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Abstract: This paper presents HyROOM, a proposal for an extension of
UML-like languages by continuous activities for the specification of mixed
discrete-continuous, or hybrid, systems. It is implemented in a CASE tool
prototype based on the Real-time Object Oriented Modeling methodology.
All vital parts of HyROOM’s operational simulation semantics are mapped
into HyCharts, a formal framework for hybrid systems. All essential concepts
are discussed along the lines of parts of an industrial case study, a wire
stretching plant. The semantics is the basis for validation and refinement
techniques.

1 Introduction

The development of hybrid, i.e., mixed discrete and continuous, systems is an in-
terdisciplinary task. Usually engineers from different disciplines are involved and
must discuss their designs. Graphical description techniques provide a very use-
ful means to support this communication. We believe that corresponding CASE
tools—that are based on a clearly formalized semantics but hide it from the
engineer—are crucial in alleviating the task of modeling systems. Clearly, ex-
cellent engineers are able to implement each imaginable kind of system (and their
qualification seems to be the key prerequisite for the implementation of develop-
ment processes such as Extreme Programming [Bec99]). However, CASE tools
may be one way of allowing less excellent engineers to successfully cope with the
same kind of problems.

MaSiEd. We present MaSiEd [AT98], a Rational Rose RealTime [Cor01] (or
ROOM [SGW94]) like CASE tool prototype for the development of hybrid systems
which has been developed in various projects at the third author’s institution and
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which integrates description techniques for both discrete and continuous systems.
These include structure diagrams for the architectural view as well as extended
state machines and continuous block diagrams for the specification of the behav-
ioral view on system components. HySCs [GKS00], a hybrid variant of UML’s
Sequence Charts [Gro00] that allow for the description of use cases or exemplary
component interactions, are being integrated into the tool.
MaSiEd differs from popular tools for the development of hybrid systems(e.g.,

MatrixX/BetterState, Matlab/Simulink/StateFlow, Statemate/VisSim) in that its
hybrid notations allow for an integrated development of hybrid systems. In Mat-
lab/Simulink, for instance, components are either discrete or continuous rather
than both. Their focus clearly is on continuous systems. Discrete switches from
one continuous behavior to another (e.g., different modes of friction) have to be
modeled explicitly in the continuous components (block diagram) as well as in cor-
responding discrete components (defined by state machines). In contrast, MaSiEd
allows for the integration of continuous behavior into states rather than entire
components. Furthermore, its underlying object oriented design principle sup-
ports re-use of components as well as the dynamic creation of system components
(capsules). The paper illustrates how the different description elements are used
in a large industrial case study, a wire stretching plant.

Semantics. For the development of safety critical systems, the use of formal
methods and notations is the prerequisite for mathematically proved assessments
of a system’s properties (e.g., model checking for discrete systems, or the determi-
nation of Eigenvalues for stability analysis in the case of continuous systems). For
mixed discrete and continuous systems, there are only few verification techniques
yet (e.g., HyTech [ACHH93]). For the applicability of future integrated verifica-
tion techniques, a common formal semantics is mandatory. A development process
that is based on a notion of iteratively refining a system’s design also profits from
a formal semantics. Checking consistency of a refined model with a more abstract
model can be based on the definition of correct refinement relations [Bro99]. Deter-
mining the correctness of such relations is impossible without a formal semantics.
Machine support for sound refactoring [Fow99] (of hybrid system models) also re-
quires a formalized semantics. Furthermore, the relationship between continuous
parts of the model and their discretized counterparts for simulation and imple-
mentation can only be established with such a clear semantics. In addition, tool
couplings cannot be done without matching the respective semantics.
We advocate the use of formal descriptions starting already in early design

phases (requirements capture). For hybrid systems this requires formal hybrid de-
scription techniques: The use of separate discrete and continuous notations would
require a partitioning into discrete, continuous, and remaining hybrid subsystems
that is not adequate in early development phases where abstract models are de-
sired [PSS00]. However, as stated above, this is the case with existing tools or
tool couplings which are not suitable for early phases but rather for system de-
sign; but even in systems design their use suffers from imprecise, ambiguous, and
complex semantics. No formal semantics for tool couplings are given anyway. This
is why we chose to complement the description of MaSiEd with a mapping of all



its vital parts into HyCharts [GSB98a], a framework for hybrid systems based on
a denotational semantics.

