
Global Sensitivity Analysis of Predictor Models in Software Engineering

Stefan Wagner
Institut für Informatik

Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany

wagnerst@in.tum.de

Abstract

Predictor models are an important tool in software
projects for quality and cost control as well as management.
There are various models available that can help the soft-
ware engineer in decision-making. However, such models
are often difficult to apply in practice because of the amount
of data needed. Sensitivity analysis offers provides meansto
rank the input factors w.r.t. their importance and thereby re-
duce and optimise the measurement effort necessary. This
paper presents an example application of global sensitivity
analysis on a software reliability model used in practice. It
describes the approach and the possibilities offered.

1. Introduction

Quality and cost management as well as other predictive
tasks are still difficult to handle in the software engineering
domain. This field is comparably young and the intangibil-
ity of software renders useful measurement hard. However,
variety of predictor models have been proposed that aim at
simplifying this problem, e.g. [1, 2, 5, 7, 12]. The models,
empirical as well as analytical, allow the software engineer
to predict certain aspects of a software using various input
factors.

Problem. These models, however, are often difficult
and/or elaborate to apply in practice. They usually involve
various measurements of many input factors that influence
the outcome. This amount of effort is often not possible to
be spent and hence it hampers the use of the models.

Contribution. Based on the experience described in [16],
we propose an application of global sensitivity analysis to
predictor models in software engineering. This approach fa-
cilitates the determination of the factors that are most ben-
eficial to determine in more detail and those that might be

removed from the model. Thereby, the effort spent for ap-
plying predictor models can be optimised.

Outline. We first give a general introduction to sensitiv-
ity analysis in Sec. 2 with a special emphasis on global SA.
Sec. 3 gives a brief overview of how to apply such tech-
niques in a software engineering setting. The example of a
software reliability model is described in Sec. 4. More ap-
plications of the method on predictor models are shown in
Sec. 5. We then compare related work in Sec. 6 and con-
clude in Sec. 7.

2. Sensitivity analysis

Mathematical models, such as predictor models, are de-
fined by equations, input factors, parameters, and variables
aimed to characterise the process being investigated. The
input is subject to many sources of uncertainty including
errors of measurement, absence of information and poor or
partial understanding of the driving forces and mechanisms.
For example, costs of software defects are notoriously dif-
ficult to obtain and an exact estimation of the expected size
of a system to be built is nearly impossible. This limits our
confidence in the output of the models. Hence, we want to
provide an evaluation of the confidence in the model, pos-
sibly assessing the uncertainties associated with the mod-
elling process and with the outcome of the model itself.
Sensitivity analysis allows to characterise the uncertainty
associated with a model. This helps to answer questions
like “what input factor needs to be investigated in more de-
tail?” or “what input factors can be removed?”.

2.1. Types of Analyses

Following [9] there are three main types of sensitivity
analysis:

1. Screening

2. Local sensitivity analysis

3. Global sensitivity analysis

Screening methods are approximate but with low computa-
tional effort. This is useful when the model is expensive to
compute and/or it has a huge number of input factors. Then
a screening experiment can identify a subset of input fac-
tors that is most likely to have a strong effect on the model
output.

Local sensitivity analysis looks at the local impact of
each factor on the model output. This is usually done
by computing partial derivatives of the output functions
w.r.t. input factors. This approach does not make use of the
further knowledge we might have of those factors. More-
over, the method does not work when the model is either
nonlinear or several input factors are affected by differ-
ent uncertainties. In such cases global sensitivity analysis
should be used which is explained in the next section.

2.2. Global sensitivity analysis

There are several different methods that belong to the
class of global sensitivity analysis. They all apportion
the output uncertainty to the uncertainty of the input fac-
tors. The input factors are described by probability distri-
bution functions that represent our knowledge of the fac-
tors. This leads to two advantages that we cite directly from
Saltelli [9] who calls them the two global properties:

1. The inclusion of influence of scale and shape: The sen-
sitivity estimates of individual factors incorporate the
effect of the range and the shape of their probability
density functions.

