. As an example we show the fault count against the failure
intensity model method in Figure 12 because they have the best possibility
to have correlation considering the boxplots from above. However, there
is no correlation visible.

4 Comparison

This section gives a detailed comparison of the presented approaches to
the efficiency of defect-detection techniques from Section 2. We start by
summarising the advantages and disadvantages of each approach.

The coverage efficiency is easy to apply because coverage is simple to
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Figure 9: Boxplots for the local failure intensity efficiency of the techniques. The

left boxplot shows all efficiency measures, the others only for functional tests and

specific releases.

measure using a variety of tools supporting that task. The main disad-
vantage is that code coverage is a problematic metric for the effects of a
defect-detection technique. The relationship between the fraction of code
covered by a test suite and the effect on reliability is not clear. Further-
more structural tests can be optimised on a coverage criterion using the
knowledge of the structure of the code. This makes a comparison futile.
Moreover it is not possible to use this approach for reading techniques.
The coverage is not measurable in this case. Finally it must be noted
that there are various coverage criteria that can be used for this approach
and Weyuker’s hypothesis [5, 31, 9] states that the adequacy of a coverage
criterion can only be intuitively defined. That means that it can not be
objectively determined which coverage criterion should be used.

The main problem of the fault count efficiency is the usage of faults as
underlying metric. As argued in Section 2.2 it has several disadvantages.
For example it is not obvious how a fault can be localised in code. Further-
more the removal of a fault does not necessarily lead to an improvement
of reliability. This is also reflected in the very heterogeneous results that
this approach yields. There can be phases in which a large number of
small faults are removed leading to a high efficiency of the defect-detection
technique followed by phases where only a few but large-scale faults are
removed leading to a low efficiency. Hence the metric is not well balanced
considering the failure-potential and severity of faults.

The problems connected with faults can be overcome using the local
failure intensity efficiency. It measures only failures that occurred during
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Figure 10: The failure intensity model efficiency of the defect-detection techniques

during the project. Efficiency in 1 per person week.

operational testing. To use the failure intensity before and after the defect-
detection technique to measure its efficiency allows to only measure direct
effects of the technique. Although this is an advantage it can be also seen
as a disadvantage. The fault removal that was caused by the defect-detec-
tion technique could have effects that are not directly visible during the
next operational testing. Furthermore bad repairs, i.e. fault removal that
injects new faults, can adulterate the results of the metric significantly.
Another problem is that in this case it often produces negative values
and strong outliers. This is counter-intuitive because efficiency should be
positive as long as the reliability increases. However for studies where a
totally independent operational testing can take place before and after each
defect-detection technique this approach might yield good results.

Finally the failure intensity model efficiency has the problem that it
involves a complex calculation because a software reliability growth model
is used to determine the failure intensities. This also introduces impre-
ciseness because we rely on statistically determined data. The complex
calculation also implies the usage of tools. Therefore the constraints of the
tool can also influence the results. However the overall results are better
than directly using the failure data as in the local failure intensity efficiency
because the whole failure behaviour of the software system is taken into
account. This leads to intuitively plausible efficiency results.
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Figure 11: Boxplots for the failure intensity model efficiency of the techniques.

The left boxplot shows all efficiency measures, the others only for functional tests

and specific releases.

5 Related Work

Musa describes in [21] the test efficiency as the relative rate of reduction of
failure intensity with respect to execution time. It is also a relative measure
and should be used with the average over time periods. The drawback of
this method is that the execution time is used in the formula instead of
the more general time spent for a technique. Furthermore the approach is
not well-elaborated.

As mentioned before most studies in the area are focused on fault count
efficiency. A well-known example for this is [12] where it is called defect
removal efficiency.

Several of the most important and partly quite old experiments are
briefly described in [18] that all concentrate on the number of faults or fail-
ures revealed, respectively. More recently [28] evaluated the fault count ef-
ficiency of six techniques empirically and [4] looked at the cost-effectiveness
of inspections. These studies typically come to the conclusion that inspec-
tion is the most effective and efficient defect-detection technique followed
by functional test and finally structural test. A comprehensive overview
of experiments that have been conducted about testing methods and their
results are given in [13].

[3] builds a detailed model for the efficiency of inspections for simulation
without looking at reliability measures.

Another recent example is [29] where several experiments are summa-
rized comparing different reading techniques for inspections. Efficiency is
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Figure 12: Relationship of the fault efficiencies and the failure intensity model

methods

measured here in faults found per hour.

The same techniques are evaluated in [30] not only in terms of fault
efficiency but also looking at the effectiveness at revealing the most critical
faults.

A quite different approach was taken in [27]. Inspection effectiveness
in measured in terms of defect escapes, i.e. the number of defects that can
escape in the next phase. Still, the time between failures is not considered.

In [16] the combination of inspection and testing techniques was dis-
cussed but not analysed in terms of efficiency.

6 Conclusion and Further Research

From the field study it became evident that it is important for the local
failure intensity efficiency that the test data used comes from independent
testing that is based on the operational profile. Otherwise the values are
distorted.

The failure intensity model method is comparably elaborate and con-
tains several levels where statistical methods are used. This can introduce
significant blurring in the results.

However, the main conclusion lies in the comparison of the new metrics
with the fault count efficiency. There is not only no correlation between
these measures but also the results are contradictory. The failure inten-
sity model efficiency and the fault count efficiency show contrary trends.
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This allows the conclusion that only counting faults is not sufficient for
analysing the efficiency of a defect-detection technique in terms of reliabil-
ity improvement.