Contributions. This paper’s contributions are the presentation of a CASE tool
for hybrid systems, MaSiEd, and the clear definition of a formal semantics for
this tool. The semantics forms the basis for (automated) verification/validation
techniques, for refactoring/refinement, and for establishing a relationship between
a continuous model and its discretized refinement for simulation as well as imple-
mentation purposes.

Related work. Apart from the tools for hybrid systems already mentioned
above, there is plenty of work on simulation packages for hybrid systems (see
[Mos99] for an overview). Often these packages offer convenient, sometimes appli-
cation specific, graphical description techniques, but usually no formal semantics
is defined for them. There also are simulation tools with a strong formal back-
ground. These, however, put less emphasis on visual specification. The ongoing
work on the Charon system is an exception here, as it targets formal, visual specifi-
cation as well as simulation [AGH+00]. A first approach towards a hybrid version
of Statecharts can be found in [KP92]. The operational semantics given there,
however, does not fully support hierarchy. In particular inter-level transitions and
hierarchic specification of continuous activities are not possible. More work on
semantics for hybrid systems can be found in [GNRR93]. Some very interesting
approaches include [LSVW96] and the popular hybrid automata [ACHH93] for
which there is some tool support and also a visual notation. Unfortunately, their
practical use strongly suffers from a lack of modularity [MS00]. A central issue of
our work is the research for a convenient modeling methodology for hybrid systems
which is suitable for practice and can be put on a formal basis. Therefore, most of
the work cited above is complementary to our approach, either dealing with the
modeling and simulation of hybrid systems, or with formal models for them. An
exception is the work in the context of [FNW98] where UML’s class diagrams are
extended for hybrid systems and coupled with Z specifications.

Structure. The remainder of this paper is organized as follows. After describing
the CASE tool itself, we illustrate the used description techniques by referring to
parts of a wire stretching plant that has been modeled with MaSiEd. Finally, we
describe the mapping from MaSiEd models into the formal HyChart notations.
Please note that the paper assumes some familiarity with UML, Rational Rose
RealTime or ROOM. Technical details of this work may be found in [SPP01].

2 MaSiEd (Machine Simulator/Editor)

MaSiEd is a CASE tool for modeling, simulating and analyzing the I/O behav-
ior of general discrete, continuous, and hybrid systems. More particularly, it has
been tailored to the needs of modern (field bus based) manufacturing systems with
the aim of testing (by simulating) the associated PLC (programmable logic con-
troller) software. This tailoring becomes apparent w.r.t. two characteristics. First,
comprehensive libraries for components occurring in manufacturing plants exist.



Second, the simulation infrastructure allows the coupling of the simulation with
PLC hard- and software. The modeling features themselves are also applicable to
other hybrid domains, but favor systems were the discrete complexity dominates.
The possibility to create virtual machine models of manufacturing plants is a

prerequisite for PLC tests. These tests are carried out during all phases of the
machine development, in parallel with the mechanical construction using Simulta-
neous Engineering as guiding principle. The economic development of simulation
software that assures signal compatibility at the interface with the PLC needed
a special modeling language with support for (1) both event-discrete and time-
continuous modeling, (2) efficient modeling capabilities by supporting the reuse
of existing machine component libraries, and (3) acceptance in the machine man-
ufacturer domain. Modern manufacturing systems are compound systems with
elements from different physical disciplines, e.g. mechanics, hydraulics, and elec-
trical engineering, combined with controllers. In order to obtain the required
expressiveness of the modeling language, different methodologies have been com-
bined.

Modeling discrete systems The I/O behavior of modern manufacturing sys-
tems can be characterized as a mainly event driven discrete behavior (with incor-
porated continuous behaviors; the focus, however, is on discrete systems which
decreases the adequacy of tools such as MatrixX that focus mainly on continu-
ous parts). The MaSiEd CASE tool enables one to model reactive systems using
paradigms of the UML and further ideas for real-time systems present in Rational
Rose RealTime and ROOM [Cor01, SGW94].
The primary constructs used in MaSiEd are: capsules, protocols, ports, con-

nectors, and state machines, and they are used to model architectures consisting
of hierarchies of communicating concurrent components. A capsule is a concurrent
active object that hides its implementation from other capsules in its environment.
Fig. 2, left, shows an architecture diagram where capsules are depicted as boxes.
A capsule’s interface consists of so-called ports through which it can communi-
cate with other capsules. The type of a capsule is defined by its ports (and the
respective protocols) that appear on the capsule’s outside. Capsules can be assem-
bled into complex structures by interconnecting their ports with communication
channels called bindings (Fig. 2, left).
At least bottom-level capsules are associated with a behavior. They can initiate