2. Multidimensional averaging: The sensitivity estimates
of individual factors are evaluated varying all other
factors as well.

A further important aspect is that global methods have the
model independence property, i.e. the actual linearity or ad-
ditivity of the model does not influence the functioning of
the method.

Typically, global sensitivity methods belong to the class
of sample-basedmethods. This means that they sample in-
put data in order to evaluate the uncertainty in the outcome
as depicted in Fig. 1. On the left-hand side, there are the in-
put factorsx1 to xn with their respective distributions. The
dots inside those distributions represent sample points that
were generated by a sampling technique, usually a Monte-
Carlo method. The values for each input factor are fed to
the model that calculates the corresponding result(s)Y . Af-
ter repeating this for a large number of samples, we get the
uncertainty distribution for the output as shown on the right-
hand side. This distribution is then used to analyse the effect
of the inputs.

Yf(x)

x1

x2

x3

xn

Input Output

Methods for the

of the variance
decomposition

Model

Figure 1. An overview how sampling-based
methods work (adapted from [9])

For this analysis, we have the choice between several
methods. A simple but effective methods is to usescatter-
plots. A scatterplot visualises the relation of an input factor
to the output by plotting a large number of points with the
input value on the x-axis and the output value on the y-axis.
This way, possible relations become visible and possible er-
rors can be identified. Moreover, standard correlation and
regression measures such as thePearson product moment
correlation coefficient(PEAR) or theSpearman coefficient
(SPEAR) can be use to identify such relationships.

Finally, there areimportance measuresthat quantify the
variance-decomposition of the input factors using so-called
sensitivity indices[3]. They are divided into themain or
first-order indicesand thehigher-order indices. The former
describes the direct effect a factor has. The latter quantifies
the interactions between the different factors that lead toan
influence. For this, the varianceV of the model is decom-
posed based on ahigh dimensional model representation
with k being the number of input factors:

V =
k∑

i=1

Vi +
∑

i

∑

j

Vij

∑

i

∑

j

∑

k

Vijk + . . . + V1,2,...k

It shows the variation decomposed into all dimensions of ef-
fects including the main effect and all interactions between
the factors. Hence, the first-order sensitivity coefficientis
defined as the extent of the main effectVi in relation to the
total varianceV :

Si =
Vi

V

The higher-order effects are then defined similarly. Inter-
esting is also thetotal-order indexof a factor. It is the
sum of the first-order effect and all higher-order effects in
which the factor participates. Methods to compute such

measures of importance are, for example, the(extended)
Fourier amplitude sensitivity test (FAST)[10] or the method
of Sobol’ [13].

2.3. Settings

The research in sensitivity analysis has shown that there
are re-occurring questions and solutions that are sum-
marised in so-calledsettings. There is a variety of those
settings but two are the most common: (1) the factors pri-
oritisation (FP) setting that ranks the factors in terms of
their contribution to the variance and (2) the factors’ fix-
ing (FF) setting that is concerned with model simplification,
i.e. which factors can be fixed without influencing the out-
put. We are interested in both settings in the following. The
FP setting can be answered using the first-order indices de-
veloped above. The first-order indices describe informally
the expected amount of the total variance that would be re-
moved if we knew the “true” value of that certain input fac-
tor. Hence, the factors with the highest first-order values are
most important for further investigation.

The total-order indices as shown above describe the ex-
pected remaining variance if the input factor was varied but
all other factors were set to a fixed value. This is the answer
to the FF setting. Only input factors that do not significantly
change the output when being varied can be safely removed
from the model. Those factors can be fixed and nevertheless
do not change the variance in the output.

3. The approach for software engineering

We propose in the following a way to use global sensitiv-
ity analysis for predictor models in software engineering.In
particular, we describe three basic steps to analyse models
by determining the distributions of the input factors, detect-
ing errors using scatterplots, and quantifying the influence
on the output by global sensitivity analysis. An overview of
the three steps is also given in Fig. 2. As described above in
Sec. 2, we assume that we have some model that computes
a set of input factorsX into one or more output factorsY .