One option that is interesting for further research is the combination
of defect-detection techniques. Intuitively, different techniques will find
different faults and hence, specific combinations of techniques might be
more efficient than others. These interrelationships were theoretically ex-
pressed in a model in [17]. This model might be refined based on further
experimentation.

Furthermore, an aspect that is often ignored is the criticality or sever-
ity of a failure. A defect-detection technique that is very efficient should
detect more severe faults than others. We tested a method based on expert
opinion in [14] and got promising results that ask for further research.

Another direction is the extension of the fault count method by esti-
mates of fault exposure potential and severity of the fault. This implies all
advantages of the fault count method, i.e. easy measurement, but takes also
the real reliability and safety implications into account. What is needed
are experts that are able to estimate these fault characteristics.

In [13] several interesting research issues were brought up. From the
current experience we consider two of them especially interesting for our fu-
ture research. Firstly, the analysis which defect-detection technique reveals
which type of faults and failures must be intensified to be able to evaluate
the interplay of different techniques. Secondly, is the search for specific
program characteristics that influence the effectiveness and efficiency of
defect-detection techniques a promising area.

Moreover, what is missing in this current analysis of the efficiency of
defect-detection techniques is the cost factor. The effort considered so
far only included the personnel. However, the costs of tools, environment
simulation, and so on are particularly important for testing and should be
taken into account.

Finally it is challenging to apply these approaches to various emerging
areas, for example agile methods such as XP [1]. Especially the practice
of pair programming is proposed as a substitute for inspections. There-
fore it is interesting to compare the number and types of faults that are
revealed by pair programming in contrast to inspections. Another interest-
ing area is model-based testing. This emerging technique can be compared
to traditional testing techniques based on the developed metrics.
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Appendix

Tech. FC LFI FIM

1 0.67 – –

2 7.33 -13.33 –

3 14.00 -0.79 –

4 16.00 0.60 –

5 1.33 0.64 –

6 0.67 -5.00 –

7 11.33 -0.67 –

8 1.33 0.63 –

9 0.67 -1.67 –

10 4.67 -0.67 –

11 1.33 0.38 –

12 2.00 -0.67 –

13 2.67 0.22 –

14 1.33 -0.50 –

15 4.67 -6.00 –

16 13.33 0.57 –

17 0.67 0.30 –

18 7.33 -2.67 –

19 1.67 -0.06 –

20 4.33 -2.40 –

21 27.33 -0.36 –

22 6.67 0.31 –

23 1.00 0.08 –

24 8.67 0.00 –

25 2.00 -1.87 –

26 34.00 0.22 –

27 0.67 0.64 –

28 1.33 0.00 –

29 1.33 -17.67 –

30 26.00 -18.67 –

31 26.67 0.56 –

32 6.00 0.61 –

33 3.33 -0.15 –

34 7.33 0.40 –

35 1.33 0.61 –

36 0.67 -2.00 –

37 5.33 -8.00 –

38 8.67 -0.08 –

39 6.00 -1.03 –

40 21.33 -3.70 –

41 35.33 -0.10 –

42 11.33 0.03 –

43 16.00 -0.01 0.02

44 23.33 0.08 0.01

45 15.33 0.00 0.03

46 12.67 0.15 0.01

47 14.67 0.44 0.01

48 7.33 -0.15 0.03

49 20.00 -0.05 0.03

50 8.67 0.42 0.05

51 8.00 0.57 0.05

52 1.33 0.17 0.04

53 5.33 -3.33 0.03

54 8.00 -0.07 0.02

55 6.00 -0.06 0.02

56 4.33 0.30 0.02

57 0.33 0.21 0.02

58 1.67 -1.33 0.02

59 0.56 – 0.01

60 4.40 -0.07 0.01

61 1.60 – 0.01

62 4.67 -0.10 0.01

63 4.00 -0.12 0.01

64 6.33 -0.03 0.01

65 4.33 0.12 0.01

66 4.00 0.00 0.01

67 2.00 -1.17 0.01

68 18.00 0.23 0.01

69 1.33 0.31 0.01

70 1.00 -1.33 0.01

71 6.67 -1.22 0.02

72 4.67 -0.58 0.02

73 17.67 0.31 0.02

74 0.33 0.30 0.01

75 1.67 -3.00 0.01

76 3.00 -0.40 0.01

77 3.67 -0.23 0.01

78 5.67 0.24 0.01

79 1.00 0.31 0.01

80 0.33 0.00 0.01

81 1.00 -5.67 0.01

82 6.00 -1.44 0.01

83 5.33 -0.46 0.01

84 14.00 -0.13 0.01

85 7.33 0.16 0.01

86 7.00 -0.45 0.01

87 17.00 0.27 0.01

88 1.33 0.22 0.01

89 5.67 -0.25 0.00

90 2.33 -0.07 0.01

91 7.33 -0.29 0.01

92 4.33 -0.24 0.01

93 12.67 0.23 0.01

94 1.33 0.31 0.01

95 1.00 0.08 0.01

96 1.00 -1.22 0.00

97 4.67 0.11 0.01

98 0.67 0.14 0.01

99 2.67 -0.17 0.00

100 1.00 0.29 0.01

101 0.33 – 0.01
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