activities by sending messages as well as responding to external messages. Their
behavior is specified by extended state machines with hierarchic states, but unlike
Statecharts [vdB94] without parallel composition of states: Parallel composition is
defined using architecture diagrams like in Fig. 2, left. The behavior of a capsule
is always in one of two modes: it is either waiting for an event to occur or it is
busy processing an event. All events are represented by the arrival of messages.
When an event is received, it may cause a transition of the behavior from one state
to another. While executing the transition the behavior may undertake a set of
detail-level actions, including sending messages to other capsules.
With the exception of initial transitions that can be used whenever a new

behavior must be initialized, all other transitions are triggered by events. The



trigger specification of a transition may include an optional guard condition that
can be used to refine triggering specifications. As the development progresses, more
details have to be added. Detail level specifications occur in the form of action
code in transitions of state machines. The transition code as well as triggering
events and condition are specified in C++ systan in MaSiEd. In order to be
able to treat transitions between different hierarchic levels in the state machine
in a modular way the concept of transition points, as introduced in [SGW94], is
included in MaSiEd. They split interlevel transitions into segments such that each
segment clearly pertains to exactly one hierarchic level.

Modeling continuous and hybrid systems. Even though the I/O behavior
of most modern manufacturing systems can be mainly characterized as an event
driven discrete behavior, there are also subparts which are most adequately mod-
eled in a continuous/hybrid manner. We therefore extended the notations adapted
from Rational Rose RealTime by using the mechanism of UML stereotypes to ob-
tain our HyROOM modeling language.
The primary concepts added are block diagrams and state activities. These

concepts can be used to model hierarchies of communicating concurrent hybrid
components. In order to support the modeling of continuous subsystems we
adopted the block diagram notation (e.g., Fig. 2, bottom right) used in control
theory. The block diagram notation is a widely used formalism for modeling, simu-
lating, and analyzing dynamic systems. Continuous-time block diagrams basically
represent systems of differential equations. In MaSiEd, differential equations and
difference equations can be formulated graphically in a hierarchical manner using
drag and drop operations (library support). Note that block diagrams are a means
for architectural specifications of continuous systems. MaSiEd state machines are
enhanced with the concept of continuous activities via these block diagrams: Fig. 2,
right, shows such an extended automaton with a hierarchic state (OK) and a con-
tinuous activity in its substate WIND. Variables assigned to connectors in the
block diagram associated to the activity can be evaluated in the transition con-
ditions belonging to the respective state. Different capsules in a model may be
multi rate, i.e., updated at different rates.

Modeling and simulation infrastructure. MaSiEd provides a graphical de-
sign interface where hierarchical block diagrams and HyROOM models with inher-
itance can be edited in the same environment. Inheritance on both the structural
and behavioral level provides a basis for reuse. It is also possible in the same
modeling environment to capture the system requirements using HySCs (hybrid
Sequence Charts, [GKS00]) and later to use the captured requirements for val-
idating the model. Model data are stored in a repository. MaSiEd includes an
incremental model compiler to translate HyROOM models into C++ source code
programs that are then compiled to run on a ROOM virtual machine [SGW94]. A
DDE interface to Matlab/Simulink enables the use of an automatic C program seg-
ment generation based on Matlab Real-Time Workshop and the evaluation of the
continuous models in the early stages of the development. The fully automatically
generated model-specific code uses various run-time services and is linked with pre-
compiled Run-Time System libraries (MicroRTS, developed by ObjecTime Ltd.).



The compiled model can be downloaded from the developing environment to a
target computer running VxWorks or RTLinux.

3 Example: Wire stretching plant

This paragraph describes parts of an industrial case study [PPS00] to illustrate
the HyROOM language. The system in question is a wire stretching plant, and its
main purpose is to wind wire on reels. The case study was done in order to test
the discrete process control; the actual PLC has been connected to MaSiEd for
this purpose. After briefly explaining the overall system, we concentrate on the
part of it which has been modeled in a hybrid manner.