3.1. Determining distributions

The first step in our approach is to determine the distri-
butions of the input factors inX . This is needed to gen-
erate a large number of samples that are later used for the
scatterplots and the global sensitivity analysis. For software
engineering, there are mainly four ways to determine the
distributions:

• Scientific literature

• Expert opinion

• Empirical project data

• Controlled experiments

What is the best way depends largely on the input factor
itself. For some factors there are some specific empirical
data that fits to the domain we want to analyse. Other fac-
tors might be well investigated in the scientific literatureand
a possible distribution can be found there. For some factors
that are supposed to be very important it can even make
sense to invest the effort for a controlled experiment. For
empirical or experimental data, there are standard statistical
methods to test for certain distributions and to estimate their
parameters. However, there are often some factors that can-
not or can only very costly be determined using those meth-
ods. Then assembling expert opinion is a reasonable way.
This normally results in triangular distributions using the
lowest, the highest and the most probable value for a factor.
In summary, at the end of this step, we have a distribution
for each input factor of the model.

3.2. Visualising using scatterplots

In the second step, sample data is generated and vi-
sualised by scatterplots. We introduced scatterplots as a
method of sensitivity analysis in Sec. 2. They show the re-
lationship of one input factor and the output factor. For this,
we need two additional artefacts: (1) an implementation of
the model and (2) a large number of sample data with the
input and output of the model.

How the implementation looks like depends largely on
the chosen tool support. The tool Simlab1, for example,
can work with any implementation as long as it can read
and write a certain text format specified by Simlab. Hence,
anything from C to Matlab is possible. This implementation
is necessary to calculate the model outputs which is now
important to be able to draw the scatterplot but also for the
later analyses.

The sample data can be generated based on the distri-
butions we determined above. There are standard methods
(mainly Monte-Carlo methods) that sample the data follow-
ing the specified distributions. The only input they need is
usually the number of samples to be generated, a random
seed and the planned analysis method. For scatterplots is
the latter input not important. The Simlab tool is able to
generate sample data for various analyses. This generated
data needs to be input into the model implementation and
the outputs need to be saved. Then scatterplots of each in-
put factor and the output factor with all the samples should
be made.

The use of the scatterplots is two-fold: (1) detection of
errors and (2) first indications of influence. If there are er-

1http://simlab.jrc.cec.eu.int/

Scatterplots

Visualising
using

scatterplots

Global
sensitivity
analyses

Determining
distributions

Input
distributions

Sensitivity
indices

.375

.045

.003

.002

Figure 2. The three steps of the approach

rors in the model implementation or the distribution specifi-
cation, they will be most likely to be seen in the scatterplots.
Strange curves that suddenly change direction are good in-
dicators for that. Typical scatterplots either look strongly
chaotic or follow some kind of curve. A clear curve sug-
gest a high correlation between the factor and the output
and hence a possible high influence. Largely scatter points
indicate that other factors have stronger influence. To sum-
marise, the result of the scatterplots are assurance that there
are no errors and first indications of factors with a high in-
fluence.

3.3. Applying global sensitivity analysis

For the global sensitivity analysis, there are again several
possibilities but we suggest to use the FAST method as de-
scribed in Sec. 2. The result of the FAST method are first-
order and total-order indices that describe the quantitative
difference between the input factors. This allows an easy
evaluation of the questions typically asked such as which
factors can be removed from the model.

For the execution of the FAST method, we have every-
thing at hand from the first two steps. We specified the dis-
tributions of the input factors, built an implementation of
the model to be analysed and generated sample data. It is
only important that by generating the sample data, we set
the FAST method as aim. Then we can use a sensitivity
analysis tool such as Simlab to calculate the sensitivity in-
dices. These indices need to be interpreted in the following.