Structure. The wire plant’s over-
all structure is as follows. The
environment produces wire that
enters the system at a variable
speed. This wire has to be wound
up on a reel. The turning reel’s
velocity has to be almost equal
to the incoming wire’s velocity
in order to guarantee a homoge-
neously wound wire. It’s velocity
is controlled by a device between
reel and environment, called the
dancer, that consists of a set of

vout
vin

reel control
to

environment
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change of
height

wire
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Figure 1: Dancer

pulleys the wire runs over (Fig. 1). Not all of the pulleys are fixed so that the
wire’s velocity is dependent on the rate of change of the vertical position of the
loose pulleys in this device. The position of these loose pulleys is a measurable
magnitude that allows to deduce the wire’s speed behind the dancer.
Once a reel is totally wound up it has to exit the system. This is achieved by a
table that brings a new (empty) reel in position after the full one has been put on
a belt by this very table. This is a complex, mostly discrete process that involves
moving the table, fixing the new wheel on the motor’s axis, cutting the wire, and
making the new reel turn. This part of the system is omitted here for brevity’s
sake.
In addition to hydraulic aggregates that fix a (turning) reel on the axis of the
associated motor the last main component of this system is the PLC part with
roughly 180 I/O ports. Hydraulic aggregates and PLC are also not considered
further here.

Hybrid subsystem. This paragraph’s focus is on the hybrid subsystem which
consists of the dancer, the DC motor for driving the reel, and the controller con-
necting the DC motor with the dancer. Its basic structure is depicted in Fig. 2,
left. The system’s input is the wire’s continuously changing input velocity, vin .
The system communicates discretely with the PLC via port pPLC, and with the
reel control via port pReelCtrl. The reel control takes care of exchanging a full
reel in the system for an empty one.
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Figure 2: Hybrid subsystem’s architecture and reel’s behavior

A typical use case for the normal operation mode is as follows (space restrictions
prevent us from graphically specifying it with a hybrid Sequence Chart [GKS00];
see [PPS00]): First, an empty reel has to be inserted in the system (state change).
Once the change is done, the threading process starts; the wire is put onto the
new reel, and it is cut from the old one. If this process successfully completes,
the actual winding process is initiated; compared with the change state, its main
characteristic is a relatively high velocity of the reel. When the reel is coiled up,
the PLC re-initiates the process of changing the reel by moving the full one out
of the system and bringing an empty one in position. This overall process should
be repeated perpetually. Note that this is just one use case where the possible
existence of errors has been ignored.
Besides an error state, there are two states describing the dancer’s behavior

(compare with hierarchic state OK in the reel’s state machine in Fig. 2). It can
either be in a winding state where the wire’s output velocity, vout (t) should be
controlled to be equal to its input velocity, vin(t). The change of the loose pulleys’
height, h, makes the dancer contain more or less wire, and it thus acts as a buffer
the inertia of which is needed for controlling the reel’s angular speed. Remember
that the task is to wind the wire in a homogeneous manner - this can be achieved if
the reel rotates as fast as the wire enters the system. In this state the relationship

between h, vin , and vout is given by h(t) =
∫ t

t0

vin(τ)−vout (τ)
2·npulleys

dτ + h0 where npulleys

denotes the number of loose pulleys in the system. If the reel is full and has to be
exchanged, the wire has to move at a very slow speed, vmin (it actually never really
stops). This is achieved by moving the loose pulleys downwards, and the dancer
is being filled up with wire (state changing). This state comprises (a) ejecting the
full reel, (b) cutting the wire, and (c) moving an empty reel in position. Note that
the dancer’s state machine has not been depicted here; it resembles the reel’s one



(Fig. 2, left). The fact that many components in a hybrid system share an almost
identical control-flow structure (in terms of states) seems to be a common feature
of modeling based on architecture diagrams (e.g., [PSS00]), not only for hybrid
systems. We found that MaSiEd’s inheritance mechanism is helpful here to avoid
redrawing such similar model parts.
The last hybrid component of interest is the reel itself. Given the wire’s input

velocity, it keeps track of the reel’s inertia, its torque, and its continuously growing
radius (wire is being wound up), R(t). It also yields the wire’s output speed
which is described by the algebraic constraint vout (t) = R(t) · ω(t) and fed back
into the dancer. If the reel is turning, its radius changes according to R(t) =
∫ t

t0
c ·ω(τ)dτ +R0 where c is a factor determined by the wire’s physical properties.

Fig. 2, bottom right, shows a Simulink block diagram for these formulas. It is
associated with state wind in Fig. 2, right. The integration takes place in the
block labeled 1

s
. F is the force the wire applies to the reel, and BL is a friction

constant. If the reel’s radius changes, its mass also does. This is why in addition
to the radius and vout there are two further outputs for torque and inertia.

4 HyCharts in a Nutshell

The modeling concepts underlying HyROOM are very similar to those introduced
in the formal specification technique HyCharts [GSB98a, GS98]. Like HyROOM,
HyCharts were invented as an adaption of concepts from the UML, Rational Rose
RealTime and ROOM to hybrid systems. However, while the emphasis of Hy-
ROOM is to provide a tool environment for modeling and simulation, the work on
HyCharts aims at providing a clear, modular formal semantics for the proposed
hybrid description techniques. HyCharts consist of two graphical, modular de-
scription techniques. HyACharts (e.g., Fig. 3) are used for the specification of the
system architecture and HySCharts for the specification of the behavior of a hy-
brid system’s components. Very similar to HyROOM’s state machines, HySCharts
are an extension of ROOM-style hierarchic state machines by continuous activities
that are associated with control-states. HyCharts regard a system as a network of
components communicating over directed channels in a time-synchronous way.

Semantic domain. Mathematically, components Cmp are total relations on
input and output trajectories, Cmp ∈ IR+ → P(OR+) where P(X) = {Y ⊆ X |
Y 6= {}} and for any set M , the set MR+ stands for the set of functions from the
non-negative real numbers R+ toM that are piecewise Lipschitz continuous, where
Lipschitz continuity is extended to tuples of functions in the natural way. For
functions with range different from R this requires that they are piecewise constant.
The modularity of HyCharts results from the interface concept for components
with its clear distinction between inputs and outputs. The type of Cmp defines
that there is a set of possible outputs for each input, which allows us to express
nondeterminism. Note that using a time synchronous model ensures that (A ×
B)R+ ∼= AR+ ×BR+ (isomorphy), which we will use occasionally.

Hybrid computation. Each component which is specified by a HySChart
is implemented by a hybrid machine, as graphically shown in Fig. 3 as a Hy-



AChart.1This machine consists of five parts: a time extended discrete (or com-
binational) part (Com†), an analog (or continuous) part (Ana), a feedback loop,
an infinitesimal delay (Limz), and a projection (Out). The labels at the channels
indicate their types. The feedback models the state of the machine. Together
with Limz it allows the component to remember at each moment of time t the
input received and the output produced “just before” t. Mathematically, Limz

computes the limit from the left of its input at each moment of time.
The discrete part is concerned with the control of the

analog part and has no memory. It instantaneously and
nondeterministically maps the current input and the fed
back state to the next state. The next state is used by the
analog part to select an activity which specifies the con-
tinuous evolution of the machine’s variables, and it is the
starting state for this activity. If the discrete part passes
the fed back state without modification, we say that it is
idle. The discrete part can only select a new next state
(different from the fed back state) at distinct points in
time. During the intervals between these time instances
it is idle and the selection of the corresponding activity is
stable for that interval and defines the input/output be-
havior of the component during the interval. Formally,
the type of Com is (I ×m · S) → P(m · S), where I is
the input space, and m · S is the program-state space. It

mS

mS

mS

O

I

Ana

Limz

+Com

Out

Figure 3: Hybrid machine
computation model.

is defined as the m-fold disjoint union (or disjoint sum) of the data-state space
S. Elements of the program-state space are written as (k, s) ∈ m · S. Here,
k ∈ {1, . . . ,m} encodes the part (i.e. the addend) of the disjoint sum from which s
stems. Due to the semantics definition for HySCharts k encodes the control-state

of the machine. The data-state s can be regarded as a variable assignment. The
type of Ana is (I ×m · S)R+ → P(m · SR+). Out is a projection and provides that
only parts of the state-space are visible outside.

From syntax to semantics. From a syntactic point of view, HyACharts and
HySCharts are both constructed from primitive nodes and certain macros by the
application of node operators and arrow operators to build a hierarchic graph. By
syntactic transformations (different for HyACharts and HySCharts) the macros are
expanded and a plain hierarchic graph remains. According to the ideas in [GSB98b]
these graphs are given a multiplicative interpretation for HyACharts, while the
graphs for HySCharts are interpreted by an additive interpretation of the operators
(Fig. 4). In the multiplicative interpretation the node operators correspond to
independent parallel execution, sequential composition and feedback (fixed point
calculation) of relations on trajectories. The definition of the operators ensures
compositionality such that one can reason about components individually in order
to derive properties of the composite system. The additive interpretation ensures
that the operators correspond to switching, sequential composition and iteration
of next state relations, i.e., of relations that have a similar type as Com. For the

1The textual definition is Cmpz = ((◦∧2×I) ; (I×Com†) ; Ana ; ◦∧2 ; (Out†×Limz)) ↑m·S
× .
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definition of the analog part a time extended version of the additive operators
is defined. The time extended sum operator allows switching between different
continuous input/output behaviors (or activities).