The first-order indices give the share of the output varia-
tion that is directly related to each input factor. For example,
a first-order index of 0.2 means that the input factor con-
tributes directly to 20% of the variance of the output factor.
The sum of these first-order indices is always≤ 1. The dif-
ference to 1 is the amount of higher-order effects, i.e. inter-
actions between the input factors. Hence, the interpretation
is that by reducing the variance in an input factor by deter-
mining it more precisely, we can reduce the amount given
by the first-order index in the variation of the output. This

is exactly the solution for the factors priorisation setting.
The total-order indices describe the share of the output

variation that isrelated to each input factor. This includes
all interactions. A total-order index of 0.12 means that 12%
of the output variation is somehow caused by this input fac-
tor. This includes the direct effect as well as interactions
with other factors. Therefore, the sum of these indices is
usually greater than 1. The interpretation is that by remov-
ing this factor we remove the amount of the total-order in-
dex from the output variation. Hence, we can only remove
factors with very small total-order indices so that the out-
put is not changed significantly. A total-order index below
0.1% is typically considered very small. This is the solution
to the factors fixing setting.

4. Example

The approach described above is now applied in an ex-
ample. The predictor model we analyse is a software relia-
bility model that is used in practice.

4.1. Model under analysis

The model under analysis is a software reliability growth
model that is used to predict the failure rate and the cumu-
lated number of failures of a software system. It was devel-
oped in cooperation with the communication networks de-
partment of the Siemens AG. The general idea in the model
is that the relationship between the failure rates of the indi-
vidual faults follows a geometric progression. This geomet-
ric progression was derived by analysing old project data at
Siemens.

In the paper by Wagner and Fischer [17], this was devel-
oped into a stochastic reliability model that has essentially
four input factors:

1. d: The exponent of the geometric progression

2. p1: The highest failure rate of a fault

3. t: The execution time for which we want to predict

4. inf : An approximation of infinity

The last factorinf is necessary because the model assumes
that there are potentially infinitely many faults in the soft-
ware. However, this prevents an actual calculation and
therefore this approximate value is used. The output value
used in the following is the number of failures up to timet

denoted byµ.
There are three questions w.r.t. this model that are inter-

esting for its use in practice:

1. In how much detail does the execution time needs to
be measured?

2. Can the factorinf be set to one value without influenc-
ing the output significantly?

3. Which ofd andp1 is more important to estimate early
based on other factors?

The first question is based on the observation that for soft-
ware reliability only execution time is sensible. However,
it is often difficult to estimate how frequently the software
is used in the field by different customers. Therefore, the
estimates can vary and the question is whether this can be
a problem. The second question aims at simplifying the
model. By now it is necessary to estimate the highest pos-
sible number of faults in order to use the model. It would
be helpful to know thatinf can be set to one value with-
out significant impact. Finally, the third question is rooted
in the desire to predict reliability early in the development.
Hence, we investigate whether other factors that are avail-
able early can be used to estimate the input factors of the
model. Hence, we need to know which ofd andp1 is more
beneficial to estimate.

4.2. Scatterplots

A preliminary step in sensitivity analysis is to visualise
the relationship of the input parameters and the output using
scatter plots. We use the model as described in Sec. 4.1 and
a set of data generated by the Monte-Carlo method. For the
sake of simplicity we already make use of the same set that
is used in Sec. 4.3 for further analyses. It analyses the case
where we want to know the number of cumulated failures at
aboutt = 100, 000. The sample size is 1,988.

Execution time. The first model parameter we analyse
is the execution timet. It is one of the parameters that
is not estimated by a Least Squares method but needs to
be determined based on the usage of the software. Hence,
there is also uncertainty because we might not document
the usage accurately or we might not know when exactly

the software was put into operation by a customer. Hence,
we model the input parametert using a normal distribution
with µ = 100, 000 andσ = 200. The scatter plot is shown
in Fig. 3.

 900

 800

 700

 600

 500

 400

 300

 200

 100

 0
 99200 99400 99600 99800 100000 100200 100400 100600 100800

Figure 3. A scatterplot of the relation of t and
µ

We observe that there is no straightforward relationship
between the execution time and the number of failures. We
can sense the normal distribution in the data but in general
it is more a cloud. This suggests that the variation int is not
important for the model output. Moreover, we observe that
independent of the variation int the most points lie between
100 and 200 which seem to be the most probable outcome
and that below 100 there are only few data points.