5 Mapping HyROOM into HyCharts

We outline a mapping from MaSiEd architecture diagrams, block diagrams and
MaSiEd state machines to HyACharts and HySCharts, respectively (left part of
Table 1). Based on HyCharts’ semantics this implicitly defines the semantics of
MaSiEd. The right part of the table results from the HyChart semantics definition
as defined in [GSB98a, GS98].

Motivation. There are three main reasons which motivate the desire for a
semantic foundation of HyROOM: validation techniques, tool integration, and
(time) refinement/refactoring.
First, we are beginning to develop validation techniques for HyROOM models

which are based on using ideas from model checking and logic programming for
automatic test case generation (see [PL01] for related work in a purely discrete
context). Since model checking and logic programming are largely based on math-
ematical principles, a mapping from HyROOM to such principles is mandatory.
Second, in concrete development processes the application of special purpose

tools which are not integrated in the CASE tool environment provided by a single
supplier is often inevitable. A mapping from one syntax to another usually is not
enough, since distinct tools may interpret the same syntactic entity differently.
Thus, the meaning of a notation also has to be defined and taken into account
when tools are coupled. Otherwise there is an inherent danger of serious bugs
resulting from slightly different interpretations.
Finally, the mapping of HyROOM to HyCharts makes a set of refactoring

and refinement methods (see [Sta01] for the latter) accessible to HyROOM. These
methods focus on the refinement of state machines (HySCharts). They make some
techniques introduced in [Rum96, Sch01] amenable to HySCharts. However, their
major aim is to support the transition from a specification with a continuous

time model to specification with an underlying discrete time model. Due to the
simplicity of the mapping from HyROOM to HyCharts, it is straightforward to
transfer these methods to HyROOM. Besides design modifications which preserve
vital properties, they also offer a systematic way to derive a suitable size of the



architecture → HyAChart → Cmp ∈ IR+ → P(OR+)
diagram

block diagram → HyAChart, pre- → Cmp ∈ IR+ → P(OR+)
defined blocks

state machine → HySChart, set of → Com ∈ (I ×m · S)→ P(m · S) and

initial states Ana ∈ (I ×m · S)R+ → P(m · SR+)

resulting in Cmpz ∈ I
R+ → P(OR+)

Table 1: From MaSiEd via HyCharts to relations.

time steps used in the simulation by MaSiEd. Formally, if the time step is chosen
appropriately, the behavior of a discrete-time simulation with this step size is
a refinement of the behavior of the original system with continuous time model.
Note that if a step size is chosen without the guidance offered by formal refinement
methods there is no mathematically guaranteed relation to the behavior of the
specified system. In any case, deeply mathematical development support become
possible by means of the formal foundation of HyROOM.

MaSiEd and HyChart abstract syntax. Table 2 lists the main constituents
of MaSiEd architecture diagrams, block diagrams, MaSiEd state machines, Hy-
ACharts and HySCharts. Furthermore, it indicates which concepts are mapped
to each other. [SPP01] explains the mapping in greater detail, considers further
MaSiEd concepts and also discusses the well-definedness of the resulting semantics,
which in particular is not guaranteed for all kinds of block diagrams.

Architecture diagrams. As Table 2 indicates, the constituents of MaSiEd
architecture diagrams and HyACharts are very similar. In order to obtain a Hy-
AChart from a MaSiEd architecture diagram primitive capsules defined by block
diagrams are mapped to HyAChart components; their semantics is explicitly de-
fined by the translation of the block diagram (see below). Each capsule defined
by a state machine is mapped to a primitive HyAChart component defined by the
HySChart resulting from translating the state machine to a HySChart (see below).
A capsule defined by a MaSiEd architecture diagram is mapped to a HyAChart
component which is, in turn, defined by applying this mapping recursively to the
subdiagram. For the mapping from MaSiEd connectors to HyACharts channels it
is necessary to replace each bidirectional connector by two unidirectional channels
in a consistent way. Apart from that some extension of HyAChart component
interfaces is necessary to reflect the buffered communication associated with bind-
ings in MaSiEd. The details are rather technical and are given in [SPP01].

Block diagrams. A mapping from block diagrams to HyACharts can be defined
as follows. We limit the block diagrams we want to consider to only containing
primitive blocks for arithmetic operations like addition, multiplication, division
and integration, which are most important in practice.2 Each hierarchic block is
mapped to a hierarchic HyAChart component and the mapping is applied recur-
sively to the block’s defining block diagram. Block diagram channels are directly

2MaSiEd also allows the direct specification of blocks with C++ code. In the context of
HyCharts, the semantics of such blocks would have to be provided by the designer.



MaSiEd architecture diagram HyAChart

primitive capsules (with ports) as primitive components,
block diagrams semantics directly defined

primitive capsules (with ports) as primitive components as HySCharts
state machines

capsules in architecture diagrams components as HyACharts

connectors between bidirectional ports unidirectional channels between components

block diagram HyAChart

primitive blocks, predefined primitive compts., sem. defined explicitly

hierarchic blocks as block diagrams components as HyAChart

unidirectional channels between blocks unidirectional channels between components

MaSiEd state machine HySChart

primitive states with transition primitive states with transition points,
points, entry and exit code, entry and exit action,
block diagram activity

hierarchic states as state machine hierarchic states as HySChart, with
with transition points, entry and transition points, entry and exit
exit code, block diagram action, activity

transitions between transition transitions between transition points
points, with code (guard+assignmt.) with (guarded) action

initial transition to transition explicit by definition of initial states
point with code (assignment)

Table 2: Main syntactic entities and their mapping.

mapped to HyAChart channels. Thus, we finally end up with primitive blocks.
Each primitive block is mapped to a primitive HyAChart component whose se-
mantics is explicitly defined according to the respective arithmetic operation. For
instance, the semantics of the HyAChart components for addition + and integra-
tion int is defined as follows:

+ ∈ (R× R)R+ → P(RR+) intc ∈ RR+ → P(RR+)

+(ι, κ)(t) = ι(t) + κ(t) intc(ι)(t) =
∫ t

0
ι(u)du+ c

where c is a constant used as the initial value of the integrator. Since the trajec-
tories we consider are piecewise Lipschitz continuous, the integral is guaranteed to
exist for every interval where the input is Lipschitz continuous and it will result in
a piecewise Lipschitz continuous output. The definitions for the other operations
are similar.
Applying the semantics definition of [GS98] to the resulting HyAChart then

yields a relation on input and output trajectories, parameterized with the start
values of the integrator blocks of the original block diagram. This relation being
the semantics of the block diagram, it needed in the translation of MaSiEd ar-
chitecture diagrams and for the translation of MaSiEd state machines, which also
contain block diagrams, to HySCharts.

State machines. In the mapping from MaSiEd state machines to HySCharts
each primitive state with its transition points is mapped to a HySChart state



with similar transition points. We assume a semantics for the (subset of) C++
code which defines entry and exit actions and transition actions to be given as
a relation on the input, the state machine’s present data state and its next data
state, [[.]] ∈ I × S × S. With this semantics the HySChart state gets entry and
exit action [[entry]] and [[exit]], respectively. The block diagram associated with
the state in MaSiEd is mapped to an activity of the HySChart state. This requires
the semantics mapping of block diagrams as outlined above and some conversion
of the resulting relation’s type to suit to the type of activities. Details of this
conversion as well as some further aspects concerning the triggering of transitions
by block diagrams are described in [SPP01].
Every transition in the MaSiEd state machine between two transition points

is mapped to a HySChart transition between the images of the transition points.
The semantics of the C++ code which is specified for the transition in MaSiEd is
associated with the image of the transition in the HySChart. It is defined as for
entry/exit actions.
Each hierarchic state with its transition points in the MaSiEd state machine is

mapped to a hierarchic state with corresponding transition points in the resulting
HySChart. The hierarchic state’s entry and exit action, and its associated block
diagram are treated just as for primitive states (see above). Then the mapping
is applied recursively to the substates and the transitions contained within the
hierarchic state.
Initialization of the MaSiEd state machine is directly mapped to the semantics

level of HySCharts yielding an element of the HySChart’s state space. While the
mapping sketched here does not cover some special state machine concepts like
history connectors it does cover the important means of preemptive transitions.
For details on initialization and these further concepts the reader is deferred to
[SPP01]. The small example in the Appendix sketches a part of the result of
applying the defined mapping to get the semantics of a part of the model depicted
in Fig. 2.