Complexity. The parameterd of the model is supposed
to represent the complexity of the software. As we do
not have much further knowledge on how this representa-
tion can be traced back to direct metrics of the software,
we assume a uniform distribution. Earlier experience with
the model however has shown that only values in[0.9, 1.0[
make sense. Hence, we restrict the distribution to this range.
The scatter plot is depicted in Fig. 4.

The observations are quite different to the relationship
betweent andµ. There seems to be a strong direct rela-
tionship betweend andµ, at least until about 0.98. We em-
phasised this with the vertical dashed line. After that point
the relationship is less clear. Probably, some higher order
effects take place in that area. However, over the whole
range,d describes an upper limit ofmu. Also after 0.98
there seems to be a lower bound a bit lower than 400 (hori-
zontal dashed line).

Highest failure probability. The other main parameter of
the model is the highest failure probability of a faultp1. We
have no earlier knowledge about its distribution. Hence,
we distribute it uniformly over the whole range]0, 1[of a
probability value. We depict the scatter plot in Fig. 5.

 0

 900

 800

 700

 600

 500

 400

 300

 200

 100

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Figure 4. A scatterplot of the relation of d and
µ

 0

 900

 800

 700

 600

 500

 400

 300

 200

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. A scatterplot of the relation of p1

and µ

Similar tot, there is no clear relationship visible between
p1 andµ. There are some slight indications of curves but
generally the points seem to be randomly distributed. The
curves are probably caused by the normal distribution oft.
We see again the concentration between 100 and 200 in-
dependent of the value ofp1. This suggests again a rather
small impact on the output. As opposed tod where we saw
an upper bound,p1 rather shows a lower bound at about
100. We indicated the lower bound by a dashed line. This
lower bound seems to be an exponential relationship be-
cause we have lower values only left of 0.1.

Approximation of infinity. Finally, we also looked at the
approximation of infinity that must be introduced as an ad-
ditional parameter when realising the model in software.
This is because we add the probabilities of all the faults
where there is the assumption that there are infinitely many
faults. As there is no closed expression to do that in our
case, we need to introduce a high value that acts as an ap-
proximation. Hence, it is interesting to know how much

influence this parameter has or if it is possible to just fix
it at some value. We do not have much experience with
this parameter but for the chosen execution time we think
that about 500 faults are reasonable. To further analyse the
parameter we modelled it as uniformly distributed between
400 and 900. We show the relationship for this in Fig. 6.

 0
 900 850 800 750 700 650 600 550 500 450 400

 100

 200

 300

 400

 500

 600

 700

 800

 900

Figure 6. A scatterplot of the relation of inf
and µ

The most obvious relationship is the linear upper bound
that is given byinf itself. This is not surprising as our model
is a kind of counting process. Each fault can result in a
failure at most once and hence there can be no more fail-
ures than there are faults. The highest possible number of
faults is given byinf. Apart from that we also see the most
data points between 100 and 200 and a weak lower bound
at about 100.

4.3. FAST

Moving a step forward from scatter plots, we now quan-
tify the influence of the input parameters on the output. For
this, we look at both settings: (1) factors priorisation and
(2) model simplification. We use the FAST method for cal-
culating the first- and the total-order indices in order to give
answers w.r.t. the settings. The results are shown in Tab. 1.

We observe that in the first-order indices,d has by far the
greatest influence on the output with nearly 91%. The fac-
torsp1 andinf are far less influential with around 1%. The
execution timet is not significant. To follow up on the ques-
tions posed in Sec. 4.1, we can answer the third question
based on these results. The factord is the most beneficial
to estimate. Note, that this corresponds to the first observa-
tions in the scatterplots above. The clearest relationshipwas
betweend and the outputµ that also has the highest index.
Apart from the first-order effects there remain higher-order
effects of 0.06788. Their influence is visible in the total-
order indices.