6 Conclusion

In this paper we outlined MaSiEd, a prototype tool for modeling and simulation
of hybrid systems specifically targeting at the application field of process automa-
tion. The modeling concepts, an adaption of concepts from UML, Rational Rose
RealTime and ROOM [Gro00, Cor01, SGW94], have been described and demon-
strated along the lines of an example taken from an industrial case study. It has
been argued that there is need for a formal semantics reflecting the tool’s simu-
lation semantics: A development process with refinement is desired as well as the
application of formal methods to hybrid models is. Furthermore, the coupling of
notations for discrete and continuous systems had to be clarified.
For the vital concepts of the notations supported by MaSiEd a mapping to the

formal HyCharts notation [GSB98a] was outlined (see [SPP01] for more details; the
semantics of HySCs has been defined in [GKS00]). This results in a formal seman-
tics for the notations used in the tool. Although MaSiEd and HyCharts stem from



independent work at the authors’ affiliations, the mapping itself is straightforward
in large parts, since ROOM is a common root for both lines of work. (MaSiEd
was developed with the aim of obtaining a practical development tool for test beds
of PLCs, while the development of HyCharts targeted at designing a mathemat-

ically precise formalism for the practical modeling of hybrid systems.) However,
complications arise in the mapping from block diagrams to continuous activities
in HyCharts because the implementation related decisions made in MaSiEd differ
in some details from the ideas underlying activities in HyCharts [SPP01].
Currently, HyROOM and MaSiEd do not include a notation of class diagrams.

Their incorporation (e.g., similar to [FNW98]) is the focus of current work. We
consider sound refactoring of (hybrid) pipe and filter architectures a crucial activ-
ity within a development process. In addition to automated test case generation,
this huge domain also is the subject of ongoing work.
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version of this paper.
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[PPS00] I. Péter, A. Pretschner, and T. Stauner. Heterogeneous Development of Hy-
brid Systems. In Proc. Rigorose Entwicklung software-intensiver Systeme,
pages 83–93, Berlin, 2000.

[PSS00] A. Pretschner, O. Slotosch, and T. Stauner. Developing Correct Safety Crit-
ical, Hybrid, Embedded Systems. In Proc. of New Information Processing
Techniques for Military Systems. NATO Research, 2000.

[Rum96] B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Sys-
teme. Ph.D. thesis (in German), Technische Universität München, 1996.

[Sch01] P. Scholz. Incremental design of statechart specifications. Science of Com-
puter Programming, 40(1):119–145, 2001.

[SGW94] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling.
John Wiley & Sons Ltd, Chichester, 1994.

[SPP01] T. Stauner, A. Pretschner, and I. Péter. Approaching a hybrid UML-RT:
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A Example: Hierarchic Graph for State OK

Fig. 5 depicts the hierarchic graph for state OK (and substates Change, Thread

andWind) of the MaSiEd state machine in Fig. 2. The graph defines the state tran-
sition relation of OK and results from mapping the state machine to a HySChart
as described in this paper and then deriving this HySChart’s discrete part by
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Figure 5: Hierarchic graph for state OK.

applying the graph transformations described in [GS98] (see also Fig. 4, path in
the middle). The HySChart’s discrete part Com (cf. Fig. 3) is composed from
the state transition relations of the HySChart’s substates just as OK is composed
from Change, Thread andWind . Hence, the given graph is a part of the definition
of the HySChart’s discrete part.
The equivalent textual notation for the relation depicted as a hierarchic graph

above is as follows:

Change = 3>•1; 1•<2;waitCh + trStThread

Thread = 2>•1; 1•<2;waitTh + trStWind

Wind = i + enWi ; 2>•1; 1•<2;waitWi + (trStCh; exWi)
OK = (i + i + Change; 12/\+ i; i + i + Thread ; 12/\+ i; i + i +Wind ; 12/\+ i) ↑1+

where trStThread , trStWind and trStCh are relations, namely the semantics of the
code specified for the similarly named transitions in the MaSiEd state machine of
Fig. 2. They have type I×S×S and are partial in I×S. Informally, this expresses
that if the trigger of the corresponding transition is false for an input and current
state, the relation does not determine a next state. Relations waitTh,waitCh and
waitWi are derived from trStThread , trStWind and trStCh, respectively, by some
set algebra. Informally, they denote that the next state is equal to the present state
if no transition is enabled. If a transition is enabled they are undefined. They also
have type I × S × S. The compound relation OK has type I × 4 · S → ℘(3 · S).
The further symbols in the formulas are node and arrow operators defined for
hierarchic graphs in [GS98]. They formalize the kind of connections suggested by
the visual representation given in Fig. 5.