The ranking of the total-order indices is similar to the
first-order indices. However, we look at the low values here

Table 1. Sensitivity indices
First-order indices
d 0.9096
p1 0.0142
inf 0.0077
t 0.00062
Total-order indices
t 0.006194
p1 0.034642
inf 0.074103
d 0.976614

because we need to know which factors have only a small
influence. In this case, the variation oft has no significant
influence on the output with below 1%. The factorsp1 andd

lie again in the middle with about 3% and 7%, respectively.
Also in total,d has the most influence with over 97%. For
the first question from Sec. 4.1, we can answer that the vari-
ation int is not significant. Hence, more detailed estimates
are not necessary. The answer to the second question is that
the factorinf is significant enough to not be set to one single
value. It needs to be estimated for each case.

5. Further applications

We used a preliminary version of the approach described
in this paper for the cost-benefit model proposed in [15].
The model describes the economics of defect-detection
techniques based on a large set of parameters that describe
the defects contained in the software as well as the used
defect-detection techniques. This huge amount of parame-
ters (41 for a small project) in the original model made its
application costly. Hence, it is a perfect candidate for sensi-
tivity analysis. We determined the distributions of the input
factors based on an empirical meta-analysis [14]. The re-
sults of the analysis included that two of the parameters are
most beneficial to determine in more detail. We also iden-
tified some parameters that were fixed in a more practical
model. However, the second-order indices indicated that
these were influential so that we lost precision.

We applied the global sensitivity analysis method also to
the effort prediction model COCOMO [2]. This work has
not been published so far. We used a publicly available data
set from NASA projects in order to determine the most im-
portant factors in their project contexts. We found again that
from the 18 input parameters (development modes and cost
drivers) only one factor has an extremely strong first-order
effect: the estimation of the lines-of-code of the softwareto
be built. Hence, it is most beneficial to have a good esti-
mate of this parameter. The picture is not as clear for fixing
parameters. Most of the parameters have a total-order ef-

fect of 11–16% and hence are significant enough to not be
removed from the model.

Our colleagues Deissenboeck and Pizka used global sen-
sitivity analysis on a process simulation model in [4] in or-
der to analyse which transition probability in the Markov
chain used for modelling the process is most important.
This parameter was then manipulated in order to evaluate
whether the general conclusions from the simulation (that
one process variant needs less effort) changes.

6. Related work

Rodrigues, Rosenblum and Uchitel [8] made sensitivity
analyses of a scenario-based reliability prediction model.
They had the aim to investigate the effect of component reli-
ability and usage profiles. For the analysis, they only varied
the respective parameter and set the others to 1. This does
not allow to analyse higher-order effects. In global sensi-
tivity analysis all parameters are varied simultaneously to
circumvent that effect.

Sensitivity analysis has already been used for other soft-
ware engineering models. For example, Boehm made a sen-
sitivity analysis of the COCOMO model in [2]. However,
those analyses have a slightly different aim and do not use
global methods that include the whole distribution in the
analysis. Freimut, Briand, and Vollei [5] used sensitivity
analysis on a cost model for inspections using data from ex-
pert opinion. This shows that sensitivity analysis is a valid
tool for such models. However, the used sensitivity analysis
methods are correlation-based and do not offer the benefits
of the global methods shown in this paper. Most impor-
tantly, global methods do not have the risk of overempha-
sising local effects.

In general, Kitchenham et al. [6] suggest using sensitiv-
ity analysis as part of empirical research. However, they do
not elaborate on the methods to be used and many concen-
trate on identifying outliers.

7. Conclusions

The use of predictor models is often difficult and elabo-
rate due to the number of input factors involved. We pro-
pose an approach based on the established technique of
global sensitivity analysisin order to analyse the impor-
tance of the input factors. The approach ismodel-free, i.e., it
does not depend on certain properties of the model. Further-
more, it isglobal in the sense that it incorporates the whole
distributions in the analysis. The only two prerequisites to
use the approach is (1) information about the distribution of
the input factors and (2) an implementation of the model.
The distributions can be determined using various methods
including empirical data or expert judgement.

We have made promising experience using this approach
so far. The example above shows that it is also useful for the
analysis of reliability growth models in order to determine
the importance of the factors and hence to optimise the mea-
surement effort. Furthermore, we were able to analyse and
simplify a cost-benefit model of quality assurance [15] and
other models so that we are confident that the approach is
generally applicable for predictor models. Nevertheless,we
plan to investigate further models for which we are able to
collect the necessary data.

Acknowledgements

We are grateful to the organisers and lecturers of the
Summer School on Sensitivity Analysis of Model Output
2006 in Venice, Italy that showed us the many possibilities
of sensitivity analysis. Furthermore, we would like to thank
Sebastian Winter for useful comments.

References
[1] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig.

Software Complexity and Maintenance Costs.Communica-
tions of the ACM, 36(11):81–94, 1993.

[2] B. W. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[3] K. Chan, S. Tarantola, A. Saltelli, and I. M. Sobol. Variance-
Based Methods. In Saltelli et al. [11], pages 168–197.

[4] F. Deissenboeck and M. Pizka. The Economic Impact of
Software Process Variations. InProc. International Con-
ference on Software Processes (ICSP ’07). Springer-Verlag,
2007.

[5] B. Freimut, L. C. Briand, and F. Vollei. Determining In-
spection Cost-Effectiveness by Combining Project Data and
Expert Opinion.IEEE Transactions on Software Engineer-
ing, 31(12):1074–1092, 2005.

[6] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. El Eman, and J. Rosenberg. Preliminary
Guidelines for Empirical Research in Software Engineering.
IEEE Transactions on Software Engineering, 28(8), 2002.

[7] J. D. Musa. Software Reliability Engineering: More Reli-
able Software Faster and Cheaper. AuthorHouse, 2nd edi-
tion, 2004.

[8] G. N. Rodrigues, D. S. Rosenblum, and S. Uchitel. Sensi-
tivity Analysis for a Scenario-Based Reliability Prediction
Model. InProc. Workshop on Architecting Dependable Sys-
tems (WADS ’05). ACM Press, 2005.

[9] A. Saltelli. What is Sensitivity Analysis? In Saltelli et al.
[11], pages 4–13.

[10] A. Saltelli and R. Bolado. An Alternative Way to Compute
Fourier Amplitude Sensitivity Test (FAST).Computational
Statistics & Data Analysis, 26(4):445–460, 1998.

[11] A. Saltelli, K. Chan, and E. M. Scott, editors.Sensitivity
Analysis. John Wiley & Sons, 2000.

[12] M. Shepperd and C. Schofield. Estimating Software Project
Effort Using Analogies.IEEE Transactions on Software En-
gineering, 23(11):736–743, 1997.

[13] I. M. Sobol. Sensitivity Analysis for Non-Linear Mathemat-
ical Models. Mathematical Modelling and Computational
Experiment, 1:407–414, 1993.

[14] S. Wagner. A Literature Survey of the Quality Economicsof
Defect-Detection Techniques. InProc. 5th ACM-IEEE In-
ternational Symposium on Empirical Software Engineering
(ISESE ’06), pages 194–203. ACM Press, 2006.

[15] S. Wagner. A Model and Sensitivity Analysis of the Quality
Economics of Defect-Detection Techniques. InProc. Inter-
national Symposium on Software Testing and Analysis (IS-
STA ’06), pages 73–83. ACM Press, 2006.

[16] S. Wagner.Cost-Optimisation of Analytical Software Qual-
ity Assurance. PhD Dissertation, Technische Universität
München, 2007. To appear.

[17] S. Wagner and H. Fischer. A Software Reliability Model
Based on a Geometric Sequence of Failure Rates. InProc.
11th International Conference on Reliable Software Tech-
nologies (Ada-Europe ’06), volume 4006 ofLNCS, pages
143–154. Springer, 2006.